
MATHEMATICS OF COMPUTATION
Volume 77, Number 264, October 2008, Pages 1887–1916
S 0025-5718(08)02123-6
Article electronically published on May 6, 2008

A SUPERCONVERGENT LDG-HYBRIDIZABLE GALERKIN
METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS

BERNARDO COCKBURN, BO DONG, AND JOHNNY GUZMÁN

Abstract. We identify and study an LDG-hybridizable Galerkin method,
which is not an LDG method, for second-order elliptic problems in several space
dimensions with remarkable convergence properties. Unlike all other known
discontinuous Galerkin methods using polynomials of degree k ≥ 0 for both the
potential as well as the flux, the order of convergence in L2 of both unknowns
is k + 1. Moreover, both the approximate potential as well as its numerical
trace superconverge in L2-like norms, to suitably chosen projections of the
potential, with order k + 2. This allows the application of element-by-element
postprocessing of the approximate solution which provides an approximation
of the potential converging with order k+2 in L2. The method can be thought
to be in between the hybridized version of the Raviart-Thomas and that of the
Brezzi-Douglas-Marini mixed methods.

1. Introduction

In this paper, we consider the LDG-hybridizable (LDG-H) Galerkin methods
recently introduced in [11] and show how to define their numerical traces in order
to achieve the optimal order of convergence for the approximation to the flux,
and to obtain superconvergence properties similar to those of the hybridized mixed
methods of Raviart-Thomas (RT) [16] and the Brezzi-Douglas-Marini (BDM) [4]
methods; see also [10].

For the sake of simplicity of the exposition, we carry this out in the setting of
the model second-order elliptic problem

c q + ∇u = 0 in Ω,(1.1a)

∇ · q = f in Ω,(1.1b)

u = g on ∂ΩD,(1.1c)

q · n = qN on ∂ΩN ,(1.1d)

where Ω ⊂ R
d is a polyhedral domain (d ≥ 2), f ∈ L2(Ω), and c = c(x) is

a symmetric d × d matrix function that is uniformly positive definite on Ω with
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components in L∞(Ω). As usual, we assume that the (d − 1)-Lebesgue measure of
∂ΩD is not zero, that ∂Ω = ∂ΩD ∪ ∂ΩN and that ∂ΩD ∩ ∂ΩN = ∅.

To describe our results, we need to introduce what we will call hybridized
Galerkin methods; they are one of the methods studied in [11]. To do that, let us
introduce some notation. We denote by Ωh = {K} a triangulation of the domain Ω
of shape-regular simplexes K and set ∂Ωh := {∂K : K ∈ Ωh}. We associate to this
triangulation the set of interior faces E i

h and the set of boundary faces E ∂
h . We say

that e ∈ E i
h if there are two simplexes K+ and K− in Ωh such that e = ∂K+∩∂K−,

and we say that e ∈ E ∂
h if there is a simplex in Ωh such that e = ∂K ∩ ∂Ω. We set

Eh := E i
h ∪ E ∂

h .
The hybridized Galerkin methods [11] are dual-mixed hybrid methods (see the

definition in [8] and an early example in [15]) which seek an approximation to
the exact solution (q|Ω, u|Ω, u|Eh\∂ΩN

), (qh, uh, λh), in a finite-dimensional space
V h × Wh × Mh of the form

V h :={v ∈ L2(Ω) : v|K ∈ V (K) ∀K ∈ Ωh},(1.2a)

Wh :={ω ∈ L2(Ω) : ω|K ∈ W (K) ∀K ∈ Ωh},(1.2b)

Mh :={m ∈ L2(∂Ωh) : m|e ∈ M(e) ∀e ∈ Eh, m|∂ΩD
= 0},(1.2c)

and determines it by requiring that

(c qh, v)Ωh
− (uh,∇ · v)Ωh

+ 〈ûh, v · n〉∂Ωh
= 0,(1.3a)

− (qh,∇ω)Ωh
+ 〈q̂h · n, ω〉∂Ωh

= (f, ω)Ωh
,(1.3b)

〈q̂h · n, µ〉∂Ωh
= 〈qN, µ〉∂ΩN

,(1.3c)

for all (v, ω, µ) ∈ V h × Wh × Mh. Here, we have used the notation

(σ, v)Ωh
:=

∑
K∈Ωh

∫
K

σ(x) · v(x) dx,

(ζ, ω)Ωh
:=

∑
K∈Ωh

∫
K

ζ(x) ω(x) dx,

〈ζ, v · n〉∂Ωh
:=

∑
K∈Ωh

∫
∂K

ζ(γ) v(γ) · n dγ,

for any functions σ, v in H1(Ωh) := [H1(Ωh)]d and ζ, ω in the space H1(Ωh) =
{v ∈ L2(Ω) : v|K ∈ H1(K) ∀K ∈ Ωh}. The outward normal unit vector to ∂K is
denoted by n.

To complete the description of the hybridized Galerkin methods, the definition
of numerical traces (q̂h, ûh) on the faces of the triangulation Eh has to be provided.
The choice which is relevant here is

ûh =

{
P∂ g on Eh ∩ ∂ΩD,

λh on Eh \ ∂ΩD,
(1.4a)

q̂h =qh + τ (uh − ûh)n on Eh,(1.4b)

where P∂ denotes an L2-projection defined as follows. Given any function ζ ∈
L2(Eh) and an arbitrary face e ∈ Eh, the restriction of P∂ζ to e is defined as the
element of Pk(e) that satisfies

〈P∂ζ − ζ, ω〉e = 0, ∀ω ∈ Pk(e).(1.5)
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Note that by suitably choosing the local spaces V (K), W (K), and M(e), and
the values of the local stabilization parameters τ , we can obtain the hybridized RTk,
the hybridized BDMk and the LDG-Hk methods; see Tables 1 and 2. In Table 1
and in the remainder of this paper, we denote the space of polynomials of degree
at most k ≥ 0 defined on D by Pk(D), and set Pk(D) := [Pk(D)]d. Since all
these methods can be implemented in the same way and can be used in different
elements while being automatically coupled, what is relevant, as argued in [11], is
to find out which method should be used in what element in order to optimize the
computational effort. It is thus important from this perspective to develop DG
methods as accurate and efficient as mixed methods so that they can be used in
situations in which mixed method cannot. The LDG-H methods we uncover in this
paper are the first example of those methods.

Table 1. The local spaces

method V (K) W (K) M(e)

RTk Pk(K) ⊕ xPk(K) Pk(K) Pk(e)
LDG-Hk Pk(K) Pk(K) Pk(e)
BDMk Pk(K) Pk−1(K) Pk(e)

Table 2. The local stabilization parameters τ

method τ |∂K

RTk ≡ 0
LDG-Hk ≥ 0, 
≡ 0
BDMk ≡ 0

It is well known that the RTk and BDMk methods provide an approximation qh

to the flux which converges in L2 with order k + 1, that uh and λh superconverge
in L2-like norms to suitably chosen projections of the potential u with order k + 2,
and that, as a consequence, it is possible to postprocess the approximate solution to
obtain another approximation u∗

h converging in L2 with order k +2; see [1] and [4],
and also [10]. In this paper, we use an extension of the postprocessing proposed in
[17, 18] and [14]. Given the similarities between these two mixed methods and the
LDG-Hk method, it is natural to ask if it is possible to choose the local penalization
parameters τ as to obtain similar convergence and superconvergence results. The
main contribution of this paper is to show that this is actually possible.

Indeed, we show that this happens if we take, on each simplex K ∈ Ωh,

τ =

{
0, on ∂K \ eτ

K ,

τK , on eτ
K ,

(1.6)

where eτ
K is an arbitrary but fixed face of K and τK is a strictly positive real number.

Since the local penalization parameter τ is nonzero only on a single face of each
simplex, we call this LDG-H method the single-face hybridizable DG method; for
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simplicity, we are going to refer to the method under consideration by the SF-Hk

method. It is interesting to note two of the minimal dissipation DG methods
considered in [6], in the framework of a study of superconvergence properties of DG
methods for one-dimensional steady-state convection-diffusion problems, happen to
be an SF-H method. The first is called the md-DG method (see Table 1 in [6]) and
is obtained, in our notation, by taking on each interior node xi,

τ (x+
i ) = 0 and τ (x−

i ) = k/hi,

where hi is the size of the interval to the left of the node xi. The second is called
the md-LDG method, and is obtained by taking the above choice of parameters
τ formally letting τ (x−

i ) go to infinity. The authors are not aware of any other
instance of SF-H methods. In particular, let us emphasize that SF-H methods
are not LDG methods whenever the stabilization parameters τ are finite; see the
discussion about LDG-H methods in [11].

In Table 3, we compare the orders of convergence for the flux of this method and
the above-mentioned mixed methods. We have also included the order of conver-
gence for the general LDG-H methods; it can be deduced from their characterization
[11] and the study of DG methods carried out in [5]. Finally, in Table 4, we display
the orders of convergence of the postprocessed approximation u∗

h to the potential.

Table 3. The orders of convergence in h of the L2-errors

method ‖ q − qh ‖L2(Ωh) ‖u − uh ‖L2(Ωh) condition

RTk k + 1 k + 1 k ≥ 0
LDG-Hk [5] k k + 1 k ≥ 1 and τ = O(1/h)
LDG-Hk [5] k + 1/2 k + 1 k ≥ 0 and τ = O(1)

SF-H k k + 1 k + 1 k ≥ 0
BDMk k + 1 k k ≥ 1

Table 4. The orders of convergence in h of ‖u − u∗
h ‖L2(Ωh)

method order condition

RTk k + 2 k ≥ 0
SF-H k k + 2 k ≥ 1
SF-H k k + 2 k = 0, f = 0
BDMk k + 2 k ≥ 2
BDMk k + 1 k = 1

We also uncover new relations between these three methods. One of the main
features of the hybridizable Galerkin methods proposed in [11] is that the only
degrees of freedom that turn out to be globally coupled are those of the so-called
Lagrange multiplier λh. This implies, in particular, that the LDG-H methods can
be more efficiently implemented than the LDG methods introduced in [12]. In fact,
see the discussion in [11], they can be implemented as efficiently as the hybridized
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RTk; see [7] for the case k = 0 in two dimensions, and BDMk mixed methods, see
[10] for the case k ≥ 0 in multi-dimensions for both of these methods. Here we show
that the stiffness matrix of the Lagrange multiplier for the RTk, BDMk and SF-Hk

methods is actually identical and that, when f |K ∈ Pk−1(K) for all K ∈ Ωh, these
methods provide the same approximation (qh, λh).

Next, let us briefly comment on the approach taken to carry out the a priori
error analysis of the SF-Hk methods. We did not take the approach used in [5] to
analyze DG and LDG methods, or that used in the unified analysis of DG methods
[2]. Instead, we exploited the unifying framework introduced in [11] to render the
analysis of the SF-Hk methods as close as possible to those of the hybridized RTk

and BDMk methods. Since a key ingredient in those analyzes is the existence of a
projection (Π, P) satisfying the so-called commutativity property

∇ · Πσ = P
t ∇ · σ,

for all σ ∈ H(div, Ω), the crucial step in the analysis was to find a similar pro-
jection. Unlike the above-mentioned mixed methods, the space of fluxes V h of
the SF-H k methods is not included in H(div, Ω) and, as a consequence, the above
commutativity property can only be satisfied in a weak sense. We found a new
projection satisfying the following weak version of the commutativity property:

−(∇ζ,Πσ)Ωh
= (Pζ,∇ · σ)Ωh

for all (σ, ζ) ∈ H1(Ωh)×H1(Ωh) such that ζ|∂Ω = 0. Just as the local spaces of the
SF-H k methods are, roughly speaking, “in between” the local spaces of the RTk

and BDMk methods, this projection can also be considered to be “in between”
the corresponding projections of those mixed methods. The construction of this
projection, which is intimately linked to the definition of the numerical traces of
the method ûh and q̂h and to the choice of the local spaces, is certainly the most
interesting aspect of the analysis of the SF-H k methods. The first component of
the projection, Π, was used in the error analysis of the minimal dissipation LDG
method in [9].

The paper is organized as follows. In Section 2, we state and discuss our main
results and then prove them in Section 3. In Section 4, we display numerical
experiments validating the theoretical results. Finally, in Section 5, we end with
some concluding remarks.

2. The main results

2.1. The projection (Π, P). In this subsection, we define the projection

(Π, P) : H1(Ωh) × H1(Ωh) → V h × Wh,

and gather its main properties.
Given a function σ ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh, the restriction

of Πσ to K is defined as the element of Pk(K) that satisfies

(Πσ − σ, v)K =0, ∀v ∈ Pk−1(K), if k ≥ 1,(2.1a)

〈(Πσ − σ) · n, ω〉e =0, ∀ω ∈ Pk(e) and ∀e ∈ ∂K, e 
= eτ
K .(2.1b)
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Similarly, given a function ζ ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh, the
restriction of Pζ to K is defined as the element of Pk(K) that satisfies

(Pζ − ζ, w)K =0, ∀w ∈ Pk−1(K), if k ≥ 1,(2.2a)

〈Pζ − ζ, ω〉eτ
K

=0, ∀ω ∈ Pk(eτ
K).(2.2b)

We gather the main properties of this projection in the following result. To state
it, we need to recall the definition of some classical projections. Given a function
σ ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh, the restriction of ΠRTσ to K is
defined as the element of Pk(K) ⊕ xP(K)k that satisfies

(ΠRTσ − σ, v)K =0, ∀v ∈ Pk−1(K), if k ≥ 1,(2.3a)

〈(ΠRTσ − σ) · n, ω〉e =0, ∀ω ∈ Pk(e), for all faces of K.(2.3b)

Given a function ζ ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh, the restriction of
P�ζ to K is defined as the element of P�(K) that satisfies

(P�ζ − ζ, ω)K =0, ∀ω ∈ P�(K).(2.4)

To simplify the notation, we are going to write P instead of Pk. Note that (ΠRT, P)
is nothing but the projection for the RTk method. We are now ready to state our
result.

Proposition 2.1. The projection (Π, P) given by (2.1) and (2.2) is well defined.
Moreover, on each simplex K ∈ Ωh, it satisfies the orthogonality properties

(i) (ζ − Pζ,∇ · v)K = 0,

(ii) (σ − Πσ,∇ω)K = 0,

(iii) 〈Pζ − P∂ζ,Πσ · n − P∂σ · n〉e = 0 for all faces e of K,

for all (v, ω) ∈ Pk(K) × Pk(K), and the weak commutativity property

(iv) − (∇ζ,Πσ)K = (Pζ,∇ · σ)K − 〈P∂ζ, P∂σ · n〉∂K ,

for all (σ, ζ) ∈ H1(Ωh) × H1(Ωh). Finally, we have the following approximation
estimates

(v) ‖Πσ · n − P∂σ · n ‖L2(eτ
K) ≤ C h

r+1/2
K |P∇ · σ |Hr(K),

(vi) ‖Πσ − ΠRTσ ‖L2(K) ≤ C hr+1
K |P∇ · σ |Hr(K),

(vii) ‖Pζ − Pζ ‖L2(K) ≤ C hs+1
K | ∇ζ |Hs(K),

where r, s ∈ [0, k], hK is the diameter of K, and C depends only on k and the
shape-regularity parameters of the simplex K, for any (σ, ζ) ∈ H1(K) × H1(K).

We are going to show that the three orthogonality properties imply all the oth-
ers; they are thus the crucial properties for the analysis. Note also that, by simply
adding the identity (iv) over all K ∈ Ωh, we obtain the weak commutativity prop-
erty discussed in the introduction.



A SUPERCONVERGENT LDG-HYBRIDIZABLE METHOD 1893

2.2. Characterization of the approximate solution. Next we give a charac-
terization of the approximate solution provided by the SF-H k method. We begin
by characterizing the difference between the numerical traces and the traces of the
approximate solutions on each simplex.

Proposition 2.2. For each simplex K ∈ Ωh, we have that,

(q̂h − qh) · n = τ (uh − ûh) = P∂q · n − Πq · n on ∂K.

We see that the jump (q̂h − qh) · n is independent of the value of τ whereas
the jump ûh − uh is inversely proportional to τ . Moreover, by the estimate (v) of
Proposition 2.1, we have that,

‖ (q̂h − qh) · n ‖L2(eτ
K) ≤ C h

r+1/2
K |Pf |Hr(K),

for any r ∈ [0, k], and we see that the size of jump under consideration depends
solely on the smoothness of f |K . For example, if Pf |K is a polynomial of degree
k − 1, then (q̂h − qh) ·n = 0 on eτ

K . This implies that (q̂h − qh) ·n = 0 on ∂K for
every K ∈ Ωh and, as a consequence, that qh ∈ H(div, Ω). Now, if f ∈ Hr(K), for
some r ∈ [0, k], then we have that

‖ (q̂h − qh) · n ‖L2(eτ
K) ≤ C h

r+1/2
K | f |Hr(K),

by well-known approximation properties of the projection P.
Next, we give a characterization of the approximate solution which follows from

a similar result for more general methods obtained in [11]. To state it, we need
to introduce the local solvers associated with the method. The first local solver
is defined on the simplex K ∈ Ωh as the mapping m ∈ L2(∂K) → (Qm, Um) ∈
Pk(K) × Pk(K) where

(cQm, v)K − ( Um,∇ · v)K = −〈m, v · n〉∂K ,(2.5a)

−(∇w, Qm)K + 〈w, Q̂m · n〉∂K = 0,(2.5b)

for all (v, w) ∈ Pk(K) × Pk(K), where

Q̂m = Qm + τ ( Um − P∂m)n.(2.5c)

The other local solver is defined on the simplex K ∈ Ωh as the mapping f ∈
L2(K) → (Qf, Uf) ∈ Pk(K) × Pk(K) where

(c Qf, v)K − ( Uf,∇ · v)K = 0,(2.6a)

−(∇w, Qf)K + 〈w, Q̂f · n〉∂K = (f, w)K ,(2.6b)

for all (v, w) ∈ Pk(K) × Pk(K), where

Q̂f = Qf + τ Ufn.(2.6c)

We can now state our characterization result.

Theorem 2.3. The approximate solution (qh, uh, λh) ∈ V h × Wh × Mh given by
the SF-H k method is well defined. Moreover, we have that

(qh, uh) = (Qλh, Uλh) + (Qg, Ug) + (Qf, Uf),

where λh can be characterized as the function in Mh satisfying

ah(λh, µ) = bh(µ) ∀µ ∈ Mh,
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where

ah(η, µ) :=(cQη, Qµ)Ωh
,

bh(µ) :=〈g, Qµ · n〉∂ΩD
+ (f, Uµ)Ωh

− 〈µ, qN〉∂ΩN
,

for all η and µ ∈ Mh.

This result allows us to shed light on the effect of local stabilization parameters
τ on the approximate solution. It will also allow us to compare the RTk, the BDMk

and the SF-Hk methods, see [10] for a comparison of the hybridized version of the
RTk and the BDMk methods. These results are gathered in the following theorem.
To state it, we use the projection Pk−1 which is defined by (2.4) for k ≥ 1 and
which we take to be identically zero when k = 0. We keep this convention in the
remainder of the paper.

Theorem 2.4. We have that
(i) The function (qh, Pk−1uh, λh), is independent of the values of the local

stabilization parameters τ . Moreover, changes in the local stabilization pa-
rameters τK only affect the function Uf |eτ

K
.

(ii) If Pf |K ∈ Pk−1(K) for all simplexes K ∈ Ωh, then (qh, Pk−1uh, λh) is the
same for the RTk, the BDMk (if k ≥ 1) and the SF-Hk methods. Moreover,
uh|eτ

K
= ûh|eτ

K
for all K ∈ Ωh.

(iii) The bilinear form ah(·, ·) is always the same for the RTk, the BDMk (if
k ≥ 1) and the SF-Hk methods.

2.3. A priori error estimates. In this subsection, we obtain a priori error esti-
mates for the error of the approximation (qh, uh, λh) ∈ V h × Wh × Mh given by
the SF-H k and the numerical trace ûh defined by (1.4a). To state them, we need
to introduce new notation.

For any real-valued function ζ in H l(Ωh), we set

| ζ |Hl(Ωh) :=
( ∑

K∈Ωh

| ζ |2Hl(K)

) 1
2 .

For a vector-valued function σ = (σ1, . . . , σd) ∈ H l(Ωh) we set

|σ |Hl(Ωh) :=
( d∑

i=1

|σi |2Hl(Ωh)

) 1
2 .

We can now state our results.
We begin by measuring the error in the approximation of the flux q in the norm

‖σ ‖L2(Ωh;c) = (c σ, σ)1/2
Ωh

.

Theorem 2.5. Suppose that the exact flux q belongs to Hr+1(Ωh) for some r ∈
[0, k]. Then

‖q − qh‖L2(Ωh;c) ≤ ‖q − Πq‖L2(Ωh;c) ≤ C hr+1 | q |Hr+1(Ωh),

for some constant C independent of h and the exact solution (q, u).

Note that the upper bound of the error is independent of the local stabilization
parameters τ , in complete agreement with the characterization of the approximate
solution given by Theorem 2.3. It is interesting to realize that the first estimate also
holds for the RTk and BDMk methods when the projection Π is suitably chosen; see
[13] and [4]. Such an estimate is obtained by using the commutativity property and
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the fact that the image of their projections is in H(div, Ω). Since our projection
(Π, p) only satisfies a weak version of the commutativity property, a much more
delicate analysis has to be carried out to obtain it.

In [5], it was shown that for general LDG methods with penalization parameters
of order 1/h, the order of convergence of the approximations for flux q using poly-
nomials of degree k is only k; this order is sharp because it is actually attained for
some LDG methods. It was also shown that, for DG methods with both penaliza-
tion parameters of order one, the order of convergence of the approximations for
the flux using polynomials of degree k is (k + 1/2). Here, we obtain an order of
convergence of (k + 1). No other DG method has this property.

Next, we present several estimates for the error in the approximation of the
potential u. The first is a superconvergence result. To state it, we need to introduce
the adjoint equations

c ψ + ∇ϕ = 0 in Ω,(2.7a)

∇ · ψ = θ in Ω,(2.7b)

ϕ = 0 on ∂ΩD(2.7c)

ψ · n = 0 on ∂ΩN .(2.7d)

We also need to assume that the following elliptic regularity result holds

(2.8) ‖ψ ‖Hs+1(Ωh) + ‖∇ϕ ‖Hs+1(Ωh) ≤ Cer ‖ θ ‖Hs(Ω)

for s ∈ [0, k]. Note that, since we are working with domains that can be triangulated
by using straight-faced simplexes, the above result only holds if such a domain is
convex and s = 0. However, we want to write this assumption in such a generality
since the method will be extended to domains with smooth curved boundaries in a
forthcoming paper.

Theorem 2.6. Suppose that the exact flux q belongs to Hr+1(Ωh) for r ∈ [0, k].
Set κ := maxK∈Ωh

1
hK τK

. Then,

‖Pu − uh‖H−s(Ωh) ≤ C C
r,s
κ (q) hr+s+2,

where

C
r,s
κ (q) =

{
Cer | q |Hr+1(Ωh) + κ | ∇ · q |Hr(Ωh), for s ∈ [0, k − 1], k ≥ 1,
Cer| q |H1(Ωh) + Cer| qN |H1(∂ΩN ), for r = s = k = 0 and f = 0.

Moreover, for k = 0 and general f ∈ L2(Ωh),

‖Pu − uh‖L2(Ωh) ≤ C Cκ(q) h,

where Cκ(q) = (1 + h)Cer | q |H1(Ωh) + h κ | ∇ · q |L2(Ωh).

It is interesting to note that the above superconvergence result holds for any
choice of local stabilization parameters τK such that κ is uniformly bounded, that
is, such that 1/(hK τK) is uniformly bounded with respect to h. This shows that
τK cannot be too small for superconvergence to take place.

A straightforward consequence of this theorem is the following result.

Corollary 2.7. Suppose that the exact flux (q, u) belongs to Hr+1(Ωh)×Hr+1(Ωh)
for r ∈ [0, k]. Then

‖u − uh‖L2(Ωh) ≤ C hr+1
(
Cκ(q) + |u |Hr+1(Ωh)

)
,
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where

Cκ(q) =

{
min{Cr−1,0

κ (q), h Cr,0
κ (q)} if k ≥ 1,

Cκ(q) if k = 0.

Note that the above result shows that if 1/τK is uniformly bounded for quasi-
uniform triangulations, the convergence of uh is still optimal, provided q is smoother
than required, that is, provided q ∈ Hr+1(Ωh) instead of just q ∈ Hr(Ωh). Of
course, in this case, the superconvergence of uh to Pu is lost.

The next result is a superconvergence result for the Lagrange multiplier λh. To
state it, we use the following norm:

‖P∂u − ûh ‖L2(Eh;h) = (
∑

K∈Ωh

hK‖P∂u − ûh ‖2
L2(∂K))

1/2.

Theorem 2.8. Suppose that the exact solution (u, q) of (1.1) belongs to Hr+1(Ωh)×
Hr+1(Ωh) for some r ∈ [0, k]. Then,

‖P∂u − ûh‖L2(Eh;h) ≤C
(
C

r,0
0 (q) + | q |Hr+1(Ωh)

)
hr+2,

if k ≥ 1, or if k = 0 and f = 0.

There are no results of this type for any other DG method. However, the RTk and
the BDMk methods have both similar results. Here we exploited the similarity of the
SF-Hk methods with the RTk and BDMk methods to obtain these superconvergence
results.

2.4. Postprocessing. We end this section by showing how to exploit the super-
convergence results to postprocess uh, qh and ûh to get a better approximation to
u defined as follows.

On the simplex K, we define the new approximation of u, u�
h, as the function of

Pk+1(K) given by

u�
h = uh + ũh,(2.9a)

where

uh =

{
1
d

∑
e∈∂K ûh|e if k = 0,

1
|K|

∫
K

uh dx if k > 0,
(2.9b)

and ũh is the polynomial in Pk+1
0 (K) satisfying

(a∇ũh,∇w)K =(f, w)K − 〈w, q̂h · n〉∂K ∀w ∈ Pk+1(K).(2.9c)

Here a = c−1 and Pk+1
0 (K) is the collection of functions in Pk+1(K) with mean

zero. The postprocessing technique just introduced is a slight modification of a
postprocessing proposed in [17, 18] and [14]; it consists of using the numerical trace
q̂h instead of qh.

It is easy to see that this postprocessing is associated to a locally conservative
method. Indeed, the scheme satisfied by u�

h on each simplex K ∈ Ωh is

(a∇u�
h,∇w)K + 〈w, q̂h · n〉∂K = (f, w)K ∀w ∈ Pk+1(K).

As a consequence, if we take Dh to be the union of an arbitrary set of simplexes
K ∈ Ωh, we get that

〈1, q̂h · n〉∂Dh
= (f, 1)Dh

,

which is nothing but the property of local conservativity.
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Note that ũh is well defined. Indeed, if we take w = 1 in equation (2.9c), the
right-hand side is also equal to zero thanks to equation (1.3b). The fact that it
provides a better approximation to the potential u than uh is contained in the
following result.

Theorem 2.9. Suppose that the exact solution (u, q) belongs to Hr+2(Ωh) ×
Hr+1(Ωh) for r ∈ [0, k]. Then, if k ≥ 1,

‖u − u�
h‖L2(Ωh) ≤C hr+2

(
C

r,0
0 (q) + | q |Hr+1(Ωh) + |u |Hr+2(Ωh)

)
,

and if k = 0 and f ≡ 0,

‖u − u�
h‖L2(Ωh) ≤C h2

(
C0(q) + |u |H2(Ωh)

)
.

Note that when Pf |K ∈ Pk−1(K) for all K ∈ Ωh, by Theorem 2.4 we have that
the function (q̂h ·n, Pk−1uh, λh) is the same for the RTk, BDMk (k ≥ 1) and SF-Hk

methods. As a consequence, the postprocessed approximation u�
h is also the same

for all these methods.
Note also that in [3], a general postprocessing which is solely based on approx-

imation results was obtained. When applied to the SF-Hk method for k ≥ 1, it
gives rise to an approximation of u which converges with the same orders as ours.
However, unlike such postprocessing, our postprocessed solution u�

h is associated to
a locally conservative scheme; it is also easier to compute.

Let us end this section by noting that all the error estimates for k ≥ 1 hold if in
the equation (1.3b), we replace f by any function Ihf such that Ihf |K ∈ Pk−1(K)
for all K ∈ Ωh and such that

‖ f − Ihf ‖H−1(Ω) ≤ C hr+1 | f |Hr(Ωh).

Moreover, by statement (ii) of Theorem 2.4, the function (qh, Pk−1uh, λh) provided
by the RTk, the BDMk and the SF-Hk method is the same; in particular, we have
that qh ∈ H(div, Ω). The postprocessed approximation u�

h is also the same for
those three methods.

3. Proofs

In this section, we present detailed proofs of all our results.

3.1. Proof of Proposition 2.1: The properties of (Π, P).

3.1.1. Two key auxiliary results about polynomials. To prove Proposition 2.1, we
begin by stating and proving two lemmas whose use is crucial in our analysis.

Lemma 3.1. Given the face e of the simplex K and a function z ∈ Pk(e), there is
a unique function Z ∈ Pk(K) such that

(i) 〈Z, ω〉e = 〈z, ω〉e ∀ ω ∈ Pk(e),

(ii) (Z, w)K = 0 ∀ w ∈ Pk−1(K).

Moreover,

(iii) ‖Z ‖L2(K) ≤ C h
1/2
K ‖ z ‖L2(e),

where hK is the diameter of the simplex K and C depends solely on k and the
shape-regularity parameters of the simplex K.
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Lemma 3.2. Given the face e of the simplex K and the function z such that for all
faces e′ of K different from e, z|e′ ∈ Pk(e′), there is a unique function Z ∈ Pk(K)
such that

(i) 〈Z · n, ω〉e′ = 〈z, ω〉e′ ∀ ω ∈ Pk(e′), e′ 
= e,

(ii) (Z, v)K = 0 ∀ v ∈ Pk−1(K).

Moreover,

(iii) ‖Z ‖L2(K) ≤ C h
1/2
K ‖ z ‖L2(∂K\e),

where hK is the diameter of the simplex K and C depends solely on k and the
shape-regularity parameters of the simplex K.

We are only going to give a detailed proof of Lemma 3.2 since the proof of Lemma
3.1 is similar and simpler.

Proof of Lemma 3.2. Let us begin by proving that the function σ ∈ Pk(K) sat-
isfying (i) and (ii) exists and is unique. Since the linear system determined by
equations (i) and (ii) is square, indeed,

dim(Pk−1(K)) =
(

k − 1 + d

d

)
× d,∑

e′∈∂K,e′ �=e

dim(Pk(e′)) =
(

k + d − 1
d − 1

)
× d,

dim(Pk(K)) =
(

k + d

d

)
× d,

and
(
k−1+d

d

)
+

(
k+d−1

d−1

)
=

(
k+d

d

)
, we only need to show that if σ ∈ Pk(K) satisfies

(Z, v)K = 0 ∀v ∈ Pk−1(K),

〈Z · n, ω〉e′ = 0 ∀ω ∈ Pk(e′), e′ ∈ ∂K, e′ 
= e,

then Z = 0 on K.
Let T be the affine mapping that transforms the element K to the reference

simplex K̂. Moreover, let us denote by ei, i = 1, . . . , d + 1, the faces of K where
e := ed+1. Assume that the mapping T is such that êi := T (ei) is the face of K̂

lying on the plane x̂i = 0, and set Ẑ(x̂) := Z(T−1(x̂)). Then the above equations
become

(Ẑ, v̂)
K̂

= 0 ∀ v̂ ∈ Pk−1(K̂),

〈Ẑ · ni, ω̂〉êi
= 0 ∀ ω̂ ∈ Pk(êi), i = 1, ..., d,

since spaces of polynomials of a given total degree are invariant under affine transfor-
mations. Now, let {n̂j}d

j=1 be the basis of R
d dual to {ni}d

i=1, that is, ni · n̂j = δij .

Then we can write Ẑ =
∑d

j=1 p̂jn̂j , where p̂j ∈ Pk(K̂), and obtain that

d∑
j=1

(p̂j , n̂j · v̂)
K̂

= 0 ∀ v̂ ∈ Pk−1(K̂),

〈p̂i, ω̂〉êi
= 0 ∀ ω̂ ∈ Pk(êi), i = 1, ..., d.
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The last equation implies that, for any i = 1, ..., d, p̂i|êi
= 0 and hence that p̂i = x̂ip̂i

for some polynomial p̂i in Pk−1(K̂). Taking v̂ = p̂i ni, we get

(p̂i, p̂i)K̂
= (x̂i, p̂

2
i )K̂

= 0,

and, since x̂i > 0 on K̂, we conclude that p̂i = 0. This implies that Z = 0 on K.
This proves the existence and uniqueness of Z satisfying the conditions (i) and (ii).

The estimate (iii) follows now from a simple scaling argument. This completes
the proof. �

3.1.2. Proof of the orthogonality properties. It is not difficult to see that the fact
that (Π, P) is well defined is a direct corollary of Lemmas 3.1 and 3.2.

Now, let us prove the orthogonality properties. The property (i) follows from
the property (2.2a) defining P and the orthogonality property (ii) follows from the
property (2.1a) defining Π. The orthogonality property (iii) follows from the prop-
erties (2.2b) and (2.1b) defining P and Π, and from the definition of the projection
P∂ , (1.5). In fact, it follows from the fact that on each face e of any simplex K, we
have that either Pζ = P∂ζ or Πσ · n = P∂σ · n.

3.1.3. Proof of the weak commutativity property. The weak commutativity property
(iv) is a direct consequence of the three orthogonality properties we just proved.
Indeed, we have that

−(∇ζ,Πσ)K = (ζ,∇ · Πσ)K − 〈ζ,Πσ · n〉∂K

= (Pζ,∇ · Πσ)K − 〈ζ,Πσ · n〉∂K by (i),

= −(∇Pζ,Πσ)K + 〈Pζ − ζ,Πσ · n〉∂K

= −(∇Pζ, σ)K + 〈Pζ − ζ,Πσ · n〉∂K by (ii),

= −(∇Pζ, σ)K + 〈Pζ − P∂ζ, σ · n〉∂K by (iii),

= (Pζ,∇ · σ)K − 〈P∂ζ, σ · n〉∂K ,

= (Pζ,∇ · σ)K − 〈P∂ζ, P∂σ · n〉∂K ,

by the definition of the projection P∂ , (1.5). This completes the proof of (iv).

3.1.4. Proof of the estimates (v) and (vi). Note that, by the definition of the pro-
jections Π, (2.1), and ΠRT, (2.3), we have that

(ΠRTσ − Πσ, v)K = 0,

〈(ΠRTσ − Πσ) · n, ω〉e = 〈P∂σ · n − Πσ · n, ω〉e∩eτ
K

.

for all v ∈ Pk−1(K), if k > 1, and for all ω ∈ Pk(e) and all faces e of K. By a
well-known scaling argument, we immediately obtain that

‖ΠRTσ − Πσ ‖L2(K) ≤ C h
1/2
K ‖P∂σ · n − Πσ · n ‖L2(eτ

K).

It remains to estimate the above right-hand side. To do that, we note that, for any
ω in Pk(K), we have that

〈ω,Πσ · n − P∂σ · n〉eτ
K

= 〈ω, (Πσ − σ) · n〉∂K = (ω,∇ · (Πσ − σ))K ,
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by the definition of the projections Π, (2.1). Taking ω = Z, where Z is given by
Lemma 3.1 with z := Πσ · n − P∂σ · n, we get that, for any p in Pk−1(K),

‖ z ‖2
L2(eτ

K) =‖Πσ · n − P∂σ · n ‖2
L2(eτ

K)

= − (P∇ · σ − p, Z)K

≤ C h
1/2
K ‖P∇ · σ − p ‖L2(K) ‖ z ‖L2(eτ

K),

and, after a direct application of the Bramble-Hilbert lemma, we get

‖P∂σ · n − Πσ · n ‖L2(eτ
K) ≤ C h

r+1/2
K |P∇ · σ |Hr(K),

where r ∈ [0, k]. This completes the proof of the estimates (v) and (vi).

3.1.5. Proof of the estimate (vii). Note that, by the definition of the projections P,
(2.2), and P, (2.4), we have that

(Pζ − Pζ, w)K = 0,

〈Pζ − Pζ, ω〉eτ
K

= 〈P∂ζ − Pζ, ω〉eτ
K

,

for all w ∈ Pk−1(K), if k ≥ 1, and for all ω ∈ Pk(eτ
K). This implies that Lemma

3.1 holds with z := P∂ζ − Pζ and Z = Pζ − Pζ. As a consequence,

‖Pζ − Pζ ‖L2(K) ≤ C h
1/2
K ‖P∂ζ − Pζ ‖2

L2(eτ
K).

It remains to estimate the above right-hand side.
To do that, we note that, for any v in Pk(K) ⊕ x Pk(K), we have that

(3.1) 〈Pζ − P∂ζ, v · n〉∂K = 〈Pζ − ζ, v · n〉∂K = (∇Pζ −∇ζ, v)K ,

by the definition of the projection P, (2.4) and that of the projection P∂ , (1.5). A
well-known scaling argument states that given any function z such that its restric-
tion to each face e of k belongs to Pk(e), there is a function Z in Pk(K)⊕xPk(K)
such that

(i) 〈Z · n, ω〉e = 〈z, ω〉e ∀ ω ∈ Pk(e),

(ii) (Z, v)K = 0 ∀ v ∈ Pk−1(K).

(iii) ‖Z ‖L2(K) ≤ C h
1/2
K ‖ z ‖L2(∂K),

where hK is the diameter of the simplex K and C depends solely on the shape-
regularity constants of the simplex K. Taking v := Z with z = Pζ−P∂ζ in equation
(3.1), we obtain that

‖ z ‖2
L2(∂K) =(∇Pζ −∇ζ, Z)K

=(p −∇ζ, Z)K

≤ C h
1/2
K ‖∇ζ − p ‖L2(K) ‖ z ‖L2(∂K),

for any p ∈ Pk−1(K). Thus, after a direct application of the Bramble-Hilbert
lemma, we get

‖Pζ − P∂ζ ‖L2(∂K) ≤ C h
r+1/2
K | ∇ζ |Hr(K),

where r ∈ [0, k]. This completes the proof of estimate (vii).
This completes the proof of Proposition 2.1.
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3.2. Characterization of the approximate solution. To prove the results of
the characterization of the approximate solution of the SF-H method, we begin by
proving two auxiliary results concerning key properties of the local solvers.

3.2.1. Two auxiliary results about the local solvers. To state the first auxiliary re-
sult, we need to introduce the following decomposition of our local spaces:

Pk(K) = V(K) ⊕ V⊥(K),

Pk(K) = W(K) ⊕ W⊥(K),

where

V(K) :={v ∈ Pk(K) : ∇ · v = 0},
V⊥(K) :={v ∈ Pk(K) : (c v, σ)K = 0 ∀ σ ∈ V(K)},

and

W(K) :=Pk−1(K),

W⊥(K) :={ω ∈ Pk(K) : (ω, ζ)K = 0 ∀ ζ ∈ W(K)},

Lemma 3.3. Let K be any simplex of the triangulation Ωh. Then the local mapping
(Qm, Um) given by equations (2.5) can be obtained as follows:

(i) Set
Um|eτ

K
= P∂m|eτ

K
.

(ii) Compute Qm ∈ V(K) by solving

(c Qm, v)K = −〈m, v · n〉∂K ∀ v ∈ V(K).

(iii) Compute Pk−1 Um by solving

(Pk−1 Um,∇ · v)K = 〈m, v · n〉∂K ∀ v ∈ V⊥(K).

Similarly, the local mapping (Qf, Uf) given by equations (2.6) can be obtained as
follows:

(α) Compute Uf |eτ
K

by solving

〈ω, τ Uf〉eτ
K

= (f, ω)K ∀ ω ∈ W⊥(K).

(β) Compute Qf ∈ V⊥(K) by solving

(ω,∇ · Qf)K = −〈ω, τ Uf〉eτ
K

+ (f, ω)K ∀ ω ∈ W(K).

(γ) Compute Pk−1 Uf by solving

(Pk−1 Uf,∇ · v)K = (cQf, v)K ∀ v ∈ V⊥(K).

Proof. Let us begin by proving the properties of the first local mapping. Thus,
integrating by parts in the equation (2.5b), we obtain

(ω,∇ · Qm)K = 〈ω, (Q̂m − Qm) · n〉∂K = 〈ω, τ ( Um − m)〉eτ
K

for all ω ∈ Pk(K), by the definition of the numerical trace Q̂m, (1.4b) and (1.6).
Taking ω ∈ W⊥(K), we see that

〈ω, τ ( Um − m)〉eτ
K

= 0 ∀ ω ∈ W⊥(K).
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Using the fact that W⊥(K)|eτ
K

= Pk(eτ
K) which follows by a simple application of

Lemma 3.1, we have that (i) holds. As a consequence, we see that

(ω,∇ · Qm)K = 0 ∀ ω ∈ Pk(K),

and hence that Qm ∈ V(K). The property (ii) can now be obtained by restricting
the test functions v to the space V(K) in the equation (2.5a). Now that we know
Qm, we obtain the formulation (iii) for Pk−1 Um by restricting the test functions
v to the space V⊥(K) in the equation (2.5a). It remains to show that Pk−1 Um
is uniquely defined by those equations. But this follows from the fact that the
system of equations is square and that ∇ · V⊥(K) = Pk−1(K) = W(K), which in
turn follows from the fact that ∇ · V(K) = {0} and ∇ · Pk(K) = Pk−1(K). This
completes the proof of the properties of the first local lifting.

The proof the properties (α) and (γ) of the second local mapping is similar to
the proof of the properties (i) and (iii) of the first local mapping, respectively.
Let us prove property (β). If we take v ∈ V in the equation (2.6a), we see that
Qf ∈ V⊥(K). Since the equation in (β) is obtained from (2.6b) by restricting the
tests functions ω to W(K), we only have to prove that Qf given by (β) is well
defined. But this follows from the fact that the system is a square system and
∇ · V⊥(K) = Pk−1(K) = W(K). This completes the proof. �

The second auxiliary result concerns the jumps of the local solvers.

Lemma 3.4. For each simplex K ∈ Ωh, we have that, on ∂K,

(Q̂m − Qm) · n = τ ( Um − P∂m) = 0,

(Q̂f − Qf) · n = τ Uf = P∂q · n − Πq · n.

Proof. Let us begin by proving the second identity since its proof is more involved.
Taking ω = Z in the identity (β) of Lemma 3.3, where Z is given by Lemma 3.1
with e = eτ

K , we obtain that

〈z, (Q̂f − Qf) · n〉eτ
K

=〈z, τ Uf〉eτ
K

=(Z,∇ · (q − Πq))K

= − (∇Z, q − Πq)K + 〈Z, (q − Πq) · n〉∂K

=〈z, P∂q · n − Πq · n〉eτ
K

,

by the properties of the projection Π, (2.1). As a consequence, we immediately
obtain that, on eτ

K ,

(Q̂f − Qf) · n = τK Uf = P∂q · n − Πq · n.

A similar argument gives that, on eτ
K ,

(Q̂m − Qm) · n = τK ( Um − P∂m) = 0.

This completes the proof of Lemma 3.4. �

3.2.2. Proof of Theorem 2.3: Characterization of the approximate solution. The
following result is a particular case of a general result proven in [11].

Theorem 3.5. The approximate solution (qh, uh, λh) ∈ V h × Wh × Mh given by
the SF-Hk method is well defined. Moreover, we have that

(qh, uh) = (Qλh, Uλh) + (Qg, Ug) + (Qf, Uf),
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where λh can be characterized as the function in Mh satisfying

ah(λh, µ) = bh(µ) ∀µ ∈ Mh,

where

ah(η, µ) =(c Qη, Qµ)Ωh
− 〈µ − Uµ, (Q̂η − Qη) · n〉∂Ωh

,

bh(µ) =〈g, Q̂µ · n〉∂ΩD
+ (f, Uµ)Ωh

− 〈µ, qN〉∂ΩN

− 〈µ − Uµ, (Q̂f − Qf) · n〉∂Ωh

+ 〈−Uf, (Q̂µ − Qµ) · n〉∂Ωh

+ 〈µ − Uµ, (Q̂g − Qg) · n〉∂Ωh

− 〈g − Ug, (Q̂µ − Qµ) · n〉∂Ωh
,

for all η and µ ∈ Mh.

Theorem 2.3 follows from this result if we show that on Eh,

(Q̂µ − Qµ) · n = 0 and (µ − Uµ)(Q̂f − Qf) = 0,

for all µ ∈ Mh. Since this is a straightforward consequence of Lemma 3.4, this
completes the proof of Theorem 2.3.

3.2.3. Proof of Proposition 2.2: Characterization of the jumps. By the definition
of the numerical traces (1.4) and (1.6), we have that

(q̂h − qh) · n =

{
τK (uh − ûh) on eτ

K ,

0 otherwise

=

{
τK (uh − ûh) on eτ

K ,

P∂q · n − Πq · n otherwise,

by the definition of the projection Π, (2.1b), and that of the projection P∂ , (1.5).
So, we only have to prove that

(q̂h − qh) · n = P∂q · n − Πq · n on eτ
K .

But, by Theorem 2.3, we have that

(q̂h − qh) · n =(Q̂λh − Qλh) · n + (Q̂g − Qg) · n + (Q̂f − Qf) · n
=P∂q · n − Πq · n

on the face eτ
K . This completes the proof of Proposition 2.2.

3.2.4. Proof of Theorem 2.4. The statement (i) of Theorem 2.4 follows directly
from Theorem 2.3 and from Lemma 3.3.

To prove the remaining statements, we are going to use the fact that the RTk,
BDMk and SF-Hk methods have exactly the same structure and satisfy the char-
acterization Theorem 2.3; see [11]. The only difference between these methods is
the choice of local spaces (see Table 1) and the choice of the local stabilization
parameters τ ; see Table 2. Thus, to prove statement (ii) we only have to show that
the functions (Qm, Pk−1 Um) and (Qf, Pk−1 Uf) are the same for all these methods
whenever f |K ∈ Pk−1(K) for all K ∈ Ωh. Similarly, to prove statement (iii), we
only have to show that Qm is the same for all these methods.
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To do that, we begin by noting that we have, by Lemma 3.3, that the function
(Qm, Pk−1 Um) ∈ V(K) × W(K) is determined by

(cQm, v)K = − 〈m, v · n〉∂K ∀ v ∈ V(K),

(Pk−1 Um,∇ · v)K =(c Qm, v)K + 〈m, v · n〉∂K ∀ v ∈ V⊥(K).

and that the function (Qf, Pk−1 Uf) ∈ V⊥(K)×W(K) is determined by the equa-
tions

(ω,∇ · Qf)K = − 〈ω, τ Uf〉eτ
K

+ (f, ω)K ∀ ω ∈ W(K),

(Pk−1 Uf,∇ · v)K =(cQm, v)K ∀ v ∈ V⊥(K),

where Uf |eτ
K

= 0, by (α) of Lemma 3.3, if f |K ∈ Pk−1(K). Since the four equations
above also hold (the third whenever f |K ∈ Pk−1(K)) for the BDMk method, we
conclude that the statements (ii) and (iii) hold if we exclude the RTk method.

To show that these statements also hold if we include it, we note that the above
equations hold for the RTk method if we modify the definition of the spaces V(K)
and V(K) by

VRT(K) :={v ∈ Pk(K) ⊕ xPk(K) : ∇ · v = 0},
V⊥

RT(K) :={v ∈ Pk(K) ⊕ xPk(K) : (c v, σ)K = 0 ∀ σ ∈ VRT(K)},
and if we replace the third equation by

∇ · Qf = Pf.

Thus, the result follows from the fact that

VRT(K) = {v ∈ Pk(K) : ∇ · v = 0} = V(K),

and from the fact that, if Qf ∈ V⊥
RT(K) and ∇ · Qf = Pf ∈ Pk−1(K), then Qf

belongs to the space {v ∈ Pk(K) : (c v, σ)K = 0 ∀ σ ∈ V(K)} = V⊥(K). This
completes the proof of Theorem 2.4.

3.3. Proof of the error estimates. The proof of the error estimates is based
on the error equations and the properties of the projection (Π, P) gathered in
Proposition 2.1. The error equations are

(c (q − qh), v)Ωh
− (u − uh,∇ · v)Ωh

+ 〈u − ûh, v · n〉∂Ωh
= 0,(3.2a)

(ω,∇ · (q − qh))Ωh
− 〈ω, (q̂h − qh) · n〉∂Ωh

= 0,(3.2b)

u − ûh = g − P∂g on ∂ΩD,(3.2c)

(q − q̂h) · n = qN − P∂qN on ∂ΩN ,(3.2d)

for all (v, ω) ∈ V h × Wh.
A direct consequence of the weak commutativity identity (iv) of Proposition 2.1

that we find convenient to use in our analysis is contained in the following result.

Corollary 3.6. For all (σ, ζ) ∈ H1(Ωh) × H1(Ωh), we have

(α) (ζ,∇ · Πσ)Ωh
= (Pζ,∇ · σ)Ωh

+ 〈P∂ζ,Πσ · n − P∂σ · n〉∂Ωh
,

(β) ‖Πσ − σ ‖L2(Ωh) ≤ C hr+1 |σ |Hr+1(Ωh),

(γ) ‖Pζ − ζ ‖L2(Ωh) ≤ C hs+1 | ζ |Hs+1(Ωh),

where r, s ∈ [0, k] and C depends only on k and the shape-regularity parameters of
the simplexes K ∈ Ωh.
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3.3.1. Proof of Theorem 2.5: The error in the flux. Theorem 2.5 follows immedi-
ately from the following auxiliary result.

Lemma 3.7. We have (c (q − qh),Πq − qh)Ωh
= 0.

Indeed, this implies that

(c (q − qh), q − qh)Ωh
=(c (q − qh), q − Πq)Ωh

,

and hence, that

‖ q − qh ‖L2(Ωh,c) ≤ ‖Πq − q‖L2(Ωh,c) ≤ C hs+1 | q |Hs+1(Ωh),

for some s ∈ [0, k], by the estimate (vi) of Proposition 2.1. This proves Theorem
2.5.

Let us prove Lemma 3.7.

Proof. By the error equation (3.2a) with v := Πq − qh, we have

(c (q − qh),Πq − qh)Ωh
=(u − uh,∇ · (Πq − qh))Ωh

− 〈u − ûh, (Πq − qh) · n〉∂Ωh
.

By the identity (α) of Corollary 3.6 with (σ, ζ) := (q − qh, u − uh), we get that

(c (q − qh),Πq − qh)Ωh
=(Pu − uh,∇ · (q − qh))Ωh

+ 〈P∂u − uh, (Πq − q) · n〉∂Ωh

− 〈u − ûh, (Πq − qh) · n〉∂Ωh
,

and by the error equation (3.2b) with ω := Pu − uh,

(c (q − qh),Πq − qh)Ωh
=〈Pu − uh, (q̂h − qh) · n〉∂Ωh

+ 〈P∂u − uh, (Πq − q) · n〉∂Ωh

− 〈u − ûh, (Πq − qh) · n〉∂Ωh
.

It we denote by T the right-hand side of the above equations, it is not difficult
to see that, after a few simple algebraic manipulations, we have that T =

∑5
i=1 Ti,

where

T1 :=〈ûh − uh, (q̂h − qh) · n〉∂Ωh
,

T2 :=〈ûh − uh, (Πq − q) · n〉∂Ωh
,

T3 :=〈ûh − u, (q − q̂h) · n〉∂Ωh
,

T4 :=〈P∂u − u, (Πq − q) · n〉∂Ωh
,

T5 :=〈Pu − u, (q̂h − qh) · n〉∂Ωh
.

We are going to show that T = 0.
We begin by noting that,

T1 =
∑

K∈Ωh

〈ûh − uh, (q̂h − qh) · n〉∂K

=
∑

K∈Ωh

〈ûh − uh, P∂q · n − Πq · n〉∂K ,
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by Proposition 2.2. By the definition of the projection P∂ , (1.5),

T1 =
∑

K∈Ωh

〈ûh − uh, (q − Πq) · n〉∂K

= − T2,

by the definition of the projection Π, (2.1b). Thus, T1 + T2 = 0.
Next, let us show that T3 + T4 = 0. By the fact that the numerical trace ûh and

the normal component of the numerical trace q̂h are single-valued on the interior
faces, by definition of ûh, (1.4a), and the equation (1.3c) satisfied by q̂h, we have
that

T3 =〈ûh − u, (q − q̂h) · n〉∂Ω,

=〈P∂g − g, (q − q̂h) · n〉∂ΩD
+ 〈λh − u, qN − P∂qN〉∂ΩN

,

by the definition of the numerical traces at the boundary. By using the definition
of the projection P∂ , (1.5), we get

T3 =〈P∂u − u, q · n − P∂q · n〉∂ΩD
+ 〈P∂u − u, q · n − P∂q · n〉∂ΩN

=〈P∂u − u, q · n − P∂q · n〉∂Ω

=〈P∂u − u, q · n − P∂q · n〉∂Ωh

=〈P∂u − u, q · n − Πq · n〉∂Ωh

= − T4,

Finally, let us show that T5 = 0. By the definition of the numerical trace q̂h,
(1.4b),

T5 =
∑

K∈Ωh

〈Pu − u, (q̂h − qh) · n〉∂K

=
∑

K∈Ωh

〈Pu − u, (q̂h − qh) · n〉eτ
K

= 0,

by the definition of the projection P, (2.2b). This completes the proof. �

3.3.2. Proof of Theorem 2.6: Superconvergence of uh. Since

‖Pu − uh ‖H−s(Ωh) = sup
θ∈C∞

0 (Ω)

(Pu − uh, θ)Ω
‖ θ ‖Hs(Ω)

,

we need to estimate the number (Pu − uh, θ)Ω. It is expressed in a suitable way in
the following auxiliary result. Let us recall that Pk−1 is defined by (2.4) for k ≥ 1,
and is Pk−1 ≡ 0 for k = 0.

Lemma 3.8. We have

(Pu − uh, θ)Ωh
=(c (q − qh),Πψ − ψ)Ωh

+ (Pk−1∇ϕ −∇ϕ, q − Πq)Ωh

−
∑

K∈Ωh

τ−1〈Πq · n − P∂q · n,Πψ · n − P∂ψ · n〉eτ
K

.

Assume that k ≥ 1. Then, applying the Cauchy-Schwarz inequality and using
the estimate of q − qh in Theorem 2.5, and the approximation properties of the
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projections Pk−1 and P, (v) in Proposition 2.1 and (β) in Corollary 3.6, we readily
obtain

(Pu − uh, θ)Ωh
≤C hr+1 | q |Hr+1(Ωh) hs+1 |ψ |Hs+1(Ωh)

+ C hr+1 | q |Hr+1(Ωh) hs+1 | ∇ϕ |Hs+1(Ωh)

+ max
K∈Ωh

1
hK τK

C hr+1 | f |Hr(Ωh) hs+1 | θ |Hs(Ωh),

where r, s ∈ [0, k − 1]. Since κ := maxK∈Ωh

1
hK τK

and using the elliptic regularity
assumption (2.8), we get

(Pu − uh, θ)Ωh
≤ C C

r,s
κ (q) hr+s+2 | θ |Hs(Ωh).

This completes the proof of Theorem 2.6 for k ≥ 1.
In the case k = 0, we have that

(Pu − uh, θ)Ωh
≤C h | q |H1(Ωh) h |ψ |H1(Ωh)

+ C h | q |H1(Ωh) | ∇ϕ |H1(Ωh)

+ κ C h | f |L2(Ωh) h | θ |L2(Ωh),

and, after using the elliptic regularity assumption (2.8), we get

(Pu − uh, θ)Ωh
≤ C Cκ(q) h | θ |L2(Ωh).

Finally, let us consider the case k = 0 and f = 0. By the identity (v) of Proposition
2.1 we have that Πσ · n = P∂σ · n, and by the identity (vi) of Proposition 2.1 we
have that Πq = ΠRTq. This implies that

(Pu − uh, θ)Ωh
=(c (q − qh),Πψ − ψ)Ωh

+ 〈ϕ, (q − Πq) · n〉∂Ω

=(c (q − qh),ΠRTψ − ψ)Ωh
+ 〈ϕ − P∂ϕ, qN − P∂qN〉∂ΩN

by the adjoint equation (2.7c) and the boundary condition (1.1d). As a consequence,
we get

(Pu − uh, θ)Ωh
≤C h | q |H1(Ωh) h |ψ |H1(Ωh)

+ C h | qN |H1(∂ΩN ) h |ϕ |H1(∂ΩN ),

and since

|ϕ |H1(∂ΩN ) ≤ C |ϕ |H2(Ω),

by the elliptic regularity assumption (2.8), we get

(Pu − uh, θ)Ωh
≤C C

0,0
κ (q) h2 | θ |L2(Ω).

It remains to prove Lemma 3.8.

Proof. By the adjoint equation (2.7b), we have that

(Pu − uh, θ)Ωh
=(Pu − uh,∇ · ψ)Ωh

=(u − uh,∇ · Πψ)Ωh
− 〈P∂u − uh, (Πψ − ψ) · n〉∂Ωh

,
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by the identity (α) of Corollary 3.6 with (σ, ζ) := (ψ, u−uh). By the error equation
(3.2a) with v := Πψ, we get

(Pu − uh, θ)Ωh
=(c (q − qh),Πψ)Ωh

+ 〈u − ûh,Πψ · n〉∂Ωh

− 〈P∂u − uh, (Πψ − ψ) · n〉∂Ωh

=(c (q − qh),Πψ − ψ)Ωh
+ (c (q − qh), ψ)Ωh

+ 〈u − ûh,Πψ · n〉∂Ωh
− 〈P∂u − uh, (Πψ − ψ) · n〉∂Ωh

,

and, by the adjoint equation (2.7a),

(Pu − uh, θ)Ωh
=(c (q − qh),Πψ − ψ)Ωh

− (q − qh,∇ϕ)Ωh

+ 〈u − ûh,Πψ · n〉∂Ωh
− 〈P∂u − uh, (Πψ − ψ) · n〉∂Ωh

.

By the orthogonality property (ii) of Proposition 2.1, we get that

(Pu − uh, θ)Ωh
=(c (q − qh),Πψ − ψ)Ωh

+ (q − Πq, Pk−1∇ϕ −∇ϕ)Ωh

− (Πq − qh,∇ϕ)Ωh
+ 〈u − ûh,Πψ · n〉∂Ωh

− 〈P∂u − uh, (Πψ − ψ) · n〉∂Ωh
.

If we denote by T the last three terms of the above right-hand side, we see that,
after some simple algebraic manipulations, we can write T =

∑4
i=1 Ti, where

T1 = − 〈ûh − uh, (Πψ − ψ) · n〉∂Ωh
,

T2 = − 〈P∂u − u, (Πψ − ψ) · n〉∂Ωh
,

T3 = − 〈ûh − u, ψ · n〉∂Ωh
,

T4 = − (Πq − qh,∇ϕ)Ωh
.

By the definition of the numerical trace ûh, (1.4a) and (1.6), we have that

T1 = −
∑

K∈Ωh

〈ûh − uh,Πψ · n − P∂ψ · n〉eτ
K

= −
∑

K∈Ωh

τ−1〈Πq · n − P∂q · n,Πψ · n − P∂ψ · n〉eτ
K

,

by Proposition 2.2.
It remains to show that T2 + T3 + T4 = 0. By the definition of the projection

P∂ , (1.5),

T2 = − 〈P∂u − u,−ψ · n〉∂Ωh

= − 〈P∂u − u,−ψ · n〉∂ΩD

= 〈P∂u − u, ψ · n〉∂ΩD
.

By the definition of the numerical trace ûh, (1.4a),

T3 = − 〈ûh − u, ψ · n〉∂Ω

= − 〈ûh − u, ψ · n〉∂ΩD

= − 〈P∂u − u, ψ · n〉∂ΩD

= − T2.



A SUPERCONVERGENT LDG-HYBRIDIZABLE METHOD 1909

Next, we show that T4 = 0. Integrating by parts, we obtain

T4 =(∇ · (Πq − qh), ϕ)Ωh
− 〈(Πq − qh) · n, ϕ〉∂Ωh

=(∇ · (q − qh), Pϕ)Ωh
+ 〈(Πq − q) · n, P∂ϕ〉∂Ωh

− 〈(Πq − qh) · n, ϕ〉∂Ωh

by the identity (α) of Corollary 3.6 with (σ, ζ) := (q−qh, ϕ). By the error equation
(3.2b) with ω := Pϕ,

T4 =〈Pϕ, (q̂h − qh) · n〉∂Ωh
+ 〈(Πq − q) · n, P∂ϕ〉∂Ωh

− 〈(Πq − qh) · n, ϕ〉∂Ωh

=〈P∂ϕ, (q̂h − qh) · n〉∂Ωh
+ 〈(Πq − q) · n, P∂ϕ〉∂Ωh

− 〈(Πq − qh) · n, P∂ϕ〉∂Ωh
,

by the definition of the projection P∂ , (1.5), the definition of the projection P,
(2.2b), and the definition of the numerical trace q̂h, (1.4b). Hence

T4 =〈P∂ϕ, (q̂h − q) · n〉∂Ωh
= 〈P∂ϕ, (q̂h − q) · n〉∂Ω = 0,

by the adjoint equation (2.7c) and the equation (1.3c) for q̂h.
This completes the proof. �

3.3.3. Proof of Theorem 2.8: Superconvergence of ûh. To prove this theorem, let
us begin by estimating ‖P∂u− ûh ‖2

L2(e) for each face e of each simplex K. For the
face eτ

K , we have that, by definition of the projection P, (2.2),

‖P∂u − ûh ‖L2(eτ
K) =‖Pu − ûh ‖L2(eτ

K)

≤‖Pu − uh ‖L2(eτ
K) + ‖uh − ûh ‖L2(eτ

K)

≤‖Pu − uh ‖L2(eτ
K) + C

h
r+1/2
K

τK
| f |Hr(K)

by Proposition 2.2 and the identity (v) of Proposition 2.1. By using a classical
inverse inequality, we can conclude that

h
1/2
K ‖P∂u − ûh ‖L2(eτ

K) ≤C

(
‖Pu − uh ‖L2(K) +

hr+1
K

τK
| f |Hr(K)

)
.

Now we consider the error in the faces e of K which are different from the face
eτ
K . By the error equation (3.2a), we have that, for all v ∈ Pk(K),

〈ûh − P∂u, v · n〉∂K\eτ
K

=(c (q − qh), v)K − (Pu − uh,∇ · v)K

− 〈ûh − P∂u, v · n〉eτ
K

.

Taking v := Z given by Lemma 3.2 with z = ûh − P∂u, we obtain that

‖ ûh − P∂u ‖L2(∂K\eτ
K) ≤ C (h

1/2
K ‖ q − qh ‖L2(K) + h

−1/2
K ‖Pu − uh ‖L2(K)

+ ‖ ûh − P∂u ‖L2(eτ
K) ) ,

and using the estimate for the error in eτ
K ,

h
1/2
K ‖ ûh − P∂u ‖L2(∂K\eτ

K) ≤ C (‖Pu − uh ‖L2(K) + hK ‖ q − qh ‖2
L2(K)

+
hr+1

K

τK
| f |Hr(K) ) .
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As a consequence, we get

‖P∂u − ûh ‖L2(Eh;h) ≤ C (‖Pu − uh ‖L2(Ωh) + h‖ q − qh ‖L2(Ωh)

+ κ hr+2 | f |Hr(Ωh)),

where κ := maxK∈Ωh
1/(τK hK). The result now follows from Theorems 2.6, 2.5

and 2.4 (i). This completes the proof of Theorem 2.8.

3.3.4. Proof of Theorem 2.9: The error estimate for u�
h. By the definition of u�

h,
(2.9a), we have that

‖u − u�
h ‖L2(K) ≤‖u − uh ‖L2(K) + ‖ ũ − ũh ‖L2(K),

where u is defined in (2.9b) and ũ = u − u. We estimate each of the two terms of
the right-hand side separately.

We begin by estimating the second term. Since, by Poincaré’s inequality, we
have

‖ ũ − ũh ‖L2(K) ≤ C hK ‖∇(ũ − ũh) ‖L2(K),

it is enough to estimate the error in the gradient. To do that, we note that, by the
definition of ũh, (2.9c), we have

(a ∇(ũ − ũh),∇w)K = −〈w, (q − q̂h) · n〉∂K ∀w ∈ Pk+1
0 (K).

Then

‖∇(Pk+1ũ − ũh) ‖2
L2(K;a) =(a ∇(ũ − ũh),∇(Pk+1ũ − ũh))K

+ (a ∇(Pk+1ũ − ũ),∇(Pk+1ũ − ũh))K

= − 〈Pk+1ũ − ũh, (q − q̂h) · n〉∂K

+ (a∇(Pk+1ũ − ũ),∇(Pk+1ũ − ũh))K .

Let us estimate the first term of the right-hand side. For any arbitrary ω ∈
Pk+1

0 (K), we have

〈ω, (q − q̂h) · n〉∂K = 〈ω, (q − qh) · n〉∂K + 〈ω, (qh − q̂h) · n〉∂K

=
3∑

i=1

Ti,

where

T1 =(∇ω, q − qh)K ,

T2 =(ω,∇ · (q − qh))K ,

T3 =〈ω, (qh − q̂h) · n〉∂K .

By using Cauchy-Schwarz inequality, we get that

T1 ≤‖∇ω ‖L2(K;a) ‖ q − qh ‖L2(K;c).

By using the definition of the Raviart-Thomas projection ΠRT, (2.3), and by using
its commutativity property, we get that, for any r ∈ [0, k],

T2 =(ω, f − Pf)K + (ω,∇ · (ΠRTq − qh))K

≤‖ω ‖L2(K)

(
hr

K | f |Hr(K) + h−1
K ‖ q − qh ‖L2(K;c)

)
≤‖∇ω ‖L2(K;a)

(
hr+1

K | f |Hr(K) + ‖ q − qh ‖L2(K;c)

)
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by Poincaré’s inequality. Finally, by the definition of the numerical trace q̂h, (1.4b),

T3 =‖ω ‖L2(eτ
K) ‖ (qh − q̂h) · n ‖L2(eτ

K)

≤C ‖ω ‖L2(eτ
K) h

r+1/2
K | f |Hr(K),

by Proposition 2.2 and identity (v) of Proposition 2.1. Applying a simple inverse
inequality, we get

T3 ≤C ‖∇ω ‖L2(K;a) hr+1
K | f |Hr(K).

As a consequence,

〈ω, (q − q̂h) · n〉∂K ≤ C ‖∇ω ‖L2(K;a)

(
‖ q − qh ‖L2(K;c) + hr+1

K | f |Hr(K)

)
.

This implies that

‖∇(Pk+1ũ − ũh) ‖L2(K;a) ≤‖∇(Pk+1ũ − ũ) ‖L2(K)

+ C
(
‖ q − qh ‖L2(K;c) + hr+1

K | f |Hr(K)

)
,

and so,

‖Pk+1ũ − ũh ‖L2(Ωh;a) ≤Ch ‖∇(Pk+1ũ − ũ) ‖L2(Ωh)

+ C
(
h ‖ q − qh ‖L2(Ωh;c) + hr+2 | f |Hr(Ωh)

)
≤C hr+2

(
| q |Hr+1(Ωh) + |u |Hr+2(Ωh)

)
,

by Theorem 2.5 and the well-known approximation properties of Pk+1.
Let us now estimate the error u − uh. We begin by considering the case k ≥ 1.

In this case, since u − uh = P(u − uh), we get

‖u − uh ‖L2(K) ≤ ‖Pu − uh ‖L2(K) ≤ C C
r,0
κ (q) hr+2

by Theorem 2.6. Note that by Theorem 2.4, Pk−1uh is independent of the value of
the local stabilization parameters τ . This implies that the same is true for uh and
so, we get that

‖u − uh ‖L2(K) ≤ C C
r,0
0 (q) hr+2.

It remains to consider the case k = 0 and f = 0. We have that

u − uh =
1
|K|

∫
K

u(x) dx − 1
d

∑
e∈∂K

ûh|e

=
1
|K|

∫
K

(u − P1u)(x) dx

+
1
|K|

∫
K

P1u(x) dx − 1
d

∑
e∈∂K

1
|e|

∫
e

P∂(P1u) dγ

− 1
d

∑
e∈∂K

1
|e|

∫
e

(P∂(u − P1u)) dγ

− 1
d

∑
e∈∂K

1
|e|

∫
e

(ûh − P∂u) dγ.
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Since, for any function ω ∈ P1(K), we have that

1
|K|

∫
K

ω(x) dx − 1
d

∑
e∈∂K

1
|e|

∫
e

P∂ω dγ = 0,

we readily obtain that

‖u − uh ‖L2(K) ≤C ‖u − P1u ‖L2(K) + C hK |u − P1u |H1(K)

+ C hk ‖ ûh − P∂u ‖L2(∂K),

and so,

‖u − uh ‖L2(Ωh) ≤C h2
(
Cκ(q) + |u |H2(Ωh)

)
.

Since, by Theorem 2.4, λh is independent of the value of the local stabilization
parameter τ , so is uh and so

‖u − uh ‖L2(K) ≤C h2
(
C0(q) + |u |H2(Ωh)

)
.

This completes the proof of Theorem 2.9.

4. Numerical experiments

In this section, we carry out numerical experiments to validate the theoretical
convergence properties of the SF-Hk method.

To do that, we use uniform meshes obtained by discretizing Ω = (−1
2 , 1

2 )×(−1
2 , 1

2 )
with squares of side 2−l which are then divided into two triangles as indicated in
Figure 1; the resulting mesh is denoted by “mesh=l”.

−0.5 0.5
−0.5

0.5

Figure 1. Example of a mesh with h = 1/23.
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The test problem is obtained by taking ∂ΩN = ∅, c = I and choosing g and f so
that the exact solution is u(x, y) = cos(πx) cos(πy) on the domain Ω. The history
of convergence of the SF-H method with

τK = 1/h = 2l,

on the “mesh=l”, is displayed in Table 5 for polynomials of degree k = 0, k = 1
and k = 2. We observe optimal convergence rates of the quantities ‖u − uh‖L2(Ω)

and ‖q− qh‖L2(Ω) for k = 0, 1, 2 as predicted by Theorems 2.5 and 2.7. We also see
that ‖P∂u − λh‖L2(Eh;h) and ‖u − u∗

h‖L2(Ω) superconverges with rate O(hk+2) for
k = 1, 2 just as predicted by Theorems 2.8 and 2.9. These results do not guarantee
that these quantities are superconvergent if k = 0 and f 
≡ 0. Since we do not
observe superconvergence, we can conclude that the theoretical results for such a
case are actually sharp.

Table 5. History of convergence of the SF-Hk method.

mesh ‖u − uh‖
L2(Ω) ‖q − qh‖

L2(Ω) ‖P∂u − λh‖
L2(Eh;h) ‖u − u�

h‖
L2(Ω)

k � error order error order error order error order

1 .11e+1 - .17e+1 - .28e-0 - .22e-0 -
2 .36e-0 1.54 .78e-0 1.12 .92e-1 1.61 .57e-1 1.96

0 3 .12e-0 1.50 .41e-0 0.94 .35e-1 1.37 .19e-1 1.57
4 .53e-1 1.29 .21e-0 0.97 .14e-1 1.21 .79e-2 1.27
5 .24e-1 1.13 .10e-0 0.98 .69e-2 1.15 .36e-2 1.14
6 .12e-1 1.05 .53e-1 0.99 .32e-2 1.12 .17e-2 1.10

1 .21e-0 - .23e-0 - .31e-1 - .21e-1 -
2 .43e-1 2.27 .12e-0 0.94 .75e-2 2.02 .40e-2 2.38

1 3 .78e-2 2.47 .31e-1 1.94 .10e-2 2.96 .53e-3 2.91
4 .17e-2 2.19 .79e-2 1.99 .12e-3 3.00 .68e-4 2.98
5 .42e-3 2.05 .20e-2 2.00 .15e-4 3.01 .85e-5 2.99
6 .10e-3 2.01 .50e-3 2.00 .19e-5 3.00 .11e-6 2.99

1 .68e-1 - .89e-1 - .72e-2 - .81e-2 -
2 .38e-2 4.12 .91e-2 3.29 .41e-3 4.12 .40e-3 4.35

2 3 .32e-3 3.58 .12e-2 2.96 .27e-4 3.93 .25e-4 3.97
4 .32e-4 3.31 .15e-3 2.98 .18e-5 3.96 .16e-5 3.99
5 .37e-5 3.12 .19e-4 2.99 .11e-6 3.98 .10e-6 4.00
6 .45e-7 3.01 .23e-5 3.00 .70e-8 3.99 .63e-8 4.00

Next we explore the effect of the size of τK on the quality of the approximation.
In Table 6, we see that as τ diminishes the quality of the approximation to u
deteriorates. However, the effect of taking τ = 1/h2 or τ = 1/h is almost negligible
especially when the grids are not coarse. We also see that the order of convergence
is k + 1 for τ = 1/h2, τ = 1/h and τ = 1, but it is only k for τ = h. This is in
perfect agreement with Corollary 2.7.

We end with an example where the exact solution is harmonic, that is, c = I, f ≡
0, and display the convergence rates for k = 0 in Table 7. We take ∂ΩN = ∅ and
choose g and so that u(x, y) = ex sin(y) is the solution. We see that the quantities
‖P∂u − λh‖L2(Eh;h) and ‖u − u∗

h‖L2(Ω) superconverge with the rate O(h2) as our
theoretical results predict.
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Table 6. Effect of τ on the convergence of ‖u − uh ‖L2(Ω).

mesh τ = 1/h2 τ = 1/h τ = 1 τ = h

k � error order error order error order error order

1 .61e+0 - .11e+1 - .21e+1 - .40e+1 -
2 .21e+0 1.50 .36e-0 1.54 .11e+1 0.88 .42e+1 -0.06

0 3 .95e-1 1.17 .12e-0 1.50 .57e-0 0.97 .43e+1 -0.02
4 .46e-1 1.04 .53e-1 1.29 .28e-0 1.00 .43e+1 -0.00
5 .23e-1 1.02 .24e-1 1.13 .14e-0 1.01 .43e+1 0.00
6 .11e-1 1.01 .12e-1 1.05 .70e-1 1.01 .43e+1 0.00

1 .15e+0 - .21e-0 - .35e-0 - .67e-0 -
2 .27e-1 2.47 .43e-1 2.27 .14e-0 1.34 .54e-0 0.29

1 3 .66e-2 2.06 .78e-2 2.47 .35e-1 1.98 .28e-0 0.97
4 .16e-2 2.00 .17e-2 2.19 .88e-2 2.00 .14e-0 0.99
5 .41e-3 2.00 .42e-3 2.05 .22e-2 2.00 .67e-1 1.00
6 .10e-3 2.00 .10e-3 2.01 .60e-3 2.00 .35e-1 1.00

1 .33e-1 - .68e-1 - .14e-0 - .28e-0 -
2 .19e-2 4.10 .38e-2 4.12 .14e-1 3.31 .56e-1 2.33

2 3 .23e-3 3.07 .32e-3 3.58 .18e-2 2.96 .14e-1 1.98
4 .28e-4 3.00 .32e-4 3.31 .23e-3 2.99 .35e-2 2.00
5 .36e-5 3.00 .37e-5 3.12 .28e-4 3.00 .88e-3 2.00
6 .45e-6 3.00 .45e-7 3.01 .35e-5 3.00 .22e-3 2.00

Table 7. History of convergence for a harmonic exact solution.

mesh ‖u − uh‖
L2(Ω) ‖q − qh‖

L2(Ω) ‖P∂u − λh‖
L2(Eh;h) ‖u − u�

h‖
L2(Ω)

k � error order error order error order error order

1 .17e-0 - .22e-0 - .29e-1 - .23e-1 -
2 .87e-1 0.94 .11e-0 0.96 .79e-2 1.84 .62e-2 1.87

0 3 .44e-1 0.99 .57e-1 0.98 .21e-2 1.90 .16e-2 1.93
4 .22e-1 0.99 .29e-1 0.99 .55e-3 1.96 .41e-3 1.97
5 .11e-1 1.00 .14e-1 1.00 .10e-3 1.98 .10e-3 1.99
6 .55e-2 1.00 .72e-2 1.00 .35e-4 2.00 .26e-4 2.00

5. Concluding remarks

The error analysis carried out here for the SF-Hk method also holds for the
hybridized versions of the RTK and the BDMk methods. We simply have to replace
the local space Pk(K) × Pk(K) by the local space V (K) × W (K) given by Table
1, use the definition of the local stabilization parameter τ given in Table 2, and
suitably define the projection (Π, P). Indeed, with such changes, the first four
properties of Proposition 2.1, on which the whole analysis is based, hold. For
this reason, we can consider this analysis to be a unifying analysis of these three
methods.

A study of the optimal way to choose the local stabilization parameter τ falls
beyond the scope of this paper and will be carried out elsewhere. Extensions of
these results to more general second-order elliptic equations and other boundary
conditions are straightforward. The extension of these results to the case of hanging
nodes, variable-degree approximations and curved domains constitute the subject
of ongoing work.
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