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ANALYSIS OF A SEQUENTIAL REGULARIZATION METHOD
FOR THE UNSTEADY NAVIER-STOKES EQUATIONS

XILIANG LU, PING LIN, AND JIAN-GUO LIU

Abstract. The incompressibility constraint makes Navier-Stokes equations
difficult. A reformulation to a better posed problem is needed before solving it
numerically. The sequential regularization method (SRM) is a reformulation
which combines the penalty method with a stabilization method in the context
of constrained dynamical systems and has the benefit of both methods. In the
paper, we study the existence and uniqueness for the solution of the SRM and
provide a simple proof of the convergence of the solution of the SRM to the
solution of the Navier-Stokes equations. We also give error estimates for the
time discretized SRM formulation.

1. Introduction

We consider the unsteady Navier-Stokes equations with homogeneous Dirichlet
boundary condition:

ut + (u · grad)u = ν∆u − gradp + f ,(1.1)
divu = 0,(1.2)
u|∂Ω = 0, u|t=0 = u0,(1.3)

in a bounded domain Ω and a time interval 0 ≤ t ≤ T . Here u(x, t) represents
the velocity of a viscous incompressible fluid, p(x, t) represents the pressure, f the
prescribed external force, u0(x) the prescribed initial velocity, and with no-slip
velocity boundary condition.

A lot of methods have been proposed for the numerical solution of the Navier-
Stokes equation. The equation is an infinite-dimensional constrained dynamical
system (see [19, 10, 7]), where the incompressibility condition (1.2) can be seen
as a constraint and the pressure p as the Lagrange multiplier. The special role of
the pressure p leads to computational difficulties, and a direct discretization to the
system is not recommended. A reformulation or regularization is thus needed to
obtain a better behaved problem, where a direct discretization may then be applied.
An important structural property of a reformulation is the stability of the associated
constraint or invariant set in the dynamical system context. A simple stabilization
formulation is the Baumgarte stabilization (see [4]), which is also called an ambient-
space (impetus-striction) formulation in [7]. The method basically replaces (1.2)
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by

α1(divu)t + α2divu = 0.

Under this formulation the invariant set divu = 0 is exponentially attractive if
α1, α2 > 0. However, when coupled with the momentum equation (1.1) a Poisson
equation for the pressure has to be solved and it is well known that an artificial
boundary condition for the pressure has to be imposed. Also, variables u and
p are coupled. On the other hand, another reformulation, the penalty method
(cf. [15, 17, 10]), is simple and, in particular, it does not require the boundary
condition for the pressure, and the variables u and p are uncoupled. However, it
introduces a penalty parameter ε, which has to be very small to maintain the accu-
racy of the penalized system. This small parameter ε gives a sharp initial layer in
the pressure and causes some inaccuracy in the pressure near the beginning of time
if the initial pressure is not zero. Also, the error bound of a spatial discretization
will be inversely proportional to the small parameter ε (cf. [14]) in general, which
could be useless as ε is required to be very small in the formulation.

In [10], a sequential regularization method (SRM) is proposed and analyzed, based
on methods of dealing with differential algebraic equations (see, e.g. [2, 3]). The
method is a combination of the penalty method and Baumgarte stabilization and
can be seen as an iterative penalty method or a modified augmented Lagrangian
method for nonstationary problems (cf. [6]). The method is defined as follows: with
p0(x, t) an initial guess, given a small parameter ε and two nonnegative constants
α1, α2, for s = 1, 2, . . ., solve the problem

(us)t + (us · grad)us = ν∆us − gradps + f ,(1.4)
div(α1(us)t + α2us) = ε(ps−1 − ps),(1.5)
us|∂Ω = 0, us|t=0 = u0.(1.6)

If we choose α1 = 0, α2 = 1, s = 1 and p0 = 0, the SRM is exactly the penalty
method. We are interested in the SRM because it keeps the benefits of the penalty
method, but unlike the penalty method, the parameter ε is not necessarily very
small, and thus the reformulated system is more stable or less stiff (see [10] and
the convergence estimate later in Section 2). Furthermore, it approximates the
divergence condition better than the penalty method. We can simply see from
(1.5) that the divergence of the velocity is of O(εs) and this bound is independent
of the time t if ps−1 − ps = O(εs−1), which we can show later. The SRM may
also avoid the initial layer in the pressure variable (see some explanation in [2, 3]).
Since it does not require ε to be very small, it would be fine even if the error bound
of the finite element method is inversely proportional to ε. So any standard finite
elements can possibly be used in numerical computation. In addition, under this
formulation, a fully explicit method can possibly be designed (see [12]).

In this paper we will take α1 = 1 and α2 = α > 0. The domain Ω will be
assumed to be smooth and bounded in R2 (a remark will be given for the 3D case).
At each SRM iteration, after eliminating ps from (1.4), (1.5), omitting the index s,
and redefining the right-hand side as f , we need to solve a PDE of the form

ut −
1
ε
grad div(ut + αu) − ν∆u + (u · grad)u = f ,(1.7)

u|∂Ω = 0, u|t=0 = u0.(1.8)
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This PDE is an implicit parabolic equation, the operator I − 1
ε grad div is a degen-

erate elliptic operator, and we will show the existence of the solution to this PDE
in this paper.

From the formulation point of view we may find that the SRM is a more natural
formulation than the penalty formulation for the unsteady Navier-Stokes equations.
To see this let us consider the time-independent Stokes equations with a perturba-
tion in the incompressibility condition (i.e., a steady-state inhomogeneous Stokes
equation)

−ν�u + gradp = f ,
divu = g,
u|∂Ω = 0.

If the basic compatibility holds (
∫
Ω

g = 0), we have

(1.9) ‖�u‖ + ‖gradp‖ ≤ C0(‖f‖ + ‖gradg‖),
where C0 only depends on the domain Ω and ν (see [18]). When we try to esti-
mate the error for the penalty method (or iterative penalty method) for the time-
independent problem, this estimation plays a crucial role. When the time is taken
into account, i.e. considering

ut − ν�u + gradp = f ,
divu = g,
u|∂Ω = 0,u|t=0 = u0,

where the basic compatibility holds (
∫
Ω

g = 0, divu0 = g(0)), we can obtain (see
[13])

(1.10)
sup

0≤t≤T
‖u‖2

1 +
∫ T

0

(‖�u‖2 + ‖gradp‖2)dt

≤ C(‖u0‖2
1 +

∫ T

0

‖f‖2 + ‖gradg‖2 + ‖gt‖2
(H1)′

dt),

where (H1)
′
is the dual space of H1. If we apply the penalty method directly to the

time-dependent Navier-Stokes equation, then the last term on the right-hand side
of the above inequality will depend on the time derivative of the pressure (the extra
requirement for the pressure reads p ∈ H1(0, T, (H1)

′
). It is not trivial to obtain the

estimation of pt for the Navier-Stokes equations. In general the global compatibility
condition is required (see [9]). After iterations, things will be even worse, where
the regularity for higher order derivatives of p with respect to t may be needed.
From this point of view, we may not expect a simple iterative penalty scheme
to significantly improve its accuracy. However, if we modify the inhomogeneous
time-dependent Stokes equation to what the SRM is based on, then

ut − ν�u + gradp = f ,

divut + αdivu = g,

u|∂Ω = 0, u|t=0 = u0.

If
∫
Ω

g = 0 and divu0 = 0, we have (see [10])

(1.11)
sup

0≤t≤T
‖u‖2

1 +
∫ T

0

(‖�u‖2 + ‖gradp‖2)dt

≤ C(‖u0‖2
1 +

∫ T

0

‖f‖2 + ‖gradg‖2dt),
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where the constant C only depends on ν, α, the domain Ω and the time length
T . The Navier-Stokes system is an index-2 partial differential algebraic system
(see [10]) and ill-posed in time in the sense that the solution depends on gt if the
equation (1.2) is perturbed by a function g. From estimation (1.11), we can see that
the solution of the sequential regularization reformulation is well posed (or more
stable in time) since it does not depend on gt. Using this estimation, we can obtain
an error bound for the SRM similar to that for the time-independent Navier-Stokes
equations.

The paper is organized as follows. In §2, we describe the sequential regularization
formulation. A modified convergence theorem is proved using a simpler method
than in [10]. In §3, we prove the existence of the solution of equation (1.7), (1.8).
In §4, we discretize the regularized problems in the temporal direction and analyze
the convergence of a number of semi-discrete schemes. Numerical experiments
which show the SRM works well may be found in [10, 11, 12, 14].

2. Preliminaries, the sequential regularization method

and its convergence

We first describe some notation and assumptions. As usual, we use Lp(Ω), or
simply Lp, to denote the space of pth-power integrable functions in Ω, and

‖u‖Lp = (
∫

Ω

n∑
i=1

|ui|p dx)
1
p

its norm, where u = (u1, · · · , un). We denote the inner product in L2 by (·, ·) and
let ‖ · ‖ ≡ ‖ · ‖L2 . Hm includes functions which are square integrable up to mth
derivatives with norm

‖u‖Hm = (
∑

0≤|α|≤m

‖Dαu‖2)
1
2 .

For simplicity, let ‖ · ‖m ≡ ‖ · ‖Hm . For a normed linear space B with norm ‖ · ‖B

and a sufficiently regular function g : [α, β] → B, we define

‖g‖L2([α,β];B) = (
∫ β

α

‖g(·, t)‖2
Bdt)

1
2 and ‖g‖L∞([α,β];B) = sup

α≤t≤β
‖g(·, t)‖B.

If [α, β] = [0, T ], we simplify the notation as ‖g‖L2(B) and ‖g‖L∞(B), respectively.
We list some widely used inequalities here, which may be found in many analysis

textbooks (see [5]). We define C as a generic constant which does not depend on
the choice of functions.

• Poincaré’s inequality:

(2.1) ‖u‖ ≤ C‖gradu‖, u ∈ H1
0

or, more generally, for u ∈ H1,

(2.2) ‖u‖ ≤ C

(
‖gradu‖ +

∣∣∣∣
∫

Ω

udx

∣∣∣∣
)

.

• Hölder’s inequality:

(2.3)
∫

Ω

|fgh| ≤ C‖f‖Lp‖g‖Lq‖h‖Lr

where p, q, r > 1 and 1
p + 1

q + 1
r = 1.
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• Sobolev’s inequality:

(2.4) ‖u‖Lq ≤ C‖u‖m,

if 1
2 − m

n > 0 and 1
q = 1

2 − m
n , where n is the dimension of the domain

Ω;

(2.5) ‖u‖L∞ ≤ C‖u‖m,

if 1
2 − m

n < 0, where n is the dimension of the domain Ω;

(2.6) ‖u‖L4 ≤ C‖u‖ 1
2 ‖u‖

1
2
1 ,

where the domain is in R2.
• Young’s inequality:

(2.7) ab ≤ εap + cεb
q,

where 1 < p < ∞, ε > 0, 1
p + 1

q = 1, cε is a constant which only depends
on ε.

• Gronwall’s inequality in differential form.
Let y(t) be a nonnegative, absolutely continuous function in [0, t] that sat-
isfies, for almost every t, the differential inequality:

(2.8) y′(t) ≤ a(t)y(t) + b(t),

where a(t) and b(t) are nonnegative, summable functions in [0, t]. Then we
have:

(2.9) y(t) ≤ e
∫ t
0 a(s)ds

[
y(0) +

∫ t

0

b(s)ds

]
.

• Discrete Gronwall’s inequality.
Let yn, an, bn and cn be nonnegative sequences, satisfying

(2.10) yn + �t

n∑
i=0

ai ≤ y0 + �t

n∑
i=0

(biyi + ci),

with �tbi < 1. Then we have

(2.11) yn + �t

n∑
i=1

ai ≤ eC�t
∑n

i=1 bi

(�t

n∑
i=1

ci + y0),

where C = max0≤i≤n(1 −�tbi)−1.
We are interested in the case that the problem (1.1), (1.2), (1.3) has a unique

solution and the solution satisfies

(2.12) ‖u‖2
1 +

∫ T

0

(‖ut‖2 + ‖u‖2
2 + ‖p‖2

1) dt ≤ M,

where the pressure p is up to an arbitrary constant which is determined by

(2.13)
∫

Ω

p(x, ·) dx = 0.

Hence, some basic compatibility condition has to be assumed (cf. [9]):

(2.14) u0|∂Ω = 0, divu0 ≡ 0.
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Furthermore, we assume

(2.15) sup
t∈[0,T ]

‖f‖ ≤ M1, ‖u0‖2 ≤ M1,

where M1 is a positive constant.
Eliminating ps from equations (1.4), (1.5) (with α1 = 1, α2 = α), we can refor-

mulate the SRM equation (cf. [10]) as follows: with p0(x, t) an initial guess, for
s = 1, 2, · · · , solve the problem

(us)t −
1
ε
grad((divus)t + αdivus) + (us · grad)us

= ν∆us − gradps−1 + f ,(2.16)
us|∂Ω = 0,us|t=0 = u0,(2.17)

ps = ps−1 −
1
ε
((divus)t + αdivus).(2.18)

We take p0 satisfying (2.13). Then it is easy to see that ps satisfies (2.13) for all s.
To simplify the nonlinear term, we introduce a few operators and inequalities

(see [18, 19]):

B(u,v) = (u · grad)v, B̄(u,v) = B(u,v) +
1
2
(divu)v,

b(u,v,w) = (B(u,v),w), b̄(u,v,w) = (B̄(u,v),w).

We can easily check that

b̄(u,v,w) =
1
2
{b(u,v,w) − b(u,w,v)}, ∀u,v,w ∈ H1

0(Ω).

Therefore,
b̄(u,v,v) = 0, ∀u,v ∈ H1

0(Ω).
For trilinear forms b (or b̄), we can prove the following inequality by a combination
of integration of parts, Hölder’s and Sobolev’s inequalities (see for instance [19]).

Lemma 2.1. Assume Ω ∈ Rn. Then the trilinear form b (or b̄) is defined as a
bounded linear functional on Hm1 × Hm2+1 × Hm3 , where mi ≥ 0 and

m1 + m2 + m3 ≥ n

2
if mi 
=

n

2
,(2.19)

m1 + m2 + m3 >
n

2
if mi =

n

2
for some i.(2.20)

Lemma 2.2. As a corollary of Lemma 2.1, we choose proper mi to get:

(2.21) b(u,v,w) ≤ C

⎧⎪⎪⎨
⎪⎪⎩

‖u‖1‖v‖1‖w‖1

‖u‖2‖v‖1‖w‖

‖u‖1‖v‖2‖w‖.
Moreover, if Ω ∈ R2, we have:

|b(u,v,w)| ≤ C‖u‖ 1
2 ‖u‖

1
2
1 ‖v‖

1
2
1 ‖v‖

1
2
2 ‖w‖, ∀v ∈ H2 ∩H1

0,u,w ∈ H1
0,(2.22)

|b(u,v,w)| ≤ C‖u‖ 1
2 ‖u‖

1
2
1 ‖v‖1‖w‖ 1

2 ‖w‖
1
2
1 , ∀v,u,w ∈ H1

0;(2.23)

if Ω ∈ R3, we have:

|b(u,v,w)| ≤ C‖u‖1‖v‖
1
2
1 ‖v‖

1
2
2 ‖w‖, ∀v ∈ H2 ∩ H1

0,u,w ∈ H1
0,(2.24)

where the trilinear form b can be replaced with b̄.
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We will use the modified nonlinear convection term B̄(u,u) to replace the orig-
inal one B(u,u) in the remaining parts. The Navier-Stokes equations and SRM
equations are modified respectively as

ut + B̄(u,u) = ν∆u − gradp + f ,(2.25)
divu = 0,(2.26)
u|∂Ω = 0, u|t=0 = u0,(2.27)

and

(us)t + B̄(us,us) = ν∆us − gradps + f ,(2.28)
div((us)t + αus) = ε(ps−1 − ps),(2.29)
us|∂Ω = 0, us|t=0 = u0.(2.30)

We should mention that the systems (1.1)-(1.3) and (2.25)-(2.27) have the same
solution.

Now we start to analyze the SRM (2.28)-(2.30). We have the following two
lemmas (see [10]), and these lemmas are also true when we replace B by B̄.

Lemma 2.3. For the solution {us, ps} of (2.28), (2.29), (2.30), we have the fol-
lowing estimates:

‖us‖2
1 +

∫ T

0

(
1
ε2
‖(divus)t‖2

1 +
1
ε2
‖divus‖2

1 + ‖(us)t‖2 + ‖us‖2
2 + ‖ps‖2

1) dt

≤ C1M1,se
C1M2

1,s ,

where M1,s = ‖u0‖2
1 +

∫ T

0
(‖f‖2 + ‖ps−1‖2

1) dt, and C1 is a generic constant which
does not depend on f , u0 and ps−1.

The second lemma is for a linear auxiliary problem:

wt + B̄(U,w) + B̄(w,V) = ν∆w − gradp + f ,(2.31)
(divw)t + αdivw = g,(2.32)
w|∂Ω = 0,w|t=0 = u0,(2.33)

where U, V, g and u0 are given functions, u0 satisfies the compatibility conditions
(2.14) and g satisfies (2.13).

Lemma 2.4. For the solution of (2.31)-(2.33), if U and V satisfy

(2.34) ‖ · ‖2
1 +

∫ T

0

‖ · ‖2
2 dt ≤ M2,

then we have the following estimate:

‖w‖2
1 +

∫ T

0

(‖w‖2
2 + ‖wt‖2 + ‖p‖2

1) dt

≤ C2(1 + M2)eC2M2

(
‖u0‖2

1 +
∫ T

0

(‖f‖2 + ‖g‖2
1) dt

)
(2.35)

where C2 does not depend on f , g and u0.
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For Navier-Stokes equations, we have a classical energy bound (see [18]):

(2.36) ‖u‖2
1 +

∫ T

0

(‖u‖2
2 + ‖p‖2

1)dt ≤ C3M3e
C3M2

3 ,

where M3 = ‖u0‖2
1 +

∫ T

0
‖f‖2dt and C3 does not depend on f , u0.

We will prove the convergence results by combining the above lemmas. Let

C = max{C1, C2, C3}, M4 = 2 + ‖u0‖2
1 +

∫ T

0

(‖f‖2 + 2‖p‖2
1)dt,

M5 = CM4e
CM2

4 , M = C(M5 + 1)eCM2
5 ,

and ε satisfy

(2.37) 4Mε2(1 + 2
∫ T

0

(‖p‖2
1 + ‖p0‖2

1)dt) ≤ 1.

Theorem 2.5 (Convergence). Let u and p be the solution of problem (2.25), (2.26),
(2.27) and us and ps the solution of problem (2.28), (2.29), (2.30). If we choose
our initial guess p0 to satisfy

∫ T

0
‖p0‖2

1dt ≤ 2 + 2
∫ T

0
‖p‖2

1dt (e.g. p0 = 0), and ε to
satisfy (2.37), then for s = 1, 2, · · · , we have the following error estimate:

(2.38) ‖u−us‖2
1+

∫ T

0

(‖u−us‖2
2+‖(u−us)t‖2+‖p−ps‖2

1) dt ≤ (4Mε2)s

∫ T

0

‖p−p0‖2
1 dt.

We have seen most parts of this estimate in [10], where the technique of asymp-
totic expansion is used in the proof. But here we are going to provide a much
simpler proof following an idea in [11]. Here we also give clear criteria that p0 and
ε should satisfy for convergence.

Proof. Subtracting (2.25)-(2.27) (replacing (2.26) by divut + αdivu = 0) from
(2.28)-(2.30) and denoting by es = us − u, hs = ps − p for s = 1, 2, · · · , we
have

(es)t + B̄(us, es) + B̄(es,u) = ν∆es − grad(hs),(2.39)
(dives)t + αdives = ε(hs−1 − hs),(2.40)
es|∂Ω = 0, es|t=0 = 0.(2.41)

Clearly, from estimation (2.36), we have

(2.42) ‖u‖2
1 +

∫ T

0

‖u‖2
2dt ≤ M5.

We will prove the following claims by induction; the convergence is the corollary of
claim (2.45).

Claim: For s = 1, 2, 3, ..., we have

‖us‖2
1 +

∫ T

0

‖us‖dt ≤ M5,(2.43)

4Mε2
∫ T

0

‖hs−1‖2
1dt ≤ 1,(2.44)

‖es‖2
1 +

∫ T

0

(‖es‖2
2 + ‖(es)t‖2 + ‖hs‖2

1)dt ≤ 4Mε2
∫ T

0

‖hs−1‖2
1dt.(2.45)
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Step 1: Case s = 1.
Since our initial guess p0 satisfies

∫ T

0
‖p0‖2

1dt ≤ 2+2
∫ T

0
‖p‖2

1dt, hence M1,1 ≤ M4

(see Lemma 2.3 for the definition of M1,s). Claim (2.43) follows from Lemma 2.3
and the definition of ε0 implies claim (2.44). Estimates (2.42) and (2.43) together
with Lemma 2.4 imply

(2.46) ‖e1‖2
1 +

∫ T

0

(‖e1‖2
2 + ‖(e1)t‖2 + ‖h1‖2

1)dt ≤ Mε2
∫ T

0

‖h0 − h1‖2
1dt.

Applying the Cauchy inequality, and noticing the choice of ε, we have

(2.47)
Mε2

∫ T

0

‖h0 − h1‖2
1dt ≤ 2Mε2

∫ T

0

(‖h0‖2
1 + ‖h1‖2

1)dt

≤ 1
2

∫ T

0

‖h1‖2
1dt + 2Mε2

∫ T

0

‖h0‖2
1dt.

Inequalities (2.46) and (2.47) yield claim (2.45).
Step 2: Assume that claims (2.43) and (2.45) are true for s = k and let s = k+1.
Claims (2.45) and (2.44) for s = k imply∫ T

0

‖hk‖2
1dt ≤ 4Mε2

∫ T

0

‖hk−1‖2
1dt ≤ 1.

This and ∫ T

0

‖pk‖2
1dt =

∫ T

0

‖hk + p‖2
1dt ≤ 2

∫ T

0

(‖p‖2
1 + ‖hk‖2

1)dt

give

M1,k+1 = ‖u0‖2
1 +

∫ T

0

(‖f‖2 + ‖pk‖2
1)dt ≤ 2 + ‖u0‖2

1 +
∫ T

0

(‖f‖2 + 2‖p‖2
1)dt = M4.

Claim (2.43) is a corollary of Lemma 2.3 by taking s = k + 1. The proof of claim
(2.45) is similar to the case of s = 1. (2.42) and (2.43) together with Lemma 2.4
imply

‖ek+1‖2
1 +

∫ T

0

(‖ek+1‖2
2 + ‖(ek+1)t‖2 + ‖hk+1‖2

1)dt ≤ Mε2
∫ T

0

‖hk − hk+1‖2
1dt.

Applying the Cauchy inequality, and noticing the choice of ε, we have

Mε2
∫ T

0

‖hk − hk+1‖2
1dt ≤ 2Mε2

∫ T

0

(‖hk‖2
1 + ‖hk+1‖2

1)dt

≤ 1
2

∫ T

0

‖hk+1‖2
1dt + 2Mε2

∫ T

0

‖hk‖2
1dt.

The above two inequalities yield claim (2.45). Claim (2.45) immediately implies

4Mε2
∫ T

0

‖hk+1‖2
1dt ≤ 4Mε2(4Mε2

∫ T

0

‖hk‖2
1dt) ≤ 4Mε2 ≤ 1.

So the claim (2.44) is also true for s = k + 1. �

Remark 2.1. As a corollary, we can obtain ‖ps−1 − ps‖L2(H1) = O(εs−1) from
inequality (2.38); hence the divergence of the velocity is of O(εs).
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Remark 2.2. From Theorem 2.5, the choice of ε should satisfy (2.37). In practice,
it is not necessarily very small. A good approximation can be ensured by iterations
as long as ε = o(1) (see numerical results in [10, 12]).

3. Existence of the strong solution

When we apply SRM to Navier-Stokes equations, we need to solve equations
(2.28)-(2.30) at each iteration step. By eliminating ps from equations (2.28)-(2.30),
omitting the index s and denoting the right-hand side as a new function f , we
obtain equations which are similar to (1.7), (1.8):

ut −
1
ε
grad div(ut + αu) − ν∆u + B̄(u,u) = f ,(3.1)

u|∂Ω = 0, u|t=0 = u0,(3.2)

where divu0 = 0. We will establish the existence and uniqueness of the solution
of equation (3.1), (3.2) in this section. Following standard ideas we need to ob-
tain energy estimates of a semi-discretized problem and then pass to the limit of
the discrete solution. There are two ways to construct the discrete solution, i.e.
temporally discrete or spatially discrete solution. If we use the spatially discrete
solution, it is difficult to obtain enough energy or regularity estimates (since we do
not have enough boundary conditions to ensure the integration by parts). So we
turn to time discretization (see also [13] for using the temporally discrete solution).
We first establish the energy estimations for the time discrete scheme, then let the
time step �t approach 0. The limit function is the strong solution of problem (3.1),
(3.2).

To take a semi-discrete scheme in time, we first use a semi-implicit scheme,
i.e. an explicit-implicit scheme for the nonlinear convention term and an implicit
scheme for the remaining. The system reads:

(3.3)
un+1 − un

�t
− 1

ε
grad div(

un+1 − un

�t
+ αun+1)

− ν�un+1 + B̄(un,un+1) = fn+1

with the homogeneous Dirichlet boundary condition, where u0 = u0, fn+1 =
f(x, tn+1) and tn = n�t. Most of our results are obtained for this semi-implicit
scheme. But in practice, we are also interested in a fully explicit treatment of the
nonlinear convection term (thus the stiffness matrix will not change in time). The
corresponding time-discrete scheme reads:

(3.4)
un+1 − un

�t
− 1

ε
grad div(

un+1 − un

�t
+αun+1)−ν�un+1+B̄(un,un) = fn+1

satisfying the same boundary and initial conditions. If we only consider a short
time solution (Ω can be in either 2D or 3D), we have a similar estimation for this
scheme. We will also consider a finite time solution in a remark.

Clearly, equations (3.3) and (3.4) are linear second order elliptic equations for
any fixed n. The existence and uniqueness of the solutions are standard. Moreover,
we have stronger energy estimations for both equations.

Lemma 3.1. Assume that the time interval is [0, T ]. Let N = T
�t , and define

Aun+1 = −1
ε grad div(un+1−un

�t +αun+1)−ν�un+1, n = 0, 1, 2, 3... and divu0 = 0.
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Then there exists a constant ε0 which does not depend on un, such that when ε ≤ ε0,
we have

�t
N∑
1

(‖un‖2
2 +

1

ε2
‖graddivun‖2 +

1

ε2
‖graddiv

un − un−1

�t
‖2) ≤ C�t

N∑
1

‖Aun‖2,

sup
1≤n≤N

(‖un‖2 +
1

ε
‖graddivun‖ +

1

ε
‖graddiv

un − un−1

�t
‖) ≤ C sup

1≤n≤N
‖Aun‖,

where the constant C does not depend on the choice of ε and un.

Proof. Define wn = Aun, pn = −1
ε div(un−un−1

�t + αun). Then

− ν�un + gradpn = wn,(3.5)

div(
un − un−1

�t
+ αun) = −εpn.(3.6)

Solving equation (3.6), and defining gn = divun, we have

(1 + α�t)gn − gn−1 = −ε�tpn(3.7)

⇒ ‖gradgn‖ ≤ ‖gradg0‖ + ε�t

n∑
i=0

‖gradpi‖.(3.8)

Since u0 is divergence free, the first term on the right-hand side of above equation
is 0. Then we apply the Cauchy-Schwarz inequality,

(3.9)

‖gradgn‖2 ≤ ε2�t2‖
n∑

i=1

gradpi‖2

≤ ε2�t2n

n∑
1

‖gradpi‖2

≤ ε2T�t

n∑
1

‖gradpi‖2.

Using the inequality (1.9) for the inhomogeneous Stokes equations (see [18]), we
have

(3.10) ‖un‖2
2 + ‖gradpn‖2 ≤ C1(‖wn‖2 + ‖gradgn‖2).

Defining the constant ε0 = min( 1√
2C1T 2 , 1

2C1T ), taking the summation from 1 to n

in inequality (3.10) and using inequality (3.9), we have

(3.11) �t

n∑
1

(‖ui‖2
2 + ‖gradpi‖2) ≤ C2�t

n∑
1

‖wi‖2 for any ε ≤ ε0.

From the definition of pi, we obtain the first conclusion in the lemma. To obtain
the uniform estimation, we take sup in inequality (3.8), that is,

sup
1≤n≤N

‖gradgn‖ ≤ sup
1≤n≤N

ε�t

n∑
i=0

‖gradpi‖

≤ sup
1≤n≤N

ε�tN‖gradpn‖.

Then taking sup at inequality (3.10) and choosing ε ≤ ε0, we complete the second
part of this lemma. �
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Lemma 3.2. For equation (3.3), if we assume that �t
∑N

0 ‖fn‖2
−1 is bounded,

u0 ∈ L2 and divu0 = 0, we have the following estimation:

‖un‖2 +
1
ε
‖divun‖2 + �t

n∑
1

‖ui‖2
1 ≤ C.

Proof. Multiplying by un+1 on both sides of equations (3.3), we have:
1

2�t
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2)

+
1

2�tε
(‖divun+1‖2 − ‖divun‖2 + ‖div(un+1 − un)‖2)

+
α

ε
‖divun+1‖2ν‖gradun+1‖2 + b̄(un,un+1,un+1) = (fn+1,un+1).

Since b̄(un,un+1,un+1) = 0 and (fn+1,un+1) ≤ ν
2‖gradun+1‖2 + C1‖fn+1‖2

−1, we
can then define yn = ‖un‖2 + 1+α�t

ε ‖divun‖2 to obtain the inequality

yn+1 − yn + �t‖gradun+1‖2 ≤ C2�t‖fn+1‖2
−1.

Taking the summation from 0 to n in the above inequality yields

(3.12) yn − y0 + �t

n∑
1

‖gradui‖2 ≤ C2�t

n∑
1

‖f i‖2
−1.

Since y0 = ‖u0‖2 is bounded, we conclude the lemma. �
With more regularity assumptions for f and u0, we can have a higher regularity

estimation.

Lemma 3.3. For equation (3.3), if we assume that �t
∑N

0 ‖fn‖2 is bounded, u0 ∈
H1

0 ∩ H2, divu0 = 0 and ε ≤ ε0, we have the following estimation:

(3.13)
‖un+1‖2

1 + �t
n∑
0

{ 1

ε2
‖graddiv

ui+1 − ui

�t
‖2 +

1

ε2
‖graddivui+1‖2

+ ‖�ui+1‖2 + ‖ui+1 − ui

�t
‖2} ≤ C.

Proof. In Lemma 3.2, we have proved that sup ‖un‖ and �t
∑n

1 ‖ui‖2
1 are bounded,

which will be used in the proof without so mentioning. Multiplying by un+1−un

�t on
both sides of equation (3.3), we have

‖un+1 − un

�t
‖2 +

ν

2�t
(‖gradun+1‖2 − ‖gradun‖2 + ‖grad(un+1 − un)‖2)

+
1

ε
‖div(

un+1 − un

�t
)‖2 +

α

2ε�t
(‖divun+1‖2 − ‖divun‖2 + ‖div(un+1 − un)‖2)

+b̄(un,un+1,
un+1 − un

�t
) = (fn+1,

un+1 − un

�t
).

Since

|b̄(un,un+1,
un+1 − un

�t
)| ≤ C1‖un‖ 1

2 ‖un‖
1
2
1 ‖un+1‖

1
2
1 ‖un+1‖

1
2
2 ‖

un+1 − un

�t
‖

≤ 1
4
‖un+1 − un

�t
‖2 + C2

1‖un‖‖un‖1‖un+1‖1‖un+1‖2

≤ 1
4
‖un+1 − un

�t
‖2 + δ‖un+1‖2

2 +
C2

δ
‖un‖2

1‖un+1‖2
1
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and

(fn+1,
un+1 − un

�t
) ≤ 1

4
‖un+1 − un

�t
‖2 + ‖fn+1‖2,

we have

(3.14)

‖un+1 − un

�t
‖2 +

1
ε�t

(‖divun+1‖2 − ‖divun‖2)

+
1
�t

(‖gradun+1‖2 − ‖gradun‖2)

≤ C3‖fn+1‖2 + δ‖un+1‖2
2 + Cδ‖un‖2

1‖un+1‖2
1.

If we rewrite the equation (3.3) as

−ν�un+1 + gradpn+1 = fn+1 − un+1 − un

�t
− B̄(un,un+1),

divun+1 = gn+1, (1 + α�t)gn+1 − gn = −ε�tpn+1,

by applying estimation (1.9) for the nonhomogeneous Stokes equation, and using
Young’s inequality and Sobolev’s inequality, we have

(3.15)
‖un+1‖2

2 + ‖gradpn+1‖ ≤ C0(‖fn+1‖2 + ‖un+1−un

�t ‖2

+‖gradgn+1‖2 + δ‖un+1‖2
2 + Cδ‖un‖2

1‖un+1‖2
1).

Then (3.14) + 1
2C0

× (3.15) implies

1

2
‖un+1 − un

�t
‖2 +

1

2C0
(‖un+1‖2

2 + ‖gradpn+1‖2) +
1

ε�t
(‖divun+1‖2 − ‖divun‖2)

+
1

�t
(‖gradun+1‖2 − ‖gradun‖2) ≤ (C3 + 1)‖fn+1‖2 + ‖gradgn+1‖2

+δ‖un+1‖2
2 + Cδ‖un‖2

1‖un+1‖2
1.

Multiplying by gradgn+1 on both sides of the recursive equation (1+α�t)gradgn+1

− gradgn = −ε�tgradpn+1, we have

1
2
(‖gradgn+1‖2 − ‖gradgn‖2 + ‖grad(gn+1 − gn)‖2) + α�t‖gradgn+1‖2

= −ε�t(gradpn+1,gradgn+1) ≤ ε2�t

2α
‖gradpn+1‖2 +

α�t

2
‖gradgn+1‖2.

Therefore,

1
�t

(‖gradgn+1‖2 − ‖gradgn‖2) + α‖gradgn+1‖2 ≤ ε2

α
‖gradpn+1‖2.

Denoting yn = 1
ε2 ‖gradgn‖2, zn = 1

ε ‖divun‖2 + ‖gradun‖2, then

1

2
‖un+1 − un

�t
‖2 +

1

2C0
‖un+1‖2

2 +
α2

2C0
yn+1 +

1

�t

α

2C0
(yn+1 − yn) +

1

�t
(zn+1 − zn)

≤ (C3 + 1)‖fn+1‖2 + ε2yn+1 + δ‖un+1‖2
2 + Cδ‖un‖2

1zn+1.

If ε is less than some critical value ε0 (e.g. α√
2C0

), we can choose a properly small
δ such that

‖un+1 − un

�t
‖2 + ‖un+1‖2

2 +
1

�t
(yn+1 + zn+1 − yn − zn) ≤ C4(‖fn+1‖2 + ‖un‖2

1zn+1).
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Applying the discrete Gronwall’s inequality yields

‖un+1‖2
1 + �t

n∑
0

{ 1
ε2
‖graddivui+1‖2 + ‖�ui+1‖2 + ‖ui+1 − ui

�t
‖2} ≤ C.

The last term �t
∑n

0
1
ε2 ‖graddivui+1−ui

�t ‖2 can be obtained from the identity

1
ε

gn+1 − gn

�t
= −pn+1 − α

ε
gn+1,

where �t
∑n

1 ‖∇pi‖2 is bounded by (3.15). �

Now with the estimation (3.13), we can pass to the limit and then prove the
existence of the strong solution. Define the strong solution to equation (3.1)-(3.2)
as follows.

Problem 3.1. For f ∈ L2(L2) and u0 ∈ H1
0 ∩ H2 with divergence free, find u to

satisfy u ∈ L2(H1
0 ∩H2), ut ∈ L2(L2), divut ∈ L2(H1), and

ut −
1
ε
grad div(ut + αu) − ν∆u + B̄(u,u) = f ,(3.16)

u|t=0 = u0.(3.17)

Theorem 3.4. There exists a unique solution u to problem 3.1.

Proof. We introduce the time semi-discrete solution which depends on the time
step �t, and define un to be a function of spatial variables satisfying the time
semi-discrete equations (3.3). Then define u�t and U�t to be a piecewise constant
or linear interpolation of un, respectively,

(3.18)
u�t(·, t) = un+1, t ∈ [n�t, (n + 1)�t),
U�t(·, t) = un + t−n�t

�t (un+1 − un), t ∈ [n�t, (n + 1)�t).

Then we can rewrite equation (3.3) as

(3.19)
∂

∂t
U�t−

1
ε
graddiv(

∂

∂t
U�t+u�t)−ν�u�t+B̄(u�t(·, t−�t),u�t) = f�t,

where f�t is a constant interpolation of fn+1 in the time step. Clearly, u�t is
bounded in L2(H1

0 ∩ H2) and U�t is bounded in L2(H1
0 ∩ H2) ∩ H1(L2). Passing

to the limit of subsequence �tj , we have

u�tj

w
⇀ u∗ ∈ L2(H1

0 ∩H2),

U�tj

w
⇀ u ∈ L2(H1

0 ∩ H2) ∩ H1(L2).

Define Q = [0, T ] × Ω, and

L2(Q) = L2(L2(Ω)), H1(Q) = {u : u ∈ L2(Q),gradu ∈ L2(Q), ut ∈ L2(Q)}.
Then we have L2(H1

0 ∩ H2) ∩ H1(L2) ↪→ H1(Q) ↪→ L2(Q), where the second
embedding is compact (see [5]); hence

U�tj
→ u ∈ L2(L2).

Then we estimate the difference between u�t and U�t. By the definition of u�t

and U�t,

(3.20) ‖u�t(·, t) − U�t(·, t)‖ ≤ ‖un+1 − un‖, t ∈ [n�t, (n + 1)�t).
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Hence,

(3.21)
∫ T

0

‖u�t − U�t‖2dt ≤ �t

N−1∑
0

‖un+1 − un‖2.

Then by Lemma 3.3, we get ‖u�t − U�t‖2
L2(Q) ≤ C�t2. Hence, u∗ and u are the

same element in L2(Q). Thus we also obtain that

u�tj
→ u ∈ L2(L2).

The next step is to check that u is indeed a strong solution. Choosing a test
function v to be smooth enough in Q and taking the inner product with v for
equation (3.19), we can pass to the limit weakly in L2(Q) for all terms in (3.19)
except the nonlinear term. Consider the nonlinear term B̄(u�t(·, t − �t),u�t).
Since gradu�t converges to gradu weakly and u�t converges to u strongly in
L2(Q), we conclude that B̄(u�t(·, t −�t),u�t) converges to B̄(u,u) in the sense
of distribution on Q (see [18]). After passing to the limit, we obtain u satisfying
equation (3.16).

Then we need to verify that u satisfies the initial condition u(0) = u0. There
is a standard embedding result, L2(H1

0 ∩ H2) ∩ H1(L2) ↪→ C(H1) (see [5]), and
then the map u → u(0) is continuous from C(H1) to H1. From above, the initial
condition is satisfied automatically.

The last step is to check the uniqueness of the solution. Assume that we have
two solutions u and v. Define w = u − v. Then we have the equation of w:

(3.22) wt −
1
ε
graddiv(wt + αw) − ν∆w + B̄(u,w) + B̄(w,v) = 0

with homogeneous Dirichlet boundary condition and zero initial condition. Multi-
plying the above equation by wt and applying Sobolev’s and Young’s inequalities,
we have

d

dt
(
1
ε
‖divw‖2 + ‖gradw‖2) ≤ C(‖u‖2

2 + ‖v‖2
2)‖gradw‖2.

Since u and v are in L2(H2) and from w(0) = 0 and Gronwall’s inequality we have
gradw = 0, hence the uniqueness of solution follows. �

As we mentioned before, if we only look for a short time solution, the fully
explicit scheme for the nonlinear convection term may be analyzed accordingly as
well. Moreover, the argument works for the 3D case. The following lemma is similar
to Lemma 3.3.

Lemma 3.5. Assume that �t
∑N

0 ‖fn‖2 is bounded, u0 ∈ H1
0 ∩ H2, divu0 = 0,

and ε is less than a positive constant ε0. Then there exists a positive constant T0,
whenever 0 < n�t ≤ T ∗ = min(T, T0), and the solution to equation (3.4) satisfies

(3.23)
‖un+1‖2

1 + �t

n∑
0

(
1
ε2
‖grad div

ui+1 − ui

�t
‖2

+
1
ε2
‖grad divui+1‖2 + ‖�ui+1‖2 + ‖ui+1 − ui

�t
‖2) ≤ C.
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Proof. The proof will be slightly different from Lemma 3.3 since we do not have
an a priori estimation for the solution of scheme (3.4). Multiplying by un+1−un

�t on
both sides of equation (3.4), similarly to Lemma 3.3, but noticing

|b̄(un,un,
un+1 − un

�t
)| ≤ C1‖un‖

3
2
1 ‖un‖

1
2
2 ‖

un+1 − un

�t
‖

≤ 1
4
‖un+1 − un

�t
‖2 + δ‖un‖2

2 + Cδ‖un‖6
1,

we have
(3.24)

‖un+1 − un

�t
‖2 +

1
ε�t

(‖divun+1‖2 − ‖divun‖2)

+
1
�t

(‖gradun+1‖2 − ‖gradun‖2) ≤ C2‖fn+1‖2 + δ‖un‖2
2 + Cδ‖un‖6

1.

Then we rewrite the equation (3.4) as

−ν�un+1 + gradpn+1 = fn+1 − un+1 − un

�t
− B̄(un,un),

divun+1 = gn+1, (1 + α�t)gn+1 − gn = −ε�tpn+1.

By applying estimation (1.9) for the nonhomogeneous Stokes equation, Young’s and
Sobolev’s inequalities, we obtain

(3.25)
‖un+1‖2

2 + ‖gradpn+1‖ ≤ C0(‖fn+1‖2 + ‖un+1 − un

�t
‖2

+ ‖gradgn+1‖2 + δ‖un‖2
2 + Cδ‖un‖6

1).

Then (3.24) + 1
2C0

× (3.25) implies

1
2
‖un+1 − un

�t
‖2 +

1
2C0

(‖un+1‖2
2 + ‖gradpn+1‖2)

+
1

ε�t
(‖divun+1‖2 − ‖divun‖2) +

1
�t

(‖gradun+1‖2 − ‖gradun‖2)

≤ (C3 + 1)‖fn+1‖2 + ‖gradgn+1‖2 + δ‖un‖2
2 + Cδ‖un‖6

1.

Multiplying by gradgn+1 on both sides of the recursive equation for gradgn,

(1 + α�t)gradgn+1 − gradgn = −ε�tgradpn+1,

we have

1
2
(‖gradgn+1‖2 − ‖gradgn‖2 + ‖grad(gn+1 − gn)‖2) + α�t‖gradgn+1‖2

= −ε�t(gradpn+1,gradgn+1) ≤ ε2�t

2α
‖gradpn+1‖2 +

α�t

2
‖gradgn+1‖2;

hence

1
�t

(‖gradgn+1‖2 − ‖gradgn‖2) + α‖gradgn+1‖2 ≤ ε2

α
‖gradpn+1‖2.
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Define yn = 1
ε2 ‖gradgn‖2, zn = 1

ε ‖divun‖2 + ‖gradun‖2. Then

1

2
‖un+1 − un

�t
‖2 +

1

2C0
‖un+1‖2

2 +
α2

2C0
yn+1 +

1

�t

α

2C0
(yn+1 − yn) +

1

�t
(zn+1 − zn)

≤ (C3 + 1)‖fn+1‖2 + ε2yn+1 + δ‖un‖2
2 + Cδ(zn)3.

If ε is less than some critical value ε0 (e.g. α√
2C0

), we can choose a properly small
δ (e.g. δ = 1

4C0
), and denote dn = yn + zn + �t‖un‖2

2; hence

‖un+1 − un

�t
‖2 + ‖un+1‖2

2 +
1
�t

(dn+1 − dn) ≤ C4(‖fn+1‖2 + (zn)3).

Summing for n yields

�t

n∑
0

(‖ui+1 − ui

�t
‖2 + ‖ui+1‖2

2) + dn+1 ≤ d0 + C4�t

n∑
0

(‖f i+1‖2 + (dn)3).

Denoting by wn = d0 + C4�t
∑N

0 ‖f i‖2 + C4�t
∑n

0 (dn)3, and noticing dn+1 ≤ wn

from the above inequality, we then have

wn+1 − wn = C4�t(dn+1)3 ≤ C4�t(wn)3.

Now consider a concave function F (x) = − 1
2x2 . Clearly F (x) is negative and

monotonically increasing in (0,∞), and F ′(x) = 1
x3 . By the convexity of F ,

F (wn+1) − F (wn) ≤ F ′(wn)(wn+1 − wn) =
wn+1 − wn

(wn)3
≤ C4�t.

Hence F (wn) ≤ F (w0) + nC4�t. Since F (w0) is negative, we let T0 be the critical
time that satisfies C∗ = F (w0) + C4T0 < 0 and T ∗ = min(T, T0). As long as
n�t ≤ T ∗, we have wn ≤ F−1(C∗) and hence the estimation

‖un+1‖2
1 + �t

n∑
0

(
1
ε2
‖graddivui+1‖2 + ‖�ui+1‖2 + ‖ui+1 − ui

�t
‖2) ≤ C.

The last term �t
∑n

0
1
ε2 ‖grad divui+1−ui

�t ‖2 ≤ C can be obtained by the same
argument as in Lemma 3.3. �

Remark 3.1. Lemma 3.5 states the stability of the fully explicit treatment of the
nonlinear convection term. With this energy estimation, we can prove the existence
of a strong solution in a short time for equation (3.1), (3.2) when Ω ∈ R3. The
proof will be exactly the same as that of Lemma 3.5, just replacing T by T ∗.

4. Error estimation of the time discretization

In this section, we will estimate the error between the SRM solution and the
semi-implicit time discrete solution. Hence, combining it with Theorem 2.5 we can
obtain an error estimate between the solution of the semi-implicit scheme and the
solution of the Navier-Stokes equations (1.1)-(1.2). Subtracting equation (3.1) from
equation (3.3), denoting the error function by en = un − u(tn), where tn = n�t,
we obtain the equation that the error en satisfies:

(4.1)
en+1 − en

�t
− 1

ε
grad div(

en+1 − en

�t
+ αen+1) − ν�en+1

+ B̄(un,un+1) − B̄(u(tn+1),u(tn+1)) = rn+1,
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where the remainder term rn+1 = 1
�t

∫ tn+1

tn
(η − tn)[utt(η) − 1

ε grad divutt(η)]dη.
Since �t = tn+1 − tn, we have

‖rn+1‖2 ≤ 1
�t2

∫ tn+1

tn

|η − tn|2dη

∫ tn+1

tn

‖utt(η) − 1
ε
graddivutt(η)‖2dη

=
�t

3

∫ tn+1

tn

‖utt(η) − 1
ε
grad divutt(η)‖2dη.(4.2)

Hence we need an energy estimation for
∫ T

0
‖utt(η)− 1

ε grad divutt(η)‖2dη to control
the truncation error.

4.1. A priori estimation.

Lemma 4.1. Define an operator Au = −1
ε graddiv(ut + αu) − ν∆u, where the

time interval is [0, T ]. Then there exists a constant ε0 independent of u and when
ε ≤ ε0, we have∫ t

0

1

ε2
‖graddivut‖2 +

1

ε2
‖graddivu‖2 + ‖∆u‖2dt � C(‖graddivu(0)‖2 +

∫ t

0
‖Au‖2dt),

sup
t∈[0,T ]

(
1

ε
‖grad divut‖ +

1

ε
‖grad divu‖ + ‖�u‖) � C(‖graddivu(0)‖ + sup

t∈[0,T ]
‖Au‖),

where the constant C does not depend on ε and u.

Proof. The proof is similar to the discrete case, Lemma 3.1. Let w = Au, p =
−1

ε div(ut + αu) and g = divu. Firstly we solve for g from the ODE

(4.3) gt + αg = −εp

with initial condition g(0) = divu(0). The solution is

(4.4) g(t) = e−αtg(0) − ε

∫ t

0

p(s)eα(s−t)ds.

Now (u, p) satisfies the inhomogeneous Stokes equations

−�u + gradp = w,

divu = g.

Then using the estimation (1.9), we have

‖u‖2 + ‖gradp‖ ≤ C0(‖w‖ + ‖gradg‖).
Hence

‖u‖2 + ‖gradp‖ � C1(‖graddivu(0)‖ + ‖w‖ + ε

∫ t

0

‖gradp(s)‖ds).

Choosing ε to be small enough (ε ≤ ε0 = 1
2C1T ), we can obtain

(4.5) sup
t∈[0,T ]

(‖u‖2 + ‖gradp‖) � C(‖graddivu(0)‖ + sup
t∈[0,T ]

‖w‖)

and

(4.6)
∫ t

0

‖u‖2
2 + ‖gradp‖2ds � C(‖graddivu(0)‖2 +

∫ t

0

‖w‖2ds).

From the above inequalities and the definition of p, we can conclude the lemma. �

The following lemmas give a higher regularity estimate for the solution of equa-
tion (3.1)-(3.2).
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Lemma 4.2. Let f ∈ L∞(L2), ft ∈ L2(H−1), u0 ∈ H2∩H1
0, divu0 = 0 and ε ≤ ε0.

Then we have:

sup
t∈[0,T ]

(‖ut‖ + ‖u‖2 +
1
ε
‖graddivut‖ +

1
ε
‖grad divu‖) ≤ C.

Proof. Multiplying by ut on both sides of equation (3.1), we have

(4.7) ‖ut‖2 +
1
ε
‖divut‖2 − (

α

ε
graddivu,ut) − (ν∆u,ut) + b̄(u,u,ut) = (f ,ut).

Notice that

|(α

ε
grad divu,ut)| ≤ ‖α

ε
grad divu‖2 +

1
4
‖ut‖2,

|(ν∆u,ut)| ≤ ‖ν∆u‖2 +
1
4
‖ut‖2,

|b̄(u,u,ut)| ≤ C1‖u‖1‖u‖2‖ut‖

≤ C2‖u‖2
2 +

1
8
‖ut‖2,

and
(f ,ut) ≤ ‖f‖2 +

1
4
‖ut‖2.

Hence
‖ut‖2 +

1
ε
‖divut‖2 ≤ C3(‖

1
ε
grad divu‖2 + ‖u‖2

2 + ‖f‖2).

Choosing the time t = 0 in the above inequality, and noting that divu0 = 0,
u0 ∈ H2 and f ∈ L∞(L2), we have

(4.8) ‖ut(0)‖2 +
1
ε
‖divut(0)‖2 ≤ C4.

Then taking the derivative of equation (3.1) with respect to t, we have

(4.9) utt −
1
ε
grad div(utt + αut) − ν∆ut + B̄(u,ut) + B̄(ut,u) = ft.

Multiplying by ut on both sides of the above equation yields
1

2

d

dt
‖ut‖2 +

1

2ε

d

dt
‖divut‖2 +

α

ε
‖divut‖2 + ν‖gradut‖2 + b̄(ut,u,ut) + b̄(u,ut,ut) = 〈ft,ut〉.

Using

|b(ut,u,ut)| ≤ C1‖u‖2‖ut‖1‖ut‖

≤ C5‖u‖2
2‖ut‖2 +

ν

4
‖gradut‖2,

b(u,ut,ut) = 0,

〈ft,ut〉 ≤
1
ν
‖ft‖2

−1 +
ν

4
‖gradut‖2,

we have
d

dt
‖ut‖2 +

1
ε

d

dt
‖divut‖2 +

1
ε
‖divut‖2 + ‖gradut‖2 ≤ C6(‖u‖2

2‖ut‖2 + ‖ft‖2
−1).

Since we have already had u ∈ L2(H2) (Lemma 2.3), applying Gronwall’s inequal-
ity, we obtain

‖ut‖2 +
1

ε
‖divut‖2 +

∫ t

0
(
α

ε
‖divut‖2 + ‖ut‖2

1)dt ≤ C7(

∫ t

0
‖ft‖2

−1dt + ‖ut(0)‖2 +
1

ε
‖divut(0)‖2).
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Applying the inequality (4.8) to control the right-hand side of the above inequality,
we have the estimation for ‖ut‖2, i.e.

(4.10) ‖ut‖2 +
1
ε
‖divut‖2 +

∫ t

0

(
1
ε
‖divut‖2 + ‖ut‖2

1)dt ≤ C8.

Then multiplying by Au on both sides of equation (3.1), we have

(4.11) (ut, Au) + ‖Au‖2 + b̄(u,u, Au) = (f , Au).

Since

|(ut, Au)| ≤ ‖ut‖2 +
1
4
‖Au‖2,

(f , Au) ≤ ‖f‖2 +
1
4
‖Au‖2,

|b(u,u, Au)| ≤ C1‖u‖
3
2
1 ‖u‖

1
2
2 ‖Au‖

≤ C9

4δ
‖u‖6

1 + δ‖u‖2
2 +

1
4
‖Au‖2,

we have
1
4
‖Au‖2 ≤ ‖ut‖2 +

C9

4δ
‖u‖6

1 + δ‖u‖2
2 + ‖f‖2.

Taking sup for both sides of the above inequality, using Lemma 4.1, choosing a
small δ (≤ 1

8C ) and noticing that ‖u‖1, ‖f‖ and ‖ut‖ are bounded, we have

(4.12) sup
t∈[0,T ]

‖Au‖ ≤ C.

Finally applying Lemma 4.1 and noting divu0 = 0, we obtain the estimation for all
terms in the lemma. �
Lemma 4.3. Assume all conditions of Lemma 4.2. Moreover, ft ∈ L2(L2), g =
f(0) + ν∆u0 − B̄(u0,u0) ∈ H1 and divg = 0. Then we have

‖ut‖2
1 +

∫ T

0

1
ε2
‖grad divutt‖2 +

1
ε2
‖grad divut‖2 + ‖ut‖2

2 + ‖utt‖2 � C.

Proof. Defining h = ut(0) and letting t = 0 in equation (3.1), we have

(4.13) h − 1
ε
graddivh = g.

From the regularity result for the second order elliptic equation, we have

∀v ∈ C∞
0 (Ω), ∃w ∈ C∞

0 (Ω), s.t. w − 1
ε
∆w = v.

Since h ∈ H(div) � {u : u ∈ L2, divu ∈ L2} from (4.8), we have∫
Ω

(divh)vdx =

∫
Ω

(divh)(w − 1

ε
∆w)dx =

∫
Ω

(divh)wdx −
∫
Ω

(divh)
1

ε
divgradwdx

= −
∫
Ω

h · gradwdx +

∫
Ω

1

ε
graddivh · gradwdx = −

∫
Ω

(h − 1

ε
graddivh) · gradwdx

= −
∫
Ω

g · gradwdx =

∫
Ω

(divg)wdx = 0.

Hence divh = 0 in the distribution sense, and h ∈ H(div) implies divh = 0. Then
h = g ∈ H1; hence ‖ut(0)‖1 is bounded. Multiplying by Aut on both sides of
equation (4.9), we have

(utt, Aut) + ‖Aut‖2 + b̄(ut,u, Aut) + b̄(u,ut, Aut) = (ft, Aut).
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Using

(utt, Aut) =
1
ε
‖divutt‖2 +

α

2ε

d

dt
‖divut‖2 +

ν

2
d

dt
‖gradut‖2,

|b̄(ut,u, Aut)| ≤ C1‖ut‖1‖u‖2‖Aut‖

≤ 1
4
‖Aut‖2 + C2‖ut‖2

1,

|b̄(u,ut, Aut)| ≤
1
4
‖Aut‖2 + C2‖ut‖2

1,

(ft, Aut) ≤
1
4
‖Aut‖2 + ‖ft‖2,

we have
1
ε
‖divutt‖2 +

1
ε

d

dt
‖divut‖2 +

d

dt
‖ut‖2

1 + ‖Aut‖2 ≤ C3(‖ut‖2
1 + ‖ft‖2).

Applying Gronwall’s inequality, we obtain

‖ut‖2
1 +

∫ T

0

‖Aut‖2 ≤ C4.

Multiplying by utt on both sides of equation (4.9), we have

‖utt‖2 + (Aut,utt) + b̄(ut,u,utt) + b̄(u,ut,utt) = (ft,utt).

Using

|b̄(ut,u,utt)| ≤ C1‖ut‖1‖u‖2‖utt‖

≤ 1
8
‖utt‖2 + C5‖ut‖2

1,

|b̄(u,ut,utt)| ≤
1
8
‖utt‖2 + C5‖ut‖2

1,

(ft,utt) ≤
1
4
‖utt‖2 + ‖ft‖2,

|(utt, Aut)| ≤
1
4
‖utt‖2 + ‖Aut‖2,

and combining all the above inequalities together with Lemma 4.1, we can obtain
the results of this lemma. �

Remark 4.1. 1. In [9], we know that for Navier-Stokes equations, if
∫ T

0
(‖utt‖2 +

‖ut‖2
2)dt is bounded, then the following over-determined Neumann problem

∆q = div(f(0) − B̄(u0,u0)) in Ω,(4.14)
∇q|∂Ω = ∆u0 + f(0) − B̄(u0,u0)|∂Ω(4.15)

has solutions. For the sequential regularization formulation (2.28)-(2.30), we have
a similar property. If equations (4.14)-(4.15) are solvable, we can choose the initial
guess of pressure p0 such that p0(0) is the solution. Let s = 1, and rewrite equations
(2.28)-(2.30) by eliminating p1 from the systems:

(u1)t −
1
ε
∇div((u1)t + αu1) − ν∆u1 + B̄(u1,u1) = f −∇p0,

u1|∂Ω = 0, u1|t=0 = u0.

Let g = f(0) + ν∆u0 − B̄(u0,u0) −∇p0(0). Since p0(0) satisfies equations (4.14)-
(4.15), we have g ∈ H1

0 and divg = 0. Then following the proof of Lemma 4.3, we
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have div(u1)t(0) = 0; hence p1(0) = p0(0). We can then repeat this procedure to
have estimations of us for all s.

2. Since the equations (4.14)-(4.15) are over-determined, we need the compati-
bility condition of u0 and f(0) to fulfil the existence of a solution. This is nonlocal
and virtually uncheckable for given data. In the absence of such a compatibility
condition, we will discuss another type of estimation as follows.

Lemma 4.4. Assume all the conditions as in Lemma 4.2. Moreover, ft ∈ L2(L2),
and we have

(4.16) t‖ut‖2
1 +

∫ T

0

t(‖Aut‖2 + ‖utt‖2)dt ≤ C.

As a consequence of inequality (4.16), if we fix t0 ∈ (0, T ), ∀t ≥ t0,
(4.17)

‖ut‖2
1 +

∫ t

t0

(
1
ε2
‖graddivutt‖2 +

1
ε2
‖grad divut‖2 + ‖ut‖2

2 + ‖utt‖2)dt ≤ C(t0).

Proof. Multiplying by Aut on both sides of equation (4.9) and estimating the tri-
linear form by using Young’s inequality, we have

1
ε
‖divutt‖2 +

1
ε

d

dt
‖divut‖2 +

d

dt
‖ut‖2

1 + ‖Aut‖2 ≤ C1(‖ut‖2
1 + ‖ft‖2).

Multiplying by t on both sides of the inequality, we obtain

d

dt
t(

1
ε
‖divut‖2 + ‖ut‖2

1) + t‖Aut‖2 ≤ (C1 + 1)(‖ut‖2
1 +

1
ε
‖divut‖2 + t‖ft‖2).

Integrating both sides and recalling the inequality (4.10),∫ T

0

(
1
ε
‖divut‖2 + ‖ut‖2

1)dt ≤ C,

we have

t(
1
ε
‖divut‖2 + ‖ut‖2

1) +
∫ t

0

τ‖Aut‖2dτ ≤ C3.

Then multiplying by utt on both sides of equation (4.9), we have

(4.18) ‖utt‖2 + (Aut,utt) + b(ut,u,utt) + b(u,ut,utt) = (ft,utt).

Multiplying by t on both sides of the equation, integrating from 0 to t, and noting

|tb(ut,u,utt)| ≤ C4‖ut‖1‖u‖2‖utt‖

≤ 1
8
t‖utt‖2 + C5t‖ut‖2

1,

|tb(u,ut,utt)| ≤
1
8
t‖utt‖2 + C5t‖ut‖2

1,

t(ft,utt) ≤
1
4
t‖utt‖2 + t‖ft‖2,

|t(utt, Aut)| ≤
1
4
t‖utt‖2 + t‖Aut‖2,

we obtain ∫ t

0

τ‖utt‖2dτ ≤ C.
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Combining all the above inequalities we obtain the inequality (4.16). To obtain
the inequality (4.17), we notice that ‖graddivut(t0)‖ ≤ Cε (Lemma 4.2). Then
applying Lemma 4.1 and replacing the initial time 0 by t0, we obtain ∀t > t0,∫ t

t0

(
1
ε2
‖grad divutt‖2 +

1
ε2
‖grad divut‖2 + ‖ut‖2

2)dt ≤ C(ε2 +
∫ t

t0

‖Aut‖2dt).

Then the conclusion is straightforward from inequality (4.16). �

Remark 4.2. Lemma 4.3 and Lemma 4.4 are two upper bounds of the truncation
error

∫ T

0
‖utt − 1

ε grad divutt‖2dt. With the assumption of global compatibility, we
have the energy estimation up to the initial time. Without such an assumption, the
regularity remains true from a fixed small time t0 (i.e. t0 is a little bit away from
0). We will mainly use Lemma 4.3 in the next section and give a remark about the
result related to Lemma 4.4.

4.2. Error estimation.

Lemma 4.5. Let f ∈ L∞(L2), ft ∈ L2(L2), u0 ∈ H2 ∩ H1
0, divu0 = 0 and ε ≤ ε0

(as in Lemma 3.1). Then for the semi-implicit scheme (3.3), we have the estimation

(4.19) ‖un‖2 ≤ C.

Proof. Recall that we have already had a few inequalities in the previous section
(see Lemma 3.3). Taking the backward difference quotient for equation (3.3), we
have

1
�t

(1 − 1
ε
graddiv)(

un+1 − un

�t
− un − un−1

�t
) − α

ε
grad div

un+1 − un

�t

− ν�un+1 − un

�t
+

B̄(un,un+1) − B̄(un−1,un)
�t

=
fn+1 − fn

�t
.

Then multiplying by un+1−un

�t on both sides, we have

1
2�t

(‖un+1 − un

�t
‖2 − ‖un − un−1

�t
‖2 + ‖un+1 − un

�t
− un − un−1

�t
‖2)

+
1

2�t

1
ε
(‖div

un+1 − un

�t
‖2−‖div

un−un−1

�t
‖2+‖div(

un+1−un

�t
−un−un−1

�t
)‖2)

+
α

ε
‖div

un+1 − un

�t
‖2 + ν‖gradun+1 − un

�t
‖2 +

1
�t

(b̄(un,un+1,
un+1 − un

�t
)

− b̄(un−1,un,
un+1 − un

�t
)) = (

fn+1 − fn

�t
,
un+1 − un

�t
).

Since b̄ is a trilinear form, we have

1
�t

(b̄(un,un+1,
un+1 − un

�t
) − b̄(un−1,un,

un+1 − un

�t
))

= b̄(un,
un+1 − un

�t
,
un+1 − un

�t
) − b̄(

un − un−1

�t
,un,

un+1 − un

�t
).
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Since

b̄(un,
un+1 − un

�t
,
un+1 − un

�t
) = 0,

|b̄(u
n − un−1

�t
,un,

un+1 − un

�t
)| ≤ C1‖un‖2‖

un+1 − un

�t
‖1‖

un − un−1

�t
‖

≤ δ‖un+1 − un

�t
‖2
1 +

C1

δ
‖un‖2

2‖
un − un−1

�t
‖2,

and

(
fn+1 − fn

�t
,
un+1 − un

�t
) ≤ δ‖un+1 − un

�t
‖2
1 +

1
δ
‖ fn+1 − fn

�t
‖2,

we can choose δ to be properly small, i.e. δ‖un+1−un

�t ‖2
1 ≤ ν

4‖grad
un+1−un

�t ‖2.

Defining yn+1 = ‖un+1−un

�t ‖2 + 1
ε ‖divun+1−un

�t ‖2, we have

(4.20)

1
�t

(yn+1 − yn) +
1
ε
‖div

un+1 − un

�t
‖2 + ‖un+1 − un

�t
‖2
1

≤ C2(‖un‖2
2(y

n+1 + yn) + ‖ fn+1 − fn

�t
‖2).

Hence, ‖ fn+1−fn

�t ‖2 ≤ 1
�t

∫ tn+1

tn−1
‖ft‖2dt due to fn+1−fn

�t = 1
�t

∫ tn+1

tn
ftdt. Summing

for n, we get

�t
N−1∑
n=0

‖ fn+1 − fn

�t
‖2 ≤

∫ T

0

‖ft‖2dt.

Since we already had that �t
∑N

n=0 ‖un‖2
2 is bounded, summing (4.20) for n and

applying the discrete Gronwall’s inequality, we obtain yn ≤ C3(
∫ T

0
‖ft‖2dt + y1).

We still need to estimate y1 = ‖u1−u0

�t ‖2 + 1
ε ‖divu1−u0

�t ‖2. Multiplying by un+1−un

�t

on both sides of equation (3.3) and letting n = 0, we have

y1 +
α

ε
(divu1, div

u1 − u0

�t
) + ν(gradu1,grad

u1 − u0

�t
) + b̄(u0,u1,

u1 − u0

�t
) = (f1,

u1 − u0

�t
).

Noting divu0 = 0 (since u0 = u0) and (gradu1,gradu1−u0

�t ) = 1
�t‖grad(u1 −

u0)‖2 − (�u0, u1−u0

�t ),

|(�u0,
u1 − u0

�t
)| ≤ 1

4
y1 + C4‖u0‖2

2,

|(f1,
u1 − u0

�t
)| ≤ 1

4
y1 + ‖f1‖2,

|b̄(u0,u1,
u1 − u0

�t
)| ≤ C1‖u0‖2‖u1‖1‖

u1 − u0

�t
‖

≤ 1
4
y1 + C1‖u0‖2

2‖u1‖2
1,

and that ‖u0‖2 and ‖u1‖1 are bounded, we obtain y1 ≤ C5. Hence, yn ≤ C6.
Multiplying by Aun+1 on both sides of equation (3.3), where the operator A is
defined in Lemma 3.1, we have

(
un+1 − un

�t
, Aun+1) + ‖Aun+1‖2 + b̄(un,un+1, Aun+1) = (fn+1, Aun+1).
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Since

|(un+1−un

�t , Aun+1)| ≤ 1
4‖Aun+1‖2 + yn,

|(fn+1, Aun+1)| ≤ 1
4‖Aun+1‖2 + ‖fn+1‖2

and

|b̄(un,un+1, Aun+1)| ≤ C7‖un‖1‖un+1‖
1
2
1 ‖un+1‖

1
2
2 ‖Aun+1‖

≤ 1
4
‖Aun+1‖2 + δ‖un+1‖2

2 +
C8

δ
,

choosing a properly small δ and using Lemma 3.1 and the boundedness of yn, we
can conclude that Aun is uniformly bounded. Therefore, ‖un‖2 ≤ C from Lemma
3.1. �

Theorem 4.6. For the semi-implicit scheme, defining the error function en =
un − u(tn), then with the same assumption as in Lemma 4.3, we have

(4.21) ‖en‖2
1 + �t

N∑
0

(
1
ε2
‖grad diven‖ + ‖en‖2

2) ≤ C�t2.

Proof. The error function en satisfies the equation:

(4.22)
en+1 − en

�t
− 1

ε
grad div(

en+1 − en

�t
+ αen+1) − ν�en+1

+ B̄(un,un+1) − B̄(u(tn+1),u(tn+1)) = rn+1.

The difference of the nonlinear terms can be rewritten as:
B̄(un,un+1)−B̄(u(tn+1),u(tn+1)) = B̄(un−un+1,un+1)+B̄(un+1, en+1)+B̄(en+1,u(tn+1)).

Multiplying by en+1 on both sides of equation (4.22), we now estimate the nonlinear
part term by term:

|b̄(un − un+1,un+1, en+1)| ≤ C1‖un − un+1‖‖un+1‖2‖en+1‖1

≤ δ‖en+1‖2
1 + C2

δ ‖un − un+1‖2,

b̄(un+1, en+1, en+1) = 0,

|b̄(en+1,u(tn+1), en+1)| ≤ δ‖en+1‖2
1 +

C2

δ
‖en+1‖2.

Choosing a properly small δ, i.e. δ‖en+1‖2
1 ≤ 1

4‖graden+1‖2, and defining yn =
‖en‖2 + 1

ε ‖diven‖2, we have

1
�t

(yn+1 − yn) +
1
ε
‖diven+1‖2 + ‖en+1‖2

1 ≤ C3(‖rn+1‖2 + ‖un+1 − un‖2 + yn+1).

Noting that �t
∑

‖rn‖2 ≤ C�t2 (see inequality (4.2) and Lemma 4.4)
and �t

∑
‖un+1 −un‖2 ≤ C�t2 (see Lemma 3.3) and applying the discrete Gron-

wall’s inequality we obtain

yn + �t
n∑
0

(
1
ε
‖divei‖2 + ‖ei‖2

1) ≤ C4(y0 + �t2).

Since u0 = u(0), we then have y0 = 0; hence

(4.23) ‖en‖2 + �t

N∑
0

‖en‖2
1 ≤ C�t2.
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To obtain a stronger error estimation, we need to multiply by Aen+1 on both sides
of equation (4.22) and have

(4.24)
(
en+1 − en

�t
, Aen+1) + ‖Aen+1‖2 + b̄(un − un+1,un+1, Aen+1)

+ b̄(un+1, en+1, Aen+1) + b̄(en+1,u(tn+1), Aen+1) = (rn+1, Aen+1).

We now deal with the above equation term by term:

(
en+1 − en

�t
, Aen+1)=

1
ε
‖div

en+1 − en

�t
‖2 +

α

2ε�t
(‖diven+1‖2 − ‖diven‖2

+ ‖div(en+1−en)‖2)+
ν

2�t
(‖graden+1‖2−‖graden‖2+‖grad(en+1−en)‖2),

|b̄(un − un+1,un+1, Aen+1)| ≤ 1
8
‖Aen+1‖2 + C5‖un − un+1‖2

1‖un+1‖2
1,

|b̄(un+1, en+1, Aen+1)| ≤ 1
8
‖Aen+1‖2 + C5‖en+1‖2

1,

|b̄(en+1,u(tn+1), Aen+1)| ≤ 1
8
‖Aen+1‖2 + C5‖en+1‖2

1,

|(rn+1, Aen+1)| ≤ 1
8
‖Aen+1‖2 + 2‖rn+1‖2.

Defining yn = 1
ε ‖diven‖ + ‖en‖2

1 and using the above inequalities, we have

(4.25)
(yn+1 − yn)

�t
+ ‖Aen+1‖2 ≤ C6(‖un − un+1‖2

1 + ‖en+1‖2
1 + ‖rn+1‖2).

From the inequality (4.20), we obtain �t
∑

‖un − un+1‖2
1 ≤ C�t2. We have

just derived �t
∑

‖en‖2
1 ≤ C�t2 in (4.23). From condition �t

∑
‖rn‖2 ≤ C�t2,

applying the discrete Gronwall’s inequality, using e0 = 0 and Lemma 3.1, we have

�(4.26) ‖en‖2
1 + �t

N∑
0

(
1
ε2
‖grad diven‖2 + ‖en‖2

2) ≤ C�t2.

We apply the semi-implicit scheme to the equations (2.28)-(2.30). Let the so-
lution of the time discrete scheme be un

s and the solution of the Navier-Stokes
equations be (u, p). If the initial value u0 and f(0) satisfy the global compati-
bility condition such that the overdetermined Neumann problem (4.14)-(4.15) has
a solution, then we can choose our initial guess p0(0) to solve this equation with∫
Ω

p0(0)dx = 0. Combining Theorem 2.5 and Theorem 4.6, we have our main
theorem.

Theorem 4.7. Let f ∈ L∞(L2), ft ∈ L2(L2), u0 ∈ H2 ∩ H1
0, divu0 = 0, ε be less

than a constant ε0, the initial guess satisfy
∫ T

0
‖p0‖2

1dt ≤ 2 + 2
∫ T

0
‖p‖2

1dt and p0(0)
solve equation (4.14)-4.15. Then we have

‖un
s − u(tn)‖2

1 + �t
n∑
0

(
1

ε2
‖graddiv(ui

s − u(ti))‖2 + ‖ui
s − u(ti)‖2

2) ≤ C(�t2 + (Mε2)s).

Remark 4.3. We use �t
∑

‖rn‖2 ≤ C�t2 in the proof. Without a global compati-
bility assumption, this may not hold in general. But we should have �t

∑N
n0

‖rn‖2 ≤
C(n0�t)�t2, where the constant C may depend on n0�t. In this case, after a small
fixed time, the error estimation remains true.
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Remark 4.4. In practice we are also interested in the fully explicit treatment of the
nonlinear convection term, i.e. the scheme (3.4). If we assume a priori estimation
of un, i.e. ‖un‖ is uniformly bounded, we can have a similar result as in Theorem
4.7. This assumption of uniform boundedness of ‖un‖ is technically difficult to be
generally verified for the scheme (3.4) up to a given time (see Lemma 3.5 for the
boundedness of the short time solution ‖un‖). But it is often true in physical or
practical examples. We can also consider other schemes in time, for example, the
fully implicit scheme or the Crank-Nicolson scheme as in [14]. The results will be
similar; i.e., with some global compatibility assumption, we have error estimations
of Theorem 4.7 up to the initial time; without it the results remain true after a
small fixed time.
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