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A p-ADIC ALGORITHM TO COMPUTE
THE HILBERT CLASS POLYNOMIAL

REINIER BRÖKER

Abstract. Classically, the Hilbert class polynomial P∆ ∈ Z[X] of an imagi-
nary quadratic discriminant ∆ is computed using complex analytic techniques.
In 2002, Couveignes and Henocq suggested a p-adic algorithm to compute P∆.
Unlike the complex analytic method, it does not suffer from problems caused
by rounding errors. In this paper we give a detailed description of the al-
gorithm in the paper by Couveignes and Henocq, and our careful study of
the complexity shows that, if the Generalized Riemann Hypothesis holds true,
the expected runtime of the p-adic algorithm is O(|∆|(log |∆|)8+ε) instead of
O(|∆|1+ε). We illustrate the algorithm by computing the polynomial P−639

using a 643-adic algorithm.

1. Introduction

The Hilbert class polynomial P∆ is the minimal polynomial over Q of the modular
j-value j(O∆) for the imaginary quadratic order O∆. It is a polynomial with
integer coefficients. The polynomials P∆ generate the ring class fields of imaginary
quadratic fields. More precisely, the ring class field HO for the order O = O∆ ⊂
Q(

√
∆) = K of discriminant ∆ is given by HO = K[X]/(P∆). In case O is the

maximal order of K, the ring class field HO is also known as the Hilbert class field .
Such a canonical family of generators of ring class fields is quite rare, and is

only known for imaginary quadratic fields K and for Q, where it is provided by
the theorem of Kronecker-Weber. The compositium of the ring class fields for all
orders O ⊂ K, together with the roots of unity, gives us a large part of the maximal
abelian extension Kab of K. More precisely, the field

K ′ = Qab ·
⋃

O⊂K
order

HO

is a subfield of Kab, and the Galois group Gal(Kab/K ′) is a product of groups of
order 2; cf. [22, Section 3].

In this article we focus on a method to explicitly compute P∆ ∈ Z[X]. This gives
us a means of computing abelian extensions of imaginary quadratic fields, and the
observation that the roots in Fp of P∆ ∈ Fp[X] are j-invariants of elliptic curves
with endomorphism ring O∆ has had its impact outside the context of explicit
class field theory. It is a key ingredient in the elliptic curve primality proving
algorithm [9], and an important step in this algorithm is to compute P∆. Fast
algorithms to compute P∆ are also desirable from a cryptographic point of view.
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Indeed, computing P∆ allows us to efficiently construct elliptic curves for which the
discrete logarithm problem is hard; cf. [4, Chapter 23].

There is a classical algorithm [3, Section 7.6] to compute P∆ ∈ Z[X]. One
computes the set S∆ of reduced primitive positive definite quadratic forms [a, b, c] =
aX2 + bXY + cY 2 of discriminant b2 − 4ac = ∆, and evaluates P∆ as

(1.1) P∆ =
∏

[a,b,c]∈S∆

(
X − j(

−b +
√

∆
2a

)

)
∈ Z[X].

Here, we approximate the values j(−b+
√

∆
2a ) ∈ C with high enough accuracy to

ensure that we can ‘recognize’ the coefficients of the product as integers. Working
in this archimedean setting has the disadvantage that rounding errors may occur
in expanding the product (1.1), and this has prevented a rigorous runtime analysis
of this algorithm. We expect [8] the runtime to be Õ(|∆|), where we use the Õ-
notation to indicate that the factors that are of logarithmic order in the main term
have been disregarded.

In 2002, Couveignes and Henocq suggested [5] a p-adic algorithm to compute P∆.
Note that a p-adic algorithm automatically circumvents the problem of rounding
errors. The main result of [5] is the following theorem.

Theorem 1.1 (Couveignes-Henocq). The algorithm suggested in [5] computes, on
input of a discriminant ∆ < 0, the Hilbert class polynomial P∆ ∈ Z[X]. If GRH
holds true, the algorithm has an an expected runtime O(|∆|1+ε) for every ε > 0.

In this article, we study in detail the algorithm suggested in [5], we give proofs
for the statements implicitly used in [5] to prove Theorem 1.1, we provide a better
runtime analysis of the p-adic algorithm and we explain how to implement it. This
yields the following result.

Theorem 1.2. The algorithm presented in this paper returns, on input of a dis-
criminant ∆ < 0, the Hilbert class polynomial P∆ ∈ Z[X]. If GRH holds true, the
algorithm has an an expected runtime O(|∆|(log |∆|)8+ε) for every ε > 0.

In Section 2 we recall the basis statements of complex multiplication theory that
we need for our algorithm. The algorithm itself is presented in Sections 3–7, and we
analyse its runtime in Section 7. The algoritm is illustrated by means of a detailed
example in Section 8.

2. Complex multiplication

The p-adic algorithm uses more geometry than the complex analytic algorithm.
In this section we give the main results of complex multiplication (CM) theory from
a ‘geometric point of view’. Throughout this section, K is an imaginary quadratic
number field and O = O∆ ⊂ K is an order in K.

Let F be a field for which there exists an elliptic curve E/F with endomorphism
ring EndF (E) ∼= O. We write O = Z[α] for some α ∈ O. The minimal poly-
nomial fα

Z of α splits in F [X]. We fix a root of fα
Z ∈ F [X], and view F as an

O-algebra. There are two isomorphisms O ∼−→ EndF (E). We will always consider
the normalized isomorphism, i.e., the unique isomorphism ϕ with ϕ(α)∗ω = αω
for all α ∈ O and all invariant differentials ω ∈ ΩE . Such a pair (E, ϕ) is called
a normalized elliptic curve. Two normalized elliptic curves (E, ϕ) and (E′, ϕ′) are
said to be isomorphic if there exists an isomorphism τ : E → E′ of elliptic curves



p-ADIC ALGORITHM TO COMPUTE THE HILBERT CLASS POLYNOMIAL 2419

with τ−1ϕ′(α)τ = ϕ(α) for all α ∈ O. As there will hardly be any risk of confusion,
we will usually write E instead of (E, ϕ) and just speak of an elliptic curve instead
of a normalized one.

Define the set

Ell∆(F ) = {j(E) ∈ F | there exists an elliptic curve E/F with EndF (E) = O}
of j-invariants of elliptic curves over F with endomorphism ring O. This set can
be empty, as the example F = Q shows. In the cases that will be of interest to us,
it will be a finite set of cardinality h(∆), the class number of O.

Let I ⊆ EndF (E) be an ideal with norm N(I) coprime to char(F ) and define

E[I] = {P ∈ E(F ) | ∀α ∈ I : α(P ) = 0},
the group of I-torsion points of E. There exist an elliptic curve EI and a separable
isogeny φ : E → EI with Ker(φ) = E[I] by [24, Proposition 3.4.12]. The curve EI

is unique up to F -isomorphism. We get a quotient map E → EI for every ideal
I ⊂ O coprime to char(F ). The definition of EI does depend on the choice of an
isomorphism O ∼−→ EndF (E).

Now let F = C be the field of complex numbers. A complex elliptic curve with
endomorphism ring O ⊂ C is isomorphic to a curve Ea = C/a for an invertible
O-ideal a. For an invertible O-ideal I, the isogeny

C/a → C/(I−1
a),

z �→ z

has kernel Ea[I]. We have EI
a

∼= EI−1a, and the curve EI
a has endomorphism

ring O. The map ρI : Ell∆(C) → Ell∆(C) that sends j(E) to j(EI) is well-defined.
Its inverse is given by ρI , where I denotes the complex conjugate of I. The map
ρI gives an action of the group I(O) of invertible fractional O-ideals on the set
Ell∆(C).

Let a, b ⊂ O be two invertible O-ideals, viewed at lattices in C. The complex
elliptic curves Ea = C/a and Eb = C/b are isomorphic if and only if the lattices a

and b are homothetic. In other words: we have j(C/a) = j(C/b) if and only if the
equality [a] = [b] holds in the Picard group Pic(O). The action of I(O) given by the
map ρI : Ell∆(C) → Ell∆(C) factors through the quotient map I(O) � Pic(O),
and we get an action of Pic(O) on Ell∆(C). This action is simply transitive. The
transitivity follows from the equality ρb−1a(j(C/a)) = j(C/b). It is clear that the
action is free. We have made Ell∆(C) into a principal homogeneous Pic(O)-space,
or Pic(O)-torsor. In particular, Ell∆(C) is a finite set of cardinality h(∆), and we
have

Ell∆(C) = {j(C/ai) | [ai] ∈ Pic(O)}.
The main theorem [14, Section 10.3] of CM-theory states that the ring class field

HO for the order O ⊂ Q(
√

∆) = K is given by HO = K(j(C/O)). Furthermore,
for E = C/O the Galois action of an ideal class [a] ∈ Pic(O) on j(E) is given by

j(E)[a,HO/K] = j(Ea).

The minimal polynomial P∆ over Q of j(C/O) has integer coefficients by [23,
Section 2.6], and we have

(2.1) P∆ =
∏

j∈Ell∆(F )

(X − j) =
∏

[I]∈Pic(O)

(
X − j(EI)

)
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for any field F in which we can embed the ring class field HO. Here E/F is an
elliptic curve with endomorphism ring O.

We will use F = Qp, where p is a prime that splits completely in the ring class
field HO. Chebotarev’s density theorem [18, Theorem VII.13.4] tells us that there
are infinitely many such p. Fix a prime p ≥ 5 for the remainder of this section that
splits completely in HO.

As an element j ∈ Ell∆(Qp) is integral, we obtain a natural bijection

µ : Ell∆(Qp) → Ell∆(Fp).

If E/Fp is an ordinary elliptic curve with endomorphism ring O, the value j̃ =
µ−1(j(E)) ∈ Qp is called the canonical lift of j(E) ∈ Fp. An elliptic curve with
j-invariant j̃ ∈ Qp has endomorphism ring O.

The outline of the p-adic algorithm is as follows. First we find a ‘small’ splitting
prime p and an elliptic curve E/Fp with endomorphism ring O. We explain this
step in Section 3. Next we lift j(E) ∈ Fp to its canonical lift j̃ ∈ Qp. This is the
hardest step of the algorithm and is explained in Sections 4–7. Finally, we explain
in Section 7 how to compute the conjugates of the canonical lift under the action
of the group Pic(O). The analysis of the various steps of the algorithm will yield
Theorem 1.2.

3. A small splitting prime

Fix a discriminant ∆ < −4, and let O = O∆ be the order of discriminant ∆.
In this section we explain how to find a ‘small’ prime p that splits completely in
the ring class field HO, and how to find an elliptic curve E/Fp with endomorphism
ring O.

The Picard group Pic(O) is isomorphic to the Galois group Gal(HO/K) via the
Artin map, and a prime p � ∆ splits completely in HO if and only if (p) splits into
two principal ideals in O, i.e., if and only if we can solve the equation

(3.1) 4p = t2 − u2∆

in integers t, u. From this we see that we have a lower bound p ≥ |∆|/4 on p.
In order to find a prime p that splits completely in HO we can first take u = 1 in
equation (3.1). We let t range over 1, 2, . . . , B(∆) and test whether t2−u2∆

4 is prime.
Here B(∆) is some upper bound, depending on ∆. If we do not find a solution to
equation (3.1) with u = 1, we try u = 2, 3, . . ., etc. However, for ∆ ≡ 0 mod 4, we
take t even to ensure that t2−u2∆

4 is an integer. For ∆ ≡ 1 mod 4, the integers t
and u should have the same parity.

Lemma 3.1. If GRH holds true, there exists an effectively computable constant
c ∈ R>0 such that for every ∆ < 0 there exists a prime p ∈ Z that splits completely
in HO and that satisfies

p ≤ c · |∆|(log |∆|)4.

Proof. The effective Chebotarev density theorem, which requires the assumption of
GRH, states that there is an effectively computable constant c ∈ R>0 such that for
every ∆ < 0 there exists a prime p that splits completely in HO and that satisfies

p ≤ c · (log |disc(HO/Q)|)2,
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where disc(HO/Q) is the discriminant of HO/Q. We will compute the discriminant
disc(HO/Q) via the relation

disc(HO/Q) = NK/Q(disc(HO/K)) · disc(K/Q)[HO:K],

with K = Q(
√

∆). Write ∆ = f2D with D = disc(K). Then HO/K is an
abelian extension of a conductor dividing f and degree h(∆). From the conductor
discriminant formula [18, Theorem VII.11.9] we see that the OK-ideal disc(HO/K)
is a divisor of fh(∆). We have NK/Q(fh(∆)) = f2h(∆) and we estimate

disc(HO/Q) ≤ f2h(∆) · |D|h(∆) = |∆|h(∆).

Using the upper bound h(∆) ≤
√
|∆| log |∆| from [16, Section 2], we conclude

disc(HO/Q) ≤ |∆|
√

|∆| log |∆|. �

Fix a solution (p, t, u), with p prime and t �= 0, to equation (3.1). In the re-
mainder of this section we present and analyse a simple Algorithm for finding an
ordinary elliptic curve E/Fp with endomorphism ring EndFp

(E) = O.
By [20, Theorem 4.6] there exists an elliptic curve E/Fp whose Frobenius mor-

phism Fp : E → E has trace t. The subring Z[Fp] ⊆ O has index u ≥ 1. We
find such a curve E by trying random curves over Fp until we hit a curve with the
correct number of points. More precisely, we pick a random element b ∈ F∗

p \{−27
4 }

and test whether the curve Eb : Y 2 = X3 + bX − b or its quadratic twist has trace
of Frobenius t. As ‘early abort strategy’ we test whether the point (1, 1) ∈ Eb(Fp)
is annihilated by p + 1 ± t.

Once we have found a curve E/Fp with a trace of Frobenius t, we compute its
endomorphism ring using Kohel’s algorithm [12]. If E has endomorphism ring O,
we return E and halt. Otherwise, we compute another random curve with trace of
Frobenius t and test whether this curve has endomorphism ring O, etc., until we
find a desired curve with endomorphism ring O.

Remark. If E/Fp has trace of Frobenius t and endomorphism ring O∆′ of discrim-
inant ∆′ �= ∆, there is another method to find a curve with endomorphism ring O.
Let g be the index of Z[Fp] in O∆′ . We first apply an isogeny of degree g starting at
E to obtain a curve with endomorphism ring Z[Fp], and then we apply an isogeny
of degree u to find a curve with the desired endomorphism ring. This method is
fast if both g and u are ‘small’.

Remark. In the examples we have computed, we often have u = 1. If ∆ is fun-
damental, finding a curve with trace t is then the same as finding a curve with
endomorphism ring O, and there is no need to apply Kohel’s algorithm.

We continue with the analysis of the algorithm. We assume that we have p =
O(|∆|(log |∆|)4), |t| ≤ √

p and u = O((log |∆|)2), where the constants in the O-
symbols come from Lemma 3.1.

The number of Fp-isomorphism classes of elliptic curves with trace of Frobenius
t equals H(t2 − 4p) by [20, Theorem 4.6], where H denotes the Kronecker class
number. From [15, Proposition 1.8] we derive that, if GRH holds true, we have

H(t2 − 4p) ≥ c ·
√
|∆|(log |∆|)3

for some effectively computable constant c ∈ R>0 which is independent of ∆. It is
here that we need the assumption |t| ≤ √

p to ensure that |t2 − 4p| is not too small.
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We conclude that we may expect to find a curve E/Fp with trace of Frobenius t

after Õ(|∆|1/2) tries. Computing the endomorphism ring of E takes time Õ(|∆|1/3)
using Kohel’s algorithm [12]. Also here we need to assume GRH.

The fraction
#{E/Fp | EndFp

(E) = O = O∆}/∼=Fp

#{E/Fp | EndFp
(E) ⊇ Ou2∆}/∼=Fp

of elliptic curves with trace of Frobenius t and endomorphism ring O equals n =
h(∆)/H(u2∆) ∈ Q. From the formulas given in [15, Section 1.6] for the Kronecker
class number we derive

n ≥
(

ϕ(f)
f

)2

· 1
u

,

where ϕ denotes the Euler-ϕ function and f is the index of Ou2∆ in its maximal
overorder. Theorem 328 in [11] gives that lim inff→∞

ϕ(f) log log f
f is finite. Com-

bining this with the estimate u = O((log |∆|)2), we derive the lower bound

n ≥ cε ·
1

(log |∆|)2+ε

for some effectively computable constant cε, depending on ε.

Theorem 3.2. The Algorithm presented in this section returns, on input of a
discriminant ∆ < −4, a prime number p and an elliptic curve over Fp with endo-
morphism ring O = O∆. If GRH holds true, the expected runtime is Õ(|∆|1/2).

4. Computing the canonical lift

Let p ≥ 5 be a prime that splits completely in the ring class field HO of the
order O = O∆ of discriminant ∆ < −4. Fix an ordinary elliptic curve E/Fp

with endomorphism ring O. In Sections 4–7 we give an algorithm to compute the
canonical lift j̃ = j(Ẽ) ∈ Qp of j(E) ∈ Fp. The runtime analysis in Section 7 will
yield the following theorem.

Theorem 4.1. There exists an algorithm which has as input
� a prime p ≥ 5,
� an ordinary j-invariant j ∈ Fp,
� a positive integer k,

and as output the canonical lift j̃ ∈ Qp of j ∈ Fp in k-digit accuracy. If GRH holds
true, the expected runtime of this algorithm is for every ε > 0 bounded by

cε

(
exp((log p)1/2+ε) × log k

)4

× k

for some effectively computable constant cε > 0.

Let I ⊂ O be an invertible O-ideal. As in Section 2 we have a map

ρI : Ell∆(Qp) → Ell∆(Qp)

that maps j(Ẽ) to j(ẼI). Here, the isogeny Ẽ → ẼI has the group Ẽ[I] of I-
torsion points as a kernel. The inverse of ρI is given by ρI , where I is the complex
conjugate of I, and the map ρI is bijective.
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For the remainder of this section we assume that the ideal I ⊂ O is coprime to p.
We then obtain a bijection ρI : Ell∆(Fp) → Ell∆(Fp) that sends j(E) to j(E

I
),

and we have a commutative diagram

j(Ẽ)
ρI ��

��

j(ẼI)

��

j(E)
ρI �� j(E

I
).

The map ρI induces a transitive and free action of the Picard group Pic(O) on
Ell∆(Qp); cf. Section 2. Similarly, we have an action of Pic(O) on Ell∆(Fp). The
action of Pic(O) on Ell∆(Qp) and Ell∆(Fp) is compatible with reducing modulo p.

Let Cp be the completion of an algebraic closure of Qp. It is well known that
Cp is itself algebraically closed. Define

X∆(Cp) = {j ∈ Cp | j ∈ Ell∆(Fp)} ⊂ Cp.

The set X∆(Cp) consists of h(∆) open discs of p-adic radius 1 around the CM-points
Ell∆(Qp). Every disc contains exactly one element of Ell∆(Qp).

Ell∆(Fp) :

X∆(Cp) : ˜ ˜ ˜

The picture visualises the situation. The elements of the set Ell∆(Fp) are denoted
by thick points. The set X∆(Cp) is denoted by a series of open discs, one above
each point in Ell∆(Fp). Just as we denoted the canonical lift of j(E) ∈ Fp by j(Ẽ),
we place a tilde above a thick point to denote the elements of Ell∆(Qp).

The fundamental idea in [5] is that the map ρI : Ell∆(Qp) → Ell∆(Qp) has a
natural extension to a map ρI : X∆(Cp) → X∆(Cp), which we proceed to define.
Let N ∈ Z>0 be the norm of I, which we assumed to be coprime to p. Take
an arbitrary element j ∈ X∆(Cp), and write j ∈ Fp for its reduction modulo p.
Pick a curve E/Fp with j-invariant j(E) = j, and take any curve E/Cp with
j(E) = j ∈ Cp that reduces to E/Fp. We have a natural isomorphism

η : E[N ] ∼−→ E[N ]

by the assumption that N is coprime to p. The subgroup E[I] ⊂ E[N ] has a well
defined inverse image under η. We denote η−1(E[I]) by E[I]. The group E[I] is a
subgroup of order N of E[N ], and it provides a lift of E[I] to a group scheme over
the p-adic disc in X∆(Cp) lying over j ∈ Ell∆(Fp). We define ρI(j) = j(EI). The
j-invariant j(EI) is independent of the choice of E, and therefore ρI is well-defined.
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For j ∈ Ell∆(Qp) we now have two definitions of ρI : one in terms of a Galois
action and one in terms of a group scheme. A moment’s reflection shows however
that these two definitions coincide.

Remark. For two invertible O-ideals I, J that are coprime to p, we have ρIJ = ρIρJ .
Furthermore, if J is contained in Z, we have ρJ = id.

The map ρI has a geometric interpretation. After possibly multiplying with a
principal fractional ideal, we assume that O/I is cyclic. Again, let N be the norm
of I. We map the modular curve Y0(N)Cp

inside A1
Cp

× A1
Cp

:

Y0(N)(Cp) �� ��

∈

C(Cp) �� �� A1(Cp) × A1(Cp)
p1 ��

p2

��

A1(Cp)

(E, G) � �� (j(E), j(E/G))

A1(Cp).

The maps p1, p2 are the normal projection maps. The curve C is defined by ΦN =
0, with ΦN the classical modular polynomial. Take a j-invariant j(E) ∈ X∆(Cp).
The fiber p−1

1 (j(E)) ⊂ C(Cp) above j(E) consists of the points (j(E), j(E/Gi)),
with Gi ranging over the ψ(N) cyclic subgroups of order N of E[N ]. We have
ρI(j(E)) = j(EI) = p2(j(E), j(EI)).

In other words, we have chosen two functions j1, j2 : Y0(N)Cp
→ A1

Cp
. They are

defined by j1((E, G)) = j(E) and j2((E, G)) = j(E/G). For j(E) ∈ X∆(Cp), we
have ρI(j(E)) = j2((E, E[I])). We will often write j1(E) instead of j1((E, G)) if
there cannot be any confusion about which subgroup G ⊂ E[N ] we mean. Likewise
for j2.

Now let I ⊂ O be a principal ideal, and let α ∈ O be a generator. We keep the
assumption that p does not divide the norm of I, and we write ρα to denote the
map ρ(α).

Theorem 4.2. Let (α) ⊂ O be a principal ideal such that O/(α) is cyclic as an
abelian group. Assume that (α) is coprime to p. Then the map ρα : X∆(Cp) →
X∆(Cp) is analytic, i.e., it can be given locally by a power series.

Proof. Take an elliptic curve E/Qp with j(E) ∈ Ell∆(Qp), such that E has good
reduction modulo p. We define P = (E, E[(α)]) ∈ Y0(N)(Cp). The point P lies on
the diagonal if we map Y0(N)Cp

into A1
Cp

× A1
Cp

, i.e., we have

j1(E) = j2(E).

The curve E is defined over Qp, and since the prime p splits in O we have
α ∈ Qp. This shows that E[(α)] is defined over Qp and we have

P = (E, E[(α)]) ∈ Y0(N)(Qp).

The assumption ∆ < −4 yields that j(E) ∈ Cp has positive p-adic distance
to 0, 1728 ∈ Cp. Now consider the local ring OY0(N)Qp ,P and its completion

ÔY0(N)Qp ,P at the point P . Since Y0(N)Qp
is a smooth curve, ÔY0(N)Qp ,P is a

complete discrete valuation ring over Qp. Since j1(E) and j2(E) are not equal to
one of the ramification points j = 0, 1728 of the cover Y0(N)Qp

/A1
Qp

, the functions

j1 − j1(E) and j2 − j2(E) are uniformising parameters for ÔY0(N)Qp ,P .
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The isomorphism ÔY0(N)Qp ,P
∼= Qp[[j1 − j1(E)]] shows that we can express

j2 − j2(E) as a formal power series in j1 − j1(E):

j2 − j2(E) =
∑
i≥1

ci(j1 − j1(E))i with ci ∈ Qp.

The theorem follows if we prove that the coefficients ci of this power series lie in Zp.
As in [6, Section 9.3], we consider the modular curve X0(N)Qp

as a scheme over
Spec(Qp). The diagram

X0(N)Qp
�� ��

��

X0(N)Fp
�� ��

��

X0(N)Fp

��

Spec(Qp) �� ��

P

��

Spec(Zp) �� ��

P ′

��

Spec(Fp)

P̄

��

explains the situation. We view the point P as a section Spec(Qp) → X0(N)Qp
.

As X0(N)Zp
is proper over Spec(Zp), there exists a unique section P ′ : Spec(Zp) →

X0(N)Zp
making the left square commutative. The existence of P : Spec(Fp) →

X0(N)Fp
is automatic from the existence of the section P ′.

Since we assumed p � N , the curve X0(N)Fp
is smooth over Spec(Fp). We

have j1(E) = j2(E) �= 0, 1728 ∈ Fp, and the functions j1 − j1(E) and j2 − j2(E)
remain uniformising parameters for the complete discrete valuation ring ÔX0(N)Fp ,P̄

over Fp. We get (p, j1 − j1(E)) and (p, j2 − j2(E)) as parameters for OX0(N)Zp ,P̄ ,
and the ring OX0(N)Zp ,P̄ is a 2-dimensional regular local ring. Exactly as in the
proof of [17, Theorem 29.7], we get an isomorphism

ÔX0(N)Zp ,P̄
∼= Zp[[j1 − j1(E)]]. �

The map ρα fixes the CM-points Ell∆(Qp) and therefore stabilizes every disc.
We have constructed an analytic map that has the CM-points as fixed points . We
will use a kind of Newton iteration to converge to the canonical lift j̃ ∈ Qp of j(E) ∈
Fp starting from a j-invariant j(E1) ∈ Cp that reduces to j(E) modulo p. The
following lemma gives the derivative of ρα in a CM-point, i.e., the first coefficient
c1 in the power series above.

Lemma 4.3. Let (α) ⊂ O be a principal ideal such that O/(α) is cyclic as an
abelian group. Assume that (α) is coprime to p. Then the derivative of ρα in
j(Ẽ) ∈ Ell∆(Qp) is given by αα−1, where α is the complex conjugate of α.

Proof. This is lemma 1 in [5]. The proof there is rooted in a complex analytic
setting. The lemma can also be proven completely geometrically; see [7, Proposition
3.3.2]. For convenience, we give the (slightly modified) proof from [5]. The main
difference with the proof in [5] is that we have removed the explicit computation of
normal forms of ideals.

Let N be the norm of the principal O-ideal (α). We take a curve EQ defined
over Q with j(EQ) = j(E) ∈ Ell∆(Qp). This gives a point PQ = (EQ, EQ[(α)]) ∈
Y0(N)(Q). After a base change to C, we get a point P ∈ Y0(N)(C). We will work
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with the modular curve Y0(N)C over C. The diagram

Y0(N)(C) �� ��

j2
�����������������������

j1

��
C(C) �� �� A1(C) × A1(C) ��

��

A1(C)

A1(C)

gives the two functions j1, j2 : Y0(N)C → A1
C that we have chosen, i.e., we have

j1((E, G)) = j(E) and j2((E, G)) = j(E/G). For (E, G) = (Eτ , 〈1/N〉) we have
j1(E) = j(τ ) and j2((Eτ ), 〈1/N〉) = j(Nτ ). Let F = C(j1, j2) be the function field
of Y0(N)C and let ΩF/C be its module of Kähler differentials. The module ΩF/C

has dimension 1 as a vector space over F . Hence, there is an element σ ∈ F with
σdj1 = dj2. We map Y0(N)C to the curve C inside A1

C ×A1
C. The function value

σ((E, E[(α)])) ∈ C is the slope of the tangent line at (j1(E), j2(E)) ∈ C at the
branch of (E, G). We have c1 = σ(P ).

View Y0(N)(C) as the quotient Γ0(N)\H and choose a representative τ ∈ H of
P ∈ Y0(N)(C). Defining jN (z) = j(Nz), we can compute c1 as

c1 =
djN

dj
(τ ).

Let j′ = dj
dτ be the derivative of the j-function and let Gi(τ ) be the i-th Eisenstein

series attached to the lattice 〈1, τ 〉.

Claim. There exists a constant c ∈ C with

j′

j
= c

G6

G4
.

Proof of the Claim. The j-function has a triple zero at ζ3, and has no other zeroes
in the standard fundamental domain of SL2(Z)\H. The quotient j′/j is a rational
modular form of weight 2, with a simple pole at ζ3.

The quotient G6/G4 is a modular form of weight 2 and has a simple pole at ζ3.
There exists a constant c ∈ C such that j′/j − cG6/G4 has no poles on the upper
half plane H. We see that j′/j − cG6/G4 is a modular function of weight 2 which
is everywhere holomorphic, including infinity. It is therefore equal to zero, which
proves our claim.

We derive dj
dτ (τ ) = cG6(τ )j(τ )/G4(τ ) and djN

dτ (τ ) = N dj
dτ (Nτ ), i.e., we have

c1 =
djN

dτ

dτ

dj
(τ ) = N

j(Nτ )
j(τ )

· (G6/G4)(Nτ )
(G6/G4)(τ )

.

The curve Eτ = C/〈1, τ 〉 has endomorphism ring O and we have a commutative
diagram

C/〈1, τ 〉 ×N
��

×α

������������
C/〈1, Nτ 〉

∼
× α

N������������

C/〈1, τ 〉,
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since α is an endomorphism of Eτ . We see that we have α
N 〈1, Nτ 〉 = 〈1, τ 〉, i.e.,

we get ατ = aτ + b, α/N = cτ + d with
(a
c

b
d

)
∈ SL2(Z). Using the relation

Nτ = (aτ + b)/(cτ + d), we compute

c1 = N
(G6/G4)(Nτ )
(G6/G4)(τ )

= N(cτ + d)2 =
α2

N
=

α

α
. �

To compute the j-invariant of the canonical lift Ẽ/Qp, we look for a fixed point
of ρα, i.e., for a zero of the function ρα − id. We use a Newton iteration process to
converge to a zero of ρα − id. Pick an elliptic curve E1/Cp that reduces to E/Fp

modulo p. Assume that we have α/α− 1 ∈ Z∗
p and consider the following iteration

process:

j(Ek+1) = j(Ek) − ρα(j(Ek)) − j(Ek)
(α/α) − 1

for k ∈ Z≥1.

This computation is carried out with 2-digit precision for k = 1, and the precision
is doubled in each iteration step. This process is a modified version of Newton
iteration. For classical Newton iteration we would need ρ′α(j(Ek)) − 1 in the de-
nominator instead of (α/α) − 1 = ρ′α(j(Ẽ)) − 1. We are working with bounded
precision in each step and we have to check that

(∗) ρα(j(Ek)) − j(Ek)

ρ′α(j(Ẽ)) − 1
=

ρα(j(Ek)) − j(Ek)
ρ′α(j(Ek)) − 1

∈ Zp/(p2k

)

holds in the k-th iteration step. For k = 1, we have j(E1) = j(Ẽ) mod p, and
therefore also ρ′α(j(E1)) = ρ′α(j(Ẽ)) mod p. As ρα(j(E1))− j(E1) is divisible by p,
we see that (∗) holds for k = 1, i.e., modulo p2. Now suppose k > 1. With
induction we see that j(Ek) = j(Ẽ) mod p2k−1

holds and ρα(j(Ek)) − j(Ek) is
divisible by p2k−1

. We conclude that equality (∗) holds for all k ∈ Z≥1, and that
for α/α − 1 ∈ Z∗

p, the process above converges to the canonical lift j̃ = j(Ẽ) ∈ Qp.

5. Computing the kernel polynomial

The description of the algorithm in Section 4 is not yet suited for explicit com-
putations, and in this section we explain how to compute, given a degree one
prime ideal l ⊂ O of norm l with l � p∆ and an ordinary elliptic curve E/Fp with
End(E) = O, the value ρl(j(E)) ∈ Fp. We will have to make some extra conditions
on l in this section. In Section 7 we prove that there are enough ‘smooth’ α ∈ O
such that all prime ideals li dividing (α) satisfy our conditions.

Let Õ be the order of discriminant t2 − 4p, where t is the trace of the Frobenius
morphism of E.

Theorem 5.1. Let E/Fp, l and Õ be as above. Then we have

Φl(j(E), ρl(j(E))) = 0,

where Φl denotes the classical l-th modular polynomial. If the order Õ is maximal
at l, then the polynomial

Φl(j(E), X) ∈ Fp[X]

has exactly 2 roots in Fp.
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Proof. The first statement in the theorem follows immediately from the properties
of the modular polynomial. Indeed, for any algebraically closed field k = k̄ of
characteristic char(k) �= l and for any j ∈ k, the roots of Φl(j, X) ∈ k[X] are
exactly the j-invariants of curves that are l-isogenous to a curve with j-invariant j.
We know that ρl(j(E)) is contained in Fp, and the first result follows.

By assumption, the order O is maximal at l. By [2, Corollary 5.12] or [12,
Proposition 23] there are two possibilities for the number of roots of Φl(j(E), X) ∈
Fp[X]. If the index [O : Õ] is divisible by l, there are l + 1 roots, and there are(

∆
l

)
+ 1 = 2 roots otherwise. The second result follows. �

Assume that Õ is maximal at l, and fix a root h ∈ Fp of Φl(j(E), X) ∈ Fp[X].
We either have h = ρl(j(E)) or h = ρl(j(E)), where l is the complex conjugate of l,
and in the remainder of this section we explain how to find out which case we are
in.

Let E/C have j-invariant h, corresponding to a cyclic subgroup C ⊂ E[l] of
order l, i.e., C is the kernel of the isogeny E → E/C. The techniques that Elkies
used to improve Schoof’s original point counting algorithm [19, Sections 7, 8] allow
us to compute, given h ∈ Fp, a polynomial fC ∈ Fp[X] that vanishes exactly
on the x-coordinates of the points in C. We refer to [19] for the algorithm to
compute fC ∈ Fp[X]. In order to apply this algorithm we need to assume that

|∆| ≤ 4l2

holds.
Write l = (l, c + dπp), with l � d. Here, πp ∈ O is the image of the Frobenius

Fp ∈ End(E) under the fixed isomorphism End(E) ∼−→ O.
The Frobenius acts on l ⊂ E[l] as multiplying by −c/d ∈ Fl. We test if

(5.1) (Xp, Y p) = (−c/d) · (X, Y )

holds for the points in C, i.e., we compute both (Xp, Y p) and (−c/d) · (X, Y ) in
the ring

Fp[X, Y ]/(fC(X), Y 2 − X3 − aX − b).
Note that the · means repeated adding on the curve, and (−c/d) · (X, Y ) can be
computed by employing division polynomials.

If equality (5.1) holds, we have h = ρl(j(E)). Otherwise, the unique other zero
of

gcd(Xp − X, Φl(j(E), X)) ∈ Fp[X]
equals ρl(j(E)) ∈ Fp.

6. Algorithm for computing the canonical lift

In this section we give the algorithm to compute the canonical lift j̃ ∈ Qp of an
ordinary j-invariant j(E) �= 0, 1728 ∈ Fp of an elliptic curve E with endomorphism
ring End(E) = O = O∆. We can choose the element α ∈ O that we use for the
map ρα : X∆(Cp) → X∆(Cp) ourselves. We recall the conditions that α should
satisfy.

1. α is contained in Z[Fp] ∼= Õ,
2. α is primitive,
3. α/α − 1 is a p-adic unit,
4. for any prime divisor l of N(α), we have l � [O : Õ],
5. for any prime divisor l of N(α), we have l <

√
−∆/4.
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The input of the algorithm below consists of an ordinary curve E/Fp with j-
invariant j(E) �= 0, 1728 ∈ Fp, an element α ∈ O \ Z satisfying the conditions
above, together with the factorization (α) =

∏
i li into prime ideals, and a positive

integer k. The output is the canonical lift j̃ = j(Ẽ) ∈ Qp in k-digit accuracy.

Step 1. As in Section 5, compute the polynomial f l1
∈ Fp[X] corresponding to

the subgroup E[l1] ⊂ E[l1]. In the same way, we compute a cycle of isogenies

(∗) E
l1−→ E

l1 −→ · · · ln−→ E
(α) ∼= E

over Fp. The isomorphism E
(α) ∼= E follows from the fact that principal ideals act

trivially. This is a good check for our computations so far.

Step 2. Choose an arbitrary lift E1/Qp, in two p-adic digits precision, of E/Fp.

Step 3. Lift the cycle (∗) of isogenies over Fp to a ‘cycle’ of isogenies over Qp in
the following way. For l = l1, we lift j(E

l1) ∈ Fp to Zp as a root of Φl(j(E1), X) ∈
Zp[X] to h ∈ Zp. Here Φl is the l-th modular polynomial. We use Hensel’s
lemma for this lifting process. Hensel requires that d

dX Φl(j(E), X) is non-zero

when evaluated in X = j(E
l1) ∈ Fp. This requirement is satisfied by assumption 5.

We have h = ρl(j(E1)). In the same way, we compute the ‘cycle’ of j-invariants

j(E1)
ρl1−→ j(E1)l1 −→ · · · ρln−→ j(E1)(α)

over Qp. This computation is carried out with two p-adic digit precision.

Step 4. Update j(E1) according to the Newton formula

j(Ek+1) = j(Ek) − ρα(j(Ek)) − j(Ek)
(α/ᾱ) − 1

for k ∈ Z≥1

to find j(E2) ∈ Zp. The value j(E2) is the two digit approximation of the canonical
lift j(Ẽ).

Step 5. Lift the cycle (∗) to a ‘cycle’ of j-invariants

j(E2)
ρl1−→ j(E2)l1 −→ · · · ρln−→ j(E2)(α)

over Qp. This computation is carried out with four p-adic digit precision. Update
j(E2) according to the Newton formula above. The value j(E3) is the four digit
approximation of the canonical lift j(Ẽ).

Step 6. Repeat Step 5 with E2 replaced by Ek with k = 3, 4, etc. until we have
computed j(Ẽ) ∈ Zp with the desired precision. The precision is doubled in each
iteration step.

Remark. There is a different way to lift the cycle (∗) of isogenies in Step 3. The
polynomial f l has a unique Hensel lift to a factor fl ∈ Zp[X] of the l-th division
polynomial Ψl of E1. This lift is the algorithmic version of the group scheme from
Section 4: every choice of E1 gives us a subgroup E1[l] ⊂ E1[l]. Computing the
isogenous curve El

1 is now easy, since we can apply ‘Vélu’s formulas’ [25]. This
approach has the disadvantage that lifting f l ∈ Fp[X] to fl ∈ Zp[X] is rather
‘expensive’. Indeed, the polynomial f l has degree (l − 1)/2 for l > 2. In our
approach in Step 3, we only perform a simple Hensel lift of a zero of a polynomial
of degree l + 1.



2430 REINIER BRÖKER

The runtime of this algorithm depends heavily on the primes li, i.e., on the
smoothness properties of (α). In computing the canonical lift of E/Fp, we have the
freedom to choose α ∈ O ourselves. Subject to the 5 conditions from the beginning
of this section, we want (α) to be smooth, i.e., the norm N(α) should be smooth.

Write α = c + dπp, with gcd(c, d) = 1 and with d �= 0. Here πp ∈ Z[πp] = Õ
is an element of norm p. Condition 3 is satisfied precisely when p does not divide
2dπp. We conclude that α/α − 1 will be a p-adic unit for p > d.

The following lemma guarantees that there are enough smooth elements α sat-
isfying our conditions.

Lemma 6.1. Let ε ∈ (0, 1/2) be a real number and let πp be imaginary qua-
dratic with minimal polynomial π2

p − tπp + p = 0. Put t2 − 4p = ∆̃ and B =

�exp(
√

log |∆̃|)�. Let Aε be the set of c + dπp ∈ Z[πp] with c ∈ Z and 1 ≤ d ≤
2 exp((log |∆̃|)1/2+ε) satisfying the properties

� |c + 1
2dt| ≤ |∆̃|1/2 exp((log |∆̃|)1/2+ε),

� c and d are coprime,
� c + dπp and p∆̃ are coprime. If GRH holds true, the fraction of B-smooth

elements in Aε is at least

exp(−2(log |∆̃|)1/2 log log |∆̃|)
for |∆̃| large enough, depending on ε.

Proof. This is lemma 2 in [5]. �
An element α ∈ Z[πp] satisfying the conditions of Lemma 6.1 automatically

satisfies the 5 conditions from the beginning of this section.
We find a suitable α by sieving in the set

S = {c + dπp : c, d ∈ Z, d �= 0, (c, d) = 1, c + dπp and p∆̃ are coprime},
where ∆̃ is the discriminant of Õ.

Proof of Theorem 4.1. Fix a real number ε ∈ (0, 1/2). We sieve for a smooth
element α ∈ Z[πp] \ Z. Next we apply the Algorithm from this section, with
this principal ideal (α), to compute the j-invariant of the canonical lift in k-digit
accuracy.

It remains to analyse the runtime of the Algorithm. Searching in

{c + dπp : c, d ∈ Z, d �= 0, (c, d) = 1, c + dπp and p∆̃ are coprime}
for a suitable B-smooth element α takes probabilistic time O(exp(

√
log p log log p)4)

by Lemma 6.1, with B = �exp(
√

log p)�. Here, we used the estimate

|∆̃| ≤ 4p.

In the first step of the Algorithm we compute the cycle of isogenies over Fp cor-
responding to the map ρα. We only have to perform ‘simple’ tasks in this step,
like computing a modular polynomial, Euclidean division, computing a root of
Φl(j(E), X) ∈ Fp[X], etc. We compute the cycle in time O((B2(log p)3)1+o(1)).

In Steps 3, 5 and 6 we lift the cycle to a ‘cycle’ of isogenies over Zp. Fix an integer
n ∈ Z>0 and assume that we have computed the cycle over Zp/(p2n

). Lifting the
cycle to Zp/(p2n+1

) boils down to evaluating the modular polynomial and some
Hensel lifts. We can lift the cycle in time O(B22n+1(log p)2).
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Combining the sieving step, the computation of the cycle over Fp and the lifting
process, we see that the expected runtime is O(B4+ε(log p)3+εk log k), which proves
the theorem. �
Remark. Instead of sieving for a smooth element α ∈ S, we can also pick the
smallest prime l that splits in the order Õ of discriminant ∆̃. Write (l) = ll

and let n be the order of l ∈ Pic(Õ). Now let α be a generator of the principal
ideal ln. If GRH holds true, the Bach bound yields that l is of size O((log |∆̃|)2),
but unfortunately we do not have any guarantee that α/α − 1 is a p-adic unit. In
practice this condition never poses a problem. Computing the canonical lift j̃ may
take a lot more time, however. Indeed, as class groups are ‘often’ cyclic it might
very well be that [l] ∈ Pic(O) generates the Picard group. The length of the cycle
of isogenies over Fp then becomes Õ(|∆|1/2) instead of O((log |∆̃|)1+o(1)) for the
sieving method.

7. Computing the Hilbert class polynomial

Once we have computed one element j ∈ Ell∆(Qp) with high enough accuracy,
it is an easy matter to compute its conjugates under the action of the Picard
group Pic(O). Namely, let l = ll be a prime that splits in O. The conjugates of
j ∈ Ell∆(Qp) under the action of [l], [l] ∈ Pic(O) are the 2 roots of Φl(j, X) ∈
Zp[X]. If GRH holds true, we can compute a set of primes S generating Pic(O)
with the property that the largest element of S does not exceed the Bach bound
O((log |∆|)2).

The logarithmic height of the zeroes of P∆ ∈ C[X] is well known. Let S∆ be the
set of reduced primitive positive definite quadratic forms [a, b, c] = aX2+bXY +cY 2

of discriminant b2 − 4ac = ∆. Recall that a form [a, b, c] is said to be reduced if we
have |b| ≤ a ≤ c and moreover b ≥ 0 if one of the inequalities is an equality. The
largest coefficient of P∆ has logarithmic height bounded by

2h(∆) +
π
√
|∆|

log 10

∑
[a,b,c]∈S∆

1
a
,

where h(∆) is the class number of O = O∆; cf. [1].

Algorithm (Non-archimedean algorithm).
Input: a discriminant ∆ < −4. Output: the Hilbert class polynomial P∆ ∈ Z[X].
1. Apply the algorithm from Section 3 to find a prime p and an ordinary elliptic

curve E/Fp with End(E) = O∆.

2. Put k ←
⌈(

π
√

|∆|
log p

∑
[a,b,c]∈S∆

1
a

)
+ logp

( h
�h/2�

)⌉
, with h = h(∆).

3. Compute the canonical lift j̃ ∈ Qp of j(E) ∈ Fp up to k p-adic digit accuracy
using the algorithm from Section 6.

4. Compute a complete set C of conjugates of j̃ under the action of Pic(O) in k
p-adic digits accuracy.

5. Put P∆ =
∏

j∈C(X − j) ∈ (Zp/(pk))[X].
6. Lift the coefficients of P∆ from Zp/(pk) = Z/(pk) to Z, where we take the

representative between −pk/2 and pk/2. Return P∆ ∈ Z[X].

Theorem 7.1. If GRH holds true, then the non-archimedean algorithm has an
expected runtime O(|∆|(log |∆|)8+ε) for every ε > 0.
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Proof. The runtime of Step 1 is Õ(|∆|1/2). To estimate the runtime of Step 3,
we apply Theorem 4.1 with the k from Step 2. We have k = O(

√
|∆|(log |∆|)2)

by [21, Lemma 2.2], and we can compute the j-invariant of the canonical lift of
E with high enough accuracy in time O(|∆|1/2+o(1)). Computing one conjugate
with k-digit accuracy in Step 4 takes time O(|∆|1/2(log |∆|)7+o(1)); the bottleneck
is evaluating a modular polynomial Φl(X, Y ) of degree O((log |∆|)2) in X = j(Ẽ).
Using the estimate h(∆) ≤

√
|∆| log |∆|, we can compute all conjugates in time

O(|∆|(log |∆|)8+o(1)). This dominates the time needed for the ‘divide-and-conquer’
algorithm, as in [10, Section 10.1], to compute the polynomial in Step 5. �

� Implementation details
We give some tricks to speed up an implementation of the non-archimedean algo-

rithm. First of all, it is a good idea to precompute a reasonable amount of modular
polynomials. Experience has shown that computing the first 25 polynomials, i.e.,
for primes up to 100, suffices for discriminants down to −1012.

One can save some time in computing the cycles of isogenies over Fp. Let E/Fp

be an elliptic curve with End(E) = O and let l ⊂ O be of norm l �= p. After we
have computed a root h ∈ Fp of Φl(j(E), X) ∈ Fp[X] we have to check if h equals
ρl(j(E)) and not ρl(j(E)). In many cases this check can be performed very easily.
Namely, suppose that l2 divides (α), i.e., we have to compute the map ρl twice.
The first time we apply the check proposed at the end of Section 5. The j-invariant
ρl2(j(E)) ∈ Fp can now be computed more easily. Namely, we compute the 2 roots
in Fp of Φl(ρl(j(E)), X) ∈ Fp[X] and note that one of these roots has to be the
j-invariant of E, and hence we know right away which root is ρl2(j(E)).

Finally, the upper bound

k =
(π

√
|∆|

log p

∑
[a,b,c]∈S∆

1
a

)
+ logp

( h
�h/2�

)
for the required precision is somewhat pessimistic. Practical experience has shown
that for discriminants down to −1012 it suffices to work with

k =
π
√
|∆|

log p

∑
[a,b,c]∈S∆

1
a

+ 10

p-adic digits. This is a significant speed up in the practical performance of the
algorithm.

8. Example

We illustrate the non-archimedean algorithm by computing the Hilbert class
polynomial P∆ for ∆ = −639 = −32 · 71. First we find a finite field Fp and an
elliptic curve E/Fp with endomorphism ring O = O∆.

We apply the algorithm from Section 2. As we have ∆ ≡ 1 mod 8, the equation
4p = t2 − ∆ has no solutions with p prime. The smallest integer t > 0 for which
(t2 − 4∆)/4 is prime is t = 4, leading to p = 643. We fix p for the rest of this
section. We apply the näıve algorithm and look for a curve with p + 1 ± t points.
We find that the curve E/Fp defined by

Y 2 = X3 + 89X − 89

of j-invariant j(E) = 295 ∈ Fp has trace of Frobenius 4.
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Let OK be the maximal order of K = Q(
√

∆). We have inclusions

Z[Fp]
2
⊂ O

3
⊂ OK ,

and we have to compute the endomorphism ring of E. The 2-division polynomial
X3+89X−89 ∈ Fp[X] splits completely, showing that E has CM by O. The prime
3 splits in OK . If E has CM by OK , the modular polynomial Φ3(j(E), X) ∈ Fp[X]
has 4 roots in Fp as the proof of Theorem 5.1 shows. We compute

gcd(Φ3(j(E), X), Xp − X) = X − 429 ∈ Fp[X]

and conclude that E does not have CM by OK , and therefore has endomorphism
ring O. We need to compute the canonical lift Ẽ/Qp up to k p-adic digit accuracy,
with

k ≈ π
√
|∆|

log p

∑
[a,b,c]∈S∆

1
a
.

The Picard group Pic(O) has order 14, and representing the elements as binary
quadratic forms as in Section 7, we find k ≈ 44. We will compute j(Ẽ) ∈ Qp up to
45 p-adic digit precision.

As a smooth element α ∈ O\Z for the map ρα : X∆(Cp) → X∆(Cp) we will use
α = πp − 108 of norm 11875 = 54 · 19. Here, πp = 4+

√
∆

2 is an element of norm p.
We factor

(α) = p
4
5 · p19 = (5, πp − 3)4 · (19, πp − 13).

We compute the action of the prime ideal p5 on j(E) ∈ Fp. If we evaluate the
modular polynomial Φ5(X, Y ) ∈ Fp[X, Y ] in X = j(E) = 295 we get a polynomial
that has 2 roots in Fp, namely 449 and 532. From this we deduce that p5 sends
j(E) to one of these roots. We do not know which one yet.

Let E/C have j-invariant 449 ∈ Fp, corresponding to a cyclic subgroup C ⊂ E[5].
We either have C = E[p5] or C = E[p5]. Using the method from Section 5, we
compute the Weierstraß equation

Y 2 = X3 + 390X + 466

for E/C. We get the x-coordinates of the points in C as zeroes of

fC = X2 + 614X + 471 ∈ Fp[X].

The eigenvalue for the action of Frobenius on the torsion E[p5] is 3 ∈ F5. We now
check whether

(Xp, Y p) = 3 · (X, Y )
holds for the points in C, i.e., we compute both (Xp, Y p) and 3 · (X, Y ) in the ring

Fp[X, Y ]/(fC , Y 2 − X3 − 89X + 89).

Here, the · means adding on the curve. It turns out that (Xp, Y p) and 3 · (X, Y )
are the same. We deduce that we have j(E)p5 = 449 ∈ Fp.

The action of p5 on the j-invariant 449 ∈ Fp is now easier to compute. The poly-
nomial Φ5(449, X) ∈ Fp[X] has 2 roots in Fp, but one of these roots corresponds
to the action of p5 and is therefore equal to j(E). We pick the other root 73 ∈ Fp.
If we compute the entire cycle of j-invariants over Fp, we get

295 p5−→ 449 p5−→ 73 p5−→ 55 p5−→ 328 p19−→ 295.
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We knew beforehand that this cycle is closed, since we know that (α) acts trivially
on j(E).

We now lift E/Fp to E1/Qp by lifting the coefficients of its Weierstraß equation
arbitrarily. The polynomial Φ5(j(E1), X) ∈ Zp[X] has exactly 2 roots, one of which
reduces to 449 ∈ Fp. Taking the lift E1/Qp defined by Y 2 = X3 + 89X − 89 of
j-invariant 295 − 233p + O(p2) ∈ Qp, we compute the ‘cycle’

j(E1)
p5−→ −194+296p

p5−→ 73−236p
p5−→ 55+155p

p5−→ −315+131p
p19−→ 295−236p

over Qp. We update j(E1) according to the ‘Newton formula’

j(Ek+1) = j(Ek) − ρα(j(Ek)) − j(Ek)
(α/α) − 1

for k ∈ Z≥1

and find that j(E2) = 295 − 155p is the two digit approximation of the j-invariant
of the canonical lift Ẽ/Qp.

Starting from j(E2), we now lift the cycle to four p-adic digit precision, compute
j(E3) from this, and so on. We obtain

j(Ẽ) = 295 + O(p)

= 295 − 155p + O(p2)

= 295 − 155p + 195p2 + 287p3 + O(p4)

= 295 − 155p + 195p2 + 287p3 − 153p4 + 245p5 + 272p6 + 298p7 + O(p8)

= 295 − 155p + 195p2 + 287p3 − 153p4 + 245p5 + 272p6 + 298p7 − 277p8

+ 170p9 − 123p10 − 86p11 − 165p12 − 115p13 + 195p14 + 56p15 + O(p16).

We continue this process until we have computed the canonical lift in 45 p-adic
digit accuracy.

Next, we compute the conjugates of j(Ẽ) under Gal(HO/K) ∼= Pic(O). The
Picard group Pic(O) is cyclic of order 14 and is generated by a prime of norm 5.
We compute the conjugates of j(Ẽ) by employing the modular polynomial Φ5: the
roots of Φ5(j(Ẽ), X) ∈ Zp[X] give us the conjugates j(Ẽ)p5 and j(Ẽ)p5 , etc. In the
end we expand the degree 14 polynomial

P−639 =
∏

[I]∈Pic(O)

(X − j(Ẽ)I) ∈ Z[X].

The polynomial P−639 has coefficients up to 126 decimal digits.
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A. Fröhlich, Academic Press, 1967. MR0244199 (39:5516)

23. J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer Graduate Texts
in Mathematics, vol. 151, 1994. MR1312368 (96b:11074)

24. J. H. Silverman, The arithmetic of elliptic curves, Springer Gruadate Texts in Mathematics,
vol. 106, 1986. MR817210 (87g:11070)

25. J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A–B 273 (1971),
A238–A241.

Department of Mathematics and Statistics, University of Calgary, 2500 University

Drive NW, Calgary, AB T2N 1N4, Canada

Current address: Microsoft Research, One Microsoft Way, Redmond, Washington 98052
E-mail address: reinier@math.leidenuniv.nl

http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=2041087
http://www.ams.org/mathscinet-getitem?mr=2041087
http://www.ams.org/mathscinet-getitem?mr=1357209
http://www.ams.org/mathscinet-getitem?mr=1357209
http://www.ams.org/mathscinet-getitem?mr=2137354
http://www.ams.org/mathscinet-getitem?mr=2137354
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=0067125
http://www.ams.org/mathscinet-getitem?mr=0067125
http://www.ams.org/mathscinet-getitem?mr=0447191
http://www.ams.org/mathscinet-getitem?mr=0447191
http://www.ams.org/mathscinet-getitem?mr=890960
http://www.ams.org/mathscinet-getitem?mr=890960
http://www.ams.org/mathscinet-getitem?mr=916721
http://www.ams.org/mathscinet-getitem?mr=916721
http://www.ams.org/mathscinet-getitem?mr=1137100
http://www.ams.org/mathscinet-getitem?mr=1137100
http://www.ams.org/mathscinet-getitem?mr=879273
http://www.ams.org/mathscinet-getitem?mr=879273
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1413578
http://www.ams.org/mathscinet-getitem?mr=1413578
http://www.ams.org/mathscinet-getitem?mr=914657
http://www.ams.org/mathscinet-getitem?mr=914657
http://www.ams.org/mathscinet-getitem?mr=1085266
http://www.ams.org/mathscinet-getitem?mr=1085266
http://www.ams.org/mathscinet-getitem?mr=0244199
http://www.ams.org/mathscinet-getitem?mr=0244199
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=817210

	1. Introduction
	2. Complex multiplication
	3. A small splitting prime
	4. Computing the canonical lift
	5. Computing the kernel polynomial
	6. Algorithm for computing the canonical lift
	7. Computing the Hilbert class polynomial
	8. Example
	Acknowledgements
	References

