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ROBUST A POSTERIORI ERROR ESTIMATION
FOR THE NONCONFORMING FORTIN–SOULIE

FINITE ELEMENT APPROXIMATION

MARK AINSWORTH AND RICHARD RANKIN

Abstract. We obtain a computable a posteriori error bound on the broken
energy norm of the error in the Fortin–Soulie finite element approximation of
a linear second order elliptic problem with variable permeability. This bound
is shown to be efficient in the sense that it also provides a lower bound for
the broken energy norm of the error up to a constant and higher order data
oscillation terms. The estimator is completely free of unknown constants and
provides a guaranteed numerical bound on the error.

1. Introduction

A posteriori error estimation plays a key role in the assessment of the accuracy
of finite element simulations and in the control of adaptive refinement algorithms.
Although the theory of a posteriori error estimation for conforming finite element
methods is now relatively well understood [3, 5, 22], the development of correspond-
ing techniques for nonconforming finite element approximation is less so.

Various alternative a posteriori estimators for the error in the broken energy
norm have been proposed for the lowest order nonconforming Crouzeix–Raviart
finite element approximation on triangular elements, including explicit residual-
based estimators [11], hierarchical basis estimators [14] and averaging type esti-
mators [10]. All of these estimators provide two-sided bounds on the error up to
unknown positive constants that are nevertheless independent of the mesh-size. A
hybrid averaging/residual based estimator proposed in [1] was shown to provide
actual computable numerical bounds on the error in the broken energy norm and,
again up to a generic positive constant independent of the mesh-size, local lower
bounds on the error. Moreover, the dependence of the estimator on jumps in the
diffusion coefficient was studied and shown to be relatively mild.

The second order, nonconforming finite element of Fortin and Soulie [13] offers
some advantages over the first order Crouzeix–Raviart element, perhaps most im-
portant is that it satisfies a discrete Korn inequality [8]. Explicit residual-type a
posteriori error estimators for the Fortin–Soulie element were developed in [7] in
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the context of linear elasticity, and in [19] in the setting of quasi-Newtonian flow.
However, as yet there are no available a posteriori error estimators that provide
actual numerical bounds on the error along with local lower bounds.

Our objective in the present work is to address this issue and, moreover, to study
the effectiveness of the estimator when the diffusion coefficient is allowed to undergo
large jumps from element to element. In particular, we wish to investigate whether
the approach adopted in [1] for the Crouzeix–Raviart element may be generalised to
the Fortin–Soulie element. At first glance, this appears unlikely since the approach
used in [1] implicitly takes advantage of a number of rather special properties of the
Crouzeix–Raviart element [16] that are not inherited by the Fortin–Soulie element.
In particular, advantage is taken in [1] of the fact that local fluxes may be defined
that are in equilibrium with the interior residual over each individual element—
the so-called equilibrated fluxes [3]. While a similar property holds for the Fortin–
Soulie element, following the approach of [1] would lead to an estimator that indeed
delivers a computable upper bound, but one which becomes increasingly pessimistic
were the mesh to be refined. Nevertheless, by carrying out suitable modifications,
we are able to construct a readily computable upper bound on the error that also
provides local lower bounds up to a generic constant. Consequently, the estimator
provides fully reliable, quantitative error control along with efficiency. In addition,
the dependence of the estimator on jumps in the diffusion coefficient is obtained
under weaker conditions than those imposed in [6, 21] in the context of conforming
finite element approximation where monotonicity requirements are imposed on the
diffusion coefficients. Here, as in [1], no such requirements are imposed.

The remainder of the paper is organised as follows. In Section 2, we describe
the finite element scheme and introduce the notation. Following [1, 11] we de-
compose the broken energy norm of the error into conforming and nonconforming
components. Upper and lower bounds for each of these components are derived in
Sections 3 and 4. Finally, in Section 5 we summarise the main results and present
some numerical examples illustrating the theory.

2. Preliminaries

2.1. Model Problem. Consider the model problem

− div (agradu) = f in Ω

subject to u = q on ΓD and a ∂u
∂n̂ = g on ΓN , where Ω is a simple plane polygonal

domain, and the disjoint sets ΓD (nonempty) and ΓN form a partitioning of the
boundary Γ = ∂Ω of the domain. The data satisfy f ∈ L2 (Ω), g ∈ L2 (ΓN ),
q ∈ H1 (ΓD), and a ∈ L∞ (Ω) is piecewise constant. We will assume that a is
positive and that the value of a across the boundary of a subdomain of Ω may
undergo a jump of many orders of magnitude, corresponding to transition between
regions of widely differing permeability.

The variational form of the problem consists of finding u ∈ H1 (Ω) such that
u = q on ΓD and

(2.1) (agradu,grad v) = (f, v) + (g, v)ΓN
∀v ∈ H1

E (Ω) ,

where H1
E (Ω) =

{
v ∈ H1 (Ω) : v = 0 on ΓD

}
. We shall use the notation (·, ·)ω to

denote the integral inner product over a region or line segment ω, and omit the
subscript in the case where ω is the physical domain Ω.
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Consider a family of partitions {P} of the domain Ω into the union of nonover-
lapping, shape regular triangular elements such that the nonempty intersection of
a distinct pair of elements is a single common node or single common edge. Conse-
quently, the family of partitions is locally quasi-uniform in the sense that the ratio
of the diameters of any pair of neighbouring elements is uniformly bounded above
and below on the whole family.

2.2. Notation. In order to facilitate the orientation, we summarise all of the no-
tations used throughout the manuscript with reference to the place where they are
first used.

Section 2.1: Ω, ΓD, ΓN , Γ, f , g, q, a, u, H1
E , (·, ·)ω, (·, ·), P.

Section 2.3: K, K ′, ∂P, γ, γ′, γ′′, ∂K, Pn (K), Pn (γ), ξK , [v]γ , Xnc, Xnc
E , unc,

gradnc, qI .
Section 2.4: |K|, |γ|, hK , V , λn, xm, V (K), V (γ), vK , vγ , t̂

K

γ , n̂K
γ , sK

γ , θK , θγ ,
Π, CK , CK

γ .
Section 2.5: osc (f, K), PKf , osc (g, γ), Pγg, H1

γ (K), osc (q, γ).
Section 2.6: aK , N , N (K), N (ΓD), Ωn, ℘(K, K ′), ℘�(K, K ′), aKK′ , ℘(K, ΓD, n),

℘�(K, ΓD, n), aKΓD,n, ΥKK′ , ΥKΓD
, ΥK , K̃.

Section 2.7: |||·|||ω, |||·|||, e, H, φ, ψ.
Section 3.1:

[
a∂unc

∂n̂

]
γ
, xK , αK

γ , ti, ni, θK
1 , θK

2 , θK
3 , ϑK , σK , βK , ΦK (βK), σ�

K .

Section 3.2: �xK , �yK , M , vK , M i, βK
γ , t̂γ , vγ , K̂.

Section 4.1: S (unc), ωK,n, ΨK .
Section 4.2: ∂Ωn, µ, βγ , ∂℘∗ (K, K ′), βKK′ , βKΓD,n, EK .
Section 5.1: �V , S, Q, A, B, C.
Section 5.2: Ndofs, ηn, β

(n)
K , ϑn.

2.3. Nonconforming finite element approximation. Let K and K ′ denote
individual elements in P, let ∂P denote the set of element edges, let γ, γ′ and γ′′

denote individual edges in ∂P and let ∂K denote the set of edges of element K.
Let Pn (K) denote the space of polynomials on K ∈ P of total degree at most n
and let Pn (γ) denote the space of polynomials on γ ⊂ ∂P of total degree at most
n. For each element K ∈ P, let ξK : ∂K → {+1,−1} denote a sign function that
is piecewise constant on ∂K and chosen such that ξK + ξK′ = 0 on ∂K ∩ ∂K ′.
For v ∈ Xnc

E , we define the jump of v on an edge γ by [v]γ = ξKv|K + ξK′v|K′ if
γ = ∂K ∩ ∂K ′. The Fortin–Soulie finite element space is defined by

Xnc =
{

v : Ω → R : v|K ∈ P2 (K) ∀K ∈ P,

(
[v]γ , p

)
γ

= 0 ∀p ∈ P1 (γ) for γ ⊂ ∂P\Γ
}

with the subspace Xnc
E defined by

(2.2) Xnc
E =

{
v ∈ Xnc : (v, p)γ = 0 ∀p ∈ P1 (γ) for γ ⊂ ΓD

}
.

Note that although these definitions seem to differ from the usual way of defining
the Fortin–Soulie finite element spaces the above are exactly the same spaces as
those defined in [13, 15] since for all γ ⊂ ∂P\Γ, if v ∈ Xnc

E , then [v]γ ∈ P2 (γ) is
orthogonal to P1 (γ), and hence v is continuous at the two Gauss–Legendre points
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Figure 1. Location of the endpoints and orientation of the tan-
gent and normal vectors on an edge γ of element K.

on γ. Also, for all γ ⊂ ∂P ∩ ΓD, if v ∈ Xnc
E , then v|γ ∈ P2 (γ) is orthogonal to

P1 (γ), and hence v is zero at the two Gauss–Legendre points on γ.
The nonconforming finite element approximation of problem (2.1) consists of

finding unc ∈ Xnc such that

(agradnc unc,gradnc v) = (f, v) + (g, v)ΓN
∀v ∈ Xnc

E ,(2.3)

(unc, p)γ = (qI , p)γ ∀p ∈ P1 (γ) for γ ⊂ ΓD

where gradnc denotes the operator defined by (gradnc v)|K = grad
(
v|K

)
for K ∈

P. Here, the Dirichlet datum q has been approximated by the piecewise quadratic
interpolant qI which equals q at the endpoints and midpoint of each edge γ ∈ ∂P
on the Dirichlet boundary ΓD.

2.4. Projection operator. Let |K| denote the area of the element K, let |γ|
denote the length of edge γ and let hK be the length of the longest edge of element
K. Let V index the set of element vertices and for n ∈ V define λn to be the
piecewise linear function which satisfies λn (xm) = δmn ∀m ∈ V where xm denotes
the position vector of vertex m. For K ∈ P let V (K) index the set of the vertices
of element K and for γ ⊂ ∂P let V (γ) index the vertices at the endpoints of γ.
Throughout we shall make use of the following formulae:

(2.4)
(
λl

iλ
m
j λn

k , 1
)
K

=
2l!m!n!

(l + m + n + 2)!
|K|

for l, m, n ≥ 0 where V (K) = {i, j, k} and, with V (γ) = {l, r}, for m, n ≥ 0,

(2.5) (λm
l , λn

r )γ =
m!n!

(m + n + 1)!
|γ| .

Let vK = 1
|K| (v, 1)K for v ∈ L2 (K), let vγ = 1

|γ| (v, 1)γ for v ∈ L2 (γ) and let the
tangent vector tK

γ and normal vector nK
γ to edge γ of element K be oriented as

shown in Figure 1, with the corresponding unit vectors denoted by t̂
K

γ and n̂K
γ .

We may parametrise an edge γ ⊂ ∂K by x
(
sK

γ

)
= xl +

(
sK

γ + |γ|
2

)
t̂
K

γ where

(2.6) sK
γ =

|γ|
2

(λr − λl) ∈
(
−|γ|

2
,
|γ|
2

)
.
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For future reference we note that sK
γ has the properties that for p ∈ P1 (γ),

(2.7) p − pγ =
∂p

∂t̂
K

γ

sK
γ and

∂sK
γ

∂t̂
K

γ

= 1.

Lemma 2.1. Let θK ∈ Xnc
E be defined by

(2.8) θK =

⎧⎨
⎩

4 − 6
∑

n∈V(K)

λ2
n on K,

0, elsewhere,

and for γ ⊂ ∂K let θγ ∈ Xnc be defined by

(2.9) θγ =

⎧⎪⎪⎨
⎪⎪⎩

1 − 6

⎛
⎝1 −

∑
n∈V(γ)

λn

⎞
⎠ ∑

n∈V(γ)

λn on K,

0, elsewhere.

Define the operator Π : H1
E (Ω) → Xnc

E by

(2.10) Πv =
∑
K∈P

vKθK +
∑

γ⊂∂P
vγθγ .

Then for all K ∈ P,

(2.11) (v − Πv, 1)K = 0,

and for all γ ⊂ ∂P,

(2.12) (v − Πv, p)γ =
(
v, p − pγ

)
γ

∀p ∈ P1 (γ) .

Also,

(2.13) ‖v − Πv‖L2(K) ≤ CK ‖grad v‖L2(K)

where for γ, γ′ distinct edges

CK =
hK

π
+

∑
γ⊂∂K

(
1
5

hK

π

(
hK

π
+ max

γ′⊂∂K
|γ′|

))1/2

,(2.14)

and for γ ⊂ ∂K ∩ ΓN ,

(2.15) ‖v − Πv‖L2(γ) ≤ CK
γ ‖grad v‖L2(K)

where for γ′, γ′′ distinct edges
(2.16)

CK
γ =

|γ|1/2

|K|1/2

∑
γ′⊂∂K

((
2δγγ′ +

1
5
|γ|
|γ′| (1 − δγγ′)

)
hK

π

(
hK

π
+ max

γ′′⊂∂K
|γ′′|

))1/2

.

Proof. By applying (2.4), we obtain (θK , 1)K = |K| and (θγ , 1)K = 0, from which
(2.11) follows. Likewise, applying (2.5) we obtain (θK , p)γ′ = 0 and (θγ , p)γ′ =
|γ| pγδγγ′ ∀p ∈ P1 (γ′) for all γ, γ′ ⊂ ∂P from which (2.12) follows. Moreover, these
identities show that Πc = c on K for all c ∈ R and since for v ∈ H1 (K), there
exists c ∈ R such that [20], ‖v − c‖L2(K) ≤ hK

π ‖grad v‖L2(K) and [2],

‖v − c‖L2(γ) ≤
(

|γ|
|K|

hK

π

(
hK

π
+ max

γ′⊂∂K
|γ′|

))1/2

‖grad v‖L2(K)
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for γ, γ′ distinct edges, by applying standard arguments, (2.13) and (2.15) follow.
�

2.5. Data oscillation. The oscillation of the data f on an element K ∈ P is
defined to be

osc (f, K) = |K|1/2 inf
p∈P1(K)

‖f − p‖L2(K) .

Since P1 (K) is finite-dimensional and the norm is strictly convex, it follows that
there exists a unique minimiser of the right hand side, which we shall denote by
PKf . Likewise, the oscillation of the Neumann data g on an edge γ ⊂ ΓN is defined
to be

osc (g, γ) = |γ|1/2 inf
p∈P1(γ)

‖g − p‖L2(γ)

and again we denote the minimiser by Pγg. For K ∈ P and γ ⊂ ∂K ∩ ΓD, let
the space H1

γ (K) =
{
v : v ∈ H1 (K) : v = 0 on ∂K \ γ

}
. The oscillation of the

Dirichlet data q on an edge γ ⊂ ∂K ∩ ΓD is defined to be

osc (q, γ) = inf
v∈H1

γ (K):

v|γ=q−qI

‖grad v‖L2(K) .

2.6. Path permeability. Let aK denote the value taken by the permeability a on
element K, let N index the set of element vertices and edge midpoints, let N (K)
index the set of vertices and edge midpoints of element K, let N (ΓD) index the set
of element vertices and edge midpoints which lie on ΓD, for n ∈ N let Ωn denote
the patch composed from those elements with a vertex or edge midpoint located
at xn and let K, K ′ ⊂ Ωn be distinct elements. To define the permeability aKK′

between a pair of elements, first observe that there is always at least one connected
path ℘ (K, K ′) ⊂ P passing from K to K ′ through adjacent elements belonging to
the patch Ωn. The smallest permeability of all the elements in the path ℘ (K, K ′)
is given by min{aM : M ∈ ℘ (K, K ′)}. We take ℘� (K, K ′) to be the path which
maximises the value of this quantity, and define

(2.17) aKK′ = min{aM : M ∈ ℘� (K, K ′)}.

If a vertex or edge midpoint xn of element K lies on ΓD, then the element may be
linked to ΓD by a connected path ℘ (K, ΓD, n) passing through adjacent elements
as before. Choosing ℘� (K, ΓD, n) to be the path which maximises the value of
min{aM : M ∈ ℘ (K, ΓD, n)}, the permeability between element K and the Dirich-
let boundary is then defined by aKΓD,n = min{aM : M ∈ ℘� (K, ΓD, n)}. The
ratio ΥKK′ = min(aK ,aK′ )

aKK′
measures path permeability relative to the least perme-

able of the two elements K and K ′ at the endpoints of the path and ΥKΓD
=∑

n∈N (K)∩N (ΓD)
aK

aKΓD,n
. We also define

(2.18) ΥK = ΥKΓD
+

∑
K′⊂K̃\K

ΥKK′

where K̃ denotes the patch formed from element K and those elements sharing a
common vertex with element K. For more details and examples on path perme-
ability we refer the reader to [1].
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2.7. A posteriori error estimator. Let the broken energy norm over a region
ω be denoted by |||·|||ω = (agradnc ·,gradnc ·)1/2

ω where again we shall omit the
subscript in the case where ω = Ω. Our objective is to obtain a computable
estimator for the broken energy norm of the error e = u − unc. Observe that
this also provides L2 (Ω) error control because of the discrete Poincaré–Friedrichs
inequality. To estimate the error we shall make use of the following lemma, which
is proved in [11] and used in [4, 9].

Lemma 2.2. Let H =
{
w ∈ H1(Ω) : (w, 1)Ω = 0 and ∂w

∂t̂
= 0 on ΓN

}
. The error

e = u − unc may be decomposed into the form

(2.19) agradnc e = agradφ + curlψ

where the conforming error φ ∈ H1
E(Ω) satisfies

(2.20) (agradφ,grad v) = (agradnc e,grad v) ∀v ∈ H1
E(Ω)

and the nonconforming error ψ ∈ H satisfies

(2.21) (a−1 curlψ, curlw) = (gradnc e, curlw) ∀w ∈ H.

Moreover,

(2.22) |||e|||2 = |||φ|||2 + (a−1 curlψ, curlψ).

The importance of this lemma is that it allows us to write |||e|||2 as the sum
of a conforming part |||φ|||2 and a nonconforming part (a−1 curlψ, curlψ) which
reduces the problem of obtaining an estimator for |||e||| to that of obtaining separate
estimators for each of the two terms in this decomposition which is what we discuss
in the next two sections.

3. Estimation of the conforming error

3.1. Upper bound. Our aim is to find a fully computable upper bound for |||φ|||2.
Let v ∈ H1

E(Ω). Then, by (2.20), the definition of e and (2.1),

(agradφ,grad v) = (agradnc e,grad v)

= (agradu,grad v) − (agradnc unc,grad v)

= (f, v) + (g, v)ΓN
− (agradnc unc,grad v)

=
∑
K∈P

⎛
⎝(f, v)K − (aK gradunc,grad v)K +

∑
γ⊂∂K

(g, v)γ∩ΓN

⎞
⎠ .

Observing that Πv ∈ Xnc
E , where Π is the operator defined in Lemma 2.1, we find

0 = (agradnc unc,gradnc Πv) − (f, Πv) − (g, Πv)ΓN

from (2.3), and so

(agradφ,grad v) =
∑
K∈P

(
− (aK gradunc,grad (v − Πv))K

+ (f, v − Πv)K +
∑

γ⊂∂K

(g, v − Πv)γ∩ΓN

)
.
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Integrating by parts, applying property (2.12), and the fact that v = 0 on ΓD gives

(agradφ,grad v) =
∑
K∈P

(f + aK div (gradunc) , v − Πv)K(3.1)

+
∑

γ⊂∂P\ΓD

⎛
⎝(g − Pγg, v − Πv)γ∩ΓN

−

⎛
⎝[

a
∂unc

∂n̂

]
γ

−
([

a
∂unc

∂n̂

]
γ

)
γ

, v

⎞
⎠

γ

⎞
⎠

where

(3.2)
[
a
∂unc

∂n̂

]
γ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aK
∂unc|K
∂n̂K

γ
+ aK′

∂unc|K′

∂n̂K′
γ

if γ = ∂K ∩ ∂K ′,

aK
∂unc|K
∂n̂K

γ
− Pγg if γ ⊂ ΓN ,

aK
∂unc|K
∂n̂K

γ
if γ ⊂ ΓD.

We now simplify the terms appearing in the right hand side as follows. First, since
aK div (gradnc unc) is constant, property (2.11) of the operator Π allows us to write

(f + aK div (gradunc) , v − Πv)K(3.3)

= (grad (PKf) · (x − xK) , v − Πv)K + (f − PKf, v − Πv)K

where xK denotes the centroid of element K ∈ P. The final term in (3.3) will be
estimated later in terms of the data oscillation. For each K ∈ P and each edge
γ ⊂ ∂K, define

(3.4) αK
γ =

⎧⎪⎨
⎪⎩

a
−1/2
K′

a
−1/2
K +a

−1/2
K′

if γ = ∂K ∩ ∂K ′,

1 if γ ⊂ ΓN ,
0 if γ ⊂ ΓD.

Then, since αK
γ + αK′

γ = 1 for γ = ∂K ∩ ∂K ′,

∑
γ⊂∂P\ΓD

⎛
⎝[

a
∂unc

∂n̂

]
γ

−
([

a
∂unc

∂n̂

]
γ

)
γ

, v

⎞
⎠

γ

=
∑
K∈P

∑
γ⊂∂K

⎛
⎝αK

γ

⎛
⎝[

a
∂unc

∂n̂

]
γ

−
([

a
∂unc

∂n̂

]
γ

)
γ

⎞
⎠ , v

⎞
⎠

γ

=
∑
K∈P

∑
γ⊂∂K

(
αK

γ

∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

sK
γ , v

)
γ

upon applying property (2.7). Hence, with the aid of (3.3), we may rewrite (3.1)
in the form

(agradφ,grad v)

=
∑
K∈P

(
(grad (PKf) · (x − xK) , v − Πv)K + (f − PKf, v − Πv)K(3.5)

+
∑

γ⊂∂K

(
(g − Pγg, v − Πv)γ∩ΓN

−
(

αK
γ

∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

sK
γ , v

)
γ

))
.
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K

x1

x2 x3

γ1

γ2γ3

t1

t2

t3

n1

n2

n3

Figure 2. Direction and enumeration of the vertices, edges, tan-
gent and normal vectors of element K.

The next step is to develop some convenient representations for the terms appearing
on the right hand side. Fix an element K ∈ P and label the vertices, edges, tangents
and normals as shown in Figure 2.

The following result will be used to deal with the first term in (3.5).

Lemma 3.1. Let K ∈ P. Then, for all v ∈ H1
E(Ω),

(3.6) (grad (PKf) · (x − xK) , Πv)K = −|K|
10

3∑
i=1

(grad (PKf) · (xi − xK)) vγi
.

Proof. Observing that for i = 1, 2, 3, (λi, θK)K is independent of i (due to symmetry
of θK), we see that

(λi, θK)K =
1
3

⎛
⎝θK ,

3∑
j=1

λj

⎞
⎠

K

=
1
3

(θK , 1)K =
|K|
3

so
(
λi − 1

3 , θK

)
K

= 0. It then follows that

(3.7) (grad (PKf) · (x − xK) , θK)K = 0.

Moreover, for γi ⊂ ∂K, a simple calculation using (2.4) gives
(
λi − 1

3 , θγi

)
K

=
− 1

15 |K| and
(
λj − 1

3 , θγi

)
K

= 1
30 |K| if i 	= j and hence, for i = 1, 2, 3,

(3.8) (grad (PKf) · (x − xK) , θγi
)K = −|K|

10
(grad (PKf) · (xi − xK)) .

The result then follows from (3.7) and (3.8) after inserting the definition (2.10) of
Πv into (grad (PKf) · (x − xK) , Πv)K . �

The following identities will prove useful in what follows. For i = 1, 2, 3, let
ti = |γi| t̂i and ni = |γi| n̂i. Then for i = 1, 2, 3,

(ti · ni) = 0,(3.9)

(t1 · n2) = (t2 · n3) = (t3 · n1) = 2|K|,(3.10)

(t1 · n3) = (t2 · n1) = (t3 · n2) = −2|K|,(3.11)
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and

(3.12) gradλi = − 1
2|K|ni.

Lemma 3.2. Let K ∈ P be any element, and define the following functions on K:

(3.13) θK
1 = αK

γ1

∂

∂t̂1

[
a
∂unc

∂n̂

]
γ1

|γ1|2

4 |K| (λ2t3 + λ3t2) ,

with θK
2 and θK

3 defined analogously. Then for all i, j = 1, 2, 3,(
n̂i · θK

j

)
|γi

= −αK
γi

∂

∂t̂i

[
a
∂unc

∂n̂

]
γi

sK
γi

δij ,(3.14)

div θK
j = 0 in K,(3.15)

and there exists a positive constant C, depending only on the shape of the element,
such that

(3.16)
∥∥∥θK

i

∥∥∥
L2(K)

≤ Ch2
KαK

γi

∣∣∣∣∣ ∂

∂t̂i

[
a
∂unc

∂n̂

]
γi

∣∣∣∣∣ .
Proof. We shall prove these results for θK

1 with the results for θK
2 and θK

3 following
by rotation. By (3.10) and (3.11),(

n̂1 · θK
1

)
= αK

γ1

∂

∂t̂1

[
a
∂unc

∂n̂

]
γ1

|γ1|2

4 |K| ((n̂1 · t3)λ2 + (n̂1 · t2) λ3)

= αK
γ1

∂

∂t̂1

[
a
∂unc

∂n̂

]
γ1

|γ1|
2

(λ2 − λ3) = −αK
γ1

∂

∂t̂1

[
a
∂unc

∂n̂

]
γ1

sK
γ1

where sK
γ1

denotes the arc length on γ1. Upon applying (3.9) and observing that,

for i = 1, 2, 3, λi|γi
= 0 we obtain

(
n̂2 · θK

1

)
|γ2

= 0 and
(
n̂3 · θK

1

)
|γ3

= 0. Now,

making use of (3.12) gives

div θK
1 = −αK

γ1

∂

∂t̂1

[
a
∂unc

∂n̂

]
γ1

|γ1|2

8 |K|2
((n2 · t3) + (n3 · t2))

and hence θK
1 is divergence free thanks to (3.10) and (3.11). Finally, (3.16) follows

from standard scaling arguments after applying (2.4). �

Lemma 3.3. Let K ∈ P be any element, and define the following function on K:

ϑK = (grad (PKf) · (x1 − xK))
(

1
20

− 1
3
λ1

)
(λ2t3 − λ3t2)

+ (grad (PKf) · (x2 − xK))
(

1
20

− 1
3
λ2

)
(λ3t1 − λ1t3)(3.17)

+ (grad (PKf) · (x3 − xK))
(

1
20

− 1
3
λ3

)
(λ1t2 − λ2t1) .

Then for i = 1, 2, 3,(
n̂i · ϑK

)
|γi

=
1
10

|K|
|γi|

(grad (PKf) · (xi − xK)) ,(3.18)

div ϑK = (grad (PKf) · (xK − x)) in K,(3.19)
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and there exists a positive constant C, depending only on the shape of the element,
such that

(3.20)
∥∥∥ϑK

∥∥∥
L2(K)

≤ Ch3
K |grad (PKf)| .

Proof. Making use of the fact that λi = 0 on γi for i = 1, 2, 3 and (3.9) we have(
n̂1 · ϑK

)
|γ1

=
1
20

(grad (PKf) · (x1 − xK)) ((n̂1 · t3)λ2 − (n̂1 · t2)λ3) .

Applying (3.10) and (3.11) yields
(
n̂1 · ϑK

)
|γ1

= 1
10

|K|
|γ1| (grad (PKf) · (x1 − xK))

upon noting that λ2 + λ3 = 1 on γ1. The remaining terms in (3.18) follow by
symmetry. To show (3.19) we can apply the product rule, (3.12), (3.10) and (3.11)
to obtain

div ϑK =
1
3

grad (PKf) · ((x2 + x3 − 2x1) λ1 + (x1 + x3 − 2x2) λ2

+ (x1 + x2 − 2x3)λ3) = (grad (PKf) · (xK − x)) .

Also, (2.4) and standard scaling arguments can be combined to arrive at (3.20). �

Lemma 3.4. Let σK = ϑK +
3∑

i=1

θK
i where θK

i and ϑK are defined in Lemma 3.2

and Lemma 3.3 respectively. Then

(σK ,grad v)K = (grad (PKf) · (x − xK) , v − Πv)K(3.21)

−
∑

γ⊂∂K

(
αK

γ

∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

sK
γ , v

)
γ

.

Proof. By Lemma 3.1 we have that

(grad (PKf) · (x − xK) , v − Πv)K

−
∑

γ⊂∂K

(
αK

γ

∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

sK
γ , v

)
γ

= (grad (PKf) · (x − xK) , v)K

+
3∑

i=1

(
1
10

|K|
|γi|

(grad (PKf) · (xi − xK)) − αK
γi

∂

∂t̂i

[
a
∂unc

∂n̂

]
γi

sK
γi

, v

)
γi

.

Also, using integration by parts gives

(σK ,grad v)K =
3∑

i=1

(n̂i · σK , v)γi
− (div σK , v)K .

So the result is true if for i = 1, 2, 3,

n̂i · σK =
1
10

|K|
|γi|

(grad (PKf) · (xi − xK)) − αK
γi

∂

∂t̂i

[
a
∂unc

∂n̂

]
γi

sK
γi

and − div σK = grad (PKf) · (x − xK) which follows by applying Lemma 3.2 and
Lemma 3.3 to the expression for σK . �

We are now in a position to prove our upper bound for |||φ|||.



1928 MARK AINSWORTH AND RICHARD RANKIN

Lemma 3.5. For each K ∈ P, let βK ∈ H1
0 (K) be given and define

ΦK (βK) = a
−1/2
K

⎛
⎝‖σ�

K‖L2(K) + CK ‖f − PKf‖L2(K)(3.22)

+
∑

γ⊂∂K∩ΓN

CK
γ ‖g − Pγg‖L2(γ)

⎞
⎠

where σ�
K = σK − curlβK . Then

(3.23) |||φ|||2 ≤
∑
K∈P

Φ2
K (βK) .

Proof. Returning to (3.5) and using Lemma 3.4 we obtain

(agradφ,grad v) =
∑
K∈P

(
(σK ,grad v)K + (f − PKf, v − Πv)K

+
∑

γ⊂∂K∩ΓN

(g − Pγg, v − Πv)γ

)
.(3.24)

Since for all K ∈ P and γ ⊂ ∂K,
(
n̂K

γ · curlβK

)
= 0 and div (curlβK) = 0,

(3.25) (σK ,grad v)K = (σ�
K ,grad v)K .

Inserting (3.25) into (3.24) then applying Cauchy–Schwarz followed by inequalities
(2.13) and (2.15) yields

(agradφ,grad v) ≤
∑
K∈P

ΦK (βK) |||v|||K ≤
(∑

K∈P
Φ2

K (βK)

)1/2

|||v|||

from which we can obtain the result by letting v = φ and dividing both sides of the
inequality by |||φ|||. �

This result enables us to obtain computable bounds on |||φ||| for any choice of βK .
The simplest choice is βK = 0, however, by minimising over βK from an appropriate
class of bubble function we obtain ‖σ�

K‖L2(K) ≤ ‖σK‖L2(K) and thereby potentially
tighten the bound. We shall elaborate on this point later in the final section.

3.2. Local lower bounds. We now show that ΦK also provides a lower bound
for the conforming component of the error plus data oscillation up to a generic
constant. In principle, one could obtain numerical estimates for the constant using
techniques similar to those in [18]. We shall not pursue this further here. Observing
that as before we obtain ‖σ�

K‖L2(K) ≤ ‖σK‖L2(K), then applying the estimates

(3.16) and (3.20) to the expression for σK and the estimates CK ≤ C |K|1/2 and
CK

γ ≤ C |γ|1/2 to the expression for ΦK (βK) allows us to say that

ΦK (βK) ≤ Ca
−1/2
K

(
h3

K |grad (PKf)| + osc (f, K)

+
∑

γ⊂∂K

(
h2

KαK
γ

∣∣∣∣∣ ∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣ + osc (g, γ ∩ ΓN )

))
.(3.26)

In the next result we obtain an estimate for |grad (PKf)|.
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Lemma 3.6. There exists a positive constant C, depending only on the shape of
the element, such that

(3.27) a
−1/2
K h3

K |grad (PKf)| ≤ C
(
|||φ|||K + a

−1/2
K osc (f, K)

)
.

Proof. Let �xK ∈ R
3 and �yK ∈ R

3 denote the vectors formed from the first and
second rows of the matrix M =

[
x1 − xK x2 − xK x3 − xK

]
and let the func-

tion vK take the value (x − xK)λ1λ2λ3 on K and be equal to zero everywhere
else. Computations using the definition of Π and (2.4) give us that ΠvK = 0,(
x − xK , vK

)
K

= |K|
1260

(
|�xK |2

(�xK · �yK)

)
and

(
y − yK , vK

)
K

= |K|
1260

(
(�xK · �yK)
|�yK |2

)
,

where Π applied to a vector-valued function is defined as Π applied to each com-
ponent. Using these equalities and the fact that vK = 0 on all edges γ ⊂ ∂P, we
can choose v to be each component of vK in (3.5) to obtain

|K|
1260

[
|�xK |2 (�xK · �yK)

(�xK · �yK) |�yK |2
]
grad (PKf)

=
(
aK gradφ,gradvK

)
K
−

(
f − PKf, vK

)
K

.(3.28)

It is not difficult to see that

|�xK |2 |�yK |2 − (�xK · �yK)2 = |�xK × �yK |2 =
3∑

i=1

(det (M i))
2
,

where M i is the 2 × 2 sub-matrix of M obtained by omitting the i-th column.
Then, we note that det (M i) = ±2 |Ki|, where Ki is the triangle formed by the
endpoints of γi and the centroid of K. Hence,

|�xK |2 |�yK |2 − (�xK · �yK)2 = 4
3∑

i=1

|Ki|2 ≥ 4
3
|K|2 .

This implies that the matrix on the left hand side of (3.28) is non-singular and can
be inverted to give an expression for grad (PKf). Now, applying Cauchy–Schwarz
to this expression and observing that

∣∣∣∣∣∣vK
∣∣∣∣∣∣

K
≤ Ca

1/2
K hK and that |�xK |2, |�yK |2,

(�xK · �yK) and
∥∥vK

∥∥
L2(K)

are all bounded by Ch2
K , we have that

|grad (PKf)| ≤ Ch−3
K

(
a
1/2
K |||φ|||K + osc (f, K)

)
from which we can obtain the result claimed. �

We now work to obtain an estimate for αK
γ

∣∣∣∣ ∂

∂t̂
K
γ

[
a∂unc

∂n̂

]
γ

∣∣∣∣. To this end, the

following result will be useful.

Lemma 3.7. Let K ∈ P and γ ⊂ ∂K. Define βK
γ = 60λlλr(λr − λl) where

V (γ) = {l, r} and the edge γ is oriented as in Figure 1. Then for p ∈ P1 (γ),

(3.29)
(
p, βK

γ

)
γ

=
∂p

∂t̂
K

γ

|γ|2.

Proof. Letting p = r1s
K
γ + r2, where r1, r2 ∈ R, and using (2.6) then (2.5) gives(

p, βK
γ

)
γ

= r1|γ|2. So the result holds by applying (2.7) to show that ∂p

∂t̂
K
γ

= r1. �
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Lemma 3.8. Let γ ⊂ ∂P \ΓD. Then there exists a positive constant C, depending
only on the shape of the elements, such that

a
− 1

2
K h2

KαK
γ

∣∣∣∣∣ ∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣(3.30)

≤ C

{
|||φ|||K + |||φ|||K′ + a

− 1
2

K (osc (f, K) + osc (f, K ′)) if γ = ∂K ∩ ∂K ′,

|||φ|||K + a
− 1

2
K (osc (f, K) + osc (g, γ)) if γ = ∂K ∩ ΓN .

Proof. Let γ be an interior edge and observe that

h2
K

∣∣∣∣∣ ∂

∂t̂
K

γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣ ≤ C |γ|2
∣∣∣∣∣ ∂

∂t̂γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣
where t̂γ is either of the two tangents to γ. We define vγ ∈ H1

E (Ω) by the rule
vγ = 60λlλr (λr − λl) where V (γ) = {l, r}. Using (2.4) we have that (vγ , 1)K = 0
for all K ∈ P and (vγ , 1)γ′ = 0 for all γ′ ⊂ ∂P which together imply that Πvγ = 0.
Using these equalities, the fact that vγ is zero on all edges except γ and Lemma
3.7, and by letting v = vγ in (3.5) we obtain

|γ|2
∣∣∣∣∣ ∂

∂t̂γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣ =

∣∣∣∣∣
∑

K∈P:
γ⊂∂K

(
− (agradφ,grad vγ)K

+ (grad (PKf) · (x − xK) , vγ)K + (f − PKf, vγ)K

)∣∣∣∣∣.
Now, making use of Cauchy–Schwarz, the definition of the oscillation of f and the
estimates ‖grad (PKf) · (x − xK) ‖L2(K) ≤ Ch2

K |grad (PKf)|, |||vγ |||K ≤ Ca
1/2
K

and ‖vγ‖L2(K) ≤ ChK we have that

|γ|2
∣∣∣∣∣ ∂

∂t̂γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣ ≤ C
∑

K∈P:
γ⊂∂K

(
a
1/2
K |||φ|||K + osc (f, K) + h3

K |grad (PKf)|
)

to which we can apply Lemma 3.6 to get

|γ|2
∣∣∣∣∣ ∂

∂t̂γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣ ≤ C
∑

K∈P:
γ⊂∂K

(
a
1/2
K |||φ|||K + osc (f, K)

)
.

Finally, by letting γ be a common edge of elements K and K ′ and using the defi-
nition of αK

γ , we have that

a
− 1

2
K h2

KαK
γ

∣∣∣∣∣ ∂

∂t̂γ

[
a
∂unc

∂n̂

]
γ

∣∣∣∣∣
≤ C

(
a
− 1

2
K αK

γ

((
a
1/2
K + a

1/2
K′

)
(|||φ|||K + |||φ|||K′) + osc (f, K) + osc (f, K ′)

))
= C

(
|||φ|||K + |||φ|||K′ + a

− 1
2

K αK
γ (osc (f, K) + osc (f, K ′))

)
,

and the estimate follows since αK
γ ≤ 1. The result for γ = ∂K ∩ ΓN can be proved

similarly. �
Finally, collecting these results we obtain the following lemma.
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Lemma 3.9. Let K̂ be the set of elements, including element K, that share an
edge with element K. Then there exists a positive constant c, depending only on
the shape of the elements, such that

(3.31) cΦK (βK) ≤
∑

K′⊂K̂

(
|||φ|||K′ + a

−1/2
K osc (f, K ′)

)
+ a

−1/2
K

∑
γ⊂∂K∩ΓN

osc (g, γ) .

Proof. Inserting the estimates proved in Lemma 3.6 and Lemma 3.8 into (3.26)
gives the result. �

4. Estimation of the nonconforming error

The main part of the upper bound for
(
a−1 curlψ, curlψ

)
is defined analogously

to [1] by the continuous piecewise quadratic interpolant of unc on P whose values
at the nodes are given by

(4.1) S (unc) (xn) =

⎧⎨
⎩

q (xn) if n ∈ N (ΓD) ,∑
K∈Ωn

ωK,nunc|K (xn) if n /∈ N (ΓD)

for n ∈ N with the weights ωK,n defined by ωK,n = a
1/2
K /

∑
K′⊂Ωn

a
1/2
K′ . As in [1], it

is essential that a weighted average be used in order that robustness of the estimator
with respect to the permeability coefficient is maintained. Note that these weights
satisfy the condition

(4.2)
∑

K⊂Ωn

ωK,n = 1.

The following result can easily be obtained from the upper bound proved in [1] and
so we omit the proof.

Lemma 4.1. Let

(4.3) ΨK = |||unc − S (unc)|||K +
∑

γ⊂∂K∩ΓD

a
1/2
K osc (q, γ).

Then

(4.4)
(
a−1 curlψ, curlψ

)
≤

∑
K∈P

Ψ2
K .

4.1. Local lower bounds. By analogy with [1] we shall require the following
lemma in order to prove that ΨK also provides a lower bound for the nonconforming
component of the error plus data oscillation.

Lemma 4.2. Let n ∈ N , let K ∈ Ωn and let ∂Ωn denote the boundary of Ωn. Then
there exists a positive constant C, depending only on the shape of the elements, such
that ∣∣unc|K (xn) − S (unc) (xn)

∣∣(4.5)

≤ C

⎧⎪⎪⎨
⎪⎪⎩

(
a−1 curlψ, curlψ

)1/2

Ωn

∑
K′⊂Ωn\K

ωK′,na
−1/2
KK′ if n /∈ N (ΓD) ,

a
−1/2
KΓD,n

(
a−1 curlψ, curlψ

)1/2

Ωn
+

∑
γ⊂∂Ωn∩ΓD

osc (q, γ) if n ∈ N (ΓD) .
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Proof. First let n /∈ N (ΓD). Inserting definition (4.1) and using property (4.2), we
obtain

(4.6) unc|K (xn) − S (unc) (xn) =
∑

K′⊂Ωn\K

ωK′,n

(
unc|K (xn) − unc|K′ (xn)

)
.

For n ∈ N if xn /∈ ΓD is a vertex or edge midpoint of one element K only, then
Lemma 4.2 and (4.6) both imply that

∣∣unc|K (xn) − S (unc) (xn)
∣∣ ≤ 0. It therefore

suffices to consider the case when xn is a common vertex or edge midpoint of
more than one element. We first consider the contribution to (4.6) arising when an
element K ′ shares a common edge γ with element K.

On γ = ∂K ∩ ∂K ′, as noted following (2.2), [unc]γ vanishes at the two Gauss–

Legendre points on γ, so unc|K −unc|K′ = r
((

sK
γ

)2 − 1
12 |γ|

2
)

for a constant r ∈ R.

Hence, forming second derivatives, we obtain 2r = ∂

∂t̂
K
γ

[
∂unc

∂t̂

]
γ

where
[

∂unc

∂t̂

]
γ

=
∂unc|K

∂t̂
K
γ

+
∂unc|K′

∂t̂
K′
γ

. So, letting sK
γ = ± |γ|

2 we obtain for a vertex xn ∈ γ,

(4.7) unc|K (xn) − unc|K′ (xn) = µ |γ|2 ∂

∂t̂
K

γ

[
∂unc

∂t̂

]
γ

where µ = 1
12 , while taking sK

γ = 0 gives a similar identity for the midpoint xn ∈ γ,
namely (4.7) with µ = − 1

24 . Let the function βγ ∈ H take the value µβK
γ on K,

−µβK′

γ on K ′ and zero everywhere else with the function βK
γ having been defined

in Lemma 3.7. Now letting w = βγ in (2.21) and integrating the right hand side of
the resulting expression by parts gives

(
a−1 curlψ, curlβγ

)
K∪K′ =

(
βγ ,

[
∂unc

∂t̂

]
γ

)
γ

= µ |γ|2 ∂

∂t̂
K

γ

[
∂unc

∂t̂

]
γ

by applying Lemma 3.7. Combining this with (4.7) yields

(4.8) unc|K (xn) − unc|K′ (xn) =
(
a−1 curlψ, curlβγ

)
K∪K′ .

This relation is valid for pairs of elements K and K ′ sharing a common edge γ. More
generally, suppose elements K and K ′ share only a common vertex xn. The path
℘∗ (K, K ′) appearing in (2.17) links the elements K and K ′ by a set of elements
having a common vertex at xn. The set of edges shared by these elements is
denoted by ∂℘∗ (K, K ′). Relation (4.8) holds on each edge along the path, and
so, by summing (4.8) over edges, we obtain a telescoping sum of differences of unc

across neighbouring edges, which simplifies to give

(4.9) unc|K (xn) − unc|K′ (xn) =
(
a−1 curlψ, curlβKK′

)
Ωn

where βKK′ =
∑

γ′⊂∂℘∗(K,K′)βγ′ . Applying Cauchy–Schwarz followed by the esti-

mate
∥∥a−1/2 curlβKK′

∥∥
L2(Ωn)

≤ Ca
−1/2
KK′ gives

∣∣unc|K (xn) − unc|K′ (xn)
∣∣ ≤ Ca

−1/2
KK′

(
a−1 curlψ, curlψ

)1/2

Ωn
.

The result is then obtained by inserting this estimate into the expression obtained
by applying the triangle inequality to (4.6) after taking its modulus.
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Now, let xn be an endpoint or midpoint of an edge γ ⊂ ΓD ∩ ∂K ′, where we
allow for the possibility that K ′ = K, with K ′ chosen so that it maximises aKK′

and observe that

(4.10) unc|K (xn)−S (unc) (xn) = unc|K (xn)−unc|K′ (xn)+unc|K′ (xn)−q (xn) .

Recalling that q (xn) = qI (xn), unc|K′ − qI vanishes at the two Gauss–Legendre
points on γ and applying Lemma 3.7 allows us to write

(4.11) unc|K′ (xn) − q (xn) = µ |γ|2 ∂

∂t̂
K′

γ

(
∂unc|K′

∂t̂
K′

γ

)
−

(
βγ ,

∂qI

∂t̂
K′

γ

)
γ

where βγ = µβK′

γ on K ′ and zero elsewhere. As before letting w = βγ in (2.21),
integrating the right hand side of the resulting expression by parts and applying
Lemma 3.7 gives

(
a−1 curlψ, curlβγ

)
= µ |γ|2 ∂

∂t̂
K′

γ

(
∂unc|K′

∂t̂
K′

γ

)
−

(
βγ ,

∂q

∂t̂
K′

γ

)
γ

.

Combining this with (4.11) yields

unc|K′ (xn) − q (xn) =
(
a−1 curlψ, curlβγ

)
+

(
βγ ,

∂ (q − qI)

∂t̂
K′

γ

)
γ

which we can add to (4.9) then insert the resulting expression into (4.10) to obtain

unc|K (xn) − S (unc) (xn) =
(
a−1 curlψ, curlβKΓD,n

)
+

(
βγ ,

∂ (q − qI)

∂t̂
K′

γ

)
γ

where βKΓD ,n = βKK′ + βγ . Observing that
(

∂βγ

∂t̂
K′
γ

, c

)
γ

= 0 for all c ∈ R and

integrating by parts allows us to say that(
βγ ,

∂ (q − qI)

∂t̂
K′

γ

)
γ

= −
(

∂βγ

∂t̂
K′

γ

, q − qI − c

)
γ

with c ∈ R chosen so that ‖q − qI − c‖L2(γ) ≤ Ch
1/2
K′ osc (q, γ). The result then

follows by combining the above and applying Cauchy–Schwarz and the estimates∥∥a−1/2 curlβKΓD,n

∥∥
L2(Ωn)

≤ Ca
−1/2
KΓD,n and

∥∥∥∥ ∂βγ

∂t̂
K′
γ

∥∥∥∥
L2(γ)

≤ Ch
−1/2
K′ . �

Lemma 4.3. Let K̃ denote the patch formed from element K and those elements
sharing a common vertex with element K and let EK denote the set of edges having
any vertex of K as an endpoint. Then there exists a positive constant c, depending
only on the shape of the elements, such that

(4.12) cΨ2
K ≤ ΥK

(
a−1 curlψ, curlψ

)
K̃

+ aK

∑
γ⊂EK∩ΓD

osc2 (q, γ) .

Proof. By a standard argument we have that

Ψ2
K ≤ C

⎛
⎝|||unc − S (unc)|||2K + aK

∑
γ⊂∂K∩ΓD

osc2 (q, γ)

⎞
⎠
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and by the equivalence of norms in finite dimensions we have that

|||unc − S (unc)|||2K ≤ C
∑

n∈N (K)

aK

∣∣unc|K (xn) − S (unc) (xn)
∣∣2 .

The result then follows by inserting the estimates proved in Lemma 4.2 and ob-
serving that

∑
n∈N (K)∩N (ΓD)

aK

aKΓD,n
+

∑
K′⊂K̃\K

aKω2
K′,n

aKK′
≤ ΥΓD

+
∑

K′⊂K̃\K

ΥKK′ = ΥK . �

5. Summary and numerical examples

5.1. Summary of main results. Our bounds on the broken energy norm of the
error e in the Fortin–Soulie finite element approximation are summarised in the
following theorem.

Theorem 5.1. Let ΦK (βK) and ΨK be defined as in Lemma 3.5 and Lemma 4.1
respectively. Then, the broken energy norm of the total error e can be estimated as

(5.1) |||e|||2 ≤
∑
K∈P

(
Φ2

K (βK) + Ψ2
K

)
.

Also, there exists a positive constant c, which is independent of any mesh-size, such
that

c
(
Φ2

K (βK) + Ψ2
K

)
≤ ΥK |||e|||2K̃ + aK

∑
γ⊂EK∩ΓD

osc2 (q, γ)

+a−1
K

∑
K′⊂K̃

osc2 (f, K ′) + a−1
K

∑
γ⊂∂K∩ΓN

osc2 (g, γ)(5.2)

where K̃ denotes the patch formed from element K and those elements sharing a
common vertex with element K, EK denotes the set of edges having any vertex of
K as an endpoint and ΥK is defined in (2.18).

Proof. Follows from Lemma 2.2, Lemma 3.5, Lemma 3.9, Lemma 4.1 and Lemma
4.3 by observing that K̂ ⊂ K̃. �

The evaluation of ΨK defined in Lemma 4.1 is straightforward. For the evalua-
tion of ΦK (βK), the following result will be useful.

Lemma 5.2. Let the vertices, edges, tangent and normal vectors of element K ∈ P
be enumerated and have direction as shown in Figure 2 where for i = 1, 2, 3, |ti| =
|ni| = |γi|. Let

(5.3) �V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

grad (PKf) · (x1 − xK)
grad (PKf) · (x2 − xK)
grad (PKf) · (x3 − xK)
|γ1|2 αK

γ1
∂

∂t̂1

[
a∂unc

∂n̂

]
γ1

|γ2|2 αK
γ2

∂
∂t̂2

[
a∂unc

∂n̂

]
γ2

|γ3|2 αK
γ3

∂
∂t̂3

[
a∂unc

∂n̂

]
γ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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where xK is the centroid of K and PKf ,
[
a∂unc

∂n̂

]
γ

and αK
γ are defined in Section

2.5, (3.2) and (3.4) respectively. Also, let

(5.4) S =
1

1440

[
− |K|

45 A B

BT 15
|K|C

]

where, with Q = 1
2

3∑
i=1

|γi|2, A is the matrix with entries

aij = 21 (1 − 6δij)Q + (16 + 54δij) (ti · tj) ,(5.5)

B =

⎡
⎣ |γ2|2 − |γ3|2 −s12 s13

s21 |γ3|2 − |γ1|2 −s23

−s31 s32 |γ1|2 − |γ2|2

⎤
⎦ ,(5.6)

where sij = 2 |γi|2 + 5 |γj |2 + 6 (ti · tj), and C is the matrix with entries cij =
δijQ + (1 − δij) (ti · tj). Then

(5.7) ‖σK‖2
L2(K) = �V T S�V .

Proof. An expression for ‖σK‖L2(K) can be obtained by using the definition of σK

and formula (2.4) to evaluate (σK , σK). This expression can then be simplified
using the identity t1 + t2 + t3 = 0 and finally manipulated into the above form. �

5.2. Numerical examples. We illustrate the theoretical results with three exam-
ples: one with a smooth solution, one where the coefficient a undergoes jumps of
varying sizes and one where the oscillation of f is non-zero, the coefficient a under-
goes jumps and the gradient of the true solution displays highly singular behaviour
at the origin.

The definition of ΦK involves an arbitrary function βK ∈ H1
0 (K). This may

simply be chosen to vanish, but alternative choices may be made in the hope of
tightening the error bounds. In the following example we also present the results
obtained by choosing βK to be cubic, quartic and quintic polynomials supported
on the element. When reporting numerical results we let Ndofs denote the number
of degrees of freedom, for n = 0, 3, 4, 5, let η2

n =
∑

K∈P

(
Φ2

K

(
β

(n)
K

)
+ Ψ2

K

)
where

β
(n)
K ∈ H1

0 (K)∩Pn (K) is chosen to minimise ΦK and let the effectivity index of the
estimator be denoted by ϑn = ηn

|||e||| . Note that minimising over H1
0 (K)∩P0 (K) = 0

is equivalent to omitting the bubble correction.

5.3. Example 1. Our first example is the problem − div (gradu) = −6x in Ω =
(0, 1)2, with the true solution given by u = x3. Dirichlet conditions are applied on
the vertical edges while Neumann conditions are chosen on the horizontal edges.
The initial mesh is formed by subdividing the domain into two elements by joining
the top left vertex to the bottom right vertex. The mesh was then uniformly refined
whereby each triangle is subdivided into four subtriangles at each step.

It can be seen from Figure 3 that there is a notable difference if a cubic bubble
is introduced, but further enrichments to quartic and quintic bubbles have little
effect. Consequently, we shall apply a cubic bubble correction in the remaining
examples.
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Figure 3. Performance (a) and effectivity index (b) of estimators
for Example 1.
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Figure 4. Initial mesh for Example 2(a) and Example 3(b).

5.4. Example 2. Our second example is for the problem − div (agradu) = f in
the region Ω bounded by the lines x = 0, y = 0 and x + y = 1 with boundary
condition u = 0 on ΓD = ∂Ω, where f is chosen so that the true solution is given
by u = xy (1 − x − y). We shall vary the value taken by a in the region to the left of
the line y = x and keep a = 1 in the region to the right of this line. The mesh used
for this example is shown in Figure 4(a). The purpose of this example is to show
that, although any choice of weights satisfying αK

γ + αK′

γ = 1 where γ = ∂K ∩ ∂K ′

will provide an upper bound for the conforming error, the estimator with weights
defined in (3.4) is better than choosing equal weights.

It can be seen from Figure 5 that if the weights on interior edges are chosen
to be equal and there are large jumps in the permeability coefficient a, then the
estimator is extremely pessimistic. In contrast the weights defined in (3.4) give an
effectivity index of approximately 1.6 regardless of the magnitude of the jump in
the permeability.
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Figure 5. Effectivity index of estimators for Example 2 with
equal weights and weights defined in (3.4).
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Figure 6. Performance (a) and effectivity index (b) of estimators
for Example 3 with equal weights and weights defined in (3.4).

5.5. Example 3. For our final example we look at the performance of the estimator
for the problem − div (agradu∗) = f in the region Ω = (0, 1)2 with homogeneous
Dirichlet data on ΓD = ∂Ω. The function f has been chosen so that the exact
solution to this problem is u∗ =

(
1 − x2

) (
1 − y2

)
u where u is the solution to the

Kellogg problem from the Example: Discontinuous Coefficients in [17] where a is
also defined to take the value 161.4... in the first and third quadrants and 1 in
the second and fourth quadrants. The gradient of the true solution displays highly
singular behaviour at the origin since gradu∗ = O

(
r−9/10

)
. The initial mesh used

for this example is shown in Figure 4(b). The mesh was then adaptively refined
whereby a bulk criterion [12] was used to refine the mesh on the smallest number
of elements such that the sum of the contributions toward the estimator from these
elements exceeded 50% of the value of the estimator.
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From Figure 6 it can be seen that while the ratio of the estimator to the broken
energy norm of the true error is not as small as it was in the previous example it
only overestimates the error by a factor of at most 2.71 when the weights defined
in (3.4) are used. As in the previous example, the performance of the estimator is
not as good when equal weights are used in the evaluation of the upper bound for
the conforming error.
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