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ON THE ORDER OF CONVERGENCE OF THE
DISCONTINUOUS GALERKIN METHOD

FOR HYPERBOLIC EQUATIONS

GERARD R. RICHTER

Abstract. The basic error estimate for the discontinuous Galerkin method
for hyperbolic equations indicates an O(hn+ 1

2 ) convergence rate for nth degree
polynomial approximation over a triangular mesh of size h. However, the
optimal O(hn+1) rate is frequently seen in practice. Here we extend the class

of meshes for which sharpness of the O(hn+ 1
2 ) estimate can be demonstrated,

using as an example a problem with a “nonaligned” mesh in which all triangle
sides are bounded away from the characteristic direction. The key to realizing

hn+ 1
2 convergence is a mesh which, to the extent possible, directs the error to

lower frequency modes which are approximated, not damped, as h → 0.

1. Introduction

The discontinuous Galerkin (DG) method for partial differential equations dates
back to the work of Reed and Hill [5] and Lesaint and Raviart [3], who viewed it
as a method for solving first order scalar hyperbolic equations over finite element
meshes. The problem they considered was of the form:{

α · ∇u + βu = f, in Ω,

u = g, on Γin(Ω),
(1)

where Ω is a 2-dimensional polygonal domain and α (a vector) and β are constants.
The inflow boundary of Ω, Γin(Ω), is characterized by α · n < 0 where n denotes
the unit outer normal (with Γout(Ω) characterized analogously).

Let {τh} be a quasiuniform family of triangulations of Ω with characteristic
triangle diameter denoted by h. In each triangle T ∈ τh, the corresponding nth
degree DG approximation uh ∈ Pn(T ) is defined by

(2) (α · ∇uh + βuh, vh)T −
∫

Γin(T )

(u+
h − u−

h ) vh α · n ds = (f, vh)T , vh ∈ Pn(T ).

Here ( , )T denotes the L2(T ) inner product, s denotes arclength, and u±
h (x) =

limε→0+ uh(x±εα). As initial data, we take u−
h to be the L2 projection of g into an

nth-degree piecewise polynomial on Γin(Ω). The method is explicit, allowing uh to
be computed triangle by triangle, or in parallel within layers of triangles, in accord
with domain of dependence requirements.
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The basic error estimate for (2) is due to Johnson and Pitkäranta [2]:

(3)
∣∣u − u−

h

∣∣
Γout(Ω)

+ ‖u − uh‖Ω ≤ Chn+1/2‖u‖n+1,Ω.

The norms in the above estimate are those on L2(Γout(Ω)), L2(Ω), and Hn+1(Ω),
respectively. Here and in what follows, C indicates a generic positive constant,
independent of u and h.

The estimate (3) predicts an O(h1/2) gap from the optimal rate of convergence.
In practice, however, the optimal O(hn+1) rate is frequently observed, even for
computational meshes having no particular uniformity. See for example [6], in
which computational results are given for random perturbations of uniform meshes.

In previous studies of this effect, the question of mesh alignment has played a
prominent role. In general, uh propagates from triangle to triangle across edges
that are not aligned with the characteristic direction. A characteristic mesh line
cutting through Ω will divide it into subregions in which uh evolves independently,
thus limiting crosswind effects. A proof of O(hn+1) convergence, requiring u ∈
Hn+2(Ω), was given in [6] for an “almost uniform”, nonaligned mesh with triangle
sides bounded away from the characteristic direction. With these assumptions, the
error generated in each layer of triangles is damped exponentially as uh evolves
through subsequent layers, leading to the optimal rate. Recently, Cockburn, et al.
[1] derived an optimal order estimate, requiring only u ∈ Hn+1(Ω), for a special
mesh in Rd consisting of simplices having one outflow face. For d = 2, such a mesh
can be constructed by arranging triangles along characteristic mesh lines with O(h)
spacing.

That (3) is indeed sharp, even for infinitely smooth exact solutions, was demon-
strated computationally by Peterson [4] using piecewise linear approximation on a
simple example problem. The triangulation employed in [4] was uniform, except for
a set of characteristic mesh lines spaced at O(hσ) intervals, σ ∈ [0, 1]. The optimal
O(h2) convergence rate for linears was observed for σ = 1, in a similar vein to the
theoretical result in [1]. However, taking σ = .75 as h → 0 produced order h1.5

convergence, as predicted by (3). It was also observed that when the characteristic
direction was altered slightly, taking it out of alignment with the mesh, the optimal
rate was restored. In view of the results in [4] and [6], it is natural to ask whether
an optimal order estimate might be derivable for fairly general nonaligned meshes.

In this paper, we show that the additional assumption of a nonaligned mesh is
not sufficient to guarantee an O(hn+1) convergence rate, even for smooth solutions
u. For a simple example problem essentially the same as Peterson’s, but with
a nonaligned mesh, we show theoretically (for n = 0) and computationally (for
n = 0, 1, 2, 3) that an L2 convergence rate of order hn+1/2 is realizable. The key
factor determining the order of convergence in our example is the distribution of
frequencies present in the error as h → 0.

The basis of our example is a smoothly, periodically varying mesh which induces
corresponding sinusoidal error components in the DG approximation. This enables
us to direct the error, to a maximal extent, into lower frequency modes which are
approximated, as opposed to damped. Such modes persist as the computation
proceeds, creating the possibility of hn+1/2 convergence. As n increases, the range
of mesh frequencies for which our example shows suboptimal order convergence is
confined to an increasingly narrow, high frequency band. More specifically, if the
wavenumber of the mesh perturbation is p, our example gives hn+1/2 convergence
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for p approaching infinity in proportion to h− 2n+1
2n+2 as h → 0, and hn+1 convergence

occurs for p ≤ O(h− n
n+1 ).

An outline of the paper is as follows. In §2, we describe our example problem and
mesh. Then in §3, we give a simple closed form representation for the corresponding
DG approximation uh and its error. In §4, we prove that for n = 0 a convergence
rate proportional to

√
h is achievable, indicating sharpness of (3) for our example.

In §5, we provide computational results for n ≤ 3 and infer a general formula, valid
for n ≥ 0, for the order of convergence achieved by our example problem. Finally,
we provide an analytical interpretation of this formula in §6.

2. Example problem

For our example problem, we use the following simplified version of (1) with
Ω = (−∞,∞) × (0, π):{

∂u
∂y = 0, (x, y) ∈ Ω,

u(x, 0) = xn+1, x ∈ (−∞,∞),
(4)

whose solution is u(x, y) = xn+1 for (x, y) ∈ Ω. The n = 1 version of (4) on the
unit square was the basis of the results in [4].

To define our mesh τh, we start with a uniform discretization of (−∞,∞):

ti = ih, i = 0,±1,±2, ...

where h = π
N . We assume N = pq, where p and q are positive integers, and define

a periodically perturbed set of grid points {xi} by

xi = ψ(ti), i = 0,±1,±2, ...

where

(5) ψ(t) = t + θ
sin pt

p
, θ ∈ [0, 1).

A single period of the perturbation extends from xi to xi+2q and spans a distance
∆x = 2π

p . As grid points over y ∈ [0, π], we take

yj = xj , j = 0, 1, ..., N.

In the strip (−∞,∞)× [yj−1, yj ], we obtain our triangles by connecting all triplets

{(xi−1, yj−1), (xi, yj), (xi+1, yj−1)}, {(xi, yj), (xi+1, yj−1), (xi+2, yj)}
for i=j, j±2, j±4, .... An illustration of the resulting mesh τh is given in Figure 1.
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Figure 1. Computational mesh corresponding to θ = 1/3, p =
4, q = 4
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It is easy to verify that τh is quasiuniform. For

xi+1 − xi = h +
θ

p

{
sin p

(
ti +

h

2
+

h

2

)
− sin p

(
ti +

h

2
− h

2

)}

= h

[
1 + θ

sin ph
2

ph
2

cos p

(
ti +

h

2

)]
∈ [(1 − θ)h, (1 + θ)h].

Thus the triangles in the mesh have width xi+1 −xi−1 ∈ [2(1 − θ)h, 2(1 + θ)h] and
height yj+1 − yj ∈ [(1 − θ)h, (1 + θ)h]. Moreover, along the triangle sides, with
unit outer normal n,

|α · n| ≥ 1√
1 +

(
1+θ
1−θ

)2
> 0.

Therefore all triangle sides are uniformly bounded away from the characteristic
direction.

In the next section, we will see that the error e ≡ u − uh is 2π
p -periodic in x.

Taking norms in a manner that reflects the periodicity of e, we define ‖e‖Ω =
‖e‖L2([−π,π]×[0,π)) and |e−|Γout(Ω) = |e−|L2([−π,π]×{y=π}). In general, for a 2π-
periodic function, we shall denote by | · | and | · |m the corresponding L2 norm and
Hm seminorm over [−π, π].

Our goal will be to show that p and q can be chosen to make |e−|Γout(Ω) ∼ hn+1/2,
‖e‖Ω ∼ hn+1/2, establishing the sharpness of (3) for nonaligned meshes. Here and in
what follows, we use the symbol ∼ to indicate quantities bounded both from above
and below. For example, |e−|Γout(Ω) ∼ hn+1/2 signifies the existence of positive
constants c, C such that chn+1/2 ≤ |e−|Γout(Ω) ≤ Chn+1/2.

Although the domain of (4) is unbounded, the conclusions of this paper also
apply to bounded domains. This can be seen, for example, by restricting Ω to
Ω̃ = {(x, y) | |x| + y < 2π, y ∈ (0, π)}, a trapezoid with 45-degree base angles and
parallel sides of length 4π, 2π, and taking as mesh points {(xi, yj) | |i| + j ≤ N}.
From domain of dependence considerations, it follows that the corresponding DG
solution ũh is the restriction to Ω̃ of the DG solution to (4).

3. Closed form solution

We begin our analysis by considering a minor generalization of (4):{
∂u
∂y = 0, (x, y) ∈ Ω,

u(x, 0) = u0(x), x ∈ (−∞,∞),
(6)

with solution u(x, y) = u0(x). In each strip (−∞,∞) × [yj−1, yj ], the DG approx-
imation uh for (6) evolves, in parallel, through alternate layers of one-inflow-side
(type I) and two-inflow-side (type II) triangles. We denote by u−

h,j the restriction
of u−

h to the mesh line y = yj , and similarly for the error e−j = u( · , yj) − u−
h,j =

u0 − u−
h,j . Note that u−

h,j is a piecewise polynomial of degree ≤ n over the subin-
tervals of y = yj (i.e., [xi, xi+2], i = j, j ± 2, j ± 4, ...). We denote by Pj the
corresponding L2 projection into this subspace, and define

εj = (I − Pj)u0.
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Lemma 3.1. The DG approximation for (6) satisfies, for k = 0, 1, ..., N ,

u−
h,k = Pk · · ·P0 u0,(7)

e−k =
k∑

j=0

Pk · · ·Pj+1εj ,(8)

where empty operator products (e.g., in (8) for j = k) are interpreted as the identity.
In addition, if u0 = xn+1 or u0 is a 2π

p -periodic function, then e = u − uh is also
2π
p -periodic and

max
k=0,1,...,N

|e−k | ≤ Chn+1/2|u0|n+1,(9)

equivalently, for k = 0, 1, ..., N ,

Pk · · ·P0u0 = u0 + δ, |δ| ≤ Chn+1/2 |u0|n+1.(10)

Proof. For a generic triangle T , let u−
h,in(x) = u−

h (x, y)|Γin(T ) and u−
h,out(x) =

u−
h (x, y)|Γout(T ). It is easy to see that for a type I triangle T ,

(11) uh(x, y) = u−
h,in(x), (x, y) ∈ T.

Thus u−
h,out(x) = u−

h,in(x) for type I triangles. We can develop a corresponding
result for type II trangles T by taking vh in (2) to be an arbitrary polynomial pn(x)
of degree ≤ n, which gives∫∫

T

(uh)y(x, y) pn(x) dx dy −
∫

Γin(T )

[u+
h (x, y) − u−

h (x, y)] pn(x) dx = 0.

Assuming x ranges from xi to xi+2 on T , we have∫ xi+2

xi

[u−
h,out(x) − u−

h,in(x)] pn(x) dx = 0.

Note that for a type II triangle, u−
h,in is a piecewise polynomial while u−

h,out is a
single polynomial. Thus for type II triangles,

u−
h,out(x) = Pout u−

h,in(x),

where Pout denotes L2 projection into polynomials of degree ≤ n over x ∈ [xi, xi+2].
Applying these relations over strips, (−∞,∞) × [yj−1, yj ], of triangles gives

u−
h,j = Pj u−

h,j−1 , j = 1, ..., N,(12)

u−
h,0 = P0 u0,(13)

whose solution is (7).
Recasting (12) in terms of the error e = u − uh, we obtain

(14) e−j = Pj e−j−1 + εj ,

whose solution is (8).
If u0 = xn+1, then εj is a scalar multiple, dependent on subinterval size, of

the n + 1st degree Legendre polynomial mapped to the subintervals of y = yj .
Therefore, εj will have period 2π

p , like the mesh oscillation, as will all subsequent
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Figure 2. Illustration of εj = (I − Pj)x for n = 0 (θ = 1/3, p =
4, q = 6).

projections of εj appearing in (14) and (8). The same will be true if u0 is a 2π
p -

periodic function. In either case, we may therefore regard εj and e−j as periodic
L2[−π, π] functions. Taking norms accordingly, we obtain from (14):

|e−j |2 = |Pje
−
j−1|2 + |εj |2 ≤ |e−j−1|2 + |εj |2.

Thus

|e−k |
2 ≤

k∑
j=0

|εj |2 ≤ Ch2n+1|u0|2n+1,

where we have used the standard approximation theory estimate |(I − Pj)u0| ≤
Chn+1|u0|n+1. This proves (9), and its alternate form (10). �

We may think of εj = (I − Pj)u0 as the y = yj contribution to the error in uh;
its effect at level k > j is given by Pk · · ·Pj+1εj . If these subsequent projections
of εj always damp their arguments by a factor λ ≤ c < 1, then (8) represents a
geometric sum and optimal O(hn+1) convergence will occur, as in [6].

An illustration of εj is given in Figure 2 for our example problem (4) with n = 0.
Note that εj is dominated by high frequency (wavelength ∼ h) components—these
will be damped as uh evolves through subsequent levels. However, εj is a 2π

p -periodic
function, a result of the mesh oscillation; therefore, it also contains lower frequency
components of wavenumber ∼ p. For an appropriately related p and h (equivalently,
p and q since h = π

pq ) these modes will be approximated, as opposed to damped, by
subsequent projections, resulting in a suboptimal order of convergence. In the next
section, we will show how to produce

√
h convergence for n = 0 via this effect, thus

demonstrating sharpness of (3) for our example problem with piecewise constant
approximation.

4. Analysis for n = 0

We now restrict our attention to the case of piecewise constant approximation
of (4) with n = 0. A straightforward calculation shows that εj contains a lower
frequency component with wavenumber ∼ p and amplitude ∼ ph2. However, it is
more illuminating to examine εj after it has undergone one subsequent projection,
whereupon this lower frequency component has been “extracted” from εj . That is
the content of the following lemma.

Lemma 4.1. For the example problem (4) with n = 0,

(15) Pj+1εj = θph2(sin pt + δ1), |δ1| ≤ Cph (≤ Cq−1).

Proof. Let [xi−1, xi+1] be a subinterval of mesh line y = yj+1. The value of Pj+1εj

on [xi−1, xi+1] is determined by εj on interlaced subintervals [xi−2, xi], [xi, xi+2] of
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y = yj . We have εj |[xi,xi+2] = x− 1
2 (xi + xi+2) = (x− xi+1)− 1

2 (xi − 2xi+1 + xi+2)
and analogously for εj |[xi−2,xi]. Thus for x ∈ [xi−1, xi+1],

Pj+1εj =
1

xi+1 − xi−1

∫ xi+1

xi−1

εj(x) dx

=
1

xi+1 − xi−1

{
(xi − xi−1)2

2
− (xi − xi−1)

(
xi−2 − 2xi−1 + xi

2

)

− (xi+1 − xi)2

2
− (xi+1 − xi)

(
xi − 2xi+1 + xi+2

2

)}

= −
(

xi−1 − 2xi + xi+1

2

)
− xi − xi−1

xi+1 − xi−1

(
xi−2 − 2xi−1 + xi

2

)

− xi+1 − xi

xi+1 − xi−1

(
xi − 2xi+1 + xi+2

2

)

= −h2

2

[
ψ′′(τi,1) +

(
xi − xi−1

xi+1 − xi−1

)
ψ′′(τi,2) +

(
xi+1 − xi

xi+1 − xi−1

)
ψ′′(τi,3)

]

= −h2ψ′′(τi), τi ∈ (min{τi,1, τi,2, τi,3}, max{τi,1, τi,2, τi,3}) ⊂ (ti−2, ti+2)

= θph2(sin pt + δ1(t)),

where t is the inverse image of x under ψ, and δ1(t) = sin pτi − sin pt. Extending
the definition of δ1(t) to t ∈ (−∞,∞) in the obvious way, we obtain (15). �

Before proceeding further, we note that q = 1 (one subinterval per mesh period)
is a degenerate case for this lemma. It gives ψ(t) = t for (5). Thus ψ′′ = 0 in
the preceding proof, implying Pj+1εj = 0, e−k = εk in (8), hence optimal order
convergence.

We next show that for p ≤ O(h−1/2) as h → 0, Pj+1εj will be approximated,
and thus persist, when subsequent projections Pj+2, ..., PN are applied, leading to
a suboptimal convergence rate.

Theorem 4.1. For the example problem (4) with n = 0, let p = µh−σ where
σ ∈ [0, 1

2 ] and µ > 0 (with µ sufficiently small if σ = 1
2). Then as h → 0, both

|u − u−
h |Γout(Ω) and ‖u − uh‖Ω approach zero in proportion to h1−σ. In particular,

the boundary and interior estimates given in (3) are attained for σ = 1
2 .

Proof. The effect of εj at a subsequent level k > j is given by

Pk · · ·Pj+1εj = θph2(Pk · · ·Pj+2 sin pt + δ2), |δ2| ≤ Cph.

Applying (10) over Ω ∩ (yj+2, π) with initial condition u0 = sin pt on y = yj+2,
and using the fact that | sin pt|1 ≤ Cp (since H1-norms with respect to x and t are
compatible), we obtain for k > j,

Pk · · ·Pj+1εj = θph2(sin pt + δ3), |δ3| ≤ Cp
√

h.

It follows from (8) that

e−k = θph2k (sin pt + δ4) + εk, |δ4| ≤ Cp
√

h.(16)
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Now suppose p = µh−σ as h → 0 where σ ≥ 0 and µ > 0 are constants. Then (16)
becomes

e−k = θµkh2−σ (sin pt + δ4) + εk, |δ4| ≤ Cµh
1
2−σ.(17)

For σ ∈ [0, 1
2 ), |δ4| → 0 as h → 0, and for σ = 1

2 , we may choose µ small enough to
ensure that |δ4| < | sin pt|. In addition, |εk| = |(I − Pk) x| ≤ Ch. We conclude, for
σ ∈ [0, 1

2 ],

(18) |e−k | ∼ kh2−σ as h → 0.

Taking k = N (= π
h ), we get |e−N | = |u − u−

h |Γout(Ω) ∼ h1−σ.
Next we obtain an interior estimate for e = u − uh, a piecewise linear for our

example with n = 0. For a type I triangle T , it follows from (11) and scaling that
ch|e−|2Γin(T ) ≤ ‖e‖2

T ≤ Ch|e−|2Γin(T ) (c, C positive constants), while for a type II
triangle T , it is easy to show (see for example [6]) that ‖e‖2

T ≤ Ch|e−|2Γin(T ). Let
Wj = Ω∩ [yj , yj+1] and Wj,1, Wj,2 be the union of the type I and type II triangles of
Wj . Then ‖e‖2

Wj,2
≤ Ch|e−|2Γout(Wj,1)

= Ch|e−j |2 and ch|e−j |2 ≤ ‖e‖2
Wj,1

≤ Ch|e−j |2.
Therefore, ch|e−j |2 ≤ ‖e‖2

Wj
≤ Ch|e−j |2, and

(19) ‖e‖2
Ω ∼ h

N−1∑
j=0

|e−j |2.

This desired interior estimate, ‖e‖Ω ∼ h1−σ, follows from (18) and (19). �

As yet, we have said nothing about the convergence rate of uh for our example
problem in the case where p = µh−σ, σ ∈ ( 1

2 , 1]. We now address this. Let
S = {v ∈ L2[−π, π] | v is 2π

p − periodic, (v, 1) = 0}, and let Sh,j be the intersection
of S with the space of piecewise constants over the subintervals along y = yj . In
what follows, we assume q ≥ 2. (For the degenerate case q = 1, previously noted
following the proof of Lemma 4.1, there is only one subinterval per mesh period,
and Sh,j = {0}.)

Referring to (8), we observe that the error components Pk · · ·Pj+1εj are in
Sh,k. More specifically, Pj+1 maps εj into Sh,j+1, while for l ≥ j + 2, Pl maps
an operand in Sh,l−1 into Sh,l. Focusing on the latter effect, we define |Pl| =
maxw∈Sh,l−1,|w|=1 |Plw|. Here |Plw| measures the extent to which w ∈ Sh,l−1 can
be approximated in Sh,l. Since Sh,l−1 ∩ Sh,l = {0}, |Pl| < 1 and the error compo-
nents in (8) are damped as the computation progresses. We quantify this damping
as follows.

Lemma 4.2. As a map from Sh,j−1 to Sh,j, Pj satisfies

(20) |Pj | ≤ 1 − γ(ph)2,

where γ is a positive constant, depending only on the mesh parameter θ.

Proof. Without loss of generality, we will show this for P1, as a map from Sh,0 to
Sh,1. The mesh points of Sh,0 are · · · < x−2 < x0 < x2 < · · · while those of Sh,1

are · · · < x−1 < x1 < x3 < · · · . For arbitrary nonzero vh,0 ∈ Sh,0 and vh,1 ∈ Sh,1,
let

vi =

{
vh,0(xi), i odd,

vh,1(xi), i even,
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and define a continuous piecewise linear vh over the combined mesh · · ·x−1 < x0 <
x1 < x2 < · · · by vh(xi) = vi for all i. From

∫ xi+1

xi

vh dx =
xi+1 − xi

2
(vi + vi+1) =

1
2

{∫ xi+1

xi

vh,0 +
∫ xi+1

xi

vh,1 dx

}
,

it follows that (vh, 1) = 1
2{(vh,0, 1) + (vh,1, 1)}, implying vh ∈ S. In addition,

∫ xi+1

xi

v2
h dx =

xi+1 − xi

3
(
v2

i + vivi+1 + v2
i+1

)
,

and for x ∈ (xi, xi+1), vh,0(x) = vi or vi+1. We assume the former, without loss of
generality for our purposes, and apply the arithmetic-geometric mean inequality in
the form vivi+1 ≥ −( 1

4v2
i + v2

i+1) to obtain

∫ xi+1

xi

v2
h dx ≥ xi+1 − xi

4
v2

i =
1
4

∫ xi+1

xi

v2
h,0 dx.

Thus |vh,0| ≤ 2|vh|.
Defining hmin = mini{xi+1 − xi}, we have

∫ xi+1

xi

(vh,1 − vh,0)2dx = (xi+1 − xi)(vi+1 − vi)2

= (xi+1 − xi)3
(

vi+1 − vi

xi+1 − xi

)2

≥ h2
min

∫ xi+1

xi

(v′h)2 dx.

Hence |vh,1 − vh,0| ≥ hmin|vh|1, and

|vh,1 − vh,0|
|vh,0|

≥ hmin
|vh|1
|vh,0|

≥ hmin

2
|vh|1
|vh|

≥ hmin

2
min

v∈S∩H1[−π,π], v �=0

|v|1
|v|

=
phmin

2
,

where (via a Fourier series expansion) the minimum over S∩H1[−π, π] occurs for v
a nonzero linear combination of cos px, sin px; equivalently, the complex functions
e±ipx. Note that the above separation result holds for any set of 2π

p -periodic grid
points xi, not just our particular ones.

Taking vh,1 = P1vh,0, we obtain

|(I − P1)vh,0|
|vh,0|

≥ phmin

2
.
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Thus

|P1vh,0|
|vh,0|

=

√
|vh,0|2 − |(I − P1)vh,0|2

|vh,0|2

≤
√

1 − (phmin)2

4

≤ 1 − p2h2
min

8
.

(Note: 1 − p2h2
min
8 ≥ 1 − p2h2

8 = 1 − π2

8q2 > 0.) The desired bound now follows from
the quasi-uniformity of the mesh. �

We show next how (20) leads to an estimate of the convergence rate for our
example problem for the full range of possible σ values.

Theorem 4.2. For the example problem (4) with n = 0, let p = µh−σ where
σ ∈ [0, 1] and µ > 0 (with µ sufficiently small if σ = 1). Then

(21) |u − u−
h |Γout(Ω) + ‖u − uh‖Ω ≤ Chν , ν =

1
2

+ |σ − 1
2
|.

Proof. We express our bound (20) in the form

(22) |Pj | ≤ λ, λ = 1 − γ(ph)2 = e−γ(ph)2+O(ph)4 .

Applying (8), (15), and (22), we infer that the error for our example problem
satisfies

|e−k | ≤ |εk| +
k−1∑
j=0

λk−1−j |Pj+1εj |

≤ Ch +

⎛
⎝k−1∑

j=0

λj

⎞
⎠ (Cph2)

= Ch

{
1 +

1 − λk

γph

}

≤ Ch

{
1 +

1 − λN

γph

}
.(23)

From (22) and the fact that N = π
h , we have λN = e−γπp2h(1+O(ph)2). For p = µh−σ,

this becomes

(24) λN = e−γπµ2h1−2σ(1+µ2O(h2−2σ)).

Thus as h → 0, we have

σ ∈ [0,
1
2
) : λN = 1 − γπµ2h1−2σ + µ4O(h1−2σ)2,

σ =
1
2

: λN → e−γπµ2
,(25)

σ ∈ (
1
2
, 1] : λN → 0,

where µ is assumed to be sufficiently small if σ = 1. We conclude from (23) and
(25) that for k ≤ N ,
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|e−k | ≤
{

Ch1−σ, σ ∈ [0, 1
2 ],

Chσ, σ ∈ ( 1
2 , 1].

These bounds also apply to ‖u − uh‖Ω via (19). �

For σ ∈ [0, 1
2 ], this estimate is consistent with that of Theorem 4.1; therefore, it

is sharp for σ in this range. In addition, our computational results (next section)
suggest that it is also sharp for σ ∈ ( 1

2 , 1].
It is instructive to consider the DG approximation for (6) with the given mesh,

p = µh−σ, and (h-dependent) initial condition u(x, 0) = eipx. As h → 0, we have
for the corresponding DG approximation uh:

(26) u−
h |Γout(Ω) →

{
eipx, σ ∈ [0, 1

2 ),
0, σ ∈ ( 1

2 , 1].

The first part of (26) is a straightforward consequence of the basic estimate (3) or
(10). The second part (since P0e

ipx ∈ Sh,0) is implied by |u−
h,N | = |PN · · ·P0 eipx| ≤

λN |eipx| and (25). Thus σ = 1
2 lies at the threshold between approximation and

exponential damping of eipx. Returning to our example problem (4) with u(x, 0) =
x and referring again to (15), we see that the choice σ = 1

2 maximizes the size of
the lower frequency portion of εj while retaining its approximability as h → 0.

5. Computational results

In this section, we present numerical results for our example problem (4), dis-
cretized over the mesh defined in §2. Table 1 shows computed outflow errors
|u − u−

h |Γout(Ω) for n = 0 for various values of σ, plus order of convergence esti-
mates based on consecutive values of |u − u−

h |Γout(Ω). Values chosen for N (= π
h )

are such that p and q are integers. The value of the mesh parameter θ was fixed
at 1

3 . For σ = 1
4 and σ = 1

2 , the computed orders of convergence approach the
theoretical limits h

3
4 , h1/2 given by (16), while for σ = 3

4 and σ = 1, the observed
h3/4 and h1 rates are consistent with (21). The estimate (21) thus gives the correct
order of convergence for all σ used in our computations with n = 0.

Tables 2 and 3 give analogous computational results for n = 1 and n = 2. For
n = 1, optimal O(h2) convergence occurs for σ ∈ [0, 1

2 ], while the O(h1.5) bound
(3) is achieved for σ = 3

4 , as in [4]. For n = 2, we get optimal order convergence
for σ ∈ [0, 2

3 ], and O(h2.5) (as in (3)) for σ = 5
6 .

A single formula which describes our observed orders of convergence is:

(27) |u − u−
h |Γout(Ω) ∼

⎧⎪⎨
⎪⎩

hn+1, σ ∈ [0, n
n+1 ],

h(2n+1)−σ(n+1), σ ∈ ( n
n+1 , 2n+1

2n+2 ],
h(n+1)σ, σ ∈ ( 2n+1

2n+2 , 1].

As further validation of (27), we performed experiments with (i) n = 1, σ = 2
3 ,

(ii) n = 1, σ = 5
6 , (iii) n = 2, σ = 3

4 , (iv) n = 3, σ = 3
4 , (v) n = 3, σ = 5

6 ,
(vi) n = 3, σ = 7

8 , and observed results consistent with the predicted orders
(1 2

3 , 1 2
3 , 2 3

4 , 4, 3 2
3 , 3 1

2 ). A plot of the orders in (27) vs. σ for n = 0, 1, 2, 3
is shown in Figure 3. As n increases, suboptimal order convergence occurs for
an increasingly narrow band of high frequency mesh perturbations centered about
σ = 2n+1

2n+2 , which gives hn+1/2 convergence.
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Table 1. Results for n = 0; p = (N/4)σ ∼ h−σ.

σ = 1/4 σ = 1/2 σ = 3/4 σ = 1
N error order error order error order error order

4 1.429 1.429 1.429 1.429
64 1.745(-1) .759 2,224(-1) .671 1.616(-1) .786 9.889(-2) .963

324 5.268(-2) .738 9.448(-2) .528 4.594(-2) .775 1.593(-2) 1.000
1,024 2.244(-2) .742 5.272(-2) .507 1.905(-2) .765 6.180(-3) 1.000
5,184 6.702(-3) .745 2,336(-2) .502 5.573(-3) .758 1.221(-4) 1.000

Table 2. Results for n = 1; p = (N/4)σ ∼ h−σ.

σ = 1/4 σ = 1/2 σ = 3/4 σ = 1
N error order error order error order error order

4 6.159(-1) 6.159(-1) 6.159(-1) 6.159(-1)
64 2.287(-3) 2.018 2.621(-3) 1.969 5.222(-3) 1.720 1.066(-2) 1.463

324 8.848(-5) 2.005 1.029(-4) 1.996 4.354(-4) 1.532 6.588(-4) 1.717
1,024 8.844(-6) 2.001 1.032(-5) 1.999 7.719(-5) 1.503 6.645(-5) 1.993
5,184 3.449(-7) 2.000 4.028(-7) 2.000 6.792(-6) 1.499 2.593(-6) 2.000

Table 3. Results for n = 2; p = Nσ ∼ h−σ.

σ = 1/2 σ = 2/3 σ = 5/6 σ = 1
N error order error order error order error order

1 1.354(1) 1.354(1) 1.354(1) 1.354(1)
64 7.399(-5) 2.914 1.130(-4) 2.812 2.446(-4) 2.626 4.798(-5) 3.018

729 4.963(-8) 3.004 9.867(-8) 2.895 6.389(-7) 2.445 3.247(-8) 3.000
4,096 2.795(-10) 3.001 5.808(-10) 2.975 8.976(-9) 2.471 1.830(-10) 3.000

15,625 5.035(-12) 3.000 1.057(-11) 2.992 3.233(-10) 2.483 3.297(-12) 3.000
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Figure 3. Order of convergence vs. σ for n = 0, 1, 2, 3.
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6. Discussion

We now provide an analytical interpretation of the order formula (27) for arbi-
trary n ≥ 0.

For our example problem (4), the quantity εj = (I − Pj)xn+1 is dominated by
high frequency (wavelength ∼ h) components. However, it will also have a lower
frequency component w of wavenumber ∼ p for which

(28) |w|n+1 ≤ Cpn+1|w|.

By estimating the cumulative effect of such error components w, we can offer an
explanation for (27).

By (10) and (28), the effect of w at a subsequent level y = yk is

Pk · · ·Pj+1w = w + ν1, |ν1| ≤ Chn+1/2|w|n+1 ≤ Chn+1/2pn+1|w|.

If, as before, p = µh−σ, then |ν1| ≤ Cµn+1h(n+1/2)−σ(n+1), and we can ensure that
|ν1| < |w| by taking σ ∈ [0, 2n+1

2n+2 ] (also taking µ sufficiently small if σ = 2n+1
2n+2 ).

Thus for σ in this range, w will be approximated at subsequent levels, not damped,
as h → 0.

We next estimate the size of w. We have

|w|2 = |(εj , w)|
= |((I − Pj)xn+1, (I − Pj)w)|
≤ Ch2n+2|xn+1|n+1|w|n+1.

Hence, applying (28),

(29) |w| ≤ Cpn+1h2n+2 ≤ Ch(2n+2)−σ(n+1).

We denote by Ew the total contribution of all error components w to the outflow
boundary error |u−u−

h |Γout(Ω). Since there are O(h−1) levels in all, therefore O(h−1)
such error components,

Ew ≤ Ch(2n+1)−σ(n+1)

{
≤ Chn+1, σ ∈ [0, n

n+1 ],
= Chn+ 1

2 , σ = 2n+1
2n+2 .

(30)

Moreover, if (29) is sharp and the error components w add to, rather than cancel
one another, both of which are true for n = 0, then this estimate for Ew is sharp.

To extend the analysis to σ ∈ ( 2n+1
2n+2 , 1], let

S = {v ∈ L2[−π, π] | v is
2π

p
− periodic, (v, 1) = 0}

as before, and S
(n)
h,j the intersection of S with the space of piecewise nth degree

polynomials (in general discontinuous) over the subintervals of y = yj . Our com-
putational results suggest that Pj , viewed as a map from S

(n)
h,j−1 to S

(n)
h,j , satisfies

a bound of the form |Pj | ≤ λn where λn = 1 − γn(ph)2n+2, a natural extension
of Lemma 4.2 to n ≥ 0. Assuming this to be the case, the error component w
generated at y = yj , j < N , contributes at most |PN · · ·Pj+1w| ≤ λN−j−1

n |w| to
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|u − u−
h |Γout(Ω). Applying (29) and proceeding as in (23), we obtain

Ew ≤

⎛
⎝1 +

N−1∑
j=0

λj
n

⎞
⎠ (

Cpp+1h2n+2
)

≤ Cpn+1h2n+2

(
1 +

1 − λN
n

γn(ph)2n+2

)
.(31)

Now for p = µh−σ,

λn = exp{−γn(ph)2n+2(1 + O(ph)2n+2)}
= exp{−γn(µh1−σ)2n+2(1 + O(µh1−σ)2n+2}.

Thus

λN
n = exp{−γnπµ2n+2h(2n+1)−σ(2n+2)[1 + µ2n+2O(h(2n+2)(1−σ))]},

and as h → 0, we have

σ ∈ (
2n + 1
2n + 2

, 1] : λN
n → 0

σ =
2n + 1
2n + 2

: λN
n → exp{−γnπµ2n+2}

σ ∈ [0,
2n + 1
2n + 2

) : λN
n = 1 − γnπµ2n+2h(2n+1)−σ(2n+2)(1 + δ),

where δ → 0 as h → 0, and µ is taken sufficiently small if σ = 1. Substituting for
λN

n in (31), we obtain

(32) Ew ≤
{

Ch(2n+1)−σ(n+1), σ ∈ [0, 2n+1
2n+2 ],

Ch(n+1)σ, σ ∈ ( 2n+1
2n+2 , 1].

This estimate extends (30) to the entire range σ ∈ [0, 1]. It indicates the presence
of a suboptimal order error component in u − u−

h |Γout(Ω) for σ ∈ ( n
n+1 , 1), whose

maximum O(hn+1/2) amplitude is reached at σ = 2n+1
2n+2 . This is consistent with

our observed formula (27) and describes what we believe to be the mechanism for
its occurrence.

Our analysis shows, in essence, how the first several terms of the Fourier expan-
sion of εj in terms of {eikpx, k = ±1,±2, ...} can account for the region of suboptimal
order convergence that occurs for our example problem. We have also performed
some computations for 2π

p -periodic grid points {xi} with a jump discontinuity in
subinterval size, and observed hn+1/2 convergence for σ = 2n+1

2n+2 , as in the case
of our smoothly varying mesh, but a larger range of σ values giving suboptimal
order convergence. Our results for n = 1 are similar to those reported by Peterson
[4]. For a discontinuously varying mesh, the Fourier coefficients of the lower fre-
quency portion of εj can be shown to decay more slowly with k, allowing a broader
spectrum of Fourier modes to influence the order of convergence.

We state, in conclusion, that a nonaligned mesh is not the key to an improved
rate of convergence over the hn+1/2 estimate in (3). Our analysis and computational
results show that an hn+1/2 rate is achievable for a periodic mesh which generates,
to the maximal extent, lower frequency error components which are approximated,
not damped, as h → 0.
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