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A MORTAR EDGE ELEMENT METHOD
WITH NEARLY OPTIMAL CONVERGENCE

FOR THREE-DIMENSIONAL MAXWELL’S EQUATIONS

QIYA HU, SHI SHU, AND JUN ZOU

Abstract. In this paper, we are concerned with mortar edge element methods
for solving three-dimensional Maxwell’s equations. A new type of Lagrange
multiplier space is introduced to impose the weak continuity of the tangential
components of the edge element solutions across the interfaces between neigh-
boring subdomains. The mortar edge element method is shown to have nearly
optimal convergence under some natural regularity assumptions when nested
triangulations are assumed on the interfaces. A generalized edge element in-
terpolation is introduced which plays a crucial role in establishing the nearly
optimal convergence. The theoretically predicted convergence is confirmed by
numerical experiments.

1. Introduction

The main interest of this work is to explore some new mortar edge element
methods for solving the following three-dimensional system:

(1.1) curl(α(x) curlu) + β(x)u = f(x) in Ω

where Ω is an open polyhedral domain in R3, not necessarily convex, and the
coefficients α(x) and β(x) are two positive bounded functions in Ω. The system
(1.1) has to be solved repeatedly in numerical solutions of the Maxwell’s equations
[12], [15], [16], [19]. The equation (1.1) will be complemented with the following
perfect conductor condition:

(1.2) u × n = 0 on ∂Ω

where n is the unit outward normal vector on ∂Ω.
Both nodal and edge finite element methods have been used for solving the

system (1.1)-(1.2); see, for example, [6], [13], [14], [15], [30]. It is well-known that
the algebraic systems resulting from the discretization of the system (1.1)-(1.2)
by the standard nodal and edge element methods differ greatly in nature. This
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nonmatching grids, generalized interpolation, error estimate.
The work of the first author was supported by the Natural Science Foundation of China

G10371129, the Key Project of Natural Science Foundation of China G10531080, and the National
Basic Research Program of China G2005CB321702.

The work of the second author was partially supported by the grant (2005CB321702).
The work of the third author was substantially supported by Hong Kong RGC grants

(Project 404407 and Project 404606).

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

1333



1334 QIYA HU, SHI SHU, AND JUN ZOU

difference leads to the construction of essentially different solvers based on different
principles for the resulting discrete systems; see [11, 19, 20] and the references
therein.

During the past decade, edge element methods have become increasingly more
and more popular in solving the Maxwell equations (1.1)-(1.2). Many effective
numerical solvers have been investigated for the discrete systems arising from the
edge element discretizations; see [19], [11] for multigrid methods and [3], [18], [26],
[27], [33], [34], [35] for domain decomposition methods. But all these multigrid
and domain decomposition methods are built on a globally quasi-uniform grid on
the whole domain Ω. This certainly restricts the applications of these methods for
the Maxwell system in nonhomogeneous media, where one may use independent
grids in each medium region, which are nonmatching across the interface between
any two neighboring medium regions, to achieve better performance of the numer-
ical methods. The resulting methods of this type are often called mortar element
methods. Clearly, the treatment of the nonmatching grids across interfaces is a
central issue for a mortar element method to be accurate and effective. The DDMs
based on nonmatching grids were widely studied for second order elliptic problems;
see [8], [9], [22], [23], [28], [29] and [36]. Some DDMs with nonmatching grids were
also investigated for two-dimensional Maxwell’s equations in [1], [35], and for three-
dimensional Maxwell’s equations like (1.1)-(1.2) in [7], [21]. As it is well-known, the
nonoverlapping domain decomposition theory for the nodal element systems, which
has been well developed for second order elliptic problems in the past two decades
(see the review article [37] and the references therein), do not work for the edge el-
ement systems in general, especially in three dimensions. Very little has been done
with the convergence analysis of the mortar element methods for three-dimensional
Maxwell’s equations. The first important advance in this direction was made by
Belgacem, Buffa and Maday in [7], and it is still the most significant work in the
literature. But the results in [7] are a bit unsatisfactory as they used much higher
regularity than expected to establish an energy-norm error estimate of their mortar
element method for three-dimensional Maxwell’s equations: in order to achieve a
nearly first order accuracy O(h(log(h))1/2) when the second family of Nedelec edge
elements were used, it requires at least the regularity u ∈ H2(curl; Ωk) in each
subdomain Ωk; and no convergence is possible under the usual regularity assump-
tion u ∈ H1(curl; Ωk). If the first family of Nedelec edge elements was used, the
convergence of the mortar edge element method of [7] would lose a further half
order compared to the aforementioned convergence order of the second family. An-
other restriction of work [7] is that the ratio between the largest mesh size of all
subdomains and the smallest one of all subdomains goes into the bound of the final
error estimate.

To the best of our knowledge, there is still no convincing result in the literature
on the construction and analysis of a mortar edge element method which possesses
an optimal convergence in the energy-norm. In fact, it is still unknown whether it
is possible to construct such an optimal mortar edge element method over general
nonmatching finite element grids. The main difficulty for the approach used in the
earlier effort [7] is that the L2-norm of the jump of the tangential trace on a face
cannot achieve any convergence order (see page 897 of [7]). Also, we think that the
estimate of [7] cannot be improved unless an essentially different approach is taken.
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In this paper, we will make a further attempt to investigate the problem, and
demonstrate that the construction of such optimal mortar edge element methods
is indeed possible, at least for some nonmatching grids which are of certain nested
structures on the interfaces between neighboring subdomains. We shall propose a
mortar edge element method, and show that the method can achieve the nearly
optimal error estimate of order hδk(log(d/h))1/2 in the energy-norm under the nat-
ural regularity conditions u ∈ Hδk(curl; Ωk) in each subdomain Ωk (δk > 1/2),
when grids from two neighboring medium subdomains are assumed to be nested on
their common interface. This assumption seems practical, since there are no effi-
cient methods to calculate the integrations on the interface for general nonmatching
grids (see [22] for such discussions on second order elliptic problems). Our mortar
element method is based on the discretization of the Maxwell system (1.1)-(1.2) by
the first family of edge elements (but it can be naturally extended to the easier case
of the second family of edge elements). To overcome the difficulty that the standard
saddle-point theory is not applicable for the error estimate of the proposed mortar
edge element method, we shall develop a new approach, which relies heavily on an
important generalized edge element interpolation.

The rest of this paper is arranged as follows. Some basic edge element spaces
and definitions are described in Section 2. In Section 3, a mortar edge element
method is proposed for the system (1.1)-(1.2) based on a new matching condition,
and the unique solvability of the discrete problem is proved. Section 4 introduces
and studies a generalized edge element interpolation operator. The main result of
this paper about the optimal error estimates is analyzed in Section 5. Numerical
experiments are presented in Section 6 to confirm the nearly optimal convergence
of the mortar edge element method predicted by the convergence theory.

2. Domain decompositions and discretizations

This section is devoted to the introduction of a nonoverlapping domain decom-
position, a weak variational form and some basic edge element spaces.

Domain decomposition. We decompose the physical domain Ω into N non-
overlapping tetrahedral subdomains {Ωk}N

k=1, with each Ωk of size d (see [37]).
The faces and vertices of the subdomains are always denoted by f and v, while
the common (open) face of the subdomains Ωi and Ωj are denoted by Γij , and the
union of all such common faces by Γ, i.e., Γ =

⋃
Γ̄ij . Γ will be called the interface.

By Γk we denote the intersection of Γ with the boundary of the subdomain Ωk. So
we have Γk = ∂Ωk if Ωk is a subdomain lying strictly inside Ω.

Finite element triangulation. Further, we divide each subdomain Ωk into
smaller tetrahedral elements of size hk. The resulting triangulation of the domain
Ωk is denoted by Thk

, which is assumed to be quasi-uniform (cf. [37]), while the
set of edges and the set of nodes in Thk

are denoted by Ehk
and Nhk

, respectively.
The triangulations in the subdomains generally do not match on the interfaces
between subdomains. Hence, each interface Γij inherits two triangulations Tij and
Tji, which are naturally induced from Thi

and Thj
, respectively. We shall use h to

denote the fine mesh size over Ω, i.e. h = min
1≤k≤N

hk.

Weak formulation. The primary goal of this paper is to construct an efficient
mortar edge element method for solving the equation (1.1). For this, we first
introduce its weak form and then the edge element discretization of the weak form.
Let H(curl; Ω) be the Sobolev space consisting of all square integrable functions
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whose curl’s are also square integrable in Ω, and H0(curl; Ω) be a subspace of
H(curl; Ω) with all functions whose tangential components vanish on ∂Ω, i.e., v×
n = 0 on ∂Ω for all v ∈ H0(curl; Ω). Then by integration by parts, one derives
immediately the variational problem associated with the system (1.1)-(1.2): Find
u ∈ H0(curl; Ω) such that

(2.3) A(u,v) = (f ,v), ∀v ∈ H0(curl; Ω)

where A(·, ·) is a bilinear form given by

A(u,v) = (α curl u, curl v) + (βu,v), ∀u,v ∈ H(curl; Ω).

Here and in what follows, (·, ·) denotes the scalar product in L2(Ω) or (L2(Ω))3.
Edge element discretization. For each subdomain Ωk, we introduce the

Nédélec edge element space, of the lowest order, which is a subspace of piecewise
linear polynomials defined on Thk

(cf. [31]):

Vhk
(Ωk) =

{
v ∈ H0(curl; Ω); v |K∈ R(K), ∀K ∈ Thk

}
,

where R(K) is a subset of all linear polynomials on the element K of the form:

R(K) =
{
a + b × x; a,b ∈ R3, x ∈ K

}
.

It is known from [31] that the tangential components of any function v in Vhk
(Ωk)

are continuous on all edges of every element in the triangulation Thk
, and v is

uniquely determined by its moments on the edges of Thk
:

(2.4)
{

λe(v) =
∫

e

v · teds; e ∈ Ehk

}
where te denotes the unit vector on the edge e.

Let {Le; e ∈ Ehk
} be the edge element basis functions of Vhk

(Ωk) satisfying

λe′(Le) =

{
1, if e′ = e,

0, otherwise.

One can verify that the edge element basis function Le associated with the edge e
has the representation

(2.5) Le = ce (λe
1∇λe

2 − λe
2∇λe

1),

where λe
1 and λe

2 are two barycentric basis functions at two endpoints of e, and ce is
a constant such that λe(Le) = 1. Also, each function v of Vhk

(Ωk) can be expressed
as

(2.6) v(x) =
∑

e∈Ehk

λe(v)Le(x), x ∈ Ωk .

Edge element interpolation. For any number δ > 0, we define the space

Hδ(curl; Ωk) = {v ∈ (Hδ(Ωk))3; curlv ∈ (Hδ(Ωk))3}
equipped with the norm

‖v‖δ,curl;Ωk
= (‖v‖2

δ,Ωk
+ ‖curlv‖2

δ,Ωk
)

1
2 .

It is known that for any element K in Thk
and an edge e of K, the integrals in (2.4)

are well-defined (cf. [4]) for any v ∈ Xp(K) (p > 2) given by

Xp(K) = {v ∈ (Lp(K))3; curlv ∈ (Lp(K))3, v × n ∈ (Lp(∂K))3}.
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Thus if v ∈ Xp(K) for any K ∈ Thk
and v ∈ H(curl; Ωk), we can define its edge

element interpolant rhk
v which is an edge element function in Vhk

(Ωk) and has the
same moments as v on all edges e ∈ Ehk

. Also, we can write

rhk
v(x) =

∑
e∈Ehk

λe(v)Le(x), x ∈ Ωk,

and, we can directly verify from above and the Sobolev embedding theorem that
rhk

v is well-defined for any v ∈ Hδ(curl; Ωk) with δ > 1
2 .

Local multiplier spaces on interfaces. In order to define a reasonable edge
element space on the global domain Ω, we should choose a suitable (local) multiplier
space W (Γij) on each face Γij .

Nestedness assumption. Throughout this work we shall consider the case
that the triangulations Thi

and Thj
in two neighboring subdomains Ωi and Ωj are

matching or strictly nested on each face Γij . More accurately, we assume that all
faces Γij can be classified into two groups: Group 1 and Group 2, where for each
Γij in Group 1, Thi

and Thj
are strictly nested on Γij , while for each Γij in Group

2, Thi
and Thj

are matching on Γij (so hi = hj).
We shall need the following tangential restrictions of the local subspaces Vhi

(Ωi)
and Vhj

(Ωj) on the common face Γij of Ωi and Ωj :

Vhi
(Γij) = {µ = (v × n)|Γij

; v ∈ Vhi
(Ωi)},

Vhj
(Γij) = {µ = (v × n)|Γij

; v ∈ Vhj
(Ωj)}.

Actually, one can check that Vhi
(Γij) and Vhj

(Γij) are linear Raviart-Thomas ele-
ment spaces on Γij .

Now we come to define a local multiplier space W (Γij) on each face Γij . We
first consider a face Γij in Group 1. Without loss of generality, we assume that Thi

is coarser than Thj
on Γij , so hi > hj . For easy identification, we set Vcoar(Γij) =

Vhi
(Γij) and Vfine(Γij) = Vhj

(Γij). Thus Vcoar(Γij) ⊂ Vfine(Γij). Then we define
W (Γij) as the following two-dimensional Nedelec element space:

(2.7) W (Γij) = n × Vcoar(Γij) = {µ = (n× v × n)|Γij
; v ∈ Vhi

(Ωi)}.
We remark that this multiplier space W (Γij) can be viewed as a rotation of the
Raviart-Thomas space Vcoar(Γij) by π/2.

We then consider a face Γij in Group 2. Let τ be the unit normal vector of
∂Γij such that it is parallel to the face Γij . As we have hi = hj in this case,
we set V (Γij) = Vhi

(Γij) = Vhj
(Γij). Then we define W (Γij) as the following

Raviart-Thomas space:

(2.8) W (Γij) = {µ ∈ V (Γij); µ · τ = 0 on ∂Γij}.
We point out that the definitions of the multiplier spaces W (Γij) above are very

different from that in the existing literature (cf. [7] [21]).

3. Mortar edge element method

In this section, we introduce our mortar edge element method and discuss its
well-posedness.

From now on, we shall often write vk = v|Ωk
for any v ∈ L2(Ω)3. Let tij be the

unit tangential vector along the boundary ∂Γij ; then we define

Ṽh(Ω) = {v ∈ (L2(Ω))3; vk ∈ Vhk
(Ωk) ∀ k and vi ·tij = vj ·tij on ∂Γij ∀ Γij}.
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The mortar edge element space on the global domain Ω is then defined by

Vh(Ω) = {v ∈ Ṽh(Ω); for each Γij , 〈vi × n, µ〉Γij
= 〈vj × n, µ〉Γij

∀µ ∈ W (Γij)}.

We emphasize that the space Vh(Ω) is not a subspace of H(curl; Ω).
Now we can formulate our edge element approximation to the variational problem

(2.3) as follows: Find uh ∈ Vh(Ω) such that

(3.1)
N∑

k=1

Ak(uhk
,vhk

) = (f ,vh), ∀vh ∈ Vh(Ω)

where Ak(·, ·) is defined only on the subdomain Ωk by

Ak(uk,vk) = (α curl uk, curl vk)Ωk
+ (β uk,vk)Ωk

, k = 1, 2, · · · , N.

Remark 3.1. For two subdomains Ωi and Ωj sharing a common face Γij , let Eij

be the set of all the fine edges of Thi
and Thj

lying on ∂Γij . The condition that
vi · tij = vj · tij on ∂Γij implies that λe(vi) = λe(vj) for each e ∈ Eij . This
requirement is reasonable since Thi

and Thj
are nested on Γij . But as we shall

see, the condition that λe(vi) = λe(vj) for e ∈ Eij is needed only for those faces
in Group 2. Such a definition of Vh(Ω) is necessary when designing an efficient
solution method for (3.1).

Remark 3.2. If we choose

W (Γij) = {µ ∈ Vfine(Γij); µ · τ = 0 on ∂Γij}

for all the faces in Group 1, the same as we did for Group 2, then we have Vh(Ω) ⊂
H(curl; Ω), see Section 5. But the multiplier space is much larger with such a
choice if one of the grids Thi

and Thj
is much finer than the other, and the solution

of (3.1) is then much more expensive.

Next, we discuss the unique existence of the mortar edge element system (3.1).
It is easy to see that Vh(Ω) contains some nonzero vector, for example, all the

vectors vanishing on the interface Γ. Moreover, the bilinear form associated with
(3.1) is coercive. Thus, we obtain

Theorem 3.1. The mortar edge element problem (3.1) has a unique solution uh ∈
Vh(Ω).

It seems difficult to verify the standard inf-sup condition for the system (3.1).
Because of this, we will derive in the next section an optimal error estimate of uh

by a novel approach which does not use the standard saddle-point framework (see
[7], [8] and [9] for comparison).

We conclude this section with some discussions about the realization of the
mortar edge element method (3.1). This can be done basically in two steps.

In the first step, we can establish the algebraic saddle-point system associated
with the mortar problem (3.1). For this, we define a product space W (Γ) on Γ by

W (Γ) =
∏
Γij

W (Γij).

Then the discrete system (3.1) may be written as the following saddle-point prob-
lem:
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Find (uh, λh) ∈ Ṽh(Ω) × W (Γ) such that
N∑

k=1

{
Ak(uhk

,vhk
) + 〈vhk

× nk, λh〉Γk

}
= (f ,vh), ∀vh ∈ Ṽh(Ω),(3.2)

N∑
k=1

〈uhk
× nk, µh〉Γk

= 0, ∀µh ∈ W (Γ).(3.3)

Now we discuss how to ensure the solution uh to meet the edge conditions
required in Ṽh(Ω). Consider a coarse edge E from any one of the subdomains, and
let Ωe

1 , · · · , Ωe
k denote the subdomains which share E as one of their edges. The

triangulation of each subdomain Ωe
i induces a natural partition of E, denoted as

T E
hi

(1 ≤ i ≤ k). Without loss of generality, we assume that the partition T E
h1

is the
coarsest among all the partitions T E

h1
, · · · , T E

hk
on E, that is, all the partitions T E

h2
,

· · · , T E
hk

are some refinement of T E
h1

on E. Using (2.6), the restriction of uh in ΩE
1 can

be expressed in terms of Nedelec’s basis functions associated with the triangulation
of Ωe

1 . Now, considering an arbitrary fine edge e ⊂ E from T E
h1

, let λe(uh) be the
coefficient of the solution uh|ΩE

1
corresponding to Nedelec’s basis Le (cf. (2.6)). For

any other partition T E
hi

with 2 ≤ i ≤ k, let ei
1, · · · , ei

m denote its fine edges on e,
and Lei

1
,· · · ,Lei

m
be the corresponding Nedelec’s basis functions associated with the

triangulation of ΩE
i . Then one can choose the coefficients λei

1
(uh), · · · , λem

1
(uh) of

the solution uh|ΩE
i

(i = 2, · · · , n) corresponding to Lei
1
, · · · , Lei

m
as λe(uh)/m. In

other words, if we choose the new basis functions as Lei
1
/m, · · · , Lei

m
/m, then the

coefficients of the solution uh|ΩE
i

on the new basis is also λe(uh). Using such basis
representations, one can easily verify that the resulting mortar element solution
uh satisfies the edge conditions as required in the space Ṽh(Ω). With help of this
basis representation and the introduction of two appropriate operators A and B,
the saddle-point system (3.2)-(3.3) can be formulated as follows:

Auh + Btλh = 0,(3.4)

Buh = 0.(3.5)

In the second step, we should work out some effective method to solve the saddle-
point system (3.4)-(3.5). This system can be solved by many existing iterative
methods, for example, the inexact Uzawa-type methods developed in [24], [25]. But
in order for an iterative method to be efficient, one should construct an effective
preconditioner Â for the operator A and another effective preconditioner for the
Schur complement BÂ−1Bt associated with the system (3.4)-(3.5). A mortar edge
element method will be of no practical meaning if no effective preconditioners can
be found for A and BÂ−1Bt.

With this aim in mind, the mortar edge element method (3.1) was constructed
in a way that effective preconditioners can be found for both A and BÂ−1Bt. This
will be discussed in detail in a separate work.

4. Generalized edge element interpolation

We use this section to introduce a generalized interpolation operator which maps
any function in H(curl; Ω) and Hδk(curl; Ωk) (δk > 1

2 ) for all Ωk’s into an edge
element function in H(curl; Ω) ∩ Vh(Ω) and analyze its interpolation errors. This
interpolation operator will play a key role in establishing the error estimates of the



1340 QIYA HU, SHI SHU, AND JUN ZOU

mortar element method proposed in Section 3. As we will see, the new interpolation
operator is indeed a generalization of the standard one in the edge element space
Vh(Ω) when all the subdomain triangulations {Thk

} match with each other on all
interfaces, but its definition is rather tricky.

4.1. Helmholtz decomposition and extension operators. We start with the
Helmholtz decomposition for edge element functions. Let

H0(div0; Ωk) = {v ∈ H(div; Ωk); divv = 0 and v · n = 0 on Γk}.
By the Helmholtz decomposition [17], for any vhk

∈ Vhk
(Ωk), there exist functions

p ∈ H1(Ωk) and w ∈ H(curl; Ωk) ∩ H0(div0; Ωk) such that

(4.1) vhk
= ∇p + w.

But as Ωk is a convex polyhedron, we know w ∈ H(curl; Ωk) ∩ H0(div0; Ωk) ⊂
(H1(Ωk))3 (cf. [17]). Therefore we have w ∈ (H1(Ωk))3, which with the fact that
curlw = curl vhk

ensures that the interpolant rhk
w is well-defined; see Section 2.

Taking the interpolation on both sides of (4.1), we see

vhk
= rhk

∇p + rhk
w.

Now we introduce a subspace Zhk
(Ωk) of H1(Ωk), which is the continuous

piecewise linear nodal finite element space associated with the triangulation Thk
.

Then one can find (cf. Lemma 5.10, [17]) a function phk
from Zhk

(Ωk) such that
rhk

∇p = ∇phk
. With this, we can write

(4.2) vhk
= ∇phk

+ rhk
w = ∇phk

+ whk

where whk
= rhk

w ∈ Vhk
(Ωk).

From (4.1) and (4.2) we see the following relation:

(4.3) curl whk
= curl w = curl vhk

.

Next, we introduce some additional extension operators.
For any closed subset G of Γk, we define

Vhk
(G) = {Φ = v|G; v ∈ Vhk

(Ωk)}.
Then we introduce a discrete operator R0

G,hk
from Vhk

(G) into Vhk
(Ωk) such that

for any Φ = v|G with v ∈ Vhk
(Ωk), R0

G,hk
Φ is given by

R0
G,hk

Φ(x) =
∑

e∈Ehk
∩G

λe(v)Le(x) , x ∈ Ω̄k.

One can easily see that the degree of freedom of R0
G,hk

Φ associated with any edge
e outside of G vanishes.

Similarly for the nodal element space Zhk
(Ωk), we define its restriction on G by

Zhk
(G) = {ϕ = v|G; v ∈ Zhk

(Ωk)}.
For any function ϕ in L2(G), let γG(ϕ) be the average value of ϕ on G. Consider
a closed common edge e of two subdomains Ωr and Ωk and any ϕ ∈ Zhr

(Γr), we
define its extension onto Γk by

(4.4) π0
e,hk

ϕ(x) =

{
ϕ(x) for x ∈ e ∩Nhk

,

γΓr
(ϕ) for x ∈ (Γk\e) ∩ Nhk

and π0
e,hk

ϕ ∈ Zhk
(Γk).
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Finally, we mention that we shall also used the standard discrete harmonic ex-
tension Rhk

: Zhk
(Γk) → Zhk

(Ωk); see [37] for more detail.

4.2. Generalized edge element interpolation operator. With the prepara-
tions in the last subsection, we can now introduce a new generalized edge element
interpolation operator.

For any v ∈ H(curl; Ω) and Hδk(curl; Ωk) for each Ωk (δk > 1
2 ), we will define a

new interpolation rhv in an appropriate manner so that rhv ∈ H(curl; Ω) and rhv
has some ideal approximation properties. For the sake of exposition, we assume that
the grid in each subdomain is uniform. Thus, the subdomains Ω1, Ω2, · · · , ΩN can
be arranged in such an order that h1 ≥ h2 ≥ · · · ≥ hN . For the general case with
quasi-uniform grids, some obvious modifications of the subsequent definition of the
generalized interpolation rhv are needed. We shall first define rhv on all interfaces
(common edges and faces), and then extend the definition into all subdomains as
it is done in the following.

In the sequel we shall write vk = v|Ωk
and vhk

= (rhv)|Ωk
.

Step 1. The definition of vh1 is as the standard:

vh1 = rh1v1 =
∑

e∈Eh1

λe(v1)Le in Ω1 .

Step 2. vh2 is defined by means of vh1 .
In the case that Γ1 ∩ Γ2 = ∅ or the triangulations Th1 and Th2 are matching on

Γ12, we define vh2 also as the standard:

vh2 = rh2v2 =
∑

e∈Eh2

λe(v2)Le in Ω2 .

Otherwise we have to define vh2 very carefully. There are two different situations:
(i) Γ1 ∩Γ2 = Γ12 is a face; (ii) Γ1 ∩Γ2 = e12 is an edge. For case (i), the treatment
is simple; but case (ii) is more tricky.

For the case (i), we define

(4.5) vh2 = rh2v2 + R0
Γ12,h2

[(rh1v1 − rh2v2)|Γ12 ].

Now we treat case (ii). Recall that T12 and T21 are the respective restrictions of
Th1 and Th2 on Γ12. We then extend T12 and T21 both into Ω1 with mesh sizes h1

and h2, and the extended triangulations are denoted by T̃12 and T̃21, respectively.
Since T12 and T21 are nested, we require that T̃12 and T̃21 are also nested. Let r̃h1

and r̃h2 denote the interpolation operators associated with T̃12 and T̃21, respectively.
The same as in (4.1), we can have the Helmholtz decomposition for r̃h1v1−r̃h2v1:

(4.6) r̃h1v1 − r̃h2v1 = w + ∇p,

with w ∈ H(curl; Ω1) ∩ H0(div0; Ω1) and p ∈ H1(Ω1). Applying r̃h2 , we have

(4.7) r̃h1v1 − r̃h2v1 = r̃h2w + r̃h2∇p = w̃h2 + ∇p̃h2 ,

where w̃h2 = r̃h2w and p̃h2 ∈ H1(Ω1) is a piecewise linear function associated with
the extended triangulation T̃21 of Ω1. Then we define

vhk
= rh2v2 + R0

e12,h2
(w̃h2 |e12) + ∇ph2

where ph2 ∈ H1(Ω2) is a discrete harmonic function in Ω2 given by

ph2 = Rh2 [π
0
e12,h2

(p̃h2 |Γ12)] .

Step 3. Assume that vh1 ,vh2 , · · · ,vhk−1 are defined. We define vhk
below.
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In the case that Γr ∩ Γk = ∅ for r = 1, · · · , k − 1 or triangulations Thk
and

Thr
matches on Γrk for some 1 ≤ r ≤ k − 1, then we define vhk

as the standard
interpolation:

vhk
= rhk

vk.

Otherwise, let Ωk1 , · · · , Ωkn
with k1 < · · · < kn < k be the subdomains such

that Γkl
∩ Γk 
= ∅ (l = 1, · · · , n). Without loss of generality, we assume that

Γkl
∩ Γk = Γklk is a face (l = 1, · · · , n − 1), and Γkn

∩ Γk = eknk is an edge. The
face case can be treated in the same manner as in (4.5). To deal with the edge
eknk, we have to consider two cases: (a) there exists one subdomain among all
Ωkl

’s (l < n) such that eknk is also one of its edges; (b) eknk is not an edge of any
subdomain from Ωkl

(l < n). For case (a), we can define vhk
directly:

vhk
= rhk

vk +
n−1∑
l=1

R0
Γklk,hk

[(rhkl
vkl

− rhk
vk)|Γklk

].

The case (b) is more complicated. As we did in case (ii) of Step 2, we define
two auxiliary interpolation operators r̃hkn

and r̃hk
in Ωkn

, and let w̃hk
and p̃hk

be obtained by Helmholtz decomposition of r̃hkn
vkn

− r̃hk
vk as in (4.7). Then we

define

vhk
= rhk

vk +
n−1∑
l=1

R0
Γklk,hk

[(rhkl
vkl

− rhk
vk)|Γklk

] + R0
eknk,hk

(w̃hk
|eknk

) + ∇phk

where phk
is discrete harmonic in Ωk and given by

phk
= Rhk

[π0
eknk,hk

(p̃hk
|Γkn

)] .

With the previously defined vhi
, i = 1, 2, · · · , N , we can now define the general-

ized interpolation operator rhv simply by rhv = vhi
in each subdomain Ωi.

4.3. Interpolation error estimates. In this subsection we shall establish the
error estimates for the generalized interpolation operator rh defined earlier. We
start with the justification that rh is indeed a generalized edge element interpolation
operator.

Lemma 4.1. If the subdomain triangulations {Thk
} are matching on all faces Γij

of each subdomain, then the generalized operator rh reduces to the standard edge
element interpolation in the whole domain Ω.

Proof. For any v ∈ H(curl; Ω) and Hδk(curl; Ωk) for each Ωk (1/2 < δk ≤ 1), by
the definition of the generalized interpolation operator rh it suffices to verify that
for each fixed k, 1 < k ≤ N , we have rhkl

vkl
= rhk

vk on Γklk for all kl such that
1 ≤ kl < k.

If the grids {Thk
} are matching on all faces Γij , we have rhkl

= rhk
on Γklk.

Thus we need only to check

(4.8) λe(rhk
vkl

) = λe(rhk
vk) ∀ e ∈ Ehk

∩ Γklk.

As v ∈ H(curl; Ω) ∩
∏N

k=1 Hδk(curl; Ωk) with 1/2 < δk ≤ 1, the moments λe(v)
are well-defined for all edges e on Γklk; see [2], [15]. In particular, we have λe(vkl

) =
λe(vk) for all e on Γklk (note that Γklk 
= ∅). Now by the definition of rhk

, we see

λe(rhk
vkl

) = λe(vkl
) = λe(vk) = λe(rhk

vk),

which gives (4.8). �
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Lemma 4.2. For any v ∈ H(curl; Ω) ∩
∏N

k=1 Hδk(curl; Ωk) with 1/2 < δk ≤ 1,
we have

rhv ∈ H(curl; Ω) ∩ Vh(Ω) and (rhv × n)|Γij
∈ Vcoar(Γij) ∀Γij .

Proof. It is clear that (rhv)|Ωk
∈ Vhk

(Ωk) for every subdomain Ωk. To see rhv ∈
H(curl; Ω), we have to verify the tangential continuity condition: (rhv)|Ωi

× n =
(rhv)|Ωj

× n on Γij . By the definition of rh, this is equivalent to the condition
vhi

×n = vhj
×n on Γij for each face Γij . Without loss of generality, we assume that

i < j and hi > hj . Since Thi
and Thj

are nested on Γij , we have Vhi
(Γij) ⊂ Vhj

(Γij).
It follows, by the definition of vhk

, that λe(vhj
) = λe(vhi

) for any e ⊂ Γij ∩ Thj
.

Thus vhj
×n = vhi

×n on K for each (fine) element K of Thj
on Γij , which implies

that vhi
× n = vhj

× n on Γij , so we know that (vhj
× n)|Γij

lies in the space
Vhi

(Γij) = Vcoar(Γij). �

In the remaining part of this section, we will derive the interpolation error esti-
mates for the generalized interpolation operator rh.

For simplicity, we will frequently use the notations <∼ and =∼ . For any two
nonnegative quantities x and y, x <∼ y means that x ≤ Cy for some constant C

independent of mesh size h, subdomain size d and the related parameters. x =∼ y

means x <∼ y and y <∼ x.
We start with the introduction of a few auxiliary results.
First, we recall that in each subdomain Ωk, rhk

is the standard edge element
interpolation associated with the space Vhk

(Ωk), so the interpolation error estimates
in the next lemma are well-known (cf. [2] [15]):

Lemma 4.3. For any v ∈ Hδk(curl; Ωk) with δk > 1
2 , we have

(4.9) ‖rhk
v − v‖curl,Ωk

<∼ hδ
k‖curlv‖δ,Ωk

.

The following Lemma 4.4 can be shown basically in the same manner as the
proof of Lemma 4.5 in [26], while Lemma 4.5 can be found in [26].

Lemma 4.4. Let ek be an edge of Ωk. For any w ∈ H(curl; Ωk) ∩ H0(div0; Ωk),
if its interpolant rhk

w is well-defined in Vhk
(Ωk), then we have

(4.10) ‖rhk
w‖0,ek

<∼ [1 + log(d/hk)]
1
2 ‖curlw‖0,Ωk

.

Lemma 4.5. Let vhk
∈ Vhk

(Ωk), and phk
∈ Zhk

(Ωk) be defined by the Helmholtz
decomposition as in (4.2). Then

(4.11) |phk
|1,Ωk

<∼ ‖vhk
‖curl,Ωk

.

Lemma 4.6. Let Ωr and Ωk be two subdomains sharing a common edge e. Then
for any ϕ ∈ Zhr

(Γr) we have

(4.12) |π0
e,hk

ϕ|1
2 ,Γk

<∼ [1 + log(d/hr)]
1
2 |ϕ|1

2 ,Γr
.

Proof. Using the inverse inequality,

(4.13) |π0
e,hk

ϕ|1
2 ,Γk

= |π0
e,hk

ϕ − γΓr
(ϕ)|1

2 ,Γk

<∼ h
− 1

2
k ‖π0

e,hk
ϕ − γΓr

(ϕ)‖0,Γk
.
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By the definition of π0
e,hk

, we know π0
e,hk

ϕ− γΓr
(ϕ) ∈ Zhk

(Γk) and can be viewed
as the zero extension of (ϕ − γΓr

(ϕ))|e on to the entire boundary Γk. Then it is
easy to see that

‖π0
e,hk

ϕ − γΓr
(ϕ)‖0,Γk

<∼ h
1
2
k ‖ϕ − γΓr

(ϕ)‖0,e.

Plugging this in (4.13), and using Lemma 4.9 in [37], leads to

|π0
e,hk

ϕ|1
2 ,Γk

<∼ [1 + log(d/hk)]
1
2 ‖ϕ − γΓr

(ϕ)‖ 1
2 ,Γr

.

Then the desired estimate (4.12) follows from Friedrich’s inequality. �

Finally we are ready to establish the interpolation error estimates for the gener-
alized interpolation operator rh.

Theorem 4.1. Let rh be the generalized interpolation operator defined in Sec-
tion 4.2. Then for any v ∈ H(curl; Ω) ∩

∏N
k=1 Hδk(curl; Ωk) with 1/2 < δk ≤ 1,

we have

(4.14) ‖rhv − v‖curl,Ω <∼ [1 + log(d/h)]
1
2

( N∑
k=1

h2δk

k ‖curlv‖2
δk,Ωk

) 1
2
.

Proof. It follows from Lemma 4.3 that

(4.15) ‖rhv − v‖curl,Ω1 = ‖rh1v − v1‖curl,Ω1
<∼ hδ1

1 ‖curlv‖δ1,Ω1 .

Next we prove that

(4.16) ‖rhv − v‖curl,Ω2
<∼ hδ1

1 ‖curlv‖δ1,Ω1 + hδ2
2 ‖curlv‖δ2,Ω2 .

This follows immediately from Lemma 4.3 for the case that ∂Ω1 ∩ ∂Ω2 = ∅. Below,
we will consider the case that ∂Ω1∩∂Ω2 
= ∅. This proof is divided into three steps.

Step 1. Estimate ‖rhv − v‖0,Ω2 when ∂Ω1 ∩ ∂Ω2 = Γ12 is a face.
By the definition of vh2 , Lemma 4.3 and the fact that each Le has a small

support, we derive

‖vh2 − v2‖2
0,Ω2

<∼ ‖rh2v2 − v2‖2
0,Ω2

+ ‖R0
Γ12,h2

[(rh1v1 − rh2v2)|Γ12 ]‖2
0,Ω2

<∼ h2δ2
2 ‖curlv2‖δ2,Ω2 +

∑
e∈Eh2∩Γ12

|λe(rh1v1 − rh2v2)|2‖Le‖2
0,Ω2

.

One can see from the proof of Lemma 4.1 that

(4.17) λe(rh2v2) = λe(rh2v1), ∀e ⊂ Γ12 ∩ Th2 .

So we deduce
(4.18)
‖vh2 − v2‖2

0,Ω2
<∼ h2δ2

2 ‖curlv2‖δ2,Ω2 +
∑

e∈Eh2∩Γ12

|λe(rh1v1 − rh2v1)|2‖Le‖2
0,Ω2

.

But by direct computations, one obtains

‖Le‖2
0,Ω2

<∼ h2, |λe(rh1v1 − rh2v1)|2 <∼ h2‖rh1v1 − rh2v1)‖2
0,e.

Substituting these into (4.18) gives

(4.19) ‖vh2 − v2‖2
0,Ω2

<∼ h2δ2
2 ‖curlv2‖δ2,Ω2 + h2

2

∑
e∈Eh2∩Γ12

‖rh1v1 − rh2v1‖2
0,e .
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Now let Ke be a fine element in Ω1 which has e as one of its edges. As in the proof
of Lemma 4.5 in [26], one can verify that

‖rh1v1 − rh2v1‖2
0,e = ‖r̃h1v1 − r̃h2v1‖2

0,e
<∼ h−2

2 ‖r̃h1v1 − r̃h2v1‖2
0,Ke

.

Using this and Lemma 4.3, we obtain

h2
2

∑
e∈Eh2∩Γ12

‖rh1v1 − rh2v1‖2
0,e

<∼
∑

e⊂∈Eh2∩Γ12

‖r̃h1v1 − r̃h2v1‖2
0,Ke

<∼ ‖r̃h1v1 − r̃h2v1‖2
0,Ω1

<∼ ‖r̃h1v1 − v1‖2
0,Ω1

+ ‖v1 − r̃h2v1‖2
0,Ω1

<∼ h2δ1
1 ‖curlv1‖2

δ1,Ω1
+ h2δ1

2 ‖curlv1‖2
δ1,Ω1

<∼ h2δ1
1 ‖curlv1‖2

δ1,Ω1
.

This, together with (4.19), gives

(4.20) ‖vh2 − v2‖2
0,Ω2

<∼ h2δ1
1 ‖curlv1‖2

δ1,Ω1
+ h2δ2

2 ‖curlv2‖2
δ2,Ω2

.

Step 2. Estimate ‖curl(rhv − v)‖0,Ω2 when ∂Ω1 ∩ ∂Ω2 = Γ12 is a face.
By the definition of vh2 and (4.17), we can write

(4.21) curl(vh2 − v2) = curl(rh2v2 − v2) +
∑

e⊂∈Eh2∩Γ12

λe(rh1v1 − rh2v1)curlLe .

Recalling that T21 is the restriction of the fine triangulation Th2 on Γ12, we have

(4.22)
∑

e∈Eh2∩Γ12

λe(rh1v1−rh2v1)curlLe =
1
2

∑
K⊂T21

∑
e⊂K

λe(rh1v1−rh2v1)curlLe .

As shown in the proof of Lemma 5.4 in [3], we know∑
e⊂K

λe(rh1v1 − rh2v1)curlLe = CKh−2
2

∫
K

curl(rh1v1 − rh2v1) · nds ,

where CK is a constant vector independent h2. Using this relation and the Cauchy-
Schwarz inequality, we derive from (4.22) that

‖
∑

e∈Eh2∩Γ12

λe(rh1v1 − rh2v1)curlLe‖2
0,Ω2

<∼
∑

K⊂T21

‖CKh−2
2

∫
K

curlrh1v1 − rh2v1) · nds‖2
0,Ω2

<∼ h−1
2

∑
K⊂T21

|
∫

K

curl(rh1v1 − rh2v1) · nds|2

<∼ h2

∑
K⊂T21

‖curl(rh1v1 − rh2v1)‖2
0,K .(4.23)

Now we extend T21 into Ω1 to generate an auxiliary quasi-uniform triangulation
T̃21 of Ω1 with mesh size h2, and let τK be an element in T̃21 with K as one of its
faces. One can verify that

‖curl(rh1v1 − rh2v1)‖2
0,K

<∼ h−1
2 ‖curl(r̃h1v1 − r̃h2v1)‖2

0,τK
.
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Using this estimate, we deduce from (4.23) that

‖
∑

e∈Eh2∩Γ12

λe(rh1v1 − rh2v1)curlLe‖2
0,Ω2

<∼
∑

K⊂T21

‖curl(r̃h1v1 − r̃h2v1)‖2
0,τK

<∼ ‖curl(r̃h1v1 − r̃h2v1)‖2
0,Ω1

<∼ h2δ1
1 ‖curlv1‖2

δ1,Ω1
+ h2δ1

2 ‖curlv1‖2
δ1,Ω1

<∼ h2δ1
1 ‖curlv1‖2

δ1,Ω1
.

This, along with (4.21) and Lemma 4.1, leads to

‖curl(rhv − v)‖2
0,Ω2

<∼ h2δ2
2 ‖curlv2‖2

δ2,Ω1
+ h2δ1

1 ‖curlv1‖2
δ1,Ω1

.(4.24)

Step 3. Estimate ‖rhv − v‖curl,Ω2 when ∂Ω1 ∩ ∂Ω2 = e12 is an edge.
By the definition of vh2 , we know

(4.25) vh2 − v2 = (rh2v2 − v2) + R0
e12,h2

(w̃h2 |e12) + ∇ph2 .

We next estimate each term in (4.25). The first term can be estimated using
Lemma 4.3

(4.26) ‖rh2v2 − v2‖2
curl,Ω2

<∼ h2δ2
2 ‖curlv2‖2

δ2,Ω2
.

To bound the second term in (4.25), as in Step 1 one can verify that ‖Le‖2
0,Ω2

<∼ h−1
2

and

‖R0
e12,h2

(w̃h2 |e12)‖2
0,Ω2

<∼ h2
2‖w̃h2‖2

0,e12
,

‖curlR0
e12,h2

(w̃h2 |e12)‖2
0,Ω2

<∼ ‖w̃h2‖2
0,e12

.

Then using Lemma 4.4, (4.6) and the fact that w̃h2 = r̃h2w, we derive

‖R0
e12,h2

(w̃h2 |e12)‖2
curl,Ω2

<∼ [1 + log(d/h2)]‖curlw‖2
0,Ω1

= [1 + log(d/h2)]‖curl(r̃h1v1 − r̃h2v1‖2
0,Ω1

<∼ h2δ1
1 [1 + log(d/h2)]‖curlv1‖2

δ1,Ω1
.(4.27)

It remains to estimate the last term ∇ph2 in (4.25). Noting that ph2 is discrete
harmonic in Ω2, it follows from Lemma 4.6 that

‖∇ph2‖2
0,Ω2

<∼ |ph2 |21
2 ,Γ2

= |π0
e12,h2

(p̃h2 |Γ1)|21
2 ,Γ2

<∼ [1 + log(d/h1)]|p̃h2 |21
2 ,Γ1

<∼ [1 + log(d/h1)]|p̃h2 |21,Ω1
,

which, along with (4.11) and Lemma 4.3, yields
(4.28)
‖∇ph2‖2

0,Ω2
<∼ [1+log(d/h2)]‖r̃h1v1−r̃h2v1‖2

0,Ω1
<∼ h2δ1

1 [1+log(d/h2)]‖curlv1‖2
δ1,Ω1

.

Using (4.26)-(4.28), we derive the estimate for vh2 − v2:

(4.29) ‖vh2 − v2‖2
curl,Ω2

<∼ h2δ1
1 [1 + log(d/h2)]‖curlv1‖2

δ1,Ω1
+ h2δ2

2 ‖curlv2‖2
δ2,Ω2

.

Now we can conclude (4.16) by combining (4.20), (4.24) and (4.29).
For the general k > 2, we can show similarly as we did for k = 2 above that

(4.30) ‖rhv − v‖curl,Ωk
<∼

( ∑
l≤k,∂Ωl∩∂Ωk �=∅

h2αl

l ‖curlv‖2
δl,Ωl

) 1
2
.
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Clearly, the error estimate (4.14) is now a direct consequence of (4.15), (4.16)
and (4.30). �

5. Nearly optimal error estimates of the mortar element method

This section is devoted to the establishment of a nearly optimal error estimate
for the mortar edge element method proposed in Section 3. For this purpose, we
first present three auxiliary results.

Lemma 5.1. For any ϕ ∈ Hδ(curl; Ωk) with δ > 1
2 , the following Green’s formula

holds:
(5.1)∫

Ωk

curlϕ · vhk
dx −

∫
Ωk

ϕ · curl vhk
dx =

∫
Γk

ϕ · (vhk
× n)ds, ∀vhk

∈ Vhk
(Ωk) .

Proof. By the standard Helmholtz decomposition (4.1), we can find w ∈ (H1(Ωk))3

and p ∈ H1(Ωk) such that vhk
= w + ∇p. Then for any ϕ ∈ Hδ(curl; Ωk), we can

write ∫
Ωk

curlϕ · vhk
dx −

∫
Ωk

ϕ · curl vhk
dx

=
∫

Ωk

curlϕ · wdx −
∫

Ωk

ϕ · curl wdx +
∫

Ωk

curlϕ · ∇pdx.(5.2)

Using the Sobolev embedding theorem, the fact that ϕ ∈ Hδ(curl; Ωk) implies
ϕ|Γk

∈ L2(Γk)3 and (curlϕ · n)|Γk
∈ L2(Γk). Thus the following relations hold:∫

Ωk

curlϕ · ∇p dx =
∫

Γk

(curlϕ · n) p ds ,(5.3) ∫
Ωk

curlϕ · wdx −
∫

Ωk

ϕ · curl wdx =
∫

Γk

ϕ · (w × n)ds .(5.4)

Let {Γkr}4
r=1 be the faces of Γk, and curlΓkr

and curlΓkr
the two-dimensional scalar

and vector-valued curl-operators on Γkr (cf. [17]). Then we have∫
Γk

(curlϕ · n) p ds =
4∑

r=1

∫
Γkr

(curlϕ · n) p ds =
∑
Γkr

∫
Γkr

curlΓkr
(ϕ|Γkr

) p ds.

Note that ∇p = vhk
− w, so (∇p)|Γk

∈ (L2(Γk))3. This proves p|Γk
∈ H1(Γk).

Thus by Stokes’ formula (cf. [17]), we have

(5.5)
∫

Γk

(curlϕ · n) p ds =
∑
Γkr

[
∫

Γkr

(curlΓkr
p) · ϕ ds −

∫
∂Γkr

(ϕ · t) p ds].

As ϕ ∈ Hδ(curl; Ωk) with δ > 1/2, we know that ϕ has continuous tangential
components across each edge of the polyhedron Ωk. So we derive from (5.5) that∫

Γk

(curlϕ · n) p ds =
∑
Γkr

∫
Γkr

(∇p × n) · ϕds =
∫

Γk

ϕ · (∇p × n) ds.

This, together with (5.3), leads to∫
Ωk

curlϕ · ∇pdx =
∫

Γk

ϕ · (∇p × n)ds.

Now (5.1) follows from this, (5.4) and (5.2). �
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Lemma 5.2. For any v ∈ Vh(Ω), we have vi × n = vj × n on Γij for each face
Γij in Group 2.

Proof. Recall that there are two triangulations Thi
and Thj

on any face Γij . If a
face Γij is in Group 2, then Thi

and Thj
matches with each other. Since v ∈ Vh(Ω),

we have (vi × n − vj × n)|Γij
∈ Vh(Γij) and vi × n = vj × n on ∂Γij . Thus

(vi×n−vj×n)|Γij
∈ W (Γij). Then the weak continuity conditions in the definition

of Vh(Ω) implies

‖vi × n − vj × n‖2
0,Γij

= 〈vi × n − vj × n,vi × n − vj × n〉Γij
= 0 ,

that shows vi × n = vj × n on Γij . �

For v ∈ H(curl; Ωk), we use divτ (v×nk|Γk
) to denote its tangential divergence.

The next result about the tangential divergence can be found in [2].

Lemma 5.3. For any v ∈ H(curl; Ωk), the following estimate holds:

(5.6) ‖v × nk‖− 1
2 ,Γk

+ ‖divτ (v × nk|Γk
)‖− 1

2 ,Γk

<∼ ‖v‖curl,Ωk
.

Now we are ready to establish our nearly optimal error estimate. We shall use
the notation

‖v‖ = (
N∑

k=1

‖v‖2
curl,Ωk

)
1
2 , ∀v ∈

N∏
k=1

H(curl; Ωk).

Theorem 5.1. Let u be the solution to the variational problem (2.3) and uh be
the finite element solution to the mortar element system (3.1). Assume that in
the entire domain Ω, we have the regularities u ∈ H(curl; Ω) and f ∈ (Hδ(Ω))3

with δ > 1
2 , while in each subdomain we have u|Ωk

∈ Hδk(curl; Ωk) and f |Ωk
∈

(Hδk(Ωk))3 with δk ∈ ( 1
2 , 1]. Then

(5.7) ‖uh − u‖ <∼ [1 + log(d/h)]
1
2

( N∑
k=1

h2δk

k ‖curlu‖2
δk,Ωk

) 1
2
.

Proof. As in the second Strang lemma, one can verify that

‖uh − u‖ ≤ inf
vh∈Vh(Ω)

‖vh − u‖ + sup
wh∈Vh(Ω)

|
N∑

k=1

[Ak(uk,whk
) − (f ,whk

)Ωk
]|

‖wh‖
≡ (I)1 + (I)2.(5.8)

Next we shall estimate (I)1 and (I)2.
Note that (I)1 represents the approximation error and can be easily estimated

using the generalized interpolation operator rh defined in Section 4. In fact, It
follows from Lemma 4.2 and Theorem 4.1 that rhu ∈ Vh(Ω) and

‖rhu − u‖ <∼ [1 + log(d/h)]
1
2 (

N∑
k=1

h2δk

k (‖u‖2
curl,δk,Ωk

)
1
2 ,

which shows

(5.9) (I)1 <∼ [1 + log(d/h)]
1
2 (

N∑
k=1

h2δk

k (‖u‖2
curl,δk,Ωk

)
1
2 .
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Now, we estimate the consistency error (I)2. Noting (1.1) and the assumptions
on uk = u|Ωk

and fk = f |Ωk
, we know αcurlu ∈ Hδk(curl; Ωk). Then using

Lemma 5.1

(5.10)
N∑

k=1

[Ak(uk,whk
) − (whk

)Ωk
] =

N∑
k=1

∫
Γk

(αcurlu) · (whk
× nk)ds.

Again noting (1.1), we know αcurlu ∈ H(curl; Ω), so αcurlu × n is continuous
across Γij , and it follows then from (5.10) that

(5.11)
N∑

k=1

[Ak(uk,whk
)−(f ,whk

)Ωk
] =

∑
Γij⊂Γ

∫
Γij

(αcurlu) ·(whi
×n−whj

×n)ds.

For ease of notation, set ū = αcurlu. From the assumption and (1.1), we know
that ū ∈ H(curl; Ω) ∩

∏N
k=1 Hδk(curl; Ωk) with δk > 1

2 . Thus, rhū is well defined
and rhū ∈ H(curl; Ω) by Lemma 4.2. It can be seen, by the definition of rh, that
(n× rhū×n)|Γij

∈ W (Γij) for the faces Γij in Group 1. Then noting wh ∈ Vh(Ω),
we have for each face Γij in Group 1 that
(5.12)∫

Γij

(rhū) · (whi
×n−whj

×n)ds =
∫

Γij

(n× rhū×n) · (whi
×n−whj

×n)ds = 0.

On the other hand, we know whi
× n = whj

× n on Γij for all the faces Γij in
Group 2 by Lemma 5.2, so (5.12) holds. Using this we derive from (5.11) that

(5.13)
N∑

k=1

[Ak(uk,whk
)−(f ,whk

)Ωk
] =

∑
Γij⊂Γ

∫
Γij

(ū−rhū) ·(whi
×n−whj

×n)ds.

Since rhū × n is also continuous across each Γij , we can rewrite (5.13) as follows:

(5.14)
N∑

k=1

[Ak(uk,whk
) − (f , whk

)Ωk
] =

N∑
k=1

∫
Γk

(ū− rhū) · (whk
× nk)ds.

Using the Helmholtz decomposition for whk
, whk

= w + ∇p, we easily see∫
Γk

(ū− rhū) · (whk
× nk)ds

=
∫

Γk

(ū− rhū) · (w × nk)ds +
∫

Γk

(ū − rhū) · (∇p × nk)ds

=
∫

Γk

(ū− rhū) × nk · wds +
∫

Γk

divτ ((ū− rhū) × nk|Γk
)pds.

Then we obtain by the Cauchy-Schwarz inequality and Lemma 5.3 that

|
∫

Γk

(ū − rhū) · (whk
× nk)ds| <∼ ‖(ū − rhū) × nk‖− 1

2 ,Γk
· ‖w‖ 1

2 ,Γk

+ ‖divτ ((ū− rhū) × nk|Γk
)‖− 1

2 ,Γk
· ‖p‖ 1

2 ,Γk

<∼ ‖ū − rhū‖curl,Ωk
· (‖w‖1,Ωk

+ |p|1,Ωk
).

Using this and Lemma 4.5 we derive from (5.14) that

|
N∑

k=1

[Ak(uk,whk
) − (f ,whk

)Ωk
]| <∼

N∑
k=1

‖ū − raū‖curl,Ωk
‖whk

‖curl,Ωk
.
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Now by the Cauchy-Schwarz inequality and Theorem 4.1, we deduce

|
N∑

k=1

[Ak(uk,whk
) − (f ,whk

)Ωk
]| <∼ [1 + log(d/h)]

1
2 (

N∑
k=1

h2δk

k ‖curlū‖2
δk,Ωk

)
1
2 · ‖wh‖.

This gives an estimate of (I)2, which, along with (5.9) and (1.1), leads to the desired
result. �

Remark 5.1. Theorem 5.1 indicates a nearly optimal convergence of order
hδk(log(d/h))1/2, for the newly proposed mortar edge element method under the
natural regularity assumption on the exact solution u ∈ H(curl; Ω) and u|Ωk

∈
Hδk(curl; Ωk) in each subdomain Ωk, with δk > 1/2. This is much improved com-
pared to the requirement of the least regularity u|Ωk

∈ H2(curl; Ωk) in order to
achieve a nearly first order accuracy h(log(h))1/2 in [7] when the second family of
Nedelec edge elements were used, and no convergence is possible under the regular-
ity u|Ωk

∈ H1(curl; Ωk). If the first family of Nedelec edge elements were used like
we did in the current work, the convergence of the mortar edge element method of
[7] will lose a further half order compared to the aforementioned convergence order
of the second family. Also, unlike in [7], the ratio between the largest mesh size of
all subdomains and the smallest one of all subdomains does not go into the bound
of our final error estimate.

6. Numerical experiments

In this section we shall conduct some numerical experiments to check the con-
vergence of the newly proposed mortar edge element method, and find out whether
they are consistent with the prediction of the convergence theory developed in the
previous sections.

For the convenience of computing the exact errors, we construct an example
which has an exact solution. The coefficients and the domain in the system (1.1)
will be taken as

(6.15) α(x, y, z) = β(x, y, z) = 1 , Ω = (0, 1) × (0, 1) × (0, 1) ,

while the exact solution u = (u1, u2, u3)T is taken to be

u1 = xyz(x − 1)(y − 1)(z − 1) ,

u2 = sin(πx) sin(πy) sin(πz),
u3 = (1 − ex)(1 − ex−1)(1 − ey)(1 − ey−1)(1 − ez)(1 − ez−1) ,

and the right-hand side f is computed using the above given data through equation
(1.1).

Then we need to triangulate the domain Ω into subdomains {Ωk}. For this, we
first partition the three edges of Ω on x-, y- and z-axes into equally distributed m
subintervals, using which one can naturally generate m3 equal smaller cubes of size
H = 1/m. This yields the desired subdomain decomposition in our experiments.

Next, we further triangulate each subdomain Ωk to get two different fine trian-
gulations of size h over the domain Ω , T 1

h and T 2
h , where T 1

h consists of matching
grids while T 2

h consists of nonmatching grids. To generate T 1
h , we divide each sub-

domain into n3 equal smaller cubes of size h = 1/(mn), in the same manner as done
in the previous subdomain generation. Then T 1

h is obtained by triangulating each
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cube into 6 tetrahedra. For easy identification, we may denote the triangulation
T 1

h as m3(n3) below.
To generate the nonmatching grid T 2

h , we do exactly the same as for T 1
h for all

the subdomains, except for the last subdomain sitting at the vertex (1, 1, 1). For
the last subdomain, we divide it into (2n)3 equal smaller cubes of size h = 1/(2mn),
then triangulate each small cube into 6 tetrahedra.

We will measure the convergence accuracy of the proposed mortar edge element
method using the following relative energy-norm:

r :=
‖eh‖curl

‖e2h‖curl
, ‖eh‖2

curl :=
∑

k

‖uh − u‖2
curl;Ωk

where u is the exact solution to the system (1.1) and uh is the approximation of u
generated by the mortar edge element method.

The following two tables present the convergence of the mortar edge element
method with the matching and nonmatching grids T 1

h and T 2
h when the number

of subdomains and the fine mesh size in each subdomain vary. From the data
shown in the first three columns of Table 6.1, we can clearly see the optimal first
order convergence when the matching grid T 1

h is used. The data given in the 4th
to 6th columns of Table 6.1 (also the data in the 7th to 9th columns) indicates
that the optimal first order convergence is affected by the change of the ratio d/h
between the subdomain size d and the fine mesh size h = d/n, as predicted by the
convergence theory stated in Theorem 5.1.

When the subdomain size d reduces while the parameter n = d/h is fixed, the
factor log(d/h) = log n appearing in the bound of the error estimate of Theorem 5.1
is also fixed, hence the convergence will not deteriorate as predicted by the con-
vergence theory in Theorem 5.1. Table 6.2 clearly shows the optimal first order
convergence in this case when the nonmatching grid T 2

h is used.
We remark that the scales of the mortar edge element systems tested in our

experiments are very large, for example, the degrees of freedom for two cases with
m3(n3) = 123(33) and m3(n3) = 33(123) in Tables 6.1 and 6.2 are 416142 and
421704, respectively.

Table 6.1. Convergence with n = 2, 4, 8 or n = 3, 6, 12 but m = 3 fixed.

T 1
h ‖eh‖curl r T 2

h ‖eh‖curl r T 2
h ‖eh‖curl r

33(23) 3.828e-1 33(23) 3.788e-1 33(33) 2.560e-1
33(43) 1.934e-1 0.505 33(43) 1.937e-1 0.511 33(63) 1.315e-1 0.514
33(83) 9.692e-2 0.501 33(83) 1.010e-1 0.521 33(123) 7.031e-2 0.535

Table 6.2. Convergence with m = 3, 6, 12 but n = 3 fixed.

T 2
h ‖eh‖curl r

33(33) 2.560e-1
63(33) 1.291e-1 0.504
123(33) 6.463e-2 0.501
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