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SUPERCONVERGENT DISCONTINUOUS GALERKIN
METHODS FOR SECOND-ORDER ELLIPTIC PROBLEMS

BERNARDO COCKBURN, JOHNNY GUZMÁN, AND HAIYING WANG

Abstract. We identify discontinuous Galerkin methods for second-order el-
liptic problems in several space dimensions having superconvergence properties
similar to those of the Raviart-Thomas and the Brezzi-Douglas-Marini mixed
methods. These methods use polynomials of degree k ≥ 0 for both the po-
tential as well as the flux. We show that the approximate flux converges in
L2 with the optimal order of k + 1, and that the approximate potential and
its numerical trace superconverge, in L2-like norms, to suitably chosen pro-
jections of the potential, with order k + 2. We also apply element-by-element
postprocessing of the approximate solution to obtain new approximations of
the flux and the potential. The new approximate flux is proven to have nor-
mal components continuous across inter-element boundaries, to converge in L2

with order k + 1, and to have a divergence converging in L2 also with order
k+1. The new approximate potential is proven to converge with order k+2 in
L2. Numerical experiments validating these theoretical results are presented.

1. Introduction

In this paper, we uncover a large class of discontinuous Galerkin (DG) methods
for the following second-order elliptic problem:

c q + ∇u = 0 in Ω,(1.1a)

∇ · q = f in Ω,(1.1b)

u = g on ∂ΩD,(1.1c)

q · n = qN on ∂ΩN ,(1.1d)

with optimal convergence properties for the approximate flux and superconvergence
properties similar to those of the classical mixed methods of Raviart-Thomas (RT)
[15] and Brezzi-Douglas-Marini (BDM) [5]. Here Ω ⊂ R

d is a polyhedral domain
(d ≥ 2), f ∈ L2(Ω), and c = c(x) is a symmetric d × d matrix function that is
uniformly positive definite on Ω with components in L∞(Ω). Some of our results
require the domain Ω to be convex.
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To describe our results, we need to introduce some notation. We denote by
Ωh = {K} a triangulation of the domain Ω of shape-regular simplices K and set
∂Ωh := {∂K : K ∈ Ωh}. We associate to this triangulation the set of interior faces
E i

h and the set of boundary faces E ∂
h . We say that e ∈ E i

h if there are two simplices
K+ and K− in Ωh such that e = ∂K+ ∩ ∂K−, and we say that e ∈ E ∂

h if there is
a simplex in Ωh such that e = ∂K ∩ ∂Ω. We set Eh := E i

h ∪ E ∂
h .

We assume that the approximate solution (qh, uh) ∈ V h × Wh satisfies the
formulation

(c qh, v)Ωh
− (uh,∇ · v)Ωh

+ 〈ûh, v · n〉∂Ωh
= 0,(1.2a)

− (qh,∇ω)Ωh
+ 〈q̂h · n, ω〉∂Ωh

= (f, ω)Ωh
,(1.2b)

for all (v, ω) ∈ Vh × Wh, where

ûh is single-valued on Eh,(1.2c)

the normal component of q̂h is single-valued on Eh,(1.2d)

and

ûh = g on ∂ΩD,(1.2e)

q̂h · n = qN on ∂ΩN .(1.2f)

Here, we have used the notation

(σ, v)Ωh
:=

d∑
i=1

(σi, vi)Ωh
∀ σ, v ∈ H1(Ωh),

(ζ, ω)Ωh
:=

∑
K∈Ωh

∫
K

ζ(x) ω(x) dx, ∀ ζ, ω ∈ H1(Ωh),

〈v · n, µ〉∂Ωh
:=

∑
K∈Ωh

∫
∂K

v(γ) · nµ(γ) dγ ∀ (v, µ) ∈ L2(∂Ωh) × L2(∂Ωh).

The outward normal unit vector to ∂K is denoted by n. Finally, if S represents a
given space, we are writing S(Ωh) := [S(Ωh)]d and

S(Ωh) := {ω : Ωh 
→ R, ω|K ∈ S(K) ∀ K ∈ Ωh},
S(∂Ωh) := {ω : ∂Ωh 
→ R, ω|∂K ∈ S(∂K) ∀ K ∈ Ωh}.

Note that we are not assuming that the approximate solution under considera-
tion is determined by the above equations, but only that it satisfies them; see,
for example, the equations defining the approximate solution of the discontinuous
Petrov-Galerkin method [4].

We are now ready to discuss our results. For a long while, no DG method using
the choice of spaces

V h × Wh = Vh × Wh = Vk
h × Wk

h,(1.3)

where

Vk
h = {v ∈ L2(Ω) : v|K ∈ Pk(K) ∀K ∈ Ωh},

Wk
h = {w ∈ L2(Ω) : w|K ∈ Pk(K) ∀K ∈ Ωh}

was known to provide an approximate flux qh converging with the optimal order
k+1; here, Pk(K) stands for the set of polynomials of degree at most k defined on K,
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and Pk(K) for R
d-valued functions whose components belong to Pk(K). Indeed,

in the unified analysis of DG methods for second-order elliptic problems, [2], it
was shown that the approximations uh and qh given by consistent and stable DG
methods using the spaces (1.3) converge in L2 with order k + 1 and k, respectively,
for any k ≥ 1; see also [7], where the performances of representative DG methods
are compared.

In [8], DG methods using the spaces (1.3), which do not fit in the above-
mentioned unified analysis, were thoroughly studied. Those methods are obtained
when the numerical traces on E i

h are chosen as follows:

ûh = {{uh}} − C12 · [[uh]] + C22 [[qh]],(1.4a)

q̂h = {{qh}} + C12 · [[qh]] + C11 [[uh]],(1.4b)

and the penalization parameter C22 is taken to be strictly positive. We are using
the standard notation for the averages {{·}} and the jumps [[·]]; see [2].

For these methods, it was shown [8] that if C12 is of order one, and C11 and
1/C22 are of order 1/h, then uh and qh converge in L2 with order k + 1 and k,
respectively, for any k ≥ 1. The same orders of convergence were proven to hold if
we set C22 = 0, that is, for the so-called local DG (LDG ) method; see also [2].

Better orders of convergence were obtained for the approximate flux if C11 is
decreased and C22 is increased. Indeed, it was shown [8] that if C11 and C22 are of
order one, then uh and qh converge in L2 with order k+1 and k+1/2, respectively,
for any k ≥ 0. In spite of this better convergence property, these DG methods
have not been paid too much attention since they are very difficult to implement
(precisely because C22 �= 0). On the other hand, in [12], an LDG method (C22 =
0) with those same orders of convergence was obtained which employed C11 of
order one; it used Cartesian grids, tensor-product polynomial local spaces and a
special choice for C12. Until recently, no DG method was known which provided
an approximate flux converging with order k + 1. The first DG method with such
a property, the SF-H method, was recently identified in [9].

The SF-H method is one of the local DG-hybridizable (LDG-H) methods in-
troduced in [10]. The LDG-H methods are characterized by the fact that their
numerical traces on any given interior face are given by

ûh =
(

τ+

τ− + τ+

)
u+

h +
(

τ−

τ− + τ+

)
u−

h +
(

1
τ− + τ+

)
[[qh]],(1.5a)

q̂h =
(

τ−

τ− + τ+

)
q+

h +
(

τ+

τ− + τ+

)
q−

h +
(

τ+τ−

τ− + τ+

)
[[uh]],(1.5b)

where τ± are nonnegative constants. The main interest of these methods is that
they can be implemented very efficiently in spite of the fact that in this case the
coefficient C22 = 1/(τ−+τ+) is different from zero; see [10]. The distinctive feature
of the SF-H method is that on each simplex K, τ is equal to zero except on a single,
arbitrarily chosen face of K. Thanks to this choice, it is possible to show [9] optimal
convergence properties, for the approximate flux, as well as convergence of order
k + 2 of the approximate potential, and its numerical trace superconverge to some
projections of the potential. As a consequence, a postprocessing of the approximate
solution, u�

h, could be constructed which provides an approximation of the potential
converging with order k + 2 in L2.
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The fact that similar properties hold for the hybridized version of the RT and
that of the BDM mixed methods is no coincidence. In fact, the SF-H method was
actually discovered by exploiting the similarities that hybridizable DG methods
and the hybridized versions of classical mixed methods have, as made evident in
the framework proposed in [10]. Since, thanks to that framework, the SF-H could
be seen as a DG method in between the RT and BDM methods, an extension of the
analysis of the hybridized versions of the RT and BDM method was used to (both
devise and) analyze the SF-H method and to obtain for it the above-mentioned
convergence and superconvergence properties.

In this paper, however, we do not exploit the hybridization framework intro-
duced in [10]. Instead, we rely on an approach based on trying to rewrite the
general formulation (1.2) as that of the Raviart-Thomas method. This approach
was introduced in the study of the local conservativity properties of the continuous
Galerkin method; see [11]. In our setting, this approach allows us to conclude that
the convergence and superconvergence properties under consideration hold for any
method satisfying the formulation (1.2) when, roughly speaking, the normal com-
ponent of q̂h − qh is small enough, or, when the approximate flux qh is close to
being in H(div, Ω). We then prove that this condition is satisfied by DG (1.4) and
LDG-H (1.5) methods for several choices of the parameters defining their numerical
traces. We thus refine the error estimates obtained for some of the DG methods
considered in [8], and extend the results obtained for the SF-H method in [9] to a
large class of LDG-H methods. In Table 1, we denote by eτ

K the face of the simplex
K at which τ is a maximum.

Table 1. Examples of conditions guaranteeing the optimal con-
vergence of qh and the superconvergence properties of uh and ûh.

method positivity condition boundedness condition

DG C11, C22 > 0
C11, |C12 | bounded

and C11 ∼ 1/C22

LDG-H τ ≥ 0 τ |∂K\eτ
K

bounded

The paper is organized as follows. In Section 2, we state and discuss our two main
results, namely, the optimal convergence of the approximate flux, Theorem 2.1, and
the superconvergence properties of uh and ûh, Theorem 2.3. We also introduce the
postprocessed approximations q�

h and u�
h and obtain optimal convergence results

for them; see Theorems 2.2 and 2.4, respectively. All these results are proved in full
detail in Section 4. In Section 3, we provide several examples of methods for which
these theorems hold, and in Section 5, we give numerical evidence confirming the
theoretical predictions. We end in Section 6 by sketching some extensions and by
providing some concluding remarks.

2. The main results

In all the theorems of this section, we only assume that the following inclusion
conditions hold on the spaces of test functions:

Vh ⊃ Vk
h,(2.6a)

Wh ⊃ Wk
h,(2.6b)
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for some nonnegative integer k. No condition is imposed on the spaces of trial
functions V h and Wh.

2.1. Optimal convergence of qh. To state our results, we need to introduce
some notation. Given a function σ ∈ H(div, Ωh) and an arbitrary simplex K ∈ Ωh,
the restriction of ΠRT

� σ on K is defined as the only element of P�(K) + xP�(K)
satisfying

〈(ΠRT
� σ − σ) · n, µ〉e = 0 ∀µ ∈ P�(e) for all faces e of K,(2.7a)

(ΠRT
� σ − σ, v)K = 0 ∀v ∈ P�−1(K).(2.7b)

Given a function η ∈ L2(∂Ωh), and an arbitrary simplex K ∈ Ωh, the restriction
of P�

∂η to a face e of K is defined as the element of P�(e) that satisfies

〈P�
∂η − η, µ〉e = 0, ∀µ ∈ P�(e).(2.8)

Note that, on the interior faces, P�
∂η is in general double-valued. Finally, we set,

for any τ ∈ L2(∂Ωh),

|||| τ ||||L2(Eh;h) :=

( ∑
K∈Ωh

hK ‖ τ · n‖2
L2(∂K)

)1/2

.

We are now ready to state the first of our main results.

Theorem 2.1. For any method of the form (1.2) satisfying the inclusions (2.6) for
k ≥ 0, we have

‖ q − qh ‖L2(Ωh) ≤ C
(
‖ q − ΠRT

k q ‖L2(Ω) + Θk

)
,

where

Θk = ‖ qh − ΠRT
k qh ‖L2(Ω) + ||||Pk

∂(q̂h − qh) ||||L2(Eh;h).

Note that if the approximate flux qh is given by the RT method, then Θk = 0 and
the above result gives the classic error estimate. Note also that if V h is included
in the space of fluxes of the corresponding RT method, qh = ΠRT

k qh, and

Θk = ||||Pk
∂(q̂h − qh) ||||L2(Eh;h).

Thus, optimal convergence properties for qh can be obtained provided the normal
component of q̂h − qh is small enough, that is, provided qh is “close” to being in
H(div, Ω).

We can easily compute a new approximation of the flux, q�
h, which converges with

the same order as qh and belongs to the space H(div, Ω). This new approximate
flux is obtained in an element-by-element fashion by using a slight modification of
the Raviart-Thomas projection we describe next. It has been used in the framework
of Darcy’s flow, see [3], and also for the Navier-Stokes equations, see [13].

On each simplex K ∈ Ωh, we define the function q�
h as the only element of

Pk(K) + xPk(K) satisfying

〈(q�
h − q̂h) · n, µ〉e = 0 ∀µ ∈ Pk(e) for all faces e of K,(2.9a)

(q�
h − qh, v)K = 0 ∀v ∈ Pk−1(K).(2.9b)
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Given a function ζ ∈ L2(Ω) and an arbitrary simplex K ∈ Ωh, the restriction of
P�ζ to K is defined as the element of P�(K) that satisfies

(P�ζ − ζ, ω)K = 0, ∀ω ∈ P�(K).(2.10)

The main properties of the new approximation q�
h are gathered in the following

result.

Theorem 2.2. For any method of the form (1.2) satisfying the inclusions (2.6) for
k ≥ 1, we have that

q�
h ∈ H(div, Ω),

‖ q − q�
h‖L2(Ω) ≤ C

(
‖ q − ΠRT

k q ‖L2(Ω) + Θk

)
,

‖∇ · (q − q�
h) ‖L2(Ω) = ‖ f − Pkf ‖L2(Ωh).

Note that this last inequality implies that

‖∇ · (q − q�
h) ‖L2(Ω) ≤ C hk+1 | f |Hk+1(Ωh)

provided f ∈ Hk+1(Ωh).

2.2. Superconvergence of uh, ûh. To state the results of this subsection, we need
to introduce some notation and a key hypothesis on the domain. We define (ψ, φ)
to be the solution of the so-called adjoint problem

c ψ + ∇φ = 0 in Ω,(2.11a)

∇ · ψ = θ in Ω,(2.11b)

φ = 0 on ∂ΩD,(2.11c)

ψ · n = 0 on ∂ΩN .(2.11d)

We assume that the following elliptic regularity result holds:

(2.12) ‖ψ ‖Hr+1(Ωh) + ‖∇φ ‖Hr+1(Ωh) ≤ Cer ‖ θ ‖Hr(Ω),

for r ∈ [0, r]. If the domain Ω is convex, this property holds for r = 0.
Finally, we set, for any η ∈ L2(∂Ωh),

| η |L2(Eh;h) :=

( ∑
K∈Ωh

hK ‖ η‖2
L2(∂K)

)1/2

.

We are now ready to state our second main result.

Theorem 2.3. Assume that Ω is such that the elliptic regularity result (2.12) holds
with r = 0. Then, for any method in the general form (1.2) satisfying the inclusions
(2.6) for k ≥ 1, we have

‖Pk−1(u − uh) ‖L2(Ωh) ≤ C h
(
‖ q − ΠRT

k q ‖L2(Ω) + Θk

)
,

|Pk
∂(u − ûh) |L2(Eh;h) ≤ C h

(
‖ q − ΠRT

k q ‖L2(Ω) + Θk

)
.

As was shown in [1] for the RT method (and in [5] for the BDM method), the
above superconvergence results can be used to obtain a new approximation for u,
u�

h, which converges faster than uh. To construct it, we use a slight modification
introduced in [9] of the postprocessing proposed in [16, 17] and [14].



SUPERCONVERGENT DISCONTINUOUS GALERKIN METHODS 7

On the simplex K, we define the new approximation of u, u�
h, as the function of

Pk+1(K) given by

u�
h = ũh +

1
|K|

∫
K

uh dx,(2.13a)

where ũh is the polynomial in Pk+1
0 (K) satisfying

(a∇ũh,∇w)K =(f, w)K − 〈w, q̂h · n〉∂K ∀w ∈ Pk+1
0 (K).(2.13b)

Here a = c−1 and Pk+1
0 (K) is the set of polynomials in Pk+1(K) with zero mean.

We are now ready to state the result.

Theorem 2.4. Assume that Ω is such that the elliptic regularity result (2.12) holds
with r = 0. Then, for any method of the form (1.2) satisfying the inclusions (2.6)
for k ≥ 1, we have that

‖u − u�
h‖L2(Ωh) ≤ C h

(
‖ q − ΠRT

k q ‖L2(Ω) + h ‖ f − Pkf ‖L2(Ωh)

+‖∇(Pk+1u − u) ‖L2(Ωh) + Φk

)
,

where

Φk := Θk+||||Pk+1
∂ (q̂h − qh) ||||L2(Eh;h).

Note that for the RT method, Φk = 0 and we recover the corresponding result
for that method; see [16, 17] and [14].

3. Examples of superconvergent DG methods

In all the examples considered here, we take DG methods whose spaces are given
by (1.3). As a consequence, we immediately have that

1
2
Φk = Θk =

( ∑
K∈Ωh

hK ‖ (q̂h − qh) · n‖2
L2(∂K)

)1/2

.

We are going to show for some DG methods and some LDG-H methods that we
have

Φk ≤ C
(
|u |Hk+1(Ωh) + | q |Hk+1(Ωh) + | f |Hk(Ωh)

)
hk+1.

By our main results, this implies that, for k ≥ 0,

‖ q − qh ‖L2(Ω) ≤ C
(
|u |Hk+1(Ωh) + | q |Hk+1(Ωh) + | f |Hk(Ωh)

)
hk+1,

‖ q − q�
h ‖L2(Ω) ≤ C

(
|u |Hk+1(Ωh) + | q |Hk+1(Ωh) + | f |Hk(Ωh)

)
hk+1,

and for k ≥ 1,

‖u − u�
h ‖L2(Ω) ≤ C

(
|u |Hk+1(Ωh) + |u |Hk+2(Ωh) + | q |Hk+1(Ωh) + | f |Hk(Ωh)

)
hk+2.
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3.1. DG methods. We begin by considering the methods studied in [8]. Those
are DG methods whose numerical traces on the interior faces are given by (1.4).
On boundary faces, we take

q̂h =

{
qN n on ∂ΩN ,

qh + C11(uh − g) n on ∂ΩD,
(3.14a)

ûh =

{
uh + C22(qh · n − qN) on ∂ΩN ,

g on ∂ΩD.
(3.14b)

The result will be stated in terms of the quantities Cii = maxe∈Eh
Cii|e and

Cii = mine∈Eh
Cii|e, for i = 1, 2. Also, we write ah ∼ bh, for positive quantities

ah and bh depending on the triangulation Ωh, when there is an arbitrary but fixed
constant c such that bh/c ≤ ah ≤ c bh.

Proposition 3.1. We have

Φk ≤ C
(
|u |Hk+1(Ωh) + | q |Hk+1(Ωh) + |f |Hk(Ωh)

)
hk+1,

provided

(i) |C12 | ≤ C,

(ii) C22 ∼ C22 ∼ 1
C11

∼ 1
C11

,

(iii) C11 ≤ C,

for some constant C.

Note that, in particular, we can take C11 = 1/C22 constant on Eh. If such a
constant is uniformly bounded, the DG method is optimally convergent in qh. This
result improves the error estimates in [8], which predicted an order of k+1/2 if such
a constant is independent of h. Of course, the DG methods under consideration
are difficult to implement given that C22 > 0. However, this is not the case for the
LDG-H methods we consider next.

3.2. The LDG-H method. For the LDG-H method (see [10]), we have

(3.15) q̂h = qh + τ (uh − ûh) n,

where τ is a nonnegative, piecewise constant, double-valued function on the interior
faces of the triangulation and single-valued on boundary faces. We require τ |∂K �≡ 0
for each element K. The function ûh is an unknown on interior faces and on ∂ΩN

and is equal to Pk
∂g on ∂ΩD. We state our result in terms of some quantities we

define next. For each K ∈ Ωh, let eτ
K be an edge in which τ |∂K is a maximum. Let

τK be the maximum value of τ |∂K\eτ
K

. Then we set τ := maxK∈Ωh
τK . We also

define τ = minK∈Ωh
τ |eτ

K
.

Proposition 3.2. We have that

Φk ≤ C
(
|u |Hk+1(Ωh) + | q |Hk+1(Ωh) + |f |Hk(Ωh)

)
hk+1,

provided

(i) τ ≤ C1,

(ii)
τ

τ
≤ C2,

for some constants C1 and C2.
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The SF-H method [9] is a particular LDG-H method obtained by taking τ = 0
on ∂K \ eτ

K and τ > 0 on eτ
K . With this choice, we get τ ≡ 0 and τ > 0, and, as a

consequence, Proposition 3.2 holds with C1 = C2 = 0. In fact, in [9], it was directly
shown that

‖ (q̂h − qh) · n ‖L2(∂K) ≤ C h
k+1/2
K | f |Hk(K),

where C is independent of τ |∂K , which immediately implies that

Φk ≤ C hk+1 | f |Hk(Ωh),

independently of the values of τ , provided f ∈ Hk(Ωh).

4. Proofs

To prove the theorems of the previous section, we proceed in several steps. We
begin by introducing the main tools of the analysis, namely, the error equations
and some suitably defined projections.

As is traditional in the analysis of finite element methods, we begin by obtaining
the error equations. From the definition of the exact solution (1.1) and the general
form of the methods under consideration (1.2), we easily obtain the following error
equations:

(c (q − qh), v)Ωh
− (u − uh,∇ · v)Ωh

+ 〈u − ûh, v · n〉∂Ωh\∂ΩD
= 0,(4.16a)

− (q − qh,∇ω)Ωh
+ 〈(q − q̂h) · n, ω〉∂Ωh\∂ΩN

= 0,(4.16b)

for all (v, ω) ∈ Vh × Wh.

4.1. Some properties of q�
h. To obtain error estimates for q�

h, we begin by gath-
ering properties of the function q�

h − ΠRT
k q in the following lemma.

Lemma 4.1. Assume that the inclusion property (2.6b) for the space Wh holds.
Assume also that the property (1.2d) of single-valuedness of the numerical trace q̂h

holds. Then
(i) (q�

h − ΠRT
k q) · n = 0 on ∂ΩN ,

(ii) q�
h − ΠRT

k q ∈ H(div, Ω),
(iii) ∇ · (q�

h − ΠRT
k q) = 0 in Ω,

(iv) q�
h − ΠRT

k q ∈ Vk
h.

Proof. Let us prove property (i). We have that, on any face e lying on ∂ΩN ,

q�
h · n = Pk

∂(q̂h · n) by property (2.9a),

= Pk
∂(qN) by the Neumann boundary condition (1.2f),

= ΠRT
k q · n by the definition of the projection ΠRT

k (2.7a).

Property (ii) follows by the definition of the projection ΠRT
k , the definition of

q�
h, and by the fact that the normal component of the numerical trace for the flux

is single-valued, (1.2d).
Next, let us prove property (iii). By the inclusion property (2.6b), we can rewrite

the equation (1.2b) as follows:

(∇ · q�
h, w)Ωh

= (f, w)Ωh
for all w ∈ Wk

h.
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As a consequence, we have that

(∇ · (q�
h − ΠRT

k q), w)Ωh
= 0 for all w ∈ Wk

h,

and since ∇ · (q�
h − ΠRT

k q) ∈ Wk
h, (iii) follows.

Property (iv) is a direct consequence of property (iii) and the fact that, for
each simplex K ∈ Ωh, q�

h − ΠRT
k q|K ∈ Pk(K) + x Pk(K), which follows from the

definitions of the projection ΠRT
k (2.7) and the function q�

h (2.9). This completes
the proof.

�

We are now ready to obtain an estimate of q�
h − ΠRT

k qh.

Lemma 4.2. We have

‖q�
h − ΠRT

k qh‖L2(K) ≤ Ch
1/2
K ‖Pk

∂(q̂h − qh) · n ‖L2(∂K).

Proof. If we set δ := q�
h − ΠRT

k qh, then on the simplex K ∈ Ωh, the function δ is
the element of Pk(K) + x Pk(K) satisfying the equations

(δ, v)K = 0, ∀v ∈ Pk−1(K), if k ≥ 1,

〈δ · n, ω〉e = 〈Pk
∂((q̂h − qh) · n), ω〉e ∀ω ∈ Pk(e), for all faces of K.

The result now easily follows; see [6]. This completes the proof. �

4.2. Optimal convergence of qh and q�
h. Here we prove Theorems 2.1 and 2.2.

Let us begin by proving Theorem 2.2. The fact that q�
h ∈ H(div, Ω) follows from

(ii) of Lemma 4.1 and the fact that ΠRT
k q is also in H(div, Ω). The estimate of its

divergence follows from (iii) of Lemma 4.1. Indeed, by such a property,

‖∇ · (q − q�
h) ‖L2(Ω) = ‖∇ · (q − ΠRT

k q) ‖L2(Ω)

= ‖ f − Pkf ‖L2(Ωh),

by a well-known property of the projection ΠRT
k ; see, for example, [6]. To prove the

remaining inequality, we proceed as follows. We use the following notation:

‖v ‖L2(Ω;c) :=(c v, v)1/2
Ω .

By the first equation defining the method (1.2a),

(c qh, v)Ωh
= (uh,∇ · v)Ωh

− 〈ûh, v · n〉∂Ωh
for all v ∈ Vh ∩ H(div, Ω).

As a consequence, since the numerical trace ûh is single-valued (1.2c), we obtain
that

(c qh, v)Ωh
= (uh,∇ · v)Ωh

− 〈ûh, v · n〉∂Ω for all v ∈ Vh ∩ H(div, Ω).

This implies that, for all v ∈ Vh ∩ H(div, Ω),

(c (q − qh), v)Ωh
= (u − uh,∇ · v)Ωh

− 〈u − ûh, v · n〉∂ΩN
,

by the Dirichlet boundary condition on the exact solution (1.1c) and on the ap-
proximate solution (1.2e).

We claim that we can take v = ΠRT
k q − q�

h in the previous equation. Indeed, by
property (iv) of Lemma 4.1, the function ΠRT

k q−q�
h belongs to Vk

h, and by property
(ii) of Lemma 4.1, it also belongs to H(div, Ω). Hence, it belongs to Vk

h ∩H(div, Ω)
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and so to Vh ∩ H(div, Ω), by the inclusion property (2.6a). As a consequence, we
get that

(c (q − qh),ΠRT
k q − q�

h)Ωh
= 0,

by properties (i) and (iii) of Lemma 4.1.
This implies that

‖ΠRT
k q − q�

h‖2
L2(Ωh;c) = (c (ΠRT

k q − q),ΠRT
k q − q�

h)Ωh

− (c (q�
h − qh),ΠRT

k q − q�
h)Ωh

,

and so,

‖ΠRT
k q − q�

h‖L2(Ωh;c) ≤ ‖ΠRT
k q − q‖L2(Ωh;c) + ‖q�

h − qh‖L2(Ωh;c)

≤ ‖ΠRT
k q − q‖L2(Ωh;c) + ‖q�

h − ΠRT
k qh‖L2(Ωh;c)

+ ‖ΠRT
k qh − qh‖L2(Ωh;c)

≤ ‖ΠRT
k q − q‖L2(Ωh;c) + C ||||Pk

∂(q̂h − qh) ||||L2(Eh;h)

+ ‖ΠRT
k qh − qh‖L2(Ωh;c),

since, by Lemma 4.2,

‖q�
h − ΠRT

k qh‖L2(K) ≤ Ch
1/2
K ‖Pk

∂(q̂h − qh) · n ‖L2(∂K).

This implies that

‖ q − q�
h ‖L2(Ωh) ≤ C

(
‖ΠRT

k q − q‖L2(Ωh) + Θk

)
,

by the triangle inequality and the definition of Θk. This completes the proof of
Theorem 2.2.

Let us now prove Theorem 2.1. Since

‖ q − qh ‖L2(Ωh) ≤ ‖ q − q�
h ‖L2(Ωh) + ‖ q�

h −ΠRT
k qh ‖L2(Ωh) + ‖ΠRT

k qh − qh ‖L2(Ωh),

we only have to use Lemma 4.2 and the first inequality of Theorem 2.1 to obtain
our estimate. This completes the proof of Theorem 2.1.

4.3. Superconvergence of Pk−1uh in Ω. Next we prove the first superconver-
gence estimate of Theorem 2.3.

We begin by noting that

Ξh := (Pk−1(u − uh), θ)Ωh

= (Pk−1(u − uh),∇ · ψ)Ωh

= (u − uh,∇ · ΠRT
k−1ψ)Ωh

.

By the inclusion (2.6a), we can take v = ΠRT
k−1ψ in the error equation (4.16a) and

obtain

Ξh = (c (q − qh),ΠRT
k−1ψ)Ωh

= (c (q − qh),ΠRT
k−1ψ − ψ)Ωh

+ (c (q − qh), ψ)Ωh

= (c (q − qh),ΠRT
k−1ψ − ψ)Ωh

− (q − qh,∇φ)Ωh

by the adjoint equation (2.11a). Hence

Ξh =
4∑

i=1

Ti,
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where

T1 := (c (q − qh),ΠRT
k−1ψ − ψ)Ωh

,

T2 := −(q − ΠRT
k q,∇φ)Ωh

,

T3 := −(ΠRT
k q − q�

h,∇φ)Ωh
,

T4 : = −(q�
h − qh,∇φ)Ωh

.

Let us estimate each of these terms. Since k ≥ 1, we have that

|T1 | ≤ C h ‖q − qh‖L2(Ωh)‖ψ‖H1(Ωh).

By the definition of the Raviart-Thomas projection, (2.7b),

T2 = − (q − ΠRT
k q,∇φ − P0∇φ)Ωh

,

we obtain, since k ≥ 1,

|T2 | ≤ C h ‖ q − ΠRT
k q‖L2(Ωh)‖φ‖H2(Ωh).

By properties (i), (ii) and (iii) of Lemma 4.1,

T3 = − 〈(ΠRT
k q − q�

h) · n, φ〉∂ΩD
= 0,

by the adjoint equation (2.11c). Finally, by the definition of q�
h, (2.9b),

T4 = − (q�
h − qh,∇φ − P0∇φ)Ωh

and so

|T4 | ≤ C h ‖ q�
h − qh‖L2(Ωh)‖φ‖H2(Ωh).

Finally, by Lemma 4.2,
|T4 | ≤ C h Θk‖φ‖H2(Ωh).

This implies that

Ξh ≤ C h
(
‖ q − ΠRT

k q ‖L2(Ω) + Θk

)
‖ θ ‖L2(Ωh)

by the elliptic regularity estimate (2.12) with r = 0. This completes the proof of
the first estimate of Theorem 2.3.

4.4. Superconvergence of Pk
∂uh on Eh. Here, we prove the second estimate of

Theorem 2.3. We begin by the following simple result.

Lemma 4.3. For any method of the form (1.2) satisfying the inclusion (2.6a) for
the space Vh, we have that

h
1/2
K ‖Pk

∂(u − ûh)‖L2(e) ≤ C h ‖q − qh‖L2(K) + C‖Pk−1(u − uh)‖L2(K),

for any face e of ∂K and any simplex K ∈ Ωh.

Proof. Thanks to the inclusion property (2.6a), from the error equation (4.16a) we
can deduce that

〈Pk
∂(u − ûh), v · n〉∂K = −(c (q − qh), v)K + (Pk−1(u − uh),∇ · v)K ∀v ∈ Pk(K).
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If we now choose a v ∈ Pk(K) such that

v · n = Pk
∂(u − ûh) on e,

v · n = 0 on ∂K\e,
(v,∇w)K = 0, ∀w ∈ Pk−1(K),

(v, v◦)K = 0, ∀v◦ ∈ Φk(K),

where

Φk(K) ={v ∈ Pk(K) : ∇ · v = 0, v · n|∂K = 0},

see [6], we readily obtain that

‖Pk
∂(u − ûh) ‖2

L2(e) = −(c(q − qh), v)K + (Pk−1(u − uh),∇ · v)K .

The result now follows by noting that

hK‖v‖H1(K) + ‖v‖L2(K) ≤ Ch
1/2
K ‖Pk

∂(u − ûh) ‖L2(e),

which in turn follows from a scaling argument. �

The second estimate of Theorem 2.3 follows from the above result, Theorem 2.1,
and the first estimate of Theorem 2.3.

4.5. Superconvergence of u�
h. It remains to prove Theorem 2.4. To do that, we

follow [9]. By the definition of u�
h, (2.13a), we have that

‖u − u�
h ‖L2(K) ≤

1
|K| ‖

∫
K

(u − uh) dx ‖L2(K) + ‖ ũ − ũh ‖L2(K),

where ũ stands for u minus its average on K. Then

‖u − u�
h ‖L2(K) = ‖P0(u − uh) ‖L2(K) + ‖ ũ − ũh ‖L2(K)

≤ ‖Pk−1(u − uh) ‖L2(K) + ‖ ũ − ũh ‖L2(K),

since k − 1 ≥ 0. This implies

‖u − u�
h ‖L2(Ωh) ≤ C h(‖q − ΠRT

k q‖L2(Ω) + Θk) + ‖ ũ − ũh ‖L2(Ωh).

It remains to estimate the second term of the right-hand side. Since, by Poincaré’s
inequality, we have

‖ ũ − ũh ‖L2(K) ≤ C hK ‖∇(ũ − ũh) ‖L2(K),

it is enough to estimate the error in the gradient. To do that, we note that, by the
definition of ũh, (2.13b), we have

(a ∇(ũ − ũh),∇w)K = −〈w, (q − q̂h) · n〉∂K ∀w ∈ Pk+1
0 (K).
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Then

‖∇(Pk+1ũ − ũh) ‖2
L2(K;a) = (a ∇(ũ − ũh),∇(Pk+1ũ − ũh))K

+ (a ∇(Pk+1ũ − ũ),∇(Pk+1ũ − ũh))K

= − 〈Pk+1ũ − ũh, (q − q̂h) · n〉∂K

+ (a∇(Pk+1ũ − ũ),∇(Pk+1ũ − ũh))K ,

= − 〈Pk+1ũ − ũh, (q − q̂h) · n〉∂K

+ (a∇(Pk+1u − u),∇(Pk+1ũ − ũh))K .

Let us estimate the first term of the right-hand side. For any arbitrary ω ∈
Pk+1

0 (K), we have

〈ω, (q − q̂h) · n〉∂K = 〈ω, (q − qh) · n〉∂K + 〈ω, (qh − q̂h) · n〉∂K

=
3∑

i=1

Ti,

where

T1 = (∇ω, q − qh)K ,

T2 = (ω,∇ · (q − qh))K ,

T3 = 〈ω, (qh − q̂h) · n〉∂K .

By using the Cauchy-Schwarz inequality, we get that

T1 ≤ ‖∇ω ‖L2(K;a) ‖ q − qh ‖L2(K;c).

By using the definition of the Raviart-Thomas projection ΠRT
k , we get

T2 = (ω, f − Pkf)K + (ω,∇ · (ΠRT
k q − qh))K

≤ ‖ω ‖L2(K)

(
‖ f − Pkf ‖L2(K) + C h−1

K ‖ q − qh ‖L2(K;c)

)
≤ C ‖∇ω ‖L2(K;a)

(
hK ‖ f − Pkf ‖L2(K) + ‖ q − qh ‖L2(K;c)

)
,

by Poincaré’s inequality. Finally,

T3 ≤‖ω ‖L2(∂K) ‖Pk+1
∂ ((qh − q̂h) · n) ‖L2(∂K),

and, after applying a simple inverse inequality, we get

T3 ≤C ‖∇ω ‖L2(K;a) h
1/2
K ‖Pk+1

∂ ((qh − q̂h) · n) ‖L2(∂K).

As a consequence,

〈ω, (q − q̂h) · n〉∂K ≤ C ‖∇ω ‖L2(K;a)

(
‖ q − qh ‖L2(K;c)

+ h
1/2
K ‖Pk+1

∂ ((qh − q̂h) · n) ‖L2(∂K)

+hK ‖ f − Pkf ‖L2(K)

)
.

This implies that

‖∇(Pk+1ũ − ũh) ‖L2(K;a)

≤ C(‖ q − qh ‖L2(K;c) + h
1/2
K ‖Pk+1

∂ ((qh − q̂h) · n) ‖L2(∂K)

+ hK ‖ f − Pkf ‖L2(K) + ‖∇(Pk+1u − u) ‖L2(K))
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and, by Poincare’s inequality,

‖Pk+1ũ − ũh ‖L2(Ωh;a) ≤ C h
(
Θk + ||||Pk+1

∂ (q̂h − qh) ||||L2(Eh;h) + ‖q − ΠRT
k q‖L2(Ω)

+h ‖ f − Pkf ‖L2(Ωh) + ‖∇(Pk+1u − u) ‖L2(Ωh)

)
.

This completes the proof of Theorem 2.4.

5. Numerical examples

In this section, we carry out numerical experiments to validate the theoretical
convergence properties of the LDG-H method.

To do that, we use uniform meshes obtained by discretizing Ω = (−1
2 , 1

2 )×(−1
2 , 1

2 )
with squares of side 2−l which are then divided into two triangles as indicated in
Figure 1; the resulting mesh is denoted by “mesh = l”. The test problem we

Figure 1. Example of a mesh with h = 1/23.

consider here is obtained by taking ∂ΩN = ∅, c = I and choosing g and f so that
the exact solution is u(x, y) = cos(πx) cos(πy) on the domain Ω. It is the same as
that considered in [9] where the SF-H method was studied.

In order to see the effect of τ on the orders of convergence of the errors, we
begin by considering three cases: τ ≡ 1 (Table 2), τ ≡ h (Table 3), τ = 1

h2 on
eτ
K and τ = 1 on ∂K\eτ

K for all K ∈ Ωh (Table 4). Since these three choices of
τ satisfy conditions (i) and (ii) of Proposition 3.2, we expect to see the order of
convergence predicted by Theorems 2.1 and 2.2, that is, k + 1 for ‖q − qh‖L2(Ω)

and ‖q − q�
h‖L2(Ω), provided k ≥ 0, and the orders of convergence predicted by

Theorems 2.3 and 2.4, that is, k + 2 for ‖P∂u − ûh‖L2(Eh;h) and ‖u − u�
h‖L2(Ω),

provided k ≥ 1. We can see in Tables 2, 3 and 4 that these orders of convergence
are actually achieved in full agreement with the theory.

It is interesting to note that in all these experiments, the error of the postpro-
cessed flux q�

h is actually smaller than that of the original flux qh. This shows that
the postprocessed flux not only maintains the order of convergence of the original
flux, but actually produces a slightly better approximation. These results are sim-
ilar to those obtained in the framework of approximations for the Navier-Stokes
equations in [13].
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It is also interesting to see that, unlike for the two other choices for the parame-
ters τ , for the second choice the order of convergence of the approximate potential
is not k + 1, but only k.

Finally, note that although Theorems 2.3 and 2.4 do not say anything about
superconvergence when k = 0, our numerical experiments show that it is not rea-
sonable to expect it. Indeed, we see in Table 2 that for τ ≡ 1, superconvergence
does not occur for the quantities ‖P∂u − ûh‖L2(Eh;h) and ‖u − u�

h‖L2(Ω), where
instead of the definition (2.13b), we use

u�
h = ũh +

1
d

∑
e∈∂K

ûh|e;

see [9]. The same thing happens, see Table 4, for τ |eτ
K

= 1
h2 and τ = 1 on ∂K \ eτ

K

for all K ∈ Ωh. However, see Table 3, if τ ≡ h we do observe superconvergence. To
find out if this occurs because we are taking τ constant, we choose τ |∂K to be h on
one edge of ∂K, 2h on the second edge, and 3h on the last edge. The results, see
Table 5, show that we no longer see superconvergence if k = 0.

We end with an experiment devised to verify that the condition (i) of Proposition
3.2 is necessary. We choose τ ≡ 1

h so that such a condition is not satisfied and see
in Table 6 that the order of convergence of ‖q − qh‖L2(Ω) is not k + 1 but only k.
Note that for k = 0, ‖q − q�

h‖L2(Ω) converges with order one. However, if we take
τ |∂K to be 1/h on one edge of ∂K, 2/h on the second edge, and 3/h on the last
edge, the convergence is lost.

6. Concluding remarks

In this paper, we have used the RT projection and simplices to obtain Theorems
2.1 and 2.3. In a forthcoming paper, we consider general second-order elliptic
equations and show how to use the BDM projection to obtain similar results.

7. Appendix

Here we are going to provide detailed proofs of Propositions 3.1 and 3.2, which
contain the estimate of

Θk =

( ∑
K∈Ωh

hK ‖ (q̂h − qh) · n‖2
L2(∂K)

)1/2

for the DG and LDG-H methods, respectively. To do that, we begin by obtaining
an energy. We then particularize it to each of the two methods under consideration
in order to deduce the estimate we seek.

7.1. The energy estimate. We begin by introducing two projections, denoted by
Π and P, whose use is crucial in our analysis. To define them, for each simplex
K ∈ Ωh, we have to single out a particular face, which we denote by eτ

K . The precise
way in which we pick this face is not relevant for the study of the DG methods.
When studying the LDG-H methods, we take eτ

K to be the face of K on which τ is
a maximum on ∂K.
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Table 2. History of convergence for τ ≡ 1.

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖q − q�
h‖L2(Ω) ‖P∂u − ûh‖L2(Eh;h) ‖u − u�

h‖L2(Ω)

k � error order error order error order error order error order

1 .62e-0 - .14e+1 - .97e-0 - .98e-1 - .16e-0 -
2 .32e-0 0.96 .68e-0 1.04 .51e-0 0.94 .92e-1 .8e-1 .67e-1 1.23

0 3 .17e-0 0.94 .34e-0 0.99 .25e-0 1.01 .43e-1 1.10 .28e-1 1.26

4 .84e-1 0.97 .17e-0 1.00 .13e-0 1.00 .21e-1 1.04 .12e-1 1.16
5 .43e-1 0.99 .86e-1 1.00 .63e-1 1.00 .10e-1 1.02 .59e-2 1.08
6 .21e-1 0.99 .43e-1 1.00 .31e-1 1.00 .51e-2 1.01 .28e-2 1.04

1 .14e-0 - .24e-0 - .18e-0 - .43e-1 - .35e-1 -
2 .48e-1 1.59 .10e-1 1.26 .58e-1 1.67 .46e-2 3.23 .34e-2 3.35

1 3 .12e-1 1.95 .25e-1 1.98 .14e-1 1.99 .56e-3 3.04 .40e-3 3.08

4 .32e-2 1.98 .64e-2 2.00 .36e-2 2.00 .68e-4 3.03 .48e-4 3.05
5 .80e-3 1.99 .16e-2 2.00 .90e-3 2.00 .85e-5 3.02 .60e-5 3.03
6 .20e-3 2.00 .40e-3 2.00 .23e-3 2.00 .11e-5 3.01 .74e-6 3.01

1 .41e-1 - .46e-1 - .38e-1 - .45e-2 - .75e-2 -
2 .44e-2 3.23 .61e-2 2.91 .42e-2 3.14 .30e-3 3.88 .38e-3 4.32

2 3 .58e-3 2.93 .73e-3 3.07 .52e-3 3.02 .19e-4 4.00 .24e-4 3.98
4 .74e-4 2.97 .89e-4 3.03 .65e-4 2.99 .12e-5 4.02 .15e-5 4.00

5 .93e-5 2.99 .11e-4 3.02 .82e-5 3.00 .73e-7 4.01 .93e-7 4.00
6 .12e-5 2.99 .14e-5 3.01 .10e-5 3.00 .45e-8 4.01 .58e-8 4.00

For any σ ∈ H1(Ωh), the function Πσ is the element of Vk
h defined as follows.

For each K ∈ Ωh, Πσ is the element of Pk(K) satisfying

(Πσ − σ, v)K = 0 ∀v ∈ Pk−1(K),(7.17a)

〈(Πσ − σ) · n, ω〉e = 0 ∀ω ∈ Pk(e) and all faces e �= eτ
K .(7.17b)

For any ζ ∈ H1(Ωh), the function Pζ is the element of Wk
h defined as follows.

For each K ∈ Ωh, Pζ is the element of Pk(K) satisfying

(Pζ − ζ, w)K = 0 ∀w ∈ Pk−1(K),(7.18a)

〈Pζ − ζ, ω〉eτ
K

= 0 ∀ω ∈ Pk(eτ
K).(7.18b)

These projections are well defined and have optimal approximation properties;
see [9]. Using them, we can get the following result.

Lemma 7.1. For any method of the form (1.2) with the spaces as in (1.3), we have

‖Πq − qh‖2
L2(Ωh;c) +

3∑
i=1

Ti = (c (Πq − q),Πq − qh)Ωh
,
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Table 3. History of convergence for τ ≡ h.

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖q − q�
h‖L2(Ω) ‖P∂u − ûh‖L2(Eh;h) ‖u − u�

h‖L2(Ω)

k � error order error order error order error order error order

1 .13e+1 - .14e+1 - .97401e-0 - .11e-0 - .15e-0 -
2 .14e+1 -.77e-1 .65e-0 1.12 .50657e-0 0.94 .48e-1 1.26 .45e-1 1.73

0 3 .14e+1 -.57e-1 .33e-0 0.99 .25224e-0 1.00 .12e-1 2.03 .12e-1 1.94

4 .14e+1 -.14e-1 .16e-0 1.00 .12597e-0 1.00 .29e-2 2.01 .30e-2 1.98
5 .14e+1 -.17e-2 .82e-1 1.00 .62964e-1 1.00 .74e-3 2.00 .74e-3 1.99
6 .14e+1 -.13e-3 .41e-1 1.00 .31479e-1 1.00 .18e-3 2.00 .19e-3 1.99

1 .24e-0 - .20e-0 - .16946e-0 - .32e-01 - .26e-1 -
2 .18e-0 0.37 .97e-1 1.07 .55172e-1 1.62 .36e-02 3.18 .24e-2 3.47

1 3 .94e-1 0.96 .24e-1 1.98 .13765e-1 2.00 .43e-03 3.06 .27e-3 3.14

4 .47e-1 0.99 .61e-2 2.00 .34389e-2 2.00 .53e-04 3.02 .33e-4 3.04
5 .24e-1 1.00 .15e-2 2.00 .85958e-3 2.00 .66e-05 3.00 .41e-5 3.01
6 .12e-1 1.00 .38e-3 2.00 .21489e-3 2.00 .82e-06 3.00 .51e-6 3.00

1 .89e-1 - .47e-1 .37e-1 - .44e-2 - .74982e-2 -
2 .19e-1 2.27 .50e-2 3.21 .39e-2 3.22 .26e-3 4.09 .36902e-3 4.34

2 3 .48e-2 1.96 .60e-3 3.08 .47e-3 3.06 .16e-4 3.99 .23515e-4 3.97
4 .12e-2 1.99 .74e-4 3.02 .59e-4 3.02 .10e-5 3.99 .14766e-5 3.99

5 .30e-3 2.00 .92e-5 3.00 .73e-5 3.00 .64e-7 4.00 .92393e-7 4.00
6 .75e-4 2.00 .12e-5 3.00 .91e-6 3.00 .40e-8 4.00 .57762e-8 4.00

where

T1 := 〈(q̂h − qh) · n, uh − ûh〉∂Ωh
,

T2 := 〈(q̂h − qh) · n, u − Pu〉∂Ωh
,

T3 := 〈(P∂q − Πq) · n, ûh − uh〉∂Ωh
.

Proof. To prove this result, we begin by recalling the error equations. From the
equations (1.2), it is not difficult to see that

(c (q − qh), v)Ωh
− (u − uh,∇ · v)Ωh

+ 〈(u − ûh), v · n〉∂Ωh
= 0,

− ((q − qh),∇ω)Ωh
+ 〈(q − q̂h) · n, ω〉∂Ωh

= 0,

for all (v, ω) ∈ Vk
h × Wk

h. As a consequence, by the definition of the projections Π
and P,

(c (q − qh), v)Ωh
− (Pu − uh,∇ · v)Ωh

+ 〈(u − ûh), v · n〉∂Ωh
= 0,

− ((Πq − qh),∇ω)Ωh
+ 〈(q − q̂h) · n, ω〉∂Ωh

= 0,

for all (v, ω) ∈ Vk
h × Wk

h.
Thus, taking v = Πq − qh in the above equations, we get

‖Πq − qh‖2
L2(Ωh;c) = (c (Πq − q),Πq − qh)Ωh

+ (Pu − uh,∇ · (Πq − qh))Ωh

− 〈u − ûh, (Πq − qh) · n〉∂Ωh
,
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Table 4. History of convergence for τ |eτ
K

= 1
h2 and τ |∂K\eτ

K
= 1

for all K.

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖q − q�
h‖L2(Ω) ‖P∂u − ûh‖L2(Eh;h) ‖u − u�

h‖L2(Ω)

k � error order error order error order error order error order

1 .31e-0 - .15e+1 - .11e+1 - .14e-0 - .19e-0 -
2 .16e-0 0.98 .88e-0 0.75 .68e-0 0.69 .19e-0 -.42 .12e-0 0.68
3 .64e-1 0.72 .48e-0 0.88 .38e-0 0.86 .97e-1 0.93 .57e-1 1.02

0 4 .52e-1 0.90 .24e-0 0.96 .19e-0 0.96 .49e-1 0.99 .28e-1 1.04
5 .26e-1 0.97 .12e-0 0.99 .97e-1 0.99 .24e-1 1.01 .13e-1 1.04
6 .13e-1 0.99 .62e-1 1.00 .49e-1 1.00 .12e-1 1.00 .66e-2 1.03

1 .12e-0 - .28e-0 - .22e-0 - .52e-1 - .41e-1 -
2 .25e-1 2.29 .12e-0 1.20 .84e-1 1.38 .77e-2 2.75 .56e-2 2.87

1 3 .63e-2 1.96 .32e-1 1.92 .23e-1 1.86 .11e-2 2.88 .74e-3 2.91
4 .16e-2 1.97 .83e-2 1.96 .59e-2 1.97 .14e-3 2.92 .94e-4 2.98
5 .41e-3 1.99 .21e-2 1.98 .15e-2 2.00 .18e-4 2.96 .12e-4 3.00
6 .10e-3 1.99 .53e-3 1.99 .37e-3 2.00 .22e-5 2.98 .15e-5 3.00

1 .18e-1 - .61e-1 - .52e-1 - .48e-2 - .77e-2 -
2 .15e-2 3.58 .99e-2 2.61 .76e-2 2.76 .47e-3 3.37 .40e-3 4.25

2 3 .21e-3 2.85 .13e-2 2.87 .11e-2 2.82 .33e-4 3.82 .26e-4 3.94
4 .28e-4 2.92 .18e-3 2.95 .14e-3 2.96 .22e-5 3.93 .17e-5 3.99
5 .35e-5 2.97 .22e-4 2.98 .17e-4 2.99 .14e-6 3.98 .10e-6 4.00
6 .44e-6 2.99 .28e-5 2.99 .22e-5 3.00 .86e-8 4.00 .65e-8 4.00

Table 5. History of convergence for when τ |∂K takes on the values
h, 2h, 3h on the edges of ∂K for all K ∈ Ωh.

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖q − q�
h‖L2(Ω) ‖P∂u − ûh‖L2(Eh;h) ‖u − u�

h‖L2(Ω)

k � error order error order error order error order error order

1 .67e-0 - .14e+1 - .10e+1 - .11e-0 - .16e-0 -
2 .72e-0 -.10e-0 .66e-0 1.08 .52e-0 0.96 .48e-1 1.24 .43e-1 1.86

0 3 .74e-0 -.45e-1 .33e-0 0.97 .26e-0 1.00 .13e-1 1.93 .11e-1 2.03
4 .75e-0 -.73e-2 .17e-0 0.99 .13e-0 1.00 .48e-2 1.41 .30e-2 1.85
5 .75e-0 .39e-3 .84e-1 1.00 .65e-1 1.00 .23e-2 1.06 .12e-2 1.31
6 .75e-0 .11e-2 .42e-1 1.00 .33e-1 1.00 .11e-2 1.03 .58e-3 1.04

and, after a simple integration by parts,

‖Πq − qh‖2
L2(Ωh;c) = (c (Πq − q),Πq − qh)Ωh

− (∇(Pu − uh),Πq − qh)Ωh

+ 〈Pu − uh − u + ûh, (Πq − qh) · n〉∂Ωh
.
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Table 6. History of convergence for τ ≡ 1
h .

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖q − q�
h‖L2(Ω) ‖P∂u − ûh‖L2(Eh;h) ‖u − u�

h‖L2(Ω)

k � error order error order error order error order error order

1 .29e-0 - .14e+1 -0 .97e-0 - .98623e-1 - .18e-0 -
2 .15e-0 1.06 .88e-0 0.68 .51e-0 0.94 .23686e-0 -1.26 .14e-0 .32

0 3 .12e-0 0.14 .67e-0 0.37 .25e-0 1.01 .23336e-0 .21e-1 .13e-0 .12e-1
4 .13e-0 -.84e-2 .61e-0 0.14 .13e-0 1.00 .23322e-0 .85e-3 .13e-0 .26e-1

5 .13e-0 -.51e-2 .59e-0 .41e-1 .63e-1 1.00 .23323e-0 -.54e-4 .13e-0 .63e-2
6 .13e-0 -.15e-2 .59e-0 .11e-1 .31e-1 1.00 .23323e-0 -.30e-5 .13e-0 .15e-2

1 .12e-0 - .32e-0 - .22e-0 - .62e-1 - .50e-01 -
2 .23e-1 2.35 .13e-0 1.26 .85e-1 1.41 .99e-2 2.63 .82e-02 2.61

1 3 .54e-2 2.09 .51e-1 1.37 .36e-1 1.25 .23e-2 2.10 .19e-02 2.08
4 .13e-2 2.02 .23e-1 1.14 .17e-1 1.08 .57e-3 2.03 .48e-03 2.02

5 .33e-3 2.00 .11e-1 1.04 .83e-2 1.02 .14e-3 2.01 .12e-03 2.01
6 .83e-4 2.00 .56e-2 1.01 .41e-2 1.01 .36e-4 2.00 .30e-04 2.00

1 .18e-01 - .45e-1 - .38e-1 - .46e-2 - .76e-2 -
2 .96e-03 4.19 .12e-1 1.88 .76e-2 2.32 .58e-3 3.01 .43e-3 4.16

2 3 .77e-04 3.63 .27e-2 2.16 .18e-2 2.07 .64e-4 3.18 .33e-4 3.68
4 .77e-05 3.31 .66e-3 2.05 .45e-3 2.01 .76e-5 3.06 .31e-5 3.41

5 .90e-06 3.11 .16e-3 2.01 .11e-3 2.00 .94e-6 3.01 .35e-6 3.15
6 .10e-06 3.03 .40e-4 2.00 .28e-4 2.00 .12e-6 3.00 .43e-7 3.04

If we take ω = Pu−uh in the second error equation and add the resulting equation,
we obtain

‖Πq − qh‖2
L2(Ωh;c) = (c (Πq − q),Πq − qh)Ωh

− T,

where

T := 〈(q − q̂h) · n, Pu − uh〉∂Ωh
+ 〈u − Pu − ûh + uh, (Πq − qh) · n〉∂Ωh

.

It remains to show that T = T1 + T2 + T3.
To do that, we proceed as follows. By the definition of the projection P∂ ,

T = 〈(P∂q − q̂h) · n, Pu − uh〉∂Ωh
+ 〈(Πq − qh) · n, u − Pu〉∂Ωh

+ 〈(Πq − qh) · n, uh − ûh〉∂Ωh
,

and so,

T = 〈(P∂q − q̂h) · n, Pu − u〉∂Ωh
+ 〈(P∂q − q̂h) · n, u − ûh〉∂Ωh

+ 〈(P∂q − q̂h) · n, ûh − uh〉∂Ωh

+ 〈(Πq − q̂h) · n, u − Pu〉∂Ωh
+ 〈(q̂h − qh) · n, u − Pu〉∂Ωh

+ 〈(Πq − P∂q) · n, uh − ûh〉∂Ωh
+ 〈(P∂q − q̂h) · n, uh − ûh〉∂Ωh

+ 〈(q̂h − qh) · n, uh − ûh〉∂Ωh
.
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By the definition of the terms Ti, i = 1, 2, 3,

T = 〈(P∂q − q̂h) · n, Pu − u〉∂Ωh
+ 〈(P∂q − q̂h) · n, u − ûh〉∂Ωh

+ 〈(P∂q − q̂h) · n, ûh − uh〉∂Ωh
+ 〈(Πq − q̂h) · n, u − Pu〉∂Ωh

+ T2 + T3 + 〈(P∂q − q̂h) · n, uh − ûh〉∂Ωh
+ T1

= 〈(P∂q − Πq) · n, Pu − u〉∂Ωh
+ 〈(P∂q − q̂h) · n, u − ûh〉∂Ωh

+ T2 + T3 + T1.

The result now follows from the fact that

〈(P∂q − Πq) · n, Pu − u〉∂Ωh
= 0,

see [9] for details, and

〈(P∂q − q̂h) · n, ûh − u〉∂Ωh
= 0,

since the functions (P∂q − q̂h) ·n and ûh − u are single-valued on all interior faces
and since its product is zero on the boundary faces by (1.2e) and (1.2f). This
completes the proof. �

7.2. Proof of the estimate for the DG methods. By using the form of the
numerical traces for the DG methods under consideration, (1.4) and (3.14), we
readily obtain that

Θ2
k ≤ h(C

∑
e∈E i

h

‖ [[qh]] ‖2
L2(e) +

∑
e∈E i

h

‖C11 [[uh]] ‖2
L2(e)

+ h(
∑

e∈∂ΩN

‖(qh − q) · n‖2
L2(e) +

∑
e∈∂ΩD

‖C11(uh − u) ‖2
L2(e))

≤ C h max{ 1
C22

, C11}T,

where

T =
∑
e∈E i

h

‖C
1/2
22 [[qh]] ‖2

L2(e) +
∑
e∈E i

h

‖C
1/2
11 [[uh]]‖2

L2(e)

+
∑

e∈∂ΩN

‖C
1/2
22 (qh − q) · n‖2

L2(e) +
∑

e∈∂ΩD

‖C
1/2
11 (uh − u)‖2

L2(e)

= T1,

where T1 is defined in Lemma 7.1.
To estimate T1, we use Lemma 7.1. Thus, if we insert the expression of the

numerical traces in the definitions of T2 and T3 and carry out some simple algebraic
manipulations, we obtain

|T2 | ≤
1
4

T1 + C(C11 +
1

C22

)
∑

K∈Ωh

‖Pu − u‖2
L2(∂K),

|T3 | ≤
1
4

T1 + C(C22 +
1

C11

)
∑

K∈Ωh

‖(P∂q − Πq) · n‖2
L2(∂K),
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and by Lemma 7.1, we get

T1 ≤ ‖ q − Πq ‖2
L2(Ωh) + C(C11 +

1
C22

)
∑

K∈Ωh

‖Pu − u‖2
L2(∂K)

+ C(C22 +
1

C11

)
∑

K∈Ωh

‖(P∂q − Πq) · n‖2
L2(∂K),

and, by the approximation properties of the projections Π, P and P∂ , [9], we get
that

T1 ≤ C C max{C11 +
1

C22

, C22 +
1

C11

} h2 k+1,

where
C = |u |2Hk+1(Ωh) + | q |2Hk+1(Ωh) + | f |2Hk(Ωh).

As a consequence, we obtain

Θ2
k ≤ C C max{ 1

C22

, C11} max{C11 +
1

C22

, C22 +
1

C11

} h2 k+2.

This completes the proof of Proposition 3.1.

7.3. Proof of the estimate for the LDG-H methods. We begin by rewriting
Θ2

k as follows:

Θ2
k = Θ2

k,1 + Θ2
k,2,

where

Θ2
k,1 =

∑
K∈Ωh

hK‖(q̂h − qh) · n‖2
L2(∂K\eτ

K),

Θ2
k,2 =

∑
K∈Ωh

hK‖(q̂h − qh) · n‖2
L2(eτ

K).

We are going to use Lemma 7.1 to estimate Θk,1 and a scaling argument to bound
Θk,2.

Let us estimate Θk,1. We begin by noting that, by the definition of the numerical
trace q̂h of the LDG-H method (3.15), we have that

Θ2
k,1 =

∑
K∈Ωh

hK‖ τ (û − uh) ‖2
L2(∂K\eτ

K)

≤ C hτ T1,

where

T1 =
∑

K∈Ωh

‖τ1/2(ûh − uh)‖2
L2(∂K).

Next, we estimate T1. By using the form of the numerical traces for the LDG-H
methods (3.15) and (2.8) we have that

|T2 | ≤
1
4

T1 + τ
∑

K∈Ωh

‖Pu − P∂u‖2
L2(∂K),

|T3 | ≤
1
4

T1 +
1
τ

∑
K∈Ωh

‖(P∂q − Πq) · n‖2
L2(∂K).
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Therefore, by Lemma 7.1,

T1 ≤ ‖ q − Πq ‖2
L2(Ωh) + τ

∑
K∈Ωh

‖Pu − P∂u‖2
L2(∂K)

+
1
τ

∑
K∈Ωh

‖(P∂q − Πq) · n‖2
L2(∂K),

and we conclude that

Θ2
k,1 ≤ C C (τ2 +

τ

τ
) h2 k+2,

where

C = |u |2Hk+1(Ωh) + | q |2Hk+1(Ωh) + | f |2Hk(Ωh).

Let us now estimate Θk,2. Using (4.16b) and (7.17) we can easily show for any
K ∈ Ωh,

(∇ · (qh − Πqh), ω)K + 〈(q̂h − qh) · n − (Πq − P∂q) · n, ω〉∂K = 0,

for every ω ∈ Pk(K). Therefore, taking ω ∈ Pk(K) so that

(ω, v)K = 0, ∀v ∈ Pk−1(K),

〈ω − (q̂h − qh) · n, m〉eτ
K

= 0, ∀m ∈ Pk(eτ
K),

we get that

‖(q̂h−qh) ·n‖2
L2(eτ

K) = −〈(q̂h−qh) ·n, ω〉∂K\eτ
K

+ 〈(Πq−P∂q) ·n, (q̂h−qh) ·n〉eτ
K

.

Hence, since
‖ω‖L2(∂K) ≤ C ‖(q̂h − qh) · n‖L2(eτ

K),

we readily obtain

‖(q̂h − qh) · n‖2
L2(eτ

K) ≤ C
(
‖(q̂h − qh) · n‖2

L2(∂K\eτ
K) + ‖(Πq − P∂q) · n‖2

L2(eτ
K)

)
.

Thus, summing over K gives

Θk,2
2 ≤ C

( ∑
K∈Ωh

hK‖ τ (ûh − uh) ‖2
L2(∂K\eτ

K) +
∑

K∈Ωh

hK‖(Πq − P∂q) · n‖2
L2(eτ

K)

)

≤ CC (τ2 +
τ

τ
) h2 k+2 + C | f |2Hk(Ωh) h2 k+2,

by the approximation properties of the projection Π, [9]. This completes the proof
of Proposition 3.2.
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