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OPTIMAL LOGARITHMIC ENERGY POINTS
ON THE UNIT SPHERE

J. S. BRAUCHART

Abstract. We study minimum energy point charges on the unit sphere Sd in
Rd+1, d ≥ 3, that interact according to the logarithmic potential log(1/r),
where r is the Euclidean distance between points. Such optimal N-point
configurations are uniformly distributed as N → ∞. We quantify this re-

sult by estimating the spherical cap discrepancy of optimal energy configura-
tions. The estimate is of order O(N−1/(d+2)). Essential is an improvement
of the lower bound of the optimal logarithmic energy which yields the sec-
ond term (1/d)(log N)/N in the asymptotical expansion of the optimal en-
ergy. Previously, this was known for the unit sphere in R3 only. Further-
more, we present an upper bound for the error of integration for an equally-
weighted numerical integration rule QN with the N nodes forming an opti-
mal logarithmic energy configuration. For polynomials p of degree at most n
this bound is Cd(N1/d/n)−d/2‖p‖∞ as n/N1/d → 0. For continuous func-
tions f of Sd satisfying a Lipschitz condition with constant Cf the bound is

(12dCf + C′
d‖f‖∞)O(N−1/(d+2)) as N → ∞.

1. Introduction and statement of results

In this paper we want to study the distribution of points x1, . . . ,xN on the
unit sphere Sd in Rd+1, d ≥ 2, that maximizes the product of all mutual pairwise
Euclidean distances

(1.1)
∏
j �=k

|xj − xk| ,

or equivalently, minimizes the logarithmic energy

(1.2) E(XN ):=
∑
j �=k

log
1

|xj − xk|

over all N -point sets on S
d as N goes to infinity. For the same problem on the

unit sphere in R3 we refer to the literature (for example [7, 8, 26, 30, 31]). The
fast generation of nearly minimum logarithmic energy configurations is Problem 7
of Smale’s “mathematical problems for the next century” [29].
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The discrete logarithmic energy of an N -point set is a limit case (as s → 0) of
the Riesz s-energy

Es(XN ):=
∑
j �=k

1
|xj − xk|s

,

by means of (1/|x|s − 1)/s → log(1/|x|) as s → 0. The Riesz s-energy of point sets
will play a role in our proofs. For more details we recommend the excellent survey
articles [11, 27].

From classical potential theory [19] it follows that optimal logarithmic energy
points are (asymptotically) uniformly distributed over Sd as N goes to infinity.
Points are uniformly distributed in the sense that any reasonable subset of S

d

gets a fair share of points. We make this more precise below. In this paper we
include a proof of the well-distribution property using a non-potential theoretical
argument based on discrepancy of point sets. Essentially, the discrepancy of a point
set measures the quality of the discrete point distribution with respect to a family
of test sets (for example spherical caps). Spherical cap discrepancy tending to zero
is one of several equivalent characterizations of uniform distribution summarized in
Lemma 1.4. We quantify uniform distribution of optimal logarithmic points by es-
timating their spherical cap discrepancy which is of order O(N−1/(d+2)) as N → ∞
(Theorem 1.6). The discrepancy is bounded by using improved lower bounds of the
N-point minimum logarithmic energy of Sd

(1.3) E(N):= inf
{
E(XN ) | XN = {x1, . . . ,xN} ⊆ S

d
}

.

These lower bounds lead to the correct second order term (1/d)(log N)/N of the
asymptotical expansion of E(N) for large N (Lemma 1.1, Theorem 1.2). Previously,
this was known for S2 in R3.

First we establish an estimate of the N -point minimum logarithmic energy of
Sd. The right-hand side of (1.2) can be seen as the discrete energy of the counting
measure µN which places the point mass 1/N at each point xj , j = 1, . . . , N .
Similarly, the logarithmic energy of a (Radon) probability measure µ supported on
S

d is given by

(1.4) I[µ]:=
∫ ∫

log
1

|x − y| d µ(x) dµ(y).

By classical potential theory, the energy I[µ] is uniquely minimized by the normal-
ized surface area measure σ,

∫
Sd d σ = 1. The N -point minimum logarithmic energy

of Sd satisfies

(1.5) I[σ] − 1
2

log N

N
+

c1

N
≤ E(N)

N2
≤ I[σ] − 1

d

log N

N
+

c2

N

with some constants c1, c2 depending on d only. The lower bound follows from
[32]. The upper bound follows from an averaging argument [17] based on equal
area partitions [20]. These bounds give the correct form of the second order term
in the asymptotics of the N -point minimum logarithmic energy of S

2. In this paper
we show:

Lemma 1.1. Let d ≥ 2. Then
E(N)
N2

≥ I[σ] − 1
d

log N

N
− C ′

d

N
+ Oε(N−1−2ε/d), N → ∞,

where C ′
d > 0, given by (2.18), does not depend on N .
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The number ε satisfies 0 < ε < 1 (d even) or 0 < ε < 1/2 (d odd). This result
follows from Lemma 2.1. Combining the upper bound in (1.5) and Lemma 1.1 we
obtain the following asymptotical expansion of the N -point minimum logarithmic
energy of Sd.

Theorem 1.2. Let d ≥ 2. Then
E(N)
N2

= I[σ] − 1
d

log N

N
+ O(N−1), N → ∞.

Remark 1.3. The proof of Theorem 1.2 shows that the geometrical structure of
optimal logarithmic energy points does not play a role in the derivation of the
second term of the asymptotics of E(N). For the N -point minimal Riesz s-energy
Es(N), 0 < s < d, similar ideas used here produce the negative sign and the correct
order N1+s/d for the second term (cf. [4]). It is still not clear whether the second
term of the asymptotics exists for 0 < s < d or not. For S2 it is conjectured in
[17] that the second term for Es(N) is given by −[

√
3/(8π)]s/2 ζΛ(s)N1+s/d and ζΛ

denotes the zeta function associated with the hexagonal lattice.

Next, we discuss the concept of uniform distribution on the unit sphere in Rd+1

which is closely related to numerical integration on the d-sphere. The exact integral
of a (continuous) function defined on Sd is denoted by

I[f ]:=
∫

Sd

f(x) dσ(x),

where σ is the surface area measure on the d-sphere normalized such that
∫

Sd σ =
1. The exact integral I[f ] can be approximated by equally-weighted numerical
integration formulas QN with nodes xj ∈ Sd,

QN [f ]:=
1
N

N∑
j=1

f(xj).

The members of a sequence XN , N ≥ 2, of N -point configurations on the sphere
S

d are said to be (asymptotically) uniformly distributed if

lim
N→∞

QN [f ] = I[f ]

for all functions f continuous on the sphere. An equivalent characterization is that
for every σ-measurable set B ⊆ Sd with Hd(∂B) = 0 there holds that

(1.6)
|XN ∩ B|

N
→ σ(B), N → ∞.

That means, as N becomes large, any such B gets a fair share of points. Hd(·)
denotes the d-dimensional Hausdorff measure.

Relation (1.6) yields a natural measure for the quality of the distribution of an
N -point set XN . The F-discrepancy

D(F ; XN ):= sup
B∈F

∣∣∣∣ |XN ∩ B|
N

− σ(B)
∣∣∣∣

gives the maximal deviation between the discrete point distribution and the uniform
σ with respect to a reasonable family F of test sets B ⊆ Sd. If the test sets are
spherical caps with center x and opening −1 ≤ t ≤ 1,

(1.7) Ct(x):=
{
y ∈ S

d | 〈x,y〉 ≥ 1
}

,

we call DC(XN ):=D(F ; XN ) the spherical cap discrepancy.
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Lemma 1.4. Let d ≥ 2 and XN , N ≥ 2, be a sequence of N-point configurations
on Sd. Then the following assertions are equivalent:

(1) The configurations XN are asymptotically uniformly distributed as N → ∞.
(2) lim

N→∞
QN [f ] = I[f ] for every function f continuous on Sd.

(3) lim
N→∞

QN [Y�,m] = 0 for every spherical harmonic Y�,m of degree � ≥ 1 from

an L2(Sd, σ)-orthonormal basis {Y�,m}.
(4) lim

N→∞
DC(XN ) = 0.

(5) lim
N→∞

|XN ∩ C|
N

= σ(C) uniformly for all spherical caps C.

Remark 1.5. Property (3) is the spherical version of Weyl’s criterion [18].

Lemma 1.4 can be proved by showing the sequence of implications (1) ⇒ (2) ⇒
(3) ⇒ (4) ⇒ (1). The implication (2) ⇒ (3) uses the discrepancy estimate

(1.8) DC(XN ) ≤ c1

L + 1
+

L∑
�=1

(
c2

�
+

c3

L + 1

) Z(d,�)∑
m=1

∣∣∣∣∣∣
1
N

N∑
j=1

Y�,m(xj)

∣∣∣∣∣∣
following from a generalization of the well-known Erdös-Turán inequality [10] (see
also [21]). The estimate above holds for any positive integer L; the positive con-
stants c1, c2, and c3 depend on d only. The integers

(1.9) Z(d, 0) = 1, Z(d, �) = (2� + d − 1)
Γ(� + d − 1)
Γ(d) Γ(� + 1)

denote the number of linearly independent spherical harmonics of degree �.

Proposition 1. Let d ≥ 2. Then optimal logarithmic energy N-point configurations
are uniformly distributed as N → ∞.

In Subsection 2.1 we include a proof of this result using a non-potential theo-
retical argument based on Lemma 1.4(3). It also follows from (1.10) and Lemma
1.4(4).

Proposition 1 is a qualitative result. It does not give a measure of how “good”
optimal logarithmic energy points are uniformly distributed. Our next result quan-
tifies uniform distribution of such point sets.

Theorem 1.6. Let d ≥ 2. The spherical cap discrepancy of optimal logarithmic
energy N-point configurations X∗

N can be bounded by

(1.10) DC(X∗
N ) = O

(
N−1/(d+2)

)
, N → ∞.

The proof of Theorem 1.6 is given in Subsection 2.2 for more general, so-called
K-regular, test sets. (See the definition there.)

Remark 1.7. Beck observed [3] that to any N -point set XN on the d-sphere there
exists a spherical cap C such that

(1.11) c1N
−1/2−1/(2d) <

∣∣∣∣ |XN ∩ C|
N

− σ(C)
∣∣∣∣

and from probability arguments (see [3]) there follows that there exist N -point sets
XN on Sd such that

(1.12)
∣∣∣∣ |XN ∩ C|

N
− σ(C)

∣∣∣∣ < c2N
−1/2−1/(2d)

√
log N
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for any spherical cap C. (ci > 0 are constants independent of N .) For optimal Riesz
(d−1)-energy points Korevaar [16] conjectured that DC(X∗,d−1

N ) = O(N−1/d). Götz
[9] proved this up to a logarithmic factor. Götz also showed a lower bound of order
N−1/2 on S

2.

As a by-product of the proof of Theorem 1.6 we obtain estimates for the error
of integration for certain classes of functions defined on Sd.

Corollary 1.8. Let d ≥ 2. Then equally-weighted numerical integration rules QN

with nodes forming optimal logarithmic energy configurations satisfy

|QN [p] − I[p]| ≤ Cd

(
N1/d/n

)−d/2

‖p‖∞ , as n/N1/d → 0,

for all polynomials p on Sd of degree ≤ n. The positive constant Cd does not depend
on n, N , or p.

Using [6, Theorem 2], we can obtain bounds for the error of integrations for
continuous functions of Sd satisfying a Lipschitz condition:

Corollary 1.9. Let d ≥ 2. Let f be a continuous function of Sd with

|f(x) − f(y)| ≤ Cf arccos(〈x,y〉), x,y ∈ S
d.

Then equally-weighted numerical integration rules QN with nodes forming optimal
logarithmic energy configurations satisfy

|QN [f ] − I[f ]| ≤ (12dCf + C ′
d ‖f‖∞)O

(
N−1/(d+2)

)
, N → ∞.

For other results concerning the error of integration for numerical integration
formulas on Sd we refer to the literature (for example [5, 12, 13, 14, 15]).

2. Proofs and discussions

In this section we collect auxiliary results and proofs of our lemmas and theorems.
Furthermore, we discuss technical aspects.

2.1. Preliminaries and proof of Proposition 1. The distance of two points on
the unit sphere can be expressed as |x−y|2 = 2(1−〈x,y〉). Hence, the logarithmic
kernel k(x):= log(1/|x|) takes the form

k(x − y) = −1
2

log 2 − 1
2

log (1 − 〈x,y〉) .

To avoid the singularity at x = y a δ-kernel can be defined as

(2.1) kδ(x− y):= − 1
2

log 2 − 1
2

log (1 + 2δ − 〈x,y〉) , 0 < δ < 1.

The δ-kernel can be expanded in a series of Gegenbauer polynomials Pn associated
with the d-sphere, normalized such that Pn(1) = 1:

(2.2) kδ(x− y) =
∞∑

n=0

an(δ)
Z(d, n)

Z(d, n)Pn(〈x,y〉),
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where the series coefficients are given in terms of the modified energy integral and
in terms of hypergeometric functions (see Subsection 2.5)

a0(δ)
Z(d, 0)

= Iδ[σ],

an(δ)
Z(d, n)

=
1
2

(n − 1)!(d/2)n

(d)2n

(
1

1 + δ

)n

2F1

(
n, n + d/2

2n + d
;

1
1 + δ

)
.

(a)n is the Pochhammer symbol. The coefficients are strictly monotonically in-
creasing as δ → 0. Hence, by [1, 15.1.20],

an(δ) ≤ an(0)
(

1
1 + δ

)n

=
Γ(d)

2
Γ(n)

Γ(n + d)

(
1

1 + δ

)n

.

So, the series expansion (2.2) is uniformly convergent in x,y ∈ Sd for every fixed
0 < δ < 1.

Including the now well defined diagonal terms we can write

Eδ(XN )
N2

+
log (4δ)−1/2

N
=

∞∑
n=0

an(δ)

⎛
⎝ 1

N2

∑
j,k

Pn(〈xj ,xk〉)

⎞
⎠

≥ a0(δ) + an(δ)

⎛
⎝ 1

N2

∑
j,k

Pn(〈xj ,xk〉)

⎞
⎠ ≥ 0, n ≥ 1.

(2.3)

The non-negativity follows from the positivity of the series coefficients and the
addition theorem for spherical harmonics, that is,

(2.4)
1

N2

∑
j,k

Z(d, n)Pn(〈xj ,xk〉) =
Z(d,n)∑
m=1

∣∣∣∣∣∣
1
N

N∑
j=1

Yn,m(xj)

∣∣∣∣∣∣
2

.

Combining both (2.3) and (2.4) and using Eδ(XN ) ≤ E(XN) we obtain

an(δ)
Z(d, n)

∣∣∣∣∣∣
1
N

N∑
j=1

Yn,m(xj)

∣∣∣∣∣∣
2

≤
(

E(XN)
N2

− I[σ]
)

+
log (4δ)−1/2

N
+ (I[σ] − a0(δ)) .

This inequality holds for every 0 < δ < 1, in particular for 4δ = N−2/d. If a
sequence XN , N ≥ 2, consists of optimal logarithmic energy point configurations,
all three terms on the right-hand side above tend to 0 as N → ∞. This follows
from (1.5), log(4δ)−1/2/N = (1/d)(log N)/N , and limδ→0 a0(δ) = I[σ]. Thus,
Property (3) in Lemma 1.4 is satisfied. Hence, optimal logarithmic energy points
are uniformly distributed.

2.2. Quantification of uniform distribution. We want to obtain an estimate
for the discrepancy of an N -point set in terms of its logarithmic energy. The family
of test sets F = FK , K > 0 fixed, may consist of all K-regular sets in S

d. A σ-
measurable set B ⊆ Sd is defined to be K-regular if its δ-neighborhood (δ sufficiently
small) is linearly bounded in δ, that is, σ(∂S

d

δ B) ≤ Kδ, δ > 0, where

∂S
d

δ B:=
{
x ∈ S

d
∣∣ dist(B,x) ≤ δ, dist(Sd \ B,x) ≤ δ

}
,
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and dist(A,x) denotes the Euclidean distance of a point x from a set A and
dist(∅,x):=∞. Such sets were introduced by Sjögren [28]. Clearly, spherical caps
are K-regular for some K > 0.

[2, Theorem 1] gives a relation between discrepancy and the quality of the cor-
responding equally weighted quadrature formula for polynomials. There exists a
number C0 > 0 depending only on d such that every K-regular set B ⊆ Sd satisfies∣∣∣∣ |XN ∩ B|

N
− σ(B)

∣∣∣∣ ≤ C0 inf
m∈N

{
K

m
+ Cqm(d; XN )

}
,

where

Cqm(d; XN ):= sup

{
|QN [p] − I[p]|

∣∣∣ p polynomial on S
d,

deg p ≤ qm, ‖p‖∞ ≤ 1

}

and q is the smallest integer satisfying 2q ≥ d + 3.1

The error of integration, R(p; XN ):=QN [p] − I[p], can be bounded in terms of
the energy of XN . For a polynomial p on Sd of degree at most n ≥ 1 one has [6]

|R(p; XN )| ≤

√
Eδ(XN )/N2 − a0(δ) + gδ(1)/N

min1≤k≤n ak(δ)/Z(d, k)
‖p‖∞.

All together this gives an upper estimate for the discrepancy

(2.5) D(FK ; XN ) ≤ C0

{
K

m
+

√
Eδ(XN )/N2 − a0(δ) + gδ(1)/N

min1≤k≤qm ak(δ)/Z(d, k)

}

which holds for any m ∈ N, any 0 < δ < δ0 and any N -point-sets XN .
First we focus on the numerator under the root sign in (2.5), that is,

(2.6) Eδ(XN )/N2 − a0(δ) +
[
log (4δ)−1/2

]
/N.

We use (2.15) to estimate the modified energy Eδ(XN ) in (2.6). From N2a0(δ) =
N(N − 1)a0(δ) + Na0(δ) and (2.16)

(2.7)
Eδ(XN )

N2
− a0(δ) +

log (4δ)−1/2

N
≤ E(XN ) − EN

N2
− a0(δ)

N
,

where EN is the right-hand side in (2.17). By (2.17), EN is a lower bound for
E(XN). In Subsection 2.4 we estimate EN from below to get a lower bound for
the optimal logarithmic energy. For minimum logarithmic energy point sets XN

the expression (E(XN) − EN )/N2 can be estimated from above by the difference
of upper (1.5) and lower bound (Lemma 1.1) for E(XN). We chose 4δ = N−2/d.
From (2.24) and (2.25) (using residue calculus) one gets a0(δ) = I[σ] −O(N−2/d)
as N → ∞ for d ≥ 2. Hence

(2.8)
Eδ(XN )

N2
− a0(δ) +

log (4δ)−1/2

N
≤ c2 + C ′

d − I[σ]
N

+ O(N−1−2ε/d),

as N → ∞. For d ≥ 2 the lower bound of EN is given in Lemma 1.1.
The denominator under the root sign in (2.5) can be replaced by an(δ)/Z(d, n)

for any n ≥ qm, since the sequence ak(δ)/Z(d, k), k ≥ 1, is strictly monotonically

1Note that in [2] everything is done in Rd.
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decreasing as k → ∞ (Lemma 2.2). The asymptotics of ak(δ)/Z(d, k) is given in
Lemma 2.3. Thus

D(FK ; XN ) ≤ C0

{
K

m
+

√
2 (c2 + C ′

d − I[σ]) N−1nd
{
1 + O(N−1/d)

}
Γ(d/2) {1 + O (1/n)}

{
1 + O

(
n2ε/N2ε/d

)}
}

.

We used [1, 6.1.47]. Let n = qm. Assume m = Nα/d. The constant α is chosen to
balance both contributions to the discrepancy, that is,

N−α/d = m−1 �
√

N−1md = N (α−1)/2, N → ∞.

The asymptotical relation above is solved by α = d/(d+2). Note, O(n2εN−2ε/d) =
O(N−4ε/[d(d+2)]). This finishes the proof of Theorem 1.6.

2.3. Representing the logarithmic energy through modified energies. We
consider the Taylor expansion of gδ for small δ, that is,

gδ =
K∑

k=0

dk gδ

d δk

∣∣∣∣∣
0

δk

k!
+

δK+1

K!

∫ 1

0

(1 − θ)K dK+1 gδ

d δK+1

∣∣∣∣∣
θδ

d θ.

The derivatives of gδ(t) with respect to δ, where gδ(〈x,y〉) := kδ(x− y), are(
gδ
)(n)

(t) = (−1)n2n−1(n − 1)! (1 + 2δ − t)−n
, n ≥ 1.

Then the logarithmic energy of an N -point set XN takes on the form

(2.9) Eδ(XN ) = E(XN) +
1
2

K∑
k=1

(−1)k

k
(4δ)k E2k(XN ) + RK(δ),

where Es(XN ) is the Riesz s-energy of XN . The remainder term is given by

(2.10) RK(δ):=
(−1)K+1

2
(4δ)K+1

∫ 1

0

(1 − θ)K Eθδ
2(K+1)(XN ) d θ.

In [4] we express the Riesz s-energy in terms of modified Riesz energies. Recall that
the related δ-kernel is given by kδ

s(x) = (4δ + |x|2)−s/2. We have

(2.11) Es(XN ) =
L∑

�=0

(s/2)�

�!
(4δ)�

Eδ
s+2�(XN ) + RL(s; δ),

where the remainder term reads as

(2.12) RL(s; δ):=
(s/2)L+1

L!
(4δ)L+1

∫ 1

0

θLEθδ
s+2L+2(XN ) d θ.

Substitute (2.11) into (2.9) such that the modified energy under the integral sign
in the remainder term is always of the form Eθδ

2(K+1)(XN ):

Eδ(XN ) = E(XN) +
1
2

K∑
k=1

K−k∑
�=0

(−1)k (k)�

k�!
(4δ)k+�

Eδ
2(k+�)(XN )

+
1
2

K∑
k=1

(−1)k

k
(4δ)k RK−k(2k; δ) + RK(δ).

(2.13)
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Reorder the double sum with respect to r = k + �, r = 1, . . . , K. Then, by the
Binomial Theorem, the new inner sum is

r−1∑
�=0

(r − �)�

(r − �) �!
(−1)r−� =

1
r

r−1∑
�=0

(
r

�

)
(−1)r−� = −1

r
.

For the combined remainder terms in (2.13) we get

1
2

(4δ)K+1
∫ 1

0

[
f(θ) + (−1)K+1 (1 − θ)K

]
Eθδ

2(K+1)(XN ) d θ,

where

f(θ) =
K∑

k=1

Γ(K + 1)
k Γ(k)(K − k)!

(−1)kθK−k = (θ − 1)K − θK .

All together this gives

E(XN ) = Eδ(XN ) +
1
2

K∑
r=1

1
r

(4δ)r Eδ
2r(XN )

+
1
2

(4δ)K+1
∫ 1

0

θKEθδ
2(K+1)(XN ) d θ.

(2.14)

2.4. Improving the lower bound for the optimal logarithmic energy. We
observe that each term at the right-hand side of (2.14) is positive. From

Eθδ
2(K+1)(XN ) ≥ Eδ

2(K+1)(XN )

there follows the lower bound

(2.15) E(XN) ≥ Eδ(XN ) +
1
2

K+1∑
r=1

1
r

(4δ)r
Eδ

2r(XN ).

From (2.3), and a similar relation holding for the modified Riesz s-energy, we get
the lower estimates

Eδ(XN ) ≥ N (N − 1) a0(δ) − N log (4δ)−1/2 ,

Eδ
2r(XN ) ≥ N (N − 1) a0(2r; δ) − N (4δ)−r .(2.16)

All together this gives us a lower bound for the discrete logarithmic energy

E(XN ) ≥ N (N − 1) a0(δ) + N (N − 1)
1
2

K+1∑
r=1

1
r

(4δ)r
a0(2r; δ)

− N log (4δ)−1/2 − N
1
2

K+1∑
r=1

1
r
.

(2.17)

Lemma 2.1. Let d = 2, 3, 4, 5, 6, 7, · · · . Then
1

N2
E(XN) ≥ I[σ] − 1

d

log N

N
− C ′

d

N
+ Oε(N−1−2ε/d), N → ∞,

for any N-point set on Sd, where

(2.18) C ′
d = I[σ] +

1
d

Γ(d) Γ(1 + �d/2� − d/2)
2d Γ(d/2) Γ(1 + �d/2�) +

1
2

�d/2	∑
r=1

1
r

> 0

and 0 < ε < 1 for even d and 0 < ε < 1/2 for odd d.
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Proof. Substituting (2.35) we obtain

1
2

K+1∑
r=1

1
r

(4δ)r a0(2r; δ) =
1
2

Γ(d)
Γ(d/2)

× 1
2πi

∫ i∞

−i∞

(
K+1∑
r=1

Γ(r + ζ)
r Γ(r)

)
Γ(d/2 + ζ) Γ(−ζ)

Γ(d + ζ)

(
1
δ

)ζ

d ζ.

It can be easily verified (using induction) that

K+1∑
r=1

Γ(r + ζ)
r Γ(r)

= −Γ(ζ) +
Γ(K + 2 + ζ)

(K + 1)!ζ
.

Now, observe that the contribution due to the term −Γ(ζ) is exactly the expression
(2.25) which appears with a negative sign in (2.24). Thus, using (2.26), we have

(2.19) a0(δ) +
1
2

K+1∑
r=1

1
r

(4δ)r
a0(2r; δ) = I[σ] + R(δ).

The remainder term is

R(δ):=
1
2

Γ(d)
Γ(d/2)(K + 1)!

× 1
2πi

∫ i∞

−i∞

Γ(K + 2 + ζ) Γ(d/2 + ζ) Γ(−ζ)
ζ Γ(d + ζ)

(
1
δ

)ζ

d ζ.

(2.20)

Next we consider the behavior of R(δ) as δ → 0. We set K + 1 = �d/2�. Here �x�
denotes the largest integer ≤ x. The integrand in (2.20) has its first pole to the left
of the contour at ζ = −d/2 with residue

−2
d

Γ(1 + �d/2� − d/2)δd/2.

Moving the line of integration over the pole at ζ = −d/2 residue calculus yields

R(δ) = −1
d

Γ(d) Γ(1 + �d/2� − d/2)
Γ(d/2) Γ(1 + �d/2�) δd/2

+
1
2

Γ(d)
Γ(d/2) Γ(1 + �d/2�)δd/2+ε 1

2πi

∫ ∞

−∞
H(it) d t,

where

H(ζ):=
Γ(1 + �d/2� − d/2 − ε + ζ) Γ(−ε + ζ) Γ(d/2 + ε − ζ)

(−d/2 − ε + ζ) Γ(d/2 − ε + ζ)

(
1
δ

)ζ

.

The number ε needs to be chosen such that the line of integration passes the real
axis between the poles at ζ = −d/2 and the next pole at ζ = −1 − �d/2�. That
is, 0 < ε < 1 for dimension d is even and 0 < ε < 1/2 for d is odd. By Stirling’s
formula the integral can be bounded by a constant depending on ε and d only. Thus

(2.21) R(δ) = −1
d

Γ(d) Γ(1 + �d/2� − d/2)
Γ(d/2) Γ(1 + �d/2�) δd/2 + Oε(δd/2+ε), δ → 0.

We choose 4δ = N−2/d and substitute (2.19) and (2.21) into (2.17). �
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2.5. Expanding kδ in a series of Gegenbauer polynomials. The series coef-
ficients in (2.2) can be calculated using the formula (see [22])

(2.22)
an(δ)

Z(d, n)
=

ωd−1

ωd

∫ 1

−1

gδ(t)Pn(t)
(
1 − t2

)d/2−1
d t,

where gδ(〈x,y〉):=kδ(x − y), ωd denotes the surface area of Sd, and

(2.23)
ωd

ωd−1
=
∫ 1

−1

(
1 − t2

)d/2−1
d t =

√
π Γ(d/2)

Γ((d + 1)/2)
= 2d−1 [Γ(d/2)]2

Γ(d)
.

From (2.1), P0(t) ≡ 1, and (2.23) we get

a0(δ)
Z(d, 0)

= −1
2

log 2 − 1
2

ωd−1

ωd

∫ 1

−1

log (1 + 2δ − t)
(
1 − t2

)d/2−1
d t.

A change of variable 2u = 1 − t leads to

a0(δ)
Z(d, 0)

= −1
2

log 2 − 1
2

ωd−1

ωd
2d−1

∫ 1

0

ud/2−1 (1 − u)d/2−1 log (2δ + 2u) d u.

By [24, 2.6.10(31)] the last integral evaluates as

Γ(d/2) Γ(d/2)
Γ(d)

log(2δ) + δ−1 Γ(1 + d/2) Γ(d/2)
Γ(d + 1) 3F2

(
1 + d/2, 1, 1

d + 1, 2 ;−1
δ

)
.

Using (2.23) we get

a0(δ)
Z(d, 0)

= − log 2 − 1
2

log δ − 1
2

ωd−1

ωd
2d−1δ−1

× Γ(1 + d/2) Γ(d/2)
Γ(d + 1) 3F2

(
1 + d/2, 1, 1

d + 1, 2 ;−1
δ

)
.

Using [25, Thm. 36], we have

a0(δ)
Z(d, 0)

= − log 2 − 1
2

log δ − 1
2

ωd−1

ωd
2d−1δ−1 Γ(d/2)I0(δ),

where I0(δ) denotes the Mellin-Barnes integral

I0(δ):=
1

2πi

∫ i∞

−i∞

Γ(1 + d/2 + ζ) [Γ(1 + ζ)]2 Γ(−ζ)
Γ(2 + ζ) Γ(d + 1 + ζ)

(
1
δ

)ζ

d ζ.

The contour is chosen such that the poles of Γ(1 + d/2 + ζ) and Γ(1 + ζ) are at
its left side and the poles of Γ(−ζ) are at its right side. The path of integration
is moved to the left over the pole at ζ = −1. The integrand has a double pole at
ζ = −1 with residuum

−Γ(d/2)
Γ(d)

[ψ(d) − ψ(d/2) + log δ] δ,

where ψ(z) denotes the Digamma function. Thus, using (2.23), we get

(2.24)
a0(δ)

Z(d, 0)
= − log 2 +

1
2

[ψ(d) − ψ(d/2)] − R0(δ),

where R0(δ) denotes the remainder term

(2.25) R0(δ) =
1
2

Γ(d)
Γ(d/2)

1
2πi

∫ i∞

−i∞

Γ(d/2 + ζ) Γ(ζ) Γ(1 − ζ)
ζ Γ(d + ζ)

(
1
δ

)ζ

d ζ.
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Observe that the 0-th coefficient is also the energy Iδ[σ]. By [24, 2.6.10(25)]

(2.26) I[σ] =
a0(0)

Z(d, 0)
= lim

δ→0

a0(δ)
Z(d, 0)

= − log 2 +
1
2

[ψ(d) − ψ(d/2)] .

Let n ≥ 1. Rodrigues’ formula yields

an(δ)
Z(d, n)

=
(−1)n

2n(d/2)n

ωd−1

ωd

∫ 1

−1

gδ(t)
[(

1 − t2
)n+d/2−1

](n)

d t.

Apply n-times integration by parts. All boundary terms disappear. So

an(δ)
Z(d, n)

=
1

2n(d/2)n

ωd−1

ωd

∫ 1

−1

[
gδ
](n)

(t)
(
1 − t2

)n+d/2−1
d t.

Since [gδ](n)(t) = (1/2)(n − 1)!(1 + 2δ − t)−n, n ≥ 1, we have

(2.27)
an(δ)

Z(d, n)
=

(n − 1)!
2n+1(d/2)n

ωd−1

ωd

∫ 1

−1

(
1 − t2

)n+d/2−1

(1 + 2δ − t)n d t.

A change of variables 2u = 1 + t gives

an(δ)
Z(d, n)

=
(n − 1)!
2(d/2)n

2d−1 ωd−1

ωd

(
1

1 + δ

)n

×
∫ 1

0

un+d/2−1 (1 − u)n+d/2−1

(
1 − u

1 + δ

)−n

d u.

The right-most integral represents a hypergeometric function [1, 15.3.1]. Using
Pochhammer symbols and (2.23), we obtain

(2.28)
an(δ)

Z(d, n)
=

(n − 1)!(d/2)n

2(d)2n

(
1

1 + δ

)n

2F1

(
n, n + d/2

2n + d
;

1
1 + δ

)
,

or, using the series expansion of a hypergeometric function, we have

(2.29)
an(δ)

Z(d, n)
=

Γ(d)
2 Γ(d/2)

∞∑
m=0

Γ(m + n) Γ(m + n + d/2)
Γ(m + 2n + d) m!

(
1

1 + δ

)m+n

,

valid for all δ ≥ 0 and n ≥ 1.

2.6. Monotonicity of the coefficients an(δ)/Z(d, n) as n → ∞.

Lemma 2.2. Fix 0 < δ < 1. The sequence an(δ)/Z(d, n), n ≥ 1, is strictly
monotonically decreasing as n grows.

Proof. Define

(2.30) H(x):=
Γ(m + x) Γ(m + x + d/2)

Γ(m + 2x + d)
, x ≥ 1/2.

Since the Digamma function is strictly monotonically increasing,
d H

d x
= −H(x)

{
[ψ(2x + m + d) − ψ(x + m + d/2)]

+ [ψ(2x + m + d) − ψ(x + m)]
}(2.31)

is negative. Thus, the function H is strictly monotonically decreasing. So, each
term in the series expansion (2.29) is, as a product of two strictly decreasing func-
tions, strictly monotonically decreasing. �
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2.7. Asymptotics for an(δ)/Z(d, n) as n → ∞. A change of variables 2u = 1− t
in (2.27) leads to

an(δ)
Z(d, n)

=
(n − 1)!(d/2)n

2(d)2n

(
1
δ

)n

2F1

(
n, n + d/2

2n + d
;−1

δ

)
.

Now, we use the Mellin-Barnes integral form [1, 15.3.2] to get

an(δ)
Z(d, n)

=
Γ(d)

2 Γ(d/2)

(
1
δ

)n

× 1
2πi

∫ i∞

−i∞

Γ(n + ζ) Γ(n + d/2 + ζ) Γ(−ζ)
Γ(2n + d + ζ)

(
1
δ

)ζ

d ζ.

The contour is chosen such that the poles of Γ(n + ζ) and Γ(n + d/2 + ζ) are at its
left side and the poles of Γ(−ζ) are at its right side. Moving the contour over the
pole at ζ = −n, residue calculus yields

an(δ)
Z(d, n)

=
Γ(d)

2
Γ(n)

Γ(n + d)
+

Γ(d)
2 Γ(d/2)

δε

× 1
2πi

∫ i∞

−i∞

Γ(ζ − ε) Γ(d/2 − ε + ζ) Γ(n + ε − ζ)
Γ(n + d − ε + ζ)

(
1
δ

)ζ

d ζ,

(2.32)

0 < ε < 1. By Stirling’s formula the integral is bounded. For our purpose this is
not enough. The remainder term can be written as

Γ(d)
2

Γ(1 − ε) Γ(d/2 − ε) Γ(n + ε)
Γ(d/2) Γ(n + d − ε)

δε 1
2πi

∫ i∞

−i∞

L(ζ)
ζ − ε

(
1
δ

)ζ

d ζ,(2.33)

0 < δ < 1, where

L(it):=
Γ(1 − ε + it)

Γ(1 − ε)
Γ(d/2 − ε + it)

Γ(d/2 − ε)
Γ(n + ε − it)

Γ(n + ε)
Γ(n + d − ε)

Γ(n + d − ε + it)
.

By [1, 6.1.25]

|L(it)|2 ≤
[
1 + t2/ (1 − ε)

]−1 [
1 + t2/ (d/2 − ε)

]−1

×
∏∞

m=0

[
1 + t2/ (m + n + ε)

]−1∏∞
m=0 [1 + t2/ (m + n + d − ε)]−1 .

Since 0 < ε < 1 and d ≥ 2, the ratio of infinite products can be bounded from
above by 1. Thus, the integral in (2.33) can be bounded by a constant depending
on ε and d. This shows:

Lemma 2.3.

(2.34)
an(δ)

Z(d, n)
=

Γ(d/2)
2

Γ(n)
Γ(n + d)

{
1 + Oε

(
n2ε (4δ)ε)} , n → ∞,

for any fixed 0 < ε < 1.

Remark 2.4. The Oε-constant does not depend on δ.
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2.8. Expanding kδ
s in a series of Gegenbauer polynomials. Here kδ

s(x) =
(4δ + |x|2)−s/2 is the δ-kernel for the modified Riesz s-energy,

kδ
s(x − y) =

∞∑
n=0

an(s; δ)
Z(d, n)

Z(d, n)Pn(〈x,y〉).

A similar computation as in Subsection 2.5 leads to

a0(2r; δ) =
ωd−1

ωd

∫ 1

−1

(
1 − t2

)d/2−1

[4δ + 2 (1 − t)]r
d t = (4δ)−r

2F1

(
r, d/2

d
;−1

δ

)
.

Now, we use the Mellin-Barnes integral form [1, 15.3.2] to get

a0(2r; δ) = (4δ)−r Γ(d)
Γ(d/2) Γ(r)

× 1
2πi

∫ i∞

−i∞

Γ(r + ζ) Γ(d/2 + ζ) Γ(−ζ)
Γ(d + ζ)

(
1
δ

)ζ

d ζ,

(2.35)

where we integrate along a Barnes path of integration separating the poles of Γ(r+ζ)
and Γ(d/2 + ζ) at its left side from the poles of Γ(−ζ) at its right side.
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