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MONOTONICITY OF SOME FUNCTIONS INVOLVING
THE GAMMA AND PSI FUNCTIONS

STAMATIS KOUMANDOS

Abstract. Let L(x) := x − Γ(x+t)
Γ(x+s)

xs−t+1, where Γ(x) is Euler’s gamma

function. We determine conditions for the numbers s, t so that the function

Φ(x) := −Γ(x+s)
Γ(x+t)

xt−s−1 L′′(x) is strongly completely monotonic on (0, ∞).

Through this result we obtain some inequalities involving the ratio of gamma
functions and provide some applications in the context of trigonometric sum
estimation. We also give several other examples of strongly completely mono-
tonic functions defined in terms of Γ and ψ := Γ′/Γ functions. Some limiting
and particular cases are also considered.

1. Introduction and results

Let Γ(x) be Euler’s gamma function defined for x > 0 by Γ(x) =
∫ ∞
0

tx−1e−t dt

and let ψ(x) = Γ′(x)
Γ(x) be its logarithmic derivative, which is also known as the psi or

digamma function. The derivatives ψ(n)(x) are called polygamma functions. Over
the years, these functions have been the subject of intensive study by many re-
searchers in view of their importance in applications in various fields. In particular,
there is an extensive bibliography on inequalities involving these functions. See for
example [2], [4], [11], [12], [14], [15], [16], [19] [25] and the references given therein.
Most of the inequalities for the gamma and polygamma functions are obtained
through monotonicity or convexity properties of functions which are expressed in
terms of them. Several functions of this type have been shown to be completely
monotonic. We recall that a function f : (0, ∞) → R is said to be completely
monotonic if f has derivatives of all orders and satisfies

(1.1) (−1)n f (n)(x) ≥ 0, for all x > 0 and n = 0, 1, 2, . . .

J. Dubourdieu [13] proved that if a nonconstant function f is completely monotonic,
then strict inequality holds in (1.1). See also [18] for a simpler proof of this result.

A characterization of completely monotonic functions is given by Bernstein’s
theorem (see [27, p. 161]) which states that f is completely monotonic on (0, ∞)
if and only if

f(x) =
∫ ∞

0

e−xt dµ(t),

where µ is a nonnegative measure on [0, ∞) such that the integral converges for all
x > 0. Completely monotonic functions attracted the attention of many authors
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and a plethora of results on completely monotonic functions have been obtained,
most of them concerning functions defined in terms of the gamma and polygamma
functions. We refer the reader to [5], [3], [17] [18], [20], [23] for some interesting
results, applications, bibliography and helpful information regarding such functions.

Here we are interested in the class of strongly completely monotonic functions,
introduced in [26]. A function g : (0, ∞) → R is called strongly completely mono-
tonic if it satisfies the more restrictive condition (−1)n xn+1 g(n)(x) is nonnegative
and decreasing on (0, ∞) for all n = 0, 1, 2, . . .. A characterization of strongly
completely monotonic functions is the following:

The function g(x) is strongly completely monotonic on (0, ∞) if and only if

(1.2) g(x) =
∫ ∞

0

e−xt p(t) dt,

where p(t) is nonnegative and increasing and the integral converges for all x in
(0, ∞); see [26, Theorem 1]. Note that if a function g(x) is strongly completely
monotonic, then the function x g(x) is completely monotonic. The strongly com-
pletely monotonic functions considered in this paper satisfy (1.2) with the additional
property that the function p(t) is convex and p(0) = 0. This implies that x2 g(x)
is completely monotonic on (0, ∞) (see Lemma 2 in Section 2) a fact that plays a
key role in the present work.

The purpose of this paper is to contribute some more inequalities for ratios of
gamma functions, differences of digamma and polygamma functions, obtained via
monotonicity of certain special functions, and indicate some applications of the de-
rived inequalities in the estimation of certain trigonometric sums. It turns out that
several of the functions involved are additionally strongly completely monotonic in
the sense described above.

Let s, t be positive real numbers such that s − t �= 1. The main result we prove
here is the following.

Theorem 1. Let

L(x) := x − Γ(x + t)
Γ(x + s)

xs−t+1,

and suppose that either
(i) s ≥ 1 > t and 0 < s − t ≤ 1

2 , or
(ii) t ≥ 1 and 0 < s − t < 1, or
(iii)

√
3

6 + 1
2 ≤ t < s < 1.

Then
(1) the function

Φ(x) := −Γ(x + s)
Γ(x + t)

xt−s−1 L′′(x)

is strongly completely monotonic on (0, ∞).
(2) The function −L′′(x) is completely monotonic on (0, ∞). In particular, the

function L(x) is strictly increasing and concave on (0, ∞), and the inequality

(1.3) 0 < x − Γ(x + t)
Γ(x + s)

xs−t+1 <
(s − t)(s + t − 1)

2
,

holds for all x > 0.

As an application of inequality (1.3) we give the following proposition which was
the starting point of our investigations considered here. It provides a substantial
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generalization of [21, Lemma 3] and [22, Proposition 4] which are indispensable
in the estimation of certain trigonometric sums arising in the context of starlike
functions.

Proposition 1. For m, n ∈ N with m > n, let

Un,m(x) :=
m∑

k=n

(t)k

(s)k
eikx, Vn,m(x) =

Γ(s)
Γ(t)

m∑
k=n

1
ks−t

eikx,

where (a)k = a(a + 1) . . . (a + k − 1) = Γ(a+k)
Γ(a) is the Pochhammer symbol.

If the numbers s, t satisfy (i) or (ii) of Theorem 1, then for π/n ≤ x < π, n > 1
we have the estimate

(1.4) |Un,m(x) − Vn,m(x)| <
1

ns−t

Γ(s)
Γ(t)

(s − t)(s + t − 1)
2

.

The observation
Γ(x + t)
Γ(x + s)

∼ e(t−s)ψ(x), as x → ∞

led us to the following limiting case of Theorem 1.

Theorem 2. Consider the function

M(x) := x − eaψ(x) x1−a, a �= 0.

Then (1) the function
ξ(x) := −xa−1 e−a ψ(x) M ′′(x)

is strongly completely monotonic on (0, ∞) if and only if a ∈ (−∞, 0)∪
[
2/3, ∞

)
.

When 0 < a < 2/3 the function ξ(x) changes sign on (0, ∞).
(2) The function M(x) is strictly increasing and concave on (0, ∞) precisely

when a ∈ (−∞, 0) ∪
[
2/3, ∞

)
, so that

(1.5) x − eaψ(x) x1−a <
a

2
, for all x > 0.

Note that limx→0+ M(x) = 0, for a > 0 and limx→0+ M(x) = −∞, for a < 0.
(3) If a < 0, then the function −M ′′(x) is completely monotonic on (0, ∞).

Several existing results on digamma and polygamma functions are immediate
consequences or special cases of this theorem. These are described in the final
section of the paper. In the next section we prove two necessary lemmas. In
Section 3, we give proofs of Theorem 1, Theorem 2 and Proposition 1. In Section
3 we also prove some closely related results, give some corollaries and make some
additional comments on relevant considerations.

2. Some lemmas

In order to prove our main results we need the following:

Lemma 1. (1) Let

f(x) :=
eα x − 1
ex − 1

.

This function is strictly decreasing and convex on (0, ∞) for 0 < α ≤ 1/2, and
strictly increasing and concave on the same interval for −1 < α < 0.

(2) The function

g(x) :=
eα x − eβ x

ex − 1
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is strictly decreasing and convex on (0, ∞) for (i) β ≤ 0 < α, 0 < α − β ≤ 1
2 , (ii)

α ≤ 0, 0 < α − β < 1 and (iii) 0 < β < α ≤ 1
2 −

√
3

6 .
(3) The function g(x) is log-concave on (−∞, ∞) when 0 < α − β < 1 and

log-convex on (−∞, ∞) when α − β > 1.

Proof. (1) Differentiating twice we get

f ′′(x) =
1

(ex − 1)3
[
(α− 1)2 e(α+2)x + (−2α2 + 2α + 1)e(α+1)x + α2eαx − e2x − ex

]
.

It follows from this that

(2.1) f ′′(x) =
( x

ex − 1

)3 ∞∑
n=3

Pn(α)
xn−3

n!
,

where

Pn(α) := (α−1)2 (α+2)n +(−2α2 +2α+1) (α+1)n +αn+2−2n−1, n = 3, 4, . . . .

It is easy to see that
P3(α) = α (α − 1) (2α − 1),

hence

(2.2) P3(α) ≥ 0 for 0 < α ≤ 1
2
, P3(α) < 0, for − 1 < α < 0.

Next we shall prove that

(2.3) Pn(α) > 0, for all n ≥ 4, 0 < α ≤ 1
2
,

and

(2.4) Pn(α) < 0, for all n ≥ 4, −1 < α < 0.

First we assume that 0 < α ≤ 1/2. Clearly,

(2.5) Pn(α) > Qn(α),

where
Qn(α) := (α − 1)2 (α + 2)n − 2n .

We shall show that

(2.6) Qn(α) > 0, for all n ≥ 7, 0 < α ≤ 1
2
.

We have

(2.7) Q′
n(α) = (α + 2)n−1 (α − 1)

(
(n + 2)α − n + 4

)
.

It follows from this that Q′
n(α) > 0 for n ≥ 10. Since Qn(0) = 0 we infer that (2.6)

is valid for all n ≥ 10. For n = 7, 8, 9 we see from (2.7) that Q′
n(α) has a unique

root on (0, 1/2). Then by an elementary argument we deduce that Qn(α) > 0 for
0 < α < 1/2.

The positivity of the polynomials Pn(α) on 0 < α < 1/2, for n = 4, 5, 6 can be
checked by a direct computation. Note that

P4(α) = 6α (α − 1) (α2 + α − 1),

P5(α) = α (α − 1) (12α3 + 27α2 + 7α − 23),

P6(α) = α (α − 1) (20α4 + 68α3 + 73α2 − 17α − 72).
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The proof of (2.3) is complete. In a similar way we prove (2.4). We check directly
that P4(α) < 0, for −1 < α < 0. Suppose that n ≥ 5, Qn(α) is as above and
−1 < α < 0. It is clear that

(2.8) Pn(α) < Qn(α) + (α + 1)n − 1, when n is odd

and

(2.9) Pn(α) < Qn(α) + (α + 1)n − 1 + α2, when n is even.

It follows from (2.7) that Qn(α) is strictly increasing on (−1, 0). Hence the function
Tn(α) := Qn(α) + (α + 1)n − 1 is strictly increasing on the same interval so that
Tn(α) < Tn(0) = 0. This in combination with (2.8) establishes (2.4) for all odd
n ≥ 5. Suppose that n is even and n ≥ 6. Using again (2.7) we see that

Q′
n(α) + 2α > (α + 2)n−1(n − 4) + 2α > n − 6 ≥ 0 .

Therefore the function Un(α) := Qn(α) + (α + 1)n − 1 + α2 is strictly increasing
on (−1, 0) and so Un(α) < Un(0) = 0. We then use (2.9) to complete the proof of
(2.4).

Taking into consideration (2.2), (2.3) and (2.4), we conclude from (2.1) that the
function f(x) is convex on (0, ∞) when 0 < α ≤ 1/2, and concave on the same
interval when −1 < α < 0. We also obtain from

f ′(x) =
αeαx

ex − 1
− ex(eαx − 1)

(ex − 1)2

that
lim

x→∞
f ′(x) = 0

when −1 < α < 0 or 0 < α ≤ 1/2.
(2) In the case (i) write

g(x) = eβx e(α−β)x − 1
ex − 1

and use part (1) of the lemma to see that g(x) is strictly decreasing and convex on
(0, ∞). Similarly, in the case (ii) we write

g(x) = eαx 1 − e(β−α)x

ex − 1
and use again part (1) of the lemma to deduce the desired result. In the case (iii),
we write

g(x) =
eα x − 1
ex − 1

− eβ x − 1
ex − 1

,

then use (2.1) to see that

g′′(x) =
( x

ex − 1

)3 ∞∑
n=3

[Pn(α) − Pn(β)]
xn−3

n!
.

Now g′′(x) > 0 for x > 0, follows from the fact that the polynomials Pn(α) are
strictly increasing functions of α on (0, 1

2 −
√

3
6 ), for n = 3, 4, . . .. Indeed, for

n = 3, 4, 5 inequality P ′
n(α) > 0 can be checked by a direct calculation, the case

n = 3 being sharp. For n ≥ 6 we set rn(α) := (α − 1)2(α + 2)n and observe that
Pn(α)−rn(α) obviously increases for this range of α. Then we use (2.7) to conclude
that Q′

n(α) = r′n(α) > 0, for n ≥ 6 and α ∈ (0, 1
2 −

√
3

6 ). Since in this case we
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have 0 < β < α < 1 an elementary calculation shows that limx→∞ g′(x) = 0 and
completes the proof of part (2) of the lemma.

(3) This follows easily by observing that

g′′(x) g(x) − g′(x)2 = −(α − β)2 sinh2 x

2
4 e(α+β+1)x

(ex − 1)4
[
1 −

( sinh(α − β) x
2

(α − β) sinh x
2

)2]
.

A different proof of part (3) of this lemma can be found in [23].
The proof of Lemma 1 is complete. �

We also need the following:

Lemma 2. Let

h(x) :=
∫ ∞

0

e−xt p(t) dt.

If the function p(t) satisfies the conditions

(2.10) p(0) = 0, p(t) > 0, p′(t) > 0, p′′(t) > 0, for all t > 0,

then the function x2 h(x) is completely monotonic on (0, ∞).

Proof. We write

(2.11) x2 h(x) =
∫ ∞

0

e−t x p
( t

x

)
dt.

In order to prove that the left hand side of (2.11) is a decreasing function of x in
(0, ∞) it is sufficient to show that the function q(u) := p(u)

u is strictly increasing on
(0, ∞). Set r(u) := u p′(u) − p(u). Since r′(u) = u p′′(u) > 0, we deduce that r(u)
is strictly increasing from r(0) = 0. This implies q′(u) > 0 for all u > 0 as desired.
Therefore,

d

dx

(
x2 h(x)

)
< 0, for all x ∈ (0, ∞).

For n ≥ 2 applying Leibniz’ rule we obtain

(2.12)
(
x2 h(x)

)(n) =
1

xn−2

(
xn h(n−2)(x)

)′′
.

We also have

(2.13) (−1)n xn h(n−2)(x) =
∫ ∞

0

tn−2 e−t x p
( t

x

)
dt.

Combining (2.12) with (2.13) we see that the inequality

(2.14) (−1)n
(
x2 h(x)

)(n)
> 0, for all x ∈ (0, ∞),

follows from

d2

dx2

(
x p

( t

x

))
=

t2

x3
p′′

( t

x

)
> 0, for all x ∈ (0, ∞),

which is clearly true. The proof of Lemma 2 is complete. �

Remark. The condition p(0) = 0 is necessary for the validity of Lemma 2 as the
simple example p(t) = (t + 1)2 shows. The inequality (2.14), however, holds true
for all n ≥ 2 without the assumption p(0) = 0.
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3. Proofs of the main results

We first give a proof of Theorem 1.

Proof. Differentiating we get

L′(x) = 1 − Γ(x + t)
Γ(x + s)

xs−t
(
x

(
ψ(x + t) − ψ(x + s)

)
+ s − t + 1

)

and

L′′(x) = − Γ(x + t)
Γ(x + s)

xs−t+1(3.1)

×
{(

ψ(x + t) − ψ(x + s)
)2 + ψ′(x + t) − ψ′(x + s)

+ 2
s − t + 1

x

(
ψ(x + t) − ψ(x + s)

)
+

(s − t) (s − t + 1)
x2

}
.

It follows from this that

(3.2) Φ(x) =
(
ψ(x+t)−ψ(x+s)+

s − t + 1
x

)2

+
(
ψ(x+t)−ψ(x+s)+

s − t + 1
x

)′
.

Using the well-known formulae
(3.3)

ψ(x) = −γ +
∫ ∞

0

e−u − e−xu

1 − e−u
du, and ψ(n)(x) = (−1)n+1

∫ ∞

0

e−xu un

1 − e−u
du,

where x > 0 and γ is Euler’s constant and n = 1, 2, . . ., (cf. [1, pp. 259-260] or
[8, p. 26]), we get

(3.4) ψ(x + t) − ψ(x + s) = −
∫ ∞

0

e−xu φ(u) du

and

ψ′(x + t) − ψ′(x + s) =
∫ ∞

0

e−xu u φ(u) du,

where

φ(u) :=
e(1−t)u − e(1−s)u

eu − 1
.

Defining
φ(0) = s − t, σ(u) := φ(0) − φ(u) + 1,

and using the above we see that

ψ(x + t) − ψ(x + s) +
s − t + 1

x
=

∫ ∞

0

e−xu σ(u) du,

so that the application of convolution theorem for the Laplace transform in (3.2)
yields

(3.5) Φ(x) =
∫ ∞

0

e−xu F (u) du,

where

F (u) :=
∫ u

0

σ(u − v) σ(v) dv − u σ(u) .
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It follows easily that

F ′(u) =
∫ u

0

σ′(u − v) σ(v) dv − u σ′(u) ,

and

F ′′(u) =
∫ u

0

σ′′(u − v) σ(v) dv + σ′(0)σ(u) − σ′(u) − u σ′′(u)(3.6)

= u φ′′(u) +
∫ u

0

φ′′(u − v) φ(v) dv + φ(0)φ(u)
(φ′(0)

φ(0)
− φ′(u)

φ(u)

)

= u φ′′(u) +
∫ u

0

φ′(u − v) φ′(v) dv .

It follows from Lemma 1 that when the numbers s, t satisfy one of the conditions
(i)–(iii), the function φ(u) defined above is positive, strictly decreasing, convex and
log-concave on (0, ∞). Hence we infer from the second (or third) relation of (3.6)
that F ′′(u) > 0 for all u > 0. Since F ′(0) = F (0) = 0 we deduce that F ′(u) > 0 and
F (u) > 0 for all u > 0. In view of Theorem 1 of [26] and relation (3.5) we conclude
that the function Φ(x) is strongly completely monotonic on (0, ∞). In addition, it
follows from Lemma 2 that the function x2 Φ(x) is completely monotonic on (0, ∞).
From (3.1) we have that

−L′′(x) = xs−t−1 Γ(x + t)
Γ(x + s)

x2Φ(x) .

It is also well known that for the ratio of two gamma functions we have the repre-
sentation (see for example [8, p. 615])

Γ(x + t)
Γ(x + s)

=
1

Γ(s − t)

∫ ∞

0

e−xu e−tu (1 − e−t)s−t−1 du .

Since in our considerations here we have 0 < s−t < 1 we conclude that the function
−L′′(x) is completely monotonic on (0, ∞) as a product of completely monotonic
functions.

Finally, using the asymptotic formulae

(3.7)
Γ(x + t)
Γ(x + s)

xs−t = 1 − (s − t)(s + t − 1)
2x

+ O
( 1

x2

)
, x → ∞

and

(3.8) ψ(x + t) − ψ(x + s) = −s − t

x
+

(s − t) (s + t − 1)
2 x2

+ O
( 1

x3

)
, x → ∞,

(see [1] or [8]), we obtain
lim

x→∞
L′(x) = 0 .

Therefore, the function L(x) is strictly increasing and concave on (0, ∞). Formula
(3.7) also gives

lim
x→∞

L(x) =
(s − t)(s + t − 1)

2
,

which in combination with the above entails inequality (1.3) and completes the
proof of Theorem 1. �

From Theorem 1 we derive the following:
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Corollary 1. If s, t satisfy one of the conditions (i)–(iii) of Theorem 1, then the
inequality

(3.9) ψ(x + t) − ψ(x + s) +
s − t + 1

x
<

Γ(x + s)
Γ(x + t)

xt−s−1,

holds for all x > 0 and the function

ψ(x + s) − ψ(x + t) − s − t

x
+

(s − t)(s + t − 1)
2x2

is completely monotonic on (0, ∞).

Proof. Inequality (3.9) is an immediate consequence of the fact that for the function
L(x) defined above we have L′(x) > 0 for all x > 0. For the second assertion we
observe that φ(0) = s−t and φ′(0) = −1

2 (s−t)(s+t−1). Since the function φ(u) is
convex on (0, ∞) we have φ(u)−φ(0)−φ′(0) u > 0. Taking Laplace transformation
and using (3.4) we complete the proof. �

Using the convexity of the function φ defined above we are able to prove the
following:

Proposition 2. Let

K(x) := ψ′(x + t) − ψ′(x + s) +
2
x

[
ψ(x + t) − ψ(x + s)

]
+

s − t

x2

and

Λ(x) := x log
( Γ(x + t)

Γ(x + s)
xs−t

)
.

If the numbers s, t satisfy one of the conditions (i)–(iii) of Theorem 1, then:
(1) the function K(x) is strongly completely monotonic on (0, ∞). In particular,

the functions x2 K(x) and Λ′′(x) are completely monotonic on (0, ∞).
(2) The function Λ(x) is strictly decreasing and convex on (0, ∞), so that

(3.10) − (s − t)(s + t − 1)
2

< x log
( Γ(x + t)

Γ(x + s)
xs−t

)
< 0, for all x > 0.

Proof. It is easy to see that

K(x) =
∫ ∞

0

e−xu ρ(u) du,

where
ρ(u) := u φ(u) − 2

∫ u

0

φ(v) dv + (s − t) u

where φ(u) as in the proof of Theorem 1. Then we observe that

ρ(0) = 0, ρ′(0) = 0, and ρ′′(u) = u φ′′(u).

When the numbers s, t satisfy one of the conditions (i)–(iii) of Theorem 1, by
Lemma 1 we deduce the function φ(u) is convex on (0, ∞). Applying Lemma 2
we conclude that the function x2 K(x) is completely monotonic on (0, ∞). Hence
the function x K(x) = Λ′′(x) is also completely monotonic on (0, ∞). Using the
asymptotic formula

log Γ(x) =
(
x − 1

2

)
log x − x +

1
2

log(2π) +
1

12 x
+ O

( 1
x3

)
, x → ∞

(cf. [1, p. 257] or [8, p. 20]), we obtain limx→∞ Λ′(x) = 0 and also inequality
(3.10). �
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We now give a proof of Proposition 1.

Proof. We observe the assumptions s ≥ 1 and 0 < s − t < 1 imply that( n

n + 1

)s−t

< 1 +
t − s

n + 1
≤ n + t

n + s
,

which is to say that the sequence xn := ns−t (t)n

(s)n
is strictly increasing. Also, we

clearly have limn→∞ xn = Γ(s)/Γ(t). Hence the sequence

∆n =
1

ns−t

[Γ(s)
Γ(t)

− ns−t (t)n

(s)n

]
=

1
ns−t

Γ(s)
Γ(t)

[
1 − Γ(n + t)

Γ(n + s)
ns−t

]
,

is positive and strictly decreasing. Obviously limn→∞ ∆n = 0. Then a summation
by parts yields

(3.11) |Un,m(x) − Vn,m(x)| =
∣∣ m∑

k=n

∆k eikx
∣∣ ≤ ∆n

sin x
2

.

It is easy to see that when π/n ≤ x < π we have sin x
2 ≥ 1/n for n > 1. Now, from

(3.11) and (1.3) we conclude that

|Un,m(x) − Vn,m(x)| ≤ n ∆n <
1

ns−t

Γ(s)
Γ(t)

(s − t)(s + t − 1)
2

,

which establishes (1.4). �

Next we give a proof of Theorem 2.

Proof. We have

M ′(x) = 1 − x−a ea ψ(x) (a x ψ′(x) + 1 − a)

and

M ′′(x) = − ea ψ(x) x1−a

×
{

a2 [ψ′(x)]2 + a ψ′′(x) + 2
a (1 − a)

x
ψ′(x) − a (1 − a)

x2

}
,

so that

ξ(x) = a2 [ψ′(x)]2 + a ψ′′(x) + 2
a (1 − a)

x
ψ′(x) − a (1 − a)

x2
.

Using the second relation of (3.3) and the convolution theorem for the Laplace
transform, we easily find that

(3.12) ξ(x) =
∫ ∞

0

e−xu G(u) du,

where

G(u) := a2

∫ u

0

δ(u − v) δ(v) dv + 2a(1 − a)
∫ u

0

δ(v) dv − a u δ(u) − a(1 − a)u

and
δ(u) :=

u eu

eu − 1
, δ(0) := 1.

It follows from the above that

G′(u) = a2

∫ u

0

δ′(u − v) δ(v) dv − a u δ′(u) + a(1 − a)
(
δ(u) − 1

)
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and

G′′(u) = a2
( ∫ u

0

δ′′(u − v) δ(v) dv + δ′(0) δ(u) − δ′(u) δ(0)
)
− a u δ′′(u)(3.13)

= a2
( ∫ u

0

δ′(u − v) δ′(v) dv
)
− a u δ′′(u).

In an elementary way we can verify that

δ′(u) =
eu (eu − 1 − u)

(eu − 1)2
> 0, δ′′(u) =

eu (−2eu + 2 + ueu + u)
(eu − 1)3

> 0,

δ′′′(u) = −eu (−3e2u + 3 + ue2u + 4ueu + u)
(eu − 1)4

< 0, for all u ≥ 0.

We also have
δ′(0) =

1
2
, δ′′(0) =

1
6
, lim

u→∞
δ′′(u) = 0

and (
log δ(u)

)′′ =
eu (u2 + 2) − e2u − 1

u2 (eu − 1)2
< 0, for all u ≥ 0.

Hence the function δ(u) is strictly increasing, convex and log-concave on [0, ∞).
Thus, when a < 0, (3.13) immediately implies that G′′(u) > 0 for u > 0. In the
case where a ≥ 2/3, in order to prove that G′′(u) > 0 for u > 0, we observe that
this is a consequence of the inequality

(3.14)
2
3

(∫ u

0

δ′(u − v) δ′(v) dv
)
− u δ′′(u) > 0, for all u > 0

which, in turn, follows easily by δ′(u) ≥ 1/2 and δ′′(u) ≤ 1/6.
When 0 < a < 2/3, the function G′′(u) assumes negative values sufficiently close

to zero, because

lim
u→0+

G′′(u)
u

=
a(3a − 2)

12
< 0.

Therefore, we have shown that G′′(u) > 0 for all u > 0 precisely when a ∈ (−∞, 0)∪[
2/3, ∞

)
. Since G′(0) = 0 and G(0) = 0 we infer that G′(u) > 0 and G(u) > 0

for all u > 0. From (3.12) we deduce that the function ξ(x) is strongly completely
monotonic on (0, ∞) and by Lemma 2 we conclude that the function x2 ξ(x) is
completely monotonic on (0, ∞) for this range of a.

It follows from the above that the function M(x) is strictly concave on (0, ∞)
when a ∈ (−∞, 0) ∪ [2/3, ∞). Using the well-known asymptotic formulae

(3.15) ψ(x) = log x − 1
2x

− 1
12x2

+ O
( 1

x4

)
, x → ∞

and

(3.16) ψ′(x) =
1
x

+
1

2x2
+

1
6x3

+ O
( 1

x5

)
, x → ∞,

(cf. [1, pp. 259–260]), we find that

lim
x→∞

M ′(x) = 0 ,

hence M(x) is strictly increasing for the same range of a. Again, by (3.15) we get

lim
x→∞

M(x) =
a

2
,
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so that (1.5) is valid for all x > 0 when a ∈ (−∞, 0) ∪ [2/3, ∞).
By the asymptotic formulae (3.15) and (3.16) together with

ψ′′(x) = − 1
x2

− 1
x3

− 1
2x4

+ O
( 1

x6

)
, x → ∞

we also obtain

lim
x→∞

x2 M ′(x) =
a

8

(
a − 2

3

)

and

lim
x→∞

x4 ξ(x) =
a

4

(
a − 2

3

)
.

On the other hand, using the functional equations

(3.17) ψ(n)(x) = ψ(n)(x + 1) + (−1)n+1 n!
xn+1

, x > 0, n = 0, 1, 2, . . .

we find that for a > 0,
lim

x→0+
M ′(x) = 1 ,

while
lim

x→0+
x4 ξ(x) = a2 .

It follows from the above that the functions M ′(x), M ′′(x) and ξ(x) change sign on
(0, ∞) when 0 < a < 2

3 and therefore for such a, (1.5) fails to hold for appropriate
x > 0.

Finally, when a < 0 we write

(3.18) −M ′′(x) = λ(x) x2ξ(x),

where

λ(x) :=
ea ψ(x)

xa+1
.

Then we observe that

(− log λ(x))′ =
a + 1

x
− a ψ′(x) =

∫ ∞

0

e−xu
[
1 + a (1 − δ(u))

]
du.

Since 1 + a (1 − δ(u)) > 0 for a < 0, it follows that the function (− log λ(x))′

is completely monotonic on (0, ∞) and this implies that λ(x) is also completely
monotonic on (0, ∞) (cf. [5, Lemma 2.4]). Therefore, when a < 0 by (3.18) we
conclude that the function −M ′′(x) is completely monotonic on (0, ∞) as a product
of completely monotonic functions.

The proof of Theorem 2 is complete. �

Remark. The fact that the function eψ(x+t)−x is decreasing on (0, ∞) for all t > 0
has been established in [14]. By this the authors derived the estimate

(3.19) ψ′(x) < exp{−ψ(x)}, x > 0.

See [4] and [11] for some extensions of (3.19) for higher order derivatives of ψ(x)
and also [10] for a different proof of (3.19).

Here we observe that Theorem 2 enables us to obtain the following extension of
(3.19).
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Corollary 2. The inequality

x1−a
{

a ψ′(x) +
1 − a

x

}
< exp{−a ψ(x)},

holds for all x > 0 if and only if a ∈ (−∞, 0) ∪ [2/3, ∞).

Proof. It follows immediately from the fact that M ′(x) > 0 for all x > 0 holds if
and only if a ∈ (−∞, 0) ∪ [2/3, ∞). �

By Theorem 2 we can also derive the following:

Corollary 3. The functions

f1(x) := [ψ′(x)]2 + ψ′′(x),

f2(x) :=
2
3

(
ψ′(x) +

1
2 x

)2

+ ψ′′(x) − 1
2 x2

,

f3(x) := −ψ′′(x) − 2
x

ψ′(x) +
1
x2

,

are strongly completely monotonic on (0, ∞). In particular, the functions x2 fi(x),
i = 1, 2, 3 are completely monotonic on (0, ∞).

Proof. In order to obtain the conclusions for the function f1(x) we repeat the proof
of Theorem 2 taking a = 1 while for the function f2(x) we take a = 2

3 in the same
proof.

We also have

f3(x) =
∫ ∞

0

e−xu ρ3(u) du,

where

ρ3(u) := u δ(u) − 2
∫ u

0

δ(v) dv + u

and δ(u) as in the proof of Theorem 2. Since

ρ3(0) = 0, ρ′3(0) = 0, and ρ′′3(u) = u δ′′(u).

Recalling that the function δ(u) is strictly convex on (0, ∞), an application of
Lemma 2 completes the proof. �
Remarks. (1) Inequality

(3.20) f1(x) = [ψ′(x)]2 + ψ′′(x) > 0, for all x > 0,

has been established in [4] and also in [10]. It corresponds to the convexity of the
function eψ(x) − x on (0, ∞). In [24] this result has been extended by proving that
the function f1(x) is completely monotonic on (0, ∞). Thus, the conclusions of
Corollary 3 concerning the function f1(x) may be considered as a further extension
of the above cited results. A generalization of (3.20) for higher order derivatives
of the function ψ(x) has been obtained in [11]. The q-analogue of (3.20) has been
established in [6]. Several interesting inequalities for gamma and polygamma func-
tions have been obtained in [4], [6], [9], [10] and [11] using inequality (3.20).

(2) Inequality

f3(x) = −ψ′′(x) − 2
x

ψ′(x) +
1
x2

> 0, for all x > 0,

expresses the convexity of the function ν(x) := x (log x−ψ(x)) on (0, ∞), which has
been proved in [7, Theorem 3.1]. In addition, this result has been strengthened in
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[2, Theorem 1] by showing that the function ν(x) is strictly completely monotonic on
(0, ∞), which implies that the function ν′′(x) = x f3(x) is also strictly completely
monotonic on (0, ∞). The conclusion of Corollary 3 regarding the function f3(x)
provides a further extension of the theorems cited above.
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