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ON THE IRREDUCIBILITY OF HECKE POLYNOMIALS

SCOTT AHLGREN

Abstract. Let Tn,k(X) be the characteristic polynomial of the nth Hecke op-
erator acting on the space of cusp forms of weight k for the full modular group.

We record a simple criterion which can be used to check the irreducibility of
the polynomials Tn,k(X). Using this criterion with some machine computa-
tion, we show that if there exists n ≥ 2 such that Tn,k(X) is irreducible and
has the full symmetric group as Galois group, then the same is true of Tp,k(X)
for each prime p ≤ 4, 000, 000.

1. Introduction and statement of results

Let k be a positive even integer, and let Sk denote the space of cusp forms of
weight k for the modular group SL2(Z). With q := e2πiz, we may identify a cusp
form f(z) ∈ Sk with its Fourier expansion

f(z) =
∞∑

n=1

an(f)qn.

For each prime p, the Hecke operator Tp,k is an endomorphism of Sk whose action
is described via the formula

(1.1) Tp,k

( ∞∑
n=1

anqn

)
=

∞∑
n=1

(anp + pk−1an/p)qn.

More generally, for n ≥ 1, the operators Tn are defined via the Euler product

(1.2)
∑

Tn,kn−s =
∏
p

(1 − Tp,kp−s + pk−1−2s)−1.

For complete background one may consult [7], for example.
We let Tn,k(X) be the characteristic polynomial of the operator Tn,k on the

space Sk. Since Sk has a basis of forms with rational integer coefficients, we see
from (1.1) and (1.2) that Tn,k(X) ∈ Z[X]. Let dk denote the dimension of the
complex vector space Sk, and let Ωd denote the symmetric group on d letters.
Maeda ([5], Conjecture 1.2) made the conjecture that the Hecke algebra of each Sk

over Q is simple (i.e. it is a single number field) and that the Galois closure has
Galois group Ωdk

. This would be implied by the existence of an n for which Tn,k(X)
is irreducible with group Ωdk

. The conjecture implies that there is a single Galois
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orbit of Hecke eigenforms in Sk, which has implications for the work of Maeda and
Hida [5] on base change for totally real fields.

In recent years a number of authors have investigated the irreducibility of the
polynomials Tn,k(X). James and Ono [6] studied the reductions of Hecke polyno-
mials (of arbitrary level) modulo primes �. Buzzard [2] proved that if � ≤ 19 is
prime and k = 12�, then the polynomial T2,k is irreducible and has Galois group
Ωdk

. Exploiting some periodicities in the factorization of Tp,k(X) modulo 5 and 7,
Conrey, Farmer, and Wallace proved the following result.

Theorem 1.1 ([3], Theorem 1). Let k be a positive even integer, and suppose that
there exists an n for which Tn,k(X) is irreducible and has Galois group Ωdk

. Then
the same is true of the polynomial Tp,k(X) for each prime p such that

p �≡ ±1 (mod 5) or p �≡ ±1 (mod 7).

Farmer and James [4] proved that for each p ≤ 2000 and each k ≤ 2000, the
polynomial Tp,k(X) is irreducible and has Galois group Ωdk

. More recently, Baba
and Murty, using Frobenius distributions and an effective form of the Chebotarev
Density Theorem, have proved the following.

Theorem 1.2 ([1], Theorem 1.1). Let k be a positive even integer, and suppose
that there exists a prime p for which Tp,k(X) is irreducible. Then for some δ > 0
we have

#{p ≤ N : Tp,k(X) is reducible} � N

(log N)1+δ
.

Baba and Murty also obtain

Theorem 1.3 ([1], Theorem 1.2). Let k be a positive even integer, and suppose
that there exists a prime p for which Tp,k(X) is irreducible with Galois group Ωdk

.
Then the same holds for Tn,k(X) for all n ≤ dk.

Our aim here is to record a simple criterion which is equivalent to the irre-
ducibility of Tn,k(X) under the hypotheses in Theorems 1.1, 1.2, and 1.3. This
criterion is quite amenable to computation (cf. Theorem 1.5 below). To simplify
the exposition, we introduce “Hypothesis O” for the space Sk:

Hypothesis O for Sk: There exists an n for which Tn,k(X) is
irreducible and has Galois group Ωdk

.

We define the space S′
k by

(1.3) S′
k := {f ∈ Sk : ord∞(f) ≥ 2}.

When dimSk ≥ 1 we have

dim S′
k = dimSk − 1.

With this notation, we have the following result.

Theorem 1.4. Let k be such that dimSk ≥ 2, and suppose that Sk satisfies Hy-
pothesis O. Then for every n ≥ 2, the following are equivalent:

(1) Tn,k(X) is irreducible with Galois group Ωdk
.

(2) There exists a modular form f ∈ S′
k such that an(f) �= 0.
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Remark. It is known that the polynomial T2,24(X) is irreducible. Let ∆(z) be the
unique normalized cusp form of weight 12 (defined explicitly in (1.6) below), and
write

(1.4) ∆2(z) =
∞∑

n=2

a(n)qn.

Since d24 = 2, it follows from Theorem 1.4 that

Tn,24(X) is irreducible ⇐⇒ a(n) �= 0.

One might speculate that the coefficients a(n) in (1.4) are never zero (or more
generally that the second condition in Theorem 1.4 is always satisfied). To prove
this seems to be a very difficult problem; the same speculation for the coefficients
of ∆(z) is a famous unsolved problem of Lehmer.

It is typically easy to check the second condition in Theorem 1.4 numerically.
Via some machine computation, we obtain the following result.

Theorem 1.5. Let k be such that dimSk ≥ 2, and suppose that Sk satisfies Hy-
pothesis O. Then the following are true:

(1) Tp,k(X) is irreducible with Galois group Ωdk
for each prime p ≤ 4, 000, 000.

(2) Tn,k(X) is irreducible with Galois group Ωdk
for each n ∈ {2, 3, . . . , 10, 000}.

Remark. This may be compared with Theorem 1.3 when k is large. The bounds in
Theorem 1.5 could easily be increased if necessary with more computation.

We briefly indicate the connection between Theorem 1.1 and Theorem 1.4. To
this end, we recall the definition of the Eisenstein series

Ek(z) := 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn,

where k ≥ 4 is even, Bk is the kth Bernoulli number, and σk−1(n) is the sum of
the (k − 1)st powers of the divisors of n. Each Ek is a modular form of weight
k for SL2(Z). For primes p ≥ 5, the von Staudt-Claussen theorem on the p-adic
valuation of Bernoulli numbers implies the congruence

(1.5) Ep−1(z) ≡ 1 (mod p).

We have the relation

(1.6) ∆(z) :=
E3

4(z) − E2
6(z)

1728
.

We have the following congruences, which can be verified using standard techniques
from the theory of modular forms modulo � (see, for example, [8] or [7]):

(1.7)
∆2 ≡ 2

∑
n(n2 − 1)σ(n)qn (mod 5),

∆2E6 ≡
∑

n2(n2 − 1)σ(n)qn (mod 5),

and

(1.8)

∆2 ≡
∑

(n2σ(n) − nσ3(n))qn (mod 7),

∆2E4 ≡ 2
∑

(nσ(n) − n3σ3(n))qn (mod 7),

∆2E2
4 ≡ 3

∑
(n2σ3(n) − n3σ(n))qn (mod 7).
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In view of (1.5), we see that if dim Sk ≥ 2, then the space S′
k contains a modular

form with integer coefficients which is congruent to one of the two forms in (1.7)
modulo 5, and a form which is congruent to one of the three forms in (1.8) modulo
7. Therefore we obtain the following as corollaries to Theorem 1.4.

Corollary 1.6. Suppose that dimSk ≥ 2 and that Sk has Hypothesis O. Suppose
that

n(n2 − 1)σ(n) �≡ 0 (mod 5).
Then Tn,k(X) is irreducible and has Galois group Ωdk

.

Corollary 1.7. Suppose that dimSk ≥ 2 and that Sk has Hypothesis O. Suppose
that

n2σ(n) − nσ3(n) �≡ 0 (mod 7) if k ≡ 0, 2 (mod 6),

nσ(n) − n3σ3(n) �≡ 0 (mod 7) if k ≡ 4 (mod 6).

Then Tn,k(X) is irreducible and has Galois group Ωdk
.

Specializing to the case when n = p is prime, we see that Theorem 1.1 follows
from these corollaries.

2. Proof of Theorem 1.4

The proof is similar to that of Theorem 1.3. We begin with a lemma which
has been recorded in various forms in [3], [4], and [1]. We give a proof here for
completeness.

Lemma 2.1. Suppose that k ≥ 2 is an even integer and that there exists n0 ≥ 2
with the property that Tn0,k(X) is irreducible with Galois group Ωdk

. Then for each
n ≥ 2, one of the following is true:

(1) Tn,k(X) is irreducible.
(2) Tn,k(X) = (X − a)dk for some constant a.

In the first case, Tn,k(X) has Galois group Ωdk
.

Proof. Set d = dk and let

(2.1) {f1, . . . , fd}
be a basis of normalized eigenforms for the space Sk. Let the Fourier expansions
of these forms be given by

(2.2)

f1 =q + · · ·+ an0(f1)qn0 + · · · + an(f1)qn + . . .

...
...

fd =q + · · ·+ an0(fd)qn0 + · · · + an(fd)qn + . . . .

Then for each n we have

(2.3) Tn,k(X) = (X − an(f1)) . . . (X − an(fd)).

By hypothesis, the roots an0(fi) are distinct and the Galois group Gal(Q/Q) acts
as the full permutation group Ωd on the set {an0(fi)}. It follows that Gal(Q/Q)
acts as the full permutation group Ωd on {fi} and therefore that it acts transitively
on {an(fi)}. From this we see that Tn,k(X) = f(X)r for some r, where f(X) is an
irreducible polynomial of degree e := d/r. If it were the case that both e > 1 and
r > 1, then we could select distinct indices i, j, and k for which an(fi) = an(fj) and
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an(fi) �= an(fk). However, this would contradict the fact that Gal(Q/Q) contains
an element σ whose action on {fi} is described by the cycle (i, j, k). Therefore
either Tn,k(X) is irreducible or has the form (X −a)d. In the former case it is clear
that Gal(Q/Q) acts as the full permutation group on the set of roots. �

Proof of Theorem 1.4. Let k be as in the hypotheses. Suppose first that n ≥ 2 is
an integer for which Tn,k(X) is reducible; by Lemma 2.1 it follows that there is
a constant a with the property that an(fi) = a for each eigenform fi in the basis
(2.1). Let f be a form in S′

k, and write

(2.4) f =
d∑

i=1

cifi

as a linear combination of this basis. Since each fi has the form fi = q + . . . , and
f vanishes to order ≥ 2 at infinity, it follows that

∑
ci = 0. But then an(f) =∑

cia = 0.
Conversely, suppose that n ≥ 2 is such that each form f ∈ S′

k has an(f) = 0.
Writing f as in (2.4), and with notation as in (2.2), we conclude that

(2.5)
d∑

i=1

ci = 0 =⇒
d∑

i=1

cian(fi) = 0.

Therefore there exists a constant a with an(fi) = a for all i, and so Tn,k(X) =
(X − a)d. �

3. Proof of Theorem 1.5

To prove Theorem 1.5, we use Theorem 1.4 together with some machine computa-
tion. Write S′

k(Z) for the Z-module of forms in S′
k with rational integer coefficients.

Recall the congruence (1.5). To prove Theorem 1.5, it will suffice, for each prime
p < 4, 000, 000 and for each k with dimSk ≥ 2, to produce the following:

(1) A prime � ≥ 5 and an integer k0 ≤ k with k0 ≡ k (mod � − 1).
(2) A form f ∈ S′

k0
(Z) with the property that ap(f) �≡ 0 (mod �).

Define the Eisenstein series Ẽk via the formulas

(3.1) Ẽk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k ≡ 0 (mod 12),
E14 if k ≡ 2 (mod 12),
E4 if k ≡ 4 (mod 12),
E6 if k ≡ 6 (mod 12),
E8 if k ≡ 8 (mod 12),
E10 if k ≡ 10 (mod 12).

Suppose first that k ≥ 240 and k �= 242; in this case the computations can be
done using the primes � = 5 and � = 7. We fix a class k (mod 12) of weights and
compute, for each d ∈ {2, 3, . . . , 20}, the first 4, 000, 000 coefficients of each of the
modular forms

(3.2) fd,5 := ∆dẼk (mod 5) and fd,7 := ∆dẼk (mod 7).
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To simplify computations, we use the formulas

∆ ≡
∞∑

n=1

nσ1(n) (mod 5), ∆ ≡
∞∑

n=1

nσ3(n) (mod 7).

We find, for each p ≤ 4, 000, 000, that at least one of the forms fd,� in (3.2) has
the property that

(3.3) ap(fd,�) �≡ 0 (mod �).

This establishes the result when k ≥ 240, k �= 242. We note that this step required a
little more than one hour of computation (using MAGMA) on a desktop computer.

The weights k < 240 and k = 242 can be dealt with individually (in several
hours of computation). In view of congruences like (1.7) and (1.8), small primes �
are less suitable for this purpose. To proceed, we compute, for each 2 ≤ d ≤ 19,
and for each residue class k (mod 12) of weights, the first 4, 000, 000 coefficients of
each of the modular forms

(3.4) g(d,k),691 := ∆dẼk (mod 691) and g(d,k),701 := ∆dẼk (mod 701)

(these particular primes are used for the sole reason that their size is suited to the
purpose). For each pair (d, k), we see from this computation that for almost every
prime p with d ≤ p < 4, 000, 000, at least one of the following is true:

(1) The pth coefficient of g(d,k),691 is non-zero modulo 691.
(2) The pth coefficient of g(d,k),701 is non-zero modulo 701.

The exceptional primes p1, . . . , pe are those for which neither of the two conditions
hold (for none of the pairs (d, k) in our range are there more than 3 exceptional
primes). Most of these can be eliminated using Theorem 1.1. The few remaining
exceptional primes p can be eliminated by exhibiting another modular form h ∈ S′

k

with the property that ap(h) �≡ 0 (mod 7). To illustrate, we record the result of
this computation for those weights k < 240 with k ≡ 10 (mod 12).

Exceptional primes when k = 10, 2 ≤ d ≤ 19.
d Exceptional primes p Reason for elimination
3 1337363 p ≡ 3 (mod 5)
4 3906883 p ≡ 3 (mod 5)
9 3911 p ≡ 5 (mod 7)

11 718411 pth coeff. of ∆4E4E
15
6 is 3 (mod 7)

3565921 p ≡ 2 (mod 7)
13 189671 pth coeff. of ∆4E4E

19
6 is 2 (mod 7)

14 80777 p ≡ 2 (mod 5)
15 902263 p ≡ 3 (mod 5)
18 3019571 p ≡ 2 (mod 7)

Similar methods can be used to establish the second assertion in Theorem 1.5;
for brevity we do not include the details here.
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