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A CLASS OF SINGULARLY PERTURBED QUASILINEAR
DIFFERENTIAL EQUATIONS WITH INTERIOR LAYERS

P. A. FARRELL, E. O’RIORDAN, AND G. I. SHISHKIN

Abstract. A class of singularly perturbed quasilinear differential equations
with discontinuous data is examined. In general, interior layers will appear in
the solutions of problems from this class. A numerical method is constructed
for this problem class, which involves an appropriate piecewise-uniform mesh.
The method is shown to be a parameter-uniform numerical method with re-
spect to the singular perturbation parameter. Numerical results are presented,
which support the theoretical results.

1. Introduction

Convection-diffusion equations of the form (−εux)x + (b(u))x = f(x), with a
nonlinearity of the type b(u) = u2, arise in numerous applications involving fluid
dynamics. The Navier-Stokes equations involve such a nonlinearity, as do the drift-
diffusion equations for modelling semiconductor devices. Depending on the speci-
fied boundary conditions, boundary and/or interior layers can arise in the solutions
of such nonlinear equations. In this paper, we examine a class of nonlinear sin-
gularly perturbed ordinary differential equations, whose solutions exhibit interior
layers. Moving interior layers are often associated with shock waves in gas dynam-
ics. Burgers’ equation is typically used as an initial mathematical model to study
such shock layer phenomena. The nonlinear problem analysed in this paper can be
viewed as a step towards understanding such classical nonlinearities.

In the case of a linear singularly perturbed ordinary differential equation, classi-
cal numerical methods usually give unsatisfactory numerical results, when the sin-
gular perturbation parameter ε is small. A parameter-uniform numerical method
[4] is a numerical method for a singularly perturbed problem having an asymptotic
error bound in the pointwise maximum norm that is independent of the size of the
singular perturbation parameter. Parameter-uniform behaviour may be achieved
by fitting the mesh [4] or by fitting the finite difference operator to the bound-
ary/interior layer [13]. In [5] it was proved that for a class of singularly perturbed
semilinear two point boundary value problems, parameter-uniform convergence in
the maximum norm is not achievable using fitted operator schemes with frozen
coefficients on uniform meshes. However, a parameter-uniform numerical method
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Figure 1. A representative set of solutions for different values of
ε for a problem from the class of problems given in (1.1)

for such semilinear problems, which are of reaction-diffusion type, that combined a
standard finite difference operator with a fitted piecewise-uniform mesh was given
in [6]. In this paper, we construct a parameter-uniform method, based on a stan-
dard upwind finite difference operator and a fitted piecewise-uniform mesh, for a
nonlinear convection-diffusion problem.

Farrell et al. [7], Linß et al. [10, 9], and Vulanović [15] examined quasilinear
convection-diffusion problems where the problem class was such that only bound-
ary layers occurred in the solutions. In the papers [7, 10, 15], parameter-uniform
numerical methods were developed, which were based on Shishkin-type piecewise
uniform meshes [14, 12, 4] for the problem. In this paper, we examine the case of
a quasilinear convection-diffusion problem, where interior layers can occur in the
solutions. An analytical discussion of quasilinear problems with interior layers is
given in [2].

In this paper the following class of singularly perturbed quasilinear ordinary
differential equations with discontinuous data is considered. Let Ω− = (0, d), Ω+ =
(d, 1) and Ω̄ = [0, 1]. Find uε ∈ C1(Ω̄) ∩ C2(Ω− ∪ Ω+) such that

εu′′
ε (x) + b(x, u)u′

ε(x) = f(x), x ∈ Ω− ∪ Ω+, uε(0) = A, uε(1) = B,(1.1a)

b(x, u) =
{

b1(u) = −1 + cu, x < d,
b2(u) = 1 + cu, x > d,

f(x) =
{

−δ1, x < d,
δ2, x > d,

(1.1b)

−1 < uε(0) < 0, 0 < uε(1) < 1, 0 < c ≤ 1,(1.1c)

where δ1, δ2 are nonnegative constants. Note the strict inequalities in (1.1c). In
order to study and analyse monotonically increasing solutions, we impose further
conditions on the magnitudes of ‖f‖Ω̄,∞ and the boundary values |uε(0)|, |uε(1)|.
These monontonicity-related restrictions are introduced at appropriate locations
((3.5) and (6.2)) in this paper. A representative example of the possible solutions
to (1.1) is given in Figure 1, which illustrates the presence of an interior layer that
steepens as ε → 0.

A linear version of (1.1) was studied in [3], where a parameter-uniform numeri-
cal method based on a suitably designed piecewise-uniform mesh was shown to be
parameter-uniform of essentially first order for a linear convection-diffusion problem
with discontinuous data. The methodology in [3] is extended in this paper to the
quasilinear problem (1.1). Note that if ‖uε‖Ω̄,∞ < 1 in (1.1), then b1(u) < 0 and
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b2(u) > 0. For this particular sign pattern either side of the point of discontinuity,
a strong interior layer will normally be present in the solution. Alternative sign
patterns on the coefficient of the first derivative can result in a weak interior layer
appearing in the solution. These alternative sign patterns are discussed in [3] in the
case of a linear version of problem (1.1). In [8], a parameter-uniform method was
analysed for a semilinear singularly perturbed problem with discontinuous data,
whose solution contained an interior layer. In this case, it is relatively straightfor-
ward to establish the conditions both for existence of the continuous solution and
for inverse-monotonicity of a linearization of the discrete finite difference opera-
tor. The conditions on the data, under which existence can be established for the
quasilinear problem examined in the present paper are more intricate. Moreover,
the analysis of the inverse-monotonicity property of a linearized finite difference
operator is significantly more complicated in the case of the quasilinear problem.

The paper is organized in the following manner. First, we establish the existence
of the solution, and its uniqueness and derive a priori estimates. To do this we
utilize an asymptotic approach. We associate a set of left and right problems
with problem (1.1). The left problem and right problem are defined to be: find
uL(x; γ) ∈ C2(Ω−) and uR(x; γ) ∈ C2(Ω+) such that

εu′′
L + b1(uL)u′

L = f, x ∈ Ω− = (0, d), uL(0) = uε(0), uL(d) = γ,(1.2a)
εu′′

R + b2(uR)u′
R = f, x ∈ Ω+ = (d, 1), uR(d) = γ, uR(1) = uε(1).(1.2b)

In the next section we identify a natural restiction (2.4) on the data, so that there
exist unique regular components (see Theorem 2.3) of the solutions to the problems
(1.2a) and (1.2b). The left regular component vL(x) is defined so that it satisfies the
same differential equation as uL(x; γ) on the interval Ω−, agrees with uL at the left
boundary x = 0, and the first two derivatives of vL(x) are bounded independently
of ε. Exterior to the interior layer region, the solution of (1.1) approaches the left
(and right) regular component on Ω− (and Ω+). The multi-valued discontinuous
regular component vε of (1.1) is defined to be the left regular component on Ω̄−

and the right regular component on Ω̄+, respectively. In order for this regular
component to be monotonically increasing, we impose a further condition (3.5) on
the data. In §3, we first establish existence and uniqueness of uL and uR for certain
ranges of γ. We then show in Theorem 3.3 that by assuming (3.5), a value γ∗ for
the parameter γ can be chosen so that u′

R(d+, γ∗) = u′
L(d−, γ∗). This establishes

the existence of a solution to problem (1.1). In §4, the continuous solution uε to
problem (1.1) is written as a sum of the discontinuous regular component vε and a
discontinuous singular component wε. Parameter-explicit bounds on the first three
derivatives of these two components are established in Lemma 4.2. The magnitude
of the singular component is negligible outside of a O(ε ln ε)-neighbourhood of the
point x = d.

Based on these a priori bounds, a fitted mesh is constructed in §5. A nonlinear
finite difference method is introduced and the existence of a discrete solution is
established using appropriate choices of discrete lower and upper solutions. The
existence of a discrete regular component is also established in this section. In §6
the main result (Theorem 6.2) of the paper is given. This shows that the numerical
method produces numerical approximations, which converge to the unique solution
of the continuous problem (1.1). The rate of convergence is independent of the
small parameter ε. The method of proof requires that a discrete linear operator
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(associated with the nonlinear difference operator) preserve inverse-monotonicity.
This requirement imposes an additional constraint (6.2) on the data for problem
(1.1). At the end of §6, the implications of this assumption are discussed.

Numerical results are given in §7 and the appendix (§8) deals with discrete
comparison principles for related linear problems, which are used in §6 in the proof
of the main convergence result.

Throughout the paper C denotes a generic constant that is independent of ε and
the mesh parameters. We always use the pointwise maximum norm and denote it
by ‖z‖D = maxx∈D |z(x)|. For notational convenience, we will omit the subscript
when D = Ω̄ and simply write ‖z‖.

2. Existence and uniqueness of the regular component

The regular components vL and vR of any possible solutions to problems (1.2a)
and (1.2b) are formally defined to be the solutions of the two boundary value
problems

εv′′L + b1(vL)v′L = f, x < d,(2.1a)
vL(0) = uε(0), vL(d) = v0(d−) + εv1(d−),

εv′′R + b2(vR)v′R = f, x > d,(2.1b)
vR(d) = v0(d+) + εv1(d+), vR(1) = uε(1),

where v0 and v1 are solutions of the following nonlinear first order problems

b(x, v0)v′0 = f, x ∈ Ω− ∪ Ω+, v0(0) = uε(0); v0(1) = uε(1),(2.2a)
εv′′0 + b(x, v0 + εv1)(v0 + εv1)′ = f, x ∈ Ω− ∪ Ω+,(2.2b)

v1(0) = 0, v1(1) = 0.

By simply integrating, we have that the reduced solution v0 satisfies the quadratic
equations

(1 − 0.5cuε(0))uε(0) + δ1x = (1 − 0.5cv0(x))v0(x), x < d,(2.3a)
(1 + 0.5cuε(1))uε(1) − δ2(1 − x) = (1 + 0.5cv0(x))v0(x), x > d.(2.3b)

If we assume that

(2.4) δ1d < −uε(0) + 0.5cu2
ε(0) and δ2(1 − d) < uε(1) + 0.5cu2

ε(1),

then there exists a unique reduced solution v0 ∈ C1(Ω−)∪C1(Ω+) with the property
that v0(x) < 0, x ∈ Ω− and v0(x) > 0, x ∈ Ω+. Note the following additional
properties of the reduced solution v0 when (2.4) is satisfied:

b1(v0)(x) < −1, x < d, b2(v0)(x) > 1, x > d,

v′0(x) > 0, x �= d,

δ1 > v′0(x) >
δ1

1 − cuε(0)
, x < d, v′0(x) >

δ2

1 + cuε(1)
, x > d,

v′′0 (x) =
−c(v′0)2

b(x, v0)
, (d − x)v′′0 (x) > 0, x �= d.

From these properties and the fact that

v0(d−) =
∫ d

0

v′0(x)dx + uε(0), v0(d+) = uε(1) −
∫ 1

d

v′0(x)dx,
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we deduce the following bound on the jump in the reduced solution at x = d,

(2.5) [v0](d) := v0(d+) − v0(d−) < uε(1) − uε(0) −
(

δ1d

1 − cuε(0)
+

δ2(1 − d)
1 + cuε(1)

)
.

Let us now examine the second term v1(x) in the expansion of the regular com-
ponent v(x). Note that b(x, v0 + εv1) − b(x, v0) = cεv1. Hence, on both Ω− and
Ω+,

b(x, v0 + εv1)v′1(x) + cv′0v1(x) = (b(x, v0)v1)′ + (0.5cεv2
1)′ = −v′′0 (x).(2.6)

On Ω−, integrate this equation from t = 0 to t = x, and on Ω+, integrate from
t = 1 to t = x. This yields a quadratic equation in v1 of the form

b(x, v0)v1 + 0.5cεv2
1 =

⎧⎪⎪⎨
⎪⎪⎩

−
∫ x

0

v′′0 (t) dt < 0, x < d,∫ 1

x

v′′0 (t) dt < 0, x > d.

On each subdomain, we require ε to be sufficiently small so that

b2
1(v0) > 2cε

∫ x

0

v′′0 (t) dt, x ∈ Ω− and b2
2(v0) > −2cε

∫ 1

x

v′′0 (t) dt, x ∈ Ω+.

With this restriction on ε, there are two possible solutions vs
1, v

b
1 with 0 < vs

1 <
vb
1, x ∈ Ω− and vb

1 < vs
1 < 0, x ∈ Ω+. Define v1 uniquely by setting v1 = vs

1.
Consider a quadratic of the form k(x) = 0.5lεx2−mx+I, where l, m, I are positive
constants and ε is sufficiently small so that m2 > 2lεI. Then the minimum of
k occurs at x = m/(lε). Since k(2I/m) < 0, we note that the smallest root of
k(x) = 0 is smaller than 2I/m. Hence, on the intervals Ω− and Ω+ select the
smallest roots such that

−2
∫ x

0
v′′0 (t) dt

b1(v0)
> v1 > 0, x ∈ Ω−, 0 > v1 >

2
∫ 1

x
v′′0 (t) dt

b2(v0)
, x ∈ Ω+.

This yields a unique v1 (with v′1(x) > 0), which is bounded independently of ε and
from (2.6) it follows that

|v′1(x)| ≤ C, |v′′1 (x)| ≤ C.

To establish the existence and uniqueness of the regular component, we employ
the technique of upper and lower solutions.

Definition 2.1. A function α ∈ C1(Ω−) is a lower solution of problem (1.2a) if

(2.7) εα′′ + b1(α)α′ ≥ f, x < d and α(0) ≤ uε(0), α(d) ≤ γ.

An upper solution β is defined in an analogous fashion, with all inequalities
reversed. Consider the general quasilinear problem

εy′′ = g(x, y, y′), x ∈ J = (a1, a2).

Let g ∈ C[J × R × R; R] and α, β ∈ C[J, R] with α(x) ≤ β(x), x ∈ J . Suppose that
for x ∈ J, α(x) ≤ y(x) ≤ β(x),

|g(x, y, y′)| ≤ Ψ(|y′|),
where Ψ ∈ C[[0,∞), (0,∞)]]. If∫ ∞

λ

s

Ψ(s)
ds > max

x∈J
β(x) − min

x∈J
α(x),
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where λ(a2−a1) = max{|α(a1)−β(a2)|, |α(a2)−β(a1)|}, then we say that g satisfies
a Nagumo condition on J relative to the lower and upper solutions [1].

The nonlinearity in (1.2a) (and (1.2b)) satisfies a Nagumo condition for any
bounded α and β, since we can take Ψ(x) = ‖f‖ + γx, γ := supα≤y≤β |b1(y)|.
Thus we can cite the following existence result.

Lemma 2.2 ([1, page 31]). If α, β ∈ C1(Ω−, R) are lower and upper solutions
for the problem (1.2a) and α(x) ≤ β(x), ∀x ∈ Ω̄−, then there exists a solution
uL ∈ C2(Ω−, R) to (1.2a) and α(x) ≤ uL(x) ≤ β(x), ∀x ∈ Ω̄−.

Hence, to establish existence of a regular component vL on Ω−, it suffices to
construct lower and upper solutions.

Theorem 2.3. Assume (2.4). There is a unique regular solution to (2.1a) and
vL ∈ C∞(Ω−, [uε(0), 0)), with vL(x) ≥ v0(x).

Proof. Note that, by assuming (2.4), v0(d−) < 0 and for ε sufficiently small,

v0(d−) ≤ vL(d) = v0(d−) + εv1(d−) < 0.

Since vL(d) < 0 on Ω−, we can use the lower and upper solutions α(x) = v0(x)
and dβ(x) = −uε(0)(x−d) to establish existence of a regular solution vL satisfying
(2.1a) and (2.4) on Ω−. Suppose v1, v2 ∈ C2

(
(0, d), [uε(0), 0)

)
are two regular

solutions of (2.1a) and let ψ = v1 − v2. Then

εψ′′ = ψ′ + 0.5c(v2
2 − v2

1)′, ψ(0) = ψ(d) = 0.

Integrating from x = 0 to x = t yields εψ′(t)− (1 − 0.5c(v1 + v2)(t))ψ(t) = εψ′(0).
Since ψ(d) = 0, ψ(t) ≡ 0. Hence the solution of (2.1a) is unique. �

There is an analogous result for the existence and uniqueness of a solution vR ∈
C∞(Ω+, (0, uε(1)]) of (2.1b). Define the regular component of any solution to (1.1)
to be the multi-valued discontinuous function

(2.8) vε(x) :=

{
vL(x), x ≤ d,

vR(x), x ≥ d,

where vL is the solution of (2.1a) and vR is the solution of (2.1b).

3. Existence and uniqueness of the continuous solution

In this section we establish the existence of uL(x; γ) (and uR(x; γ)) for a certain
range of γ. Under additional assumptions on the data, we will show that uL(x; γ)
and uR(x; γ) both exist for a common range of γ. To this end, we define the
barrier functions χL(x; γ), χR(x; γ) as the respective solutions of the boundary
value problems

εχ′′
L + (−1 + cγ)χ′

L = −δ1, χL(0) = uε(0), χL(d) = γ,(3.1a)
εχ′′

R + (1 + cγ)χ′
R = δ2, χR(d) = γ, χR(1) = uε(1).(3.1b)

Lemma 3.1. For all γ ∈ [vL(d), 1
c ) such that

(3.2) δ1d ≤ (1 − cγ)(γ − uε(0)),

problem (1.2a), (2.4) has a unique solution uL(x; γ) ∈ C2
(
(0, d), [uε(0), γ]

)
with the

property that
vL(x) ≤ uL(x; γ) ≤ χL(x; γ), x ∈ [0, d].
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For all γ ∈
(
−1

c , vR(d)
]

such that

(3.3) δ2(1 − d) ≤ (1 + cγ)(uε(1) − γ),

problem (1.2b), (2.4) has a unique solution uR(x; γ) ∈ C2
(
(0, d), [γ, uε(1)]

)
with the

property that
χR(x; γ) ≤ uR(x; γ) ≤ vR(x), x ∈ [d, 1].

Proof. Note that

χL(x; γ) =
δ1

1 − cγ
x + uε(0) + Kψ(x; γ),

where

εψ′′ − (1 − cγ)ψ′ = 0, ψ(0) = 0, ψ(d) = 1, K =
(1 − cγ)(γ − uε(0)) − δ1d

1 − cγ
.

Also by (3.2) K ≥ 0 and so χ′
L > 0. Hence

εχ′′
L + b1(χL)χ′

L = −δ1 + (b1(χL) − (−1 + cγ))χ′
L

= −δ1 + c(χL − γ)χ′
L ≤ −δ1.

An analagous argument is used to establish the existence of uR(x; γ). �
If

δ1d ≤ −uε(0) + cvR(d)
(

1
c

+ uε(0) − vR(d)
)

(3.4a)

and

δ2(1 − d) ≤ uε(1) − cvL(d)
(

1
c
− uε(1) + vL(d)

)
,(3.4b)

then by the previous lemma uL(x; vR(d)) and uR(x; vL(d)) both exist. Hence to
guarantee the existence of a continuous solution u(x; γ) defined over the entire
interval [0, 1] for all γ ∈ [vL(d), vR(d)], we are required to restrict the data of
problem (1.1). Hence we are led to the following assumption.

Assumption 1. Assume that the problem data for problem (1.1) are such that

δ1d < −uε(0), δ2(1 − d) < uε(1)(3.5a)

and

uε(1) − uε(0) < 1/c + min
{

δ1d

1 − cuε(0)
,

δ2(1 − d)
1 + cuε(1)

}
.(3.5b)

Note that (3.5) implies (2.4). By the properties of v0(x) established in §2, it
follows from (3.5) that, for ε sufficiently small,

0 > vL(d) > −1 − cuε(1)
c

and 0 < vR(d) <
1 + cuε(0)

c
.

The assumption (3.5) suffices for the inequalities (3.4) to hold true and consequently
for uL(x; γ) and uR(x; γ) to exist for all γ ∈ [vL(d), vR(d)]. In the next lemma we
establish that u′

L(x; γ) and u′
R(x; γ) depend continuously on the parameter γ.

Lemma 3.2. Assuming (3.5), for all γ1, γ2 ∈ [vL(d), vR(d)],

ε|u′
L(x; γ1) − u′

L(x; γ2)| ≤ C|γ1 − γ2|, x ∈ (0, d),
ε|u′

R(x; γ1) − u′
R(x; γ2)| ≤ C|γ1 − γ2|, x ∈ (d, 1).
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Proof. Let G(x; γ1, γ2) = uL(x; γ1) − uL(x; γ2). Note that

εG′′ +
(
−1 +

c

2
(uL(x; γ1) + uL(x; γ2))

)
G′ = 0, G(0) = 0, G(d) = γ1 − γ2,

and (−1+ c
2

(
uL(x; γ1)+uL(x; γ2)

)
≤ −1+0.5c(γ1+γ2) ≤ −1+cvR(d) ≤ cuε(0) < 0.

It follows that ε|G′| ≤ C|γ1 − γ2|. �

We now state a central result in this paper.

Theorem 3.3. Assuming (3.5), the nonlinear problem (1.1) has a unique solution
uε ∈ C1((0, 1), (uε(0), uε(1)). Moreover,

vL(x) ≤ uε(x) ≤ χL(x; vR(d)), x ≤ d, χR(x; vL(d)) ≤ uε(x) ≤ vR(x), x ≥ d,

where χL, χR are defined in (3.1).

Proof. For all x ∈ Ω−,∫ x

t=0

(f − b1(uL)u′
L)(t) dt = (uL(x) − uε(0))

(
1 − 0.5c(uL(x) + uε(0))

)
− δ1x.

Integrating (1.2a), from 0 to x, yields

εu′
L(x; γ) = εu′

L(0; γ) + (uL(x; γ) − uε(0))
(
1 − 0.5c(uL(x; γ) + uε(0))

)
− δ1x.

By the Mean Value Theorem, for some z ∈ (0, ε), ε < d, εu′
L(z; γ) = uL(ε; γ) −

uε(0). Since cγ < 1 and (3.2), using the lower and upper solutions given in Lemma
3.1, we deduce that, for all γ ∈ [vL(d), vR(d)],

0 ≤ uL(z; γ) − uε(0) ≤ Cε, 0 ≤ u′
L(0; γ) ≤ C.

For all x ∈ Ω+,∫ 1

t=x

(f − b2(uR)u′
R)(t) dt = δ2(1 − x) + (uR(x) − uε(1))

(
1 + 0.5c(uR(x) + uε(1))

)
.

Integrating (1.2b) from x to 1 yields

εu′
R(x; γ) = εu′(1; γ) − δ2(1 − x) + (uε(1) − uR(x; γ))

(
1 + 0.5c(uR(x; γ) + uε(1))

)
.

Since cγ > −1, using (3.2) and the lower and upper solutions given in Lemma 3.1,
we deduce that, for all γ ∈ [vL(d), vR(d)],

0 ≤ u′
R(1; γ) ≤ C.

We wish to establish the existence of a γ∗ = uL(d) = uR(d) such that u′
L(d−; γ∗) =

u′
R(d+; γ∗) and −1 < cγ∗ < 1. This is equivalent to finding a γ∗ such that −1 <

cγ∗ < 1 and

εu′
L(0; γ∗) + (γ∗ − uε(0))

(
1 − 0.5c(γ∗ + uε(0))

)
− δ1d

= εu′
R(1; γ∗) − δ2(1 − d) + (uε(1) − γ∗)

(
1 + 0.5c(γ∗ + uε(1))

)
.

Rearranging, gives

2γ∗ = εu′
R(1; γ∗)−εu′

L(0; γ∗)+δ1d+uε(0)−0.5cu2
ε(0)+uε(1)+0.5cu2

ε(1)−δ2(1−d).

By (2.3), this further simplifies to

(3.6) 2γ∗ = Γ + εu′
R(1; γ∗) − εu′

L(0; γ∗),

where Γ := v0(d+) + v0(d−) + 0.5cv2
0(d+) − 0.5cv2

0(d−). Define the function

H(γ) := Γ + εu′
R(1; γ) − εu′

L(0; γ) − 2γ.
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For all γ ∈ [vL(d), vR(d)],

|εu′
R(1; γ) − εu′

L(0; γ)| ≤ Cε.

Note that vL(d) < 0 < vR(d) and so, for ε sufficiently small, H(vL(d)) > 0 >
H(vR(d)). By Lemma 3.2, H is a continuous function of γ, so there exists a
γ∗ ∈ [vL(d), vR(d)], where H(γ∗) = 0. Hence we have established the existence of
a solution uε ∈ C1((0, 1), (uε(0), uε(1)) to problem (1.1), (3.5).

Let u+, u− be two solutions of problem (1.1). The difference in these two solu-
tions is y := u+ − u− ∈ C1((0, 1), (uε(0), uε(1)) and solves the problem

εy′′ + b(x, u+)(u+)′ − b(x, u−)(u−)′ = 0, y(0) = y(1) = 0.

Integrate over Ω− and over Ω+ to get

εy′ − y +
1
2
c(u+ + u−)y = εy′(0), x ∈ Ω−,

εy′ + y +
1
2
c(u+ + u−)y = εy′(1), x ∈ Ω+.

Using integrating factors and integrating again, we have that

y = y′(0)e
p(x)

ε

∫ x

0

e
−p(t)

ε dt, p(x) =
∫ x

0

1 − 1
2
c(u+ + u−) dt, x ∈ Ω−,

y = −y′(1)e
−q(x)

ε

∫ 1

x

e
q(t)

ε dt, q(x) =
∫ 1

x

1 +
1
2
c(u+ + u−) dt, x ∈ Ω−.

Note that y is continuous at x = d, so from above y′(0)y′(1) ≤ 0. If y′(0) = 0,
then y = 0 for x ∈ Ω−, which implies that y(d) = 0. This, in turn, implies that
y = 0, x ∈ Ω. Without loss of generality, let us assume that y′(0) > 0. From the
expression for y above, y > 0, for x ∈ Ω−. Also, from the expression for y′ and the
fact that 1− 1

2c(u++u−) > 0, we deduce that y′ > 0, for x ∈ Ω−. Also, if y′(0) > 0,
then y′(1) < 0. Repeating the above argument, we deduce that y′(x) < 0, x ∈ Ω+.
Hence, the maximum value of y occurs at x = d. Subtracting the two expressions
for the derivative of y at x = d, yields 2y(d) = ε(y′(1) − y′(0)) < 0, which is a
contradiction. Hence y′(0) = 0, which implies that y = 0. This establishes the
uniqueness of uε. �

Remark 3.4. Note that for the solution to (1.1), (3.5) we have that

b1(uε) ≤ b1(vR(d)) ≤ −1 + cvR(d) < cuε(0) < 0, x ≤ d,

b2(uε) ≥ b2(vL(d)) ≥ 1 + cvL(d) > cuε(1) > 0, x ≥ d.

Recall that we also have |b1(uε)| > 1− cuε(1), x ≤ d and b2(uε) > 1+ cuε(0), x ≥ d.
Combining these we get

|b1(uε)| > θ1 := max{−cuε(0), 1 − cuε(1)}, x ≤ d,(3.7a)
b2(uε) > θ2 := max{cuε(1), 1 + cuε(0)}, x ≥ d.(3.7b)

In the next lemma we state parameter-explicit pointwise estimates on the deriva-
tives of the solution to (1.1), (3.5).

Lemma 3.5. Let uε be the solution of (1.1), (3.5), then, for all 1 ≤ k ≤ 3,

|u(k)
ε (x)| ≤ Cε−k, x ∈ Ω− ∪ Ω+.
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Proof. Use the argument from the proof of the previous lemma to establish that
|εu′

ε| ≤ C. Then use the differential equation (1.1a) to get the bounds on the second
and third derivatives of uε. �

4. A priori bounds on the singular component

Since the solution uε of (1.1) and the regular component vε defined in (2.8) are
uniquely defined, we can define the discontinuous singular component wε implicitly
by uε = wε + vε and

εu′′
ε + b(x, uε)u′

ε = f, x �= d,(4.1a)
uε ∈ C1(0, 1), uε(0) = A, uε(1) = B.(4.1b)

Since uε and vε are unique, we have that ‖wε‖ = ‖uε − vε‖ ≤ ‖uε‖+‖vε‖ ≤ C, and
the singular component wε is the solution of

εw′′
ε + b(x, uε)w′

ε + (cv′ε)wε = 0, x �= d, wε(0) = wε(1) = 0,
[wε](d) = −[vε](d), [w′

ε](d) = −[v′ε](d), [ω](d) := ω(d+) − ω(d−).

Let Lε denote the linear differential operator, which is defined as

Lεω := εω′′ + a(x)ω′ + b(x)ω,

where
a(x) ≤ −α1 < 0, x < d, a(x) ≥ α2 > 0, x > d,

and, for α = min{α1, α2}, α2 − 4εb > 0, ∀x �= d.
The differential operator Lε satisfies the following comparison principle.

Lemma 4.1. Suppose that a function ω ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+) satisfies ω(0) ≤
0, ω(1) ≤ 0, [ω′] (d) ≥ 0, and Lεω(x) ≥ 0, for all x ∈ Ω− ∪Ω+, then ω(x) ≤ 0, for
all x ∈ Ω̄.

Proof. Follow the proof of the corresponding result in [3], but include the zero-order
term in the proof. Introduce the function v(x), defined by

ω(x) = e−α(x)|x−d|/(2ε)v(x),

where α(x) = α1, x < d, α(x) = α2, x > d. Hence, for x ∈ Ω−,

Lεω = e−θ(x)|x−d|/(2ε)

(
εv′′ + (a + α1)v′ + (

α2
1

4ε
+

aα1

2ε
+ b)v

)
,

and for x ∈ Ω+,

Lεω = e−α(x)|x−d|/(2ε)

(
εv′′ + (a − α2)v′ + (

α2
2

4ε
− aα2

2ε
+ b)v

)
.

Assume that maxΩ̄ v = v(q) > 0. With the above assumption on the boundary
values, either q ∈ Ω− ∪ Ω+ or q = d. If q ∈ Ω−, then

Lεω(q) = e−α1(d−q)/(2ε)

(
εv′′(q) + (b − α2

1

4ε
)v(q)

)
< 0,

which is a contradiction. If q ∈ Ω+, then an analogous argument also leads to a
contradiction. The only possibility remaining is that q = d. Note that [v](d) =
[ω](d) = 0 and [ω′](d) = [v′](d)− α1+α2

2ε v(d). Since d is where v takes its maximum
value, v′(d−) ≥ 0, v′(d+) ≤ 0, which implies that [v′](d) ≤ 0. This implies that
[ω′](d) < 0 , which is a contradiction. �
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Lemma 4.2. Assume (3.5). For each integer k, satisfying 1 ≤ k ≤ 3, the solutions
vε and wε of (2.8) and (4.1), respectively, satisfy the following bounds:

‖vε‖ ≤ C, ‖v(k)
ε ‖Ω−∪Ω+ ≤ C(1 + ε2−k),

|[vε](d)| ≤ C, |[v′ε](d)| ≤ C, |[v′′ε ](d)| ≤ C,

|w(k)
ε (x)| ≤

{
Cε−ke−(d−x)θ1/ε, x ∈ Ω−,
Cε−ke−(x−d)θ2/ε, x ∈ Ω+,

where C is a constant independent of ε, and θ1, θ2 are given in (3.7).

Proof. Define v2 to be such that vε := v0 + εv1 + ε2v2. From above such a function
exists and is unique. Note that v2 is the solution of

ε(v′′0 + εv′′1 + ε2v′′2 ) + b(x, vε)(v′0 + εv′1 + ε2v′2) = f = b(x, v0)(v0)′, x �= d.

Hence
εv′′ + εb(x, vε)(v′1 + εv′2) = −cε(v1 + εv2)v′0,

which can be written in the form

v′′ + b(x, vε)(v′1 + εv′2) = −c(v1 + εv2)v′0.

From the definition of v1, we have that

b(x, v)v′1 =
(
b(x, v) − b(x, v0 + εv1)

)
v′1 − cv′0v1 − v′′0 .

Inserting this into the equation above and simplifying, shows that v2 satisfies the
following problem:

εv′′2 + b(x, v)v′2 + c(v′0 + εv′1)v2 = −v′′1 , x �= d,(4.2a)
v2(0) = v2(d) = v2(1) = 0.(4.2b)

Note that v′0 + εv′1 > 0 and, for ε sufficiently small, b2(x, v) − 4cε(v′0 + εv′1) > 0.
We rewrite (4.2a) in the form

εv′′2 = g(x, v2) := −
(
b(x, v)v′2 + c(v′0 + εv′1)v2 + v′′1

)
.

Define M1 := ‖v′′1‖ and β1 := min c(v′0 + εv′1) > 0. Check that α(x), β(x) defined
by −β1α(x) = β1β(x) = M1 are lower and upper solutions. Thus

‖v2‖ ≤ M1

β1
.

Note that
εv′′2 + b(x, v)v′2 = g1 := −v′′1 − c(v′0 + εv′1)v2,

which implies that ‖v2‖ ≤ Cx‖g1‖, x < d. Thus |v′2(0)| ≤ C, and using integration
we have |v′2(x)| ≤ C, x < d. The bounds on the derivatives of v2 follow.

Now we estimate the singular term. Note that

εu′′
ε + b(x, uε)u′

ε = f = εv′′ε + b(x, vε)v′ε, x �= d.

Hence

εw′′
ε + (b(x, uε) − b(x, vε))v′ε + b(x, uε)w′

ε = εw′′
ε + b(uε)w′

ε + (cv′ε)wε = 0, x �= d,

and wε(0) = 0, wε(1) = 0, wε(d−) = uε(d−)− vε(d−), wε(d+) = uε(d+)− vε(d+).
Choose ε sufficiently small so that b2(x, uε) − 4εcv′ε > 0. Then we can apply the
arguments from the linear problem [3] and Lemma 4.1 to get bounds on wε and its
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derivatives separately on Ω− and Ω+. Note that we require ε sufficiently small so
that the barrier function

B(x) =
{

Ce−(d−x)θ1/ε, x ∈ Ω−,
Ce−(x−d)θ2/ε, x ∈ Ω+,

satisfies the inequalities

εB′′(x) + b1(uε)B′ + cv′εB ≤ 1
ε
{θ1(θ1 − |b1(uε)|) + ε(cv′ε)}B < 0, x ∈ Ω−,

εB′′(x) + b2(uε)B′ + cv′εB ≤ 1
ε
{θ2(θ2 − b2(uε)) + ε(cv′ε)}B < 0, x ∈ Ω+.

�

5. Existence of discrete solutions

The domain Ω is subdivided into four subintervals

(5.1a) [0, d − σ1] ∪ [d − σ1, d] ∪ [d, d + σ2] ∪ [d + σ2, 1].

The transition points σ1 and σ2 are defined by

(5.1b) σ1 = min
{

d

2
, 2

ε

θ1
ln N

}
, σ2 = min

{
1 − d

2
, 2

ε

θ2
ln N

}
,

where θ1 = max{−cuε(0), 1 − cuε(1)} and θ2 = max{cuε(1), 1 + cuε(0)} as defined
in (3.7). On each of the four subintervals a uniform mesh with N

4 mesh-intervals

is placed. The mesh points are denoted by Ω
N

ε = {xi}N
0 , where x0 = 0, xN =

1, xN/2 = d. The fitted mesh method for problem (1.1) is: find a mesh function
Uε such that

εδ2Uε(xi) + b(xi, Uε(xi))DUε(xi) = f(xi) for all xi ∈ ΩN
ε ,(5.2a)

Uε(0) = uε(0), Uε(1) = uε(1),(5.2b)
D−Uε(d) = D+Uε(d),(5.2c)

where

δ2Zi =
D+Zi − D−Zi

(xi+1 − xi−1)/2
and DZi =

{
D−Zi, i < N/2,
D+Zi, i > N/2.

Here D+ and D− are the standard forward and backward finite difference operators,
respectively. This is a nonlinear finite difference scheme.

Let G : R
N+1 → R

N+1 be a mapping associated with this finite difference
scheme. For mesh function Y , we have an associated vector Y ∈ R

N+1, where
Yi = Y (xi). Let

(GY )i =

⎧⎪⎪⎨
⎪⎪⎩

−Y (0), i = 0,
εδ2Yi + b(xi, Yi)DYi, i �= N/2, 0 < i < N,
εδ2Yi, i = N/2,
−Y (1), i = N.

We also define a vector F by

Fi =
{

A, 0, B, i = 0, N/2, N,
f(xi), otherwise.

The finite difference scheme (5.2) can then be written in the form GUε = F .

Definition 5.1. Given any vector H ∈ R
N+1, a lower mesh solution V for the

problem GW = H is a mesh function, which satisfies GV ≥ H.
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There is an analogous definition for an upper mesh solution to GW = H.

Theorem 5.2. If Φ and Ψ are, respectively, lower and upper mesh solutions for the
problem GW = H, with the additional properties that −1 < cΦ < 1,−1 < cΨ < 1,
and Φ(xi) ≤ Ψ(xi), ∀xi ∈ Ω̄N , then there exists a solution to GW = H and
Φ(xi) ≤ W (xi) ≤ Ψ(xi), ∀xi ∈ Ω̄N .

Proof. We follow the argument from Lorentz [11]. Let Φ1, Φ2 be two lower mesh
functions. Define the mesh function Φ3 by Φ3(xi) := max{Φ1(xi), Φ2(xi)}. At
some point xj , we assume, w.l.o.g., that Φ3(xj) = Φ1(xj). Note that −Φ3(xi) ≤
−Φ1(xi), ∀xi. For any xj ,

εδ2Φ3(xj) + b(xj , Φ3)DΦ3(xj) ≥ εδ2Φ1(xj) + b(xj , Φ1)DΦ1(xj)
≥ H(xj), xj �= d,

εδ2Φ3(xj) ≥ εδ2Φ1(xj) ≥ H(d), xj = d,

Φ3(0) ≤ H(0), Φ3(1) ≤ H(1).

Then Φ3 is also a lower mesh solution. Let L = {φ : Gφ ≥ H, Φ ≤ φ ≤ Ψ} be
the set of all possible lower mesh solutions. Define U(xi) := supφ∈L{φ(xi)}. First
note that U ∈ L exists and GU ≥ H. Assume that we do not have equality, then
there exists some j such that GU(xj) > H(xj). If U �= Ψ, construct a new vector
Y = U + γδi,j , γ > 0. Then γ can be chosen sufficiently small such that

GY = GU + c(Y − U)DU ≥ H.

Hence, Y ∈ L, U < Y , which is a contradiction. �

Define the mesh functions VL and VR to be the solutions of the following discrete
nonlinear problems:

LN
leftVL :=

{
εδ2 + b1(VL)D−}

VL(xi) = −δ1, xi ∈ ΩN
ε ∩ Ω−,(5.3a)

VL(0) = vε(0), VL(d) = vε(d−),(5.3b)

LN
rightVR :=

{
εδ2 + b2(VR)D+

}
VR(xi) = δ2, xi ∈ ΩN

ε ∩ Ω+,(5.3c)

VR(1) = vε(1), VR(d) = vε(d+).(5.3d)

In an analogous fashion to Theorem 5.2 we have the following

Theorem 5.3. If Φ and Ψ are two mesh functions such that

Φ(0) ≤ VL(0) ≤ Ψ(0), Φ(d) ≤ VL(d) ≤ Ψ(d),
Φ(d) ≤ VR(d) ≤ Ψ(d), Φ(1) ≤ VR(1) ≤ Ψ(1),

LN
leftΦ ≥ LN

leftVL ≥ LN
leftΨ, LN

rightΦ ≥ LN
rightVR ≥ LN

rightΨ

with the additional properties that

−1 < cΦ < 1,−1 < cΨ < 1, Φ(xi) ≤ Ψ(xi), ∀xi ∈ Ω̄N ,

then there exists a solution to (5.3) and

Φ(xi) ≤ VL(xi) ≤ Ψ(xi), ∀xi ∈ Ω̄N ∩ Ω−,

Φ(xi) ≤ VR(xi) ≤ Ψ(xi), ∀xi ∈ Ω̄N ∩ Ω+.
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From (2.4) uε(0) ≤ vε(d−) ≤ 0 and uε(1) ≥ vε(d+) ≥ 0, we can use the following
mesh function:

A1(xi) = uε(0), xi ≤ d, A1(xi) =
vε(1)(xi − d)

1 − d
, xi ≥ d,

B1(xi) = vε(0)(1 − xi

d
), xi ≤ d, B1(xi) = uε(1), xi ≥ d,

to show that VL and VR exist using the previous theorem. Hence A1 ≤ VL ≤ B1 ≤
0, 0 ≤ A1 ≤ VR ≤ B1 and thus b1(VL) ≤ −1, b2(VR) ≥ 1.

Lemma 5.4. Assume (3.5). Given any VL, VR, solutions to (5.3), we have that

|VL(xi) − vε(xi)| ≤ CN−1xi, xi ∈ Ω̄N
ε ∩ Ω−,

|VR(xi) − vε(xi)| ≤ CN−1(1 − xi), xi ∈ Ω̄N
ε ∩ Ω+,

where vε is the unique regular component defined in (2.8).

Proof. We outline the proof for the first inequality. An analogous argument will
establish the second inequality. For all xi ∈ ΩN

ε ∩ Ω−,{
εδ2 + b1(VL)D−}

(VL − vε) = εv′′ε + b1(vε)v′ε −
{
εδ2 + b1(VL)D−}

(vε)

= ε(v′′ε − δ2vε) + b1(VL)(v′ε − D−vε) + (b1(vε) − b1(VL))v′ε

= ε(v′′ε − δ2vε) + b1(VL)(v′ε − D−vε) + c(vε − VL)v′ε .

Introduce the linear difference operator

MN
V Z :=

(
εδ2 + b1(VL)D− + cv′ε

)
Z.

Note that ‖cv′ε‖ ≤ C and so, by Lemma 8.3 in the appendix, this finite difference
operator satisfies a discrete comparison principle, provided that ε is sufficiently
small such that

(5.4) b2
1(VL) − 4εcv′ε > 0, ∀xi ∈ ΩN ∩ Ω−.

Using the bounds in Lemma 4.2 and standard local truncation error estimates, we
get ∣∣MN

V (VL − vε)(xi)
∣∣ ≤ CN−1.

With the two functions ψ±(xi) = CN−1xi ± (VL − vε)(xi), and the discrete com-
parison principle the proof is completed in the usual way. �

To establish uniqueness for the discrete regular component VL, we first obtain
bounds on the discrete derivative of any possible regular component VL.

Lemma 5.5. Assume (3.5). For any VL, we have the following ε-uniform bounds

|D−VL(xi)| ≤ C, xi≤d− σ1 and |D−VL(xi)|≤C

(
1 +

N−1

ε

)
, d− σ1 <xi ≤ d.

Proof. Note that D−VL(xi) = D−(VL − vε)(xi) + D−vε(xi) − v′ε(xi) + v′ε(xi). We
also have ‖v′ε‖ ≤ C and, as in [4, page 60], |D−vε(xi) − v′ε(xi)| ≤ CN−1. Hence,

|D−VL(xi)| ≤ |D−(VL − vε)(xi)| + C.
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On (0, d−σ1], using the previous bound on |(VL − vε)(xi)|, we get that |D−(VL −
vε)(xi)| ≤ C. As in [4, pp. 61 and 62], ε|D−(VL − vε)(xi)| ≤ CN−1 on (d − σ1, d],
where we note that we use

|b1(VL)(xi) − b1(VL)(xi−1)| = c|VL(xi) − VL(xi−1)|
≤ |VL(xi) − vε(xi)| + |vε(xi) − vε(xi−1)| + |VL(xi−1) − vε(xi−1)| ≤ CN−1.

This completes the proof. �

Lemma 5.6. There exist unique solutions VL and VR to the discrete problems (5.3)
and (3.5).

Proof. Assume the contrary. Let V +
L , V −

L be two mesh solutions, then

εδ2V −
L + b1(V −

L )D−V −
L = εδ2V +

L + b1(V +
L )D−V +

L , xi < d,

(V +
L − V −

L )(0) = (V +
L − V −

L )(d) = 0.

Thus εδ2(V +
L − V −

L ) + b1(V +
L )D−(V +

L − V −
L ) + cD−V −

L (V +
L − V −

L ) = 0. From the
previous lemma and Lemma 8.3, the linear difference operator

LN
ε Z := εδ2Z + b1(V +

L )D−Z + (cD−V −
L )Z

satisfies a discrete comparison principle. This guarantees uniqueness. �

We are now ready to state the discrete counterpart to Theorem 3.3. First we
define the discrete barrier functions ΞL(xi; γ), ΞR(xi; γ) as the solutions of

εδ2ΞL + (−1 + cγ)D−ΞL = −δ1, xi ∈ (0, d), ΞL(0) = uε(0), ΞL(d) = γ,

εδ2ΞR + (1 + cγ)D+ΞR = δ2, xi ∈ (d, 1), ΞR(d) = γ, ΞR(1) = uε(1).

Theorem 5.7. There exists a solution UN
ε to the discrete problem (5.2), (3.5) and

VL(xi) ≤ UN
ε (xi) ≤ ΞL(xi; vR(d)), xi ≤ d,

ΞR(xi; vL(d)) ≤ UN
ε (xi) ≤ VR(xi), xi ≥ d.

Proof. The argument is the discrete analogue of the argument given to establish the
existence of the continuous solution. Define UL(xi; γ), UR(xi; γ) to be the solutions
of the problems

εδ2UL + b1(UL)D−UL = −δ1, xi ∈ (0, d), UL(0) = uε(0), UL(d) = γ,

εδ2UR + b2(UR)D+UR = δ2, xi ∈ (d, 1), UR(d) = γ, UR(1) = uε(1).

From assumption (3.5), we have that for all γ ∈ [vL(d), vR(d)] both problems have
a solution UL(xi; γ), UR(xi; γ) and

VL(xi) ≤ UL(xi; γ) ≤ ΞL(xi; γ), ΞR(xi; γ) ≤ UR(xi; γ) ≤ VR(xi).

Note the following:

εD−VL(d) = εv′L(d−) + ε(D−VL(d) − v′L(d)) = O(ε) + O(N−1),
εD+ΞR(d; γ) = εξ′R(d+; γ) + ε(D+ΞR(d; γ) − ξ′R(d+; γ))

≥ (1 + cγ)(uε(1) − γ) − δ2(1 − d)
2

+ O(ε) + O(N−1).

Hence, for ε sufficiently small and N sufficiently large,

D+VR(d) ≤ D−ΞL(d; vR(d)) and D+ΞR(d; vL(d)) ≥ D−VL(d).
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Use the following:

Φ =
{

VL(xi), if xi ≤ d,
ΞR(xi; vL(d)), if xi ≥ d,

Ψ =
{

ΞL(xi; vR(d)), if xi ≤ d,
VR(xi), if xi ≥ d,

as lower and upper mesh solutions to establish the existence of Uε. �

Remark 5.8. If there exists a solution Uε to the discrete problem (5.2), (3.5) with
the additional property that

|DU(xi)| ≤ C
(
1 +

N−1

ε

)
, d − σ1 < xi < d + σ2,(5.5a)

|DU(xi)| ≤ C, otherwise,(5.5b)

then this solution is unique. This follows by observing that if there are two solutions
U1 and U2 satisfying (5.5), then

εδ2(U2 − U1) + b(x, U2)D(U2 − U1) + cDU1(U2 − U1) = 0,

and so by Lemma 8.4, (U2 − U1) = 0.

Given any discrete solution U of (5.2), (3.5) we can define WL and WR using

WL = U − VL, xi ≤ d, WR = U − VR, xi ≥ d.

These functions WL : Ω
N

ε ∩ [0, d] → R and WR : Ω
N

ε ∩ [d, 1] → R exist, are uniformly
bounded, and satisfy the following system of finite difference equations:

(εδ2 + (b1(WL) + cVL)D− + cD−VL)(WL) = 0, xi ∈ ΩN
ε ∩ Ω−,(5.6a)

(εδ2 + (b2(WR) + cVR)D+ + cD+VR)(WR) = 0, xi ∈ ΩN
ε ∩ Ω+,(5.6b)

WL(0) = 0, WR(1) = 0,(5.6c)
WR(d) + VR(d) = WL(d) + VL(d),(5.6d)

D+WR(d) + D+VR(d) = D−WL(d) + D−VL(d).(5.6e)

6. Error analysis

In the next theorem, we show that the discrete layer functions are small (in a
discrete sense) exterior to the interior layer region.

Theorem 6.1. When σ1 = 2ε
θ1

ln N and σ2 = 2ε
θ2

ln N , we have that

|WL(xi)| ≤ CN−1, xi ≤ d − σ1; |WR(xi)| ≤ CN−1, xi ≥ d + σ2,

where WL and WR are the solutions of the problems defined in (5.6).

Proof. Consider the case of xi ≤ d. Let

B(xi) = Πi
j=1(1 +

θ1hj

2ε
)j , hi = xi − xi−1.

Then

D+B(xi) =
θ1

2ε
B(xi),

(
1 +

θ1hi

2ε

)
D−B(xi) =

θ1

2ε
B(xi),

and (
1 +

θ1hi

2ε

)
δ2B(xi) =

θ2
1

4ε2

(
2 − hi+1

h̄i

)
B(xi).
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Hence (
1 + θ1hi

2ε

) (
εδ2 + b1(U)D− + cD−VL

)
B(xi)

< θ1
2ε

(
θ1 + b1(U) + 2ε

θ1
(cD−VL)(1 + θ1hi

2ε )
)

B(xi) < 0.

Then

‖W (xi)‖ ≤ C‖W (d)‖B(xi)
B(d)

, xi ≤ d.

Thus, for xi ≤ d − σ1,

‖W (xi)‖ ≤ C

(
1 +

θ1h

2ε

)−N/4

, h =
4σ1

N
.

Then, if σ1 = 2ε
θ1

ln N , we have that |WL| ≤ CN−1, xi ≤ d − σ1 |WR| ≤
CN−1, xi ≥ d + σ2. �

Thus, when σ1 = 2ε
θ1

ln N , we have that

|WL(xi) − wε(xi)| ≤ |WL(xi)| + |wε(xi)| ≤ CN−1 + Ce−θ1σ1/ε(6.1a)
≤ CN−1, xi ≤ d − σ1.

Similarly, for σ2 = 2ε
θ2

ln N , we obtain

(6.1b) |WR(xi) − wε(xi)| ≤ CN−1, xi ≥ d + σ2.

These bounds and the bounds given in Lemma 5.4 together imply that the numerical
approximations are essentially first order convergent at the mesh points outside the
interior layer region (d−σ2, d+σ2). To obtain an error estimate at the mesh points
in the interior layer region, we assume the following implicit restriction on the data.

Assumption 2. Assume that the problem data for problem (1.1) are such that

(6.2) b2(xi, Uε(xi)) − 4εcu′
ε(xi) > 0, xi �= d.

As in Remark 3.4, from the bounds in Theorem 5.7, we have the strict inequality
|b(xi, Uε)| > θ > 0. Hence, assumption (6.2) can be satisfied for certain problem
data.

Theorem 6.2. Assume that N is sufficiently large and ε is sufficiently small, inde-
pendently of each other. Assume further that (3.5) and (6.2) hold. The continuous
solution uε of problem (1.1) and any set of discrete solutions Uε of (5.2) satisfy the
following asymptotic error bound

‖Uε − uε‖Ω
N
ε
≤ CN−1(lnN)2,

where C is a constant independent of N and ε.

Proof. Consider first the case of σ1 = 2ε
θ1

ln N and σ2 = 2ε
θ2

ln N . By Lemma
5.4 and (6.1), the result is valid for mesh points outside the interior layer region
(d − σ1, d + σ2). Hence

(6.3) |Uε(d−σ1)−uε(d−σ1)| ≤ CN−1 and |Uε(d+σ2)−uε(d+σ2)| ≤ CN−1.
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On the other hand, in the layer region (d − σ1, d) ∪ (d, d + σ2), we have that

εδ2
(
uε − Uε

)
+ b(xi, Uε)D

(
uε − Uε

)
= ε(δ2uε − u′′

ε ) + b(xi, Uε)Duε − b(xi, uε)u′
ε

= ε(δ2uε − u′′
ε ) +

(
b(xi, Uε) − b(xi, uε)

)
u′

ε + b(xi, Uε)
(
Duε − u′

ε

)
= ε(δ2uε − u′′

ε ) +
(
c(Uε − uε)

)
u′

ε + b(xi, Uε)
(
Duε − u′

ε

)
.

We introduce the linear difference operator

MN
U Z :=

(
εδ2 + b(xi, Uε)D + cu′

ε

)
Z, xi �= d,

MN
U Z(d) := (D+Z − D−Z)(d).

At the mesh point xi = d, [u′
ε] = [DUε] = 0, and so

|(D+ − D−)(Uε − uε)| = |(D− − D+)(uε) + [u′
ε]|

≤ |u′
ε(d) − D+uε(d)| + |u′

ε(d) − D−uε(d)|
≤ Ch‖u′′

ε‖(xi−1,xi+1),

where h = 4σ
N and σ = max{σ1, σ2} is the fine mesh size. Hence, using uε = vε +wε

and the bounds in Lemma 4.2,

MN
U (u − U) = ε(δ2uε − u′′

ε ) + b(xi, Uε)
(
Duε − u′

ε

)
, xi �= d,

|MN
U (u − U)(xi)| ≤ Ch

(
1 +

1
ε2

e−
4 ln N

N |N/2−i|
)

, xi ∈ (d − σ1, d + σ2).

Note that

e−
4 ln N

N ≤
(

1 +
4 lnN

N

)−1

and hence, we have a truncation error bound of the form

|MN
U (u − U)(xi)| ≤ Ch

(
1 +

1
ε2

(1 +
4 ln N

N
)−|N/2−i|), xi ∈ (d − σ1, d + σ2).

The finite difference operator MN
U satisfies a discrete comparison principle (see

Lemma 8.4 in the appendix), provided that (6.2) is assumed. Consider the discrete
barrier function

Ψ = −CN−1 − C
N−1σ2

ε2

⎧⎪⎨
⎪⎩

xi−(d−σ1)
σ1

, xi ∈ ΩN
ε ∩ (d − σ1, d],

(d+σ2)−xi

σ2
, xi ∈ ΩN

ε ∩ (d, d + σ2).

Form the product λ(xi)Ψ(xi), where |b(U)| > θ = min{θ1, θ2}, and we define

λ(xi) =

⎧⎨
⎩

(1 + θ1h1
2ε )i−N/2, xi ∈ ΩN

ε ∩ (d − σ1, d),

(1 + θ2h2
2ε )N/2−i xi ∈ ΩN

ε ∩ (d, d + σ2).

Then

MN
U (λΨ)(xi) =

⎧⎨
⎩

ελ(xi+1)δ2Ψ + ãλ(xi−1)D−Ψ + b̃Ψ, xi ∈ ΩN
ε ∩ (d − σ1, d),

ελ(xi−1)δ2Ψ + âλ(xi+1)D+Ψ + b̂Ψ, xi ∈ ΩN
ε ∩ (d, d + σ2)
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where, for N sufficiently large, and using the strict inequality |b(xi, U)| > θ,

ã = b1(U) + θ1 +
θ2
1h1

4ε

< b(U) + θ1 + CN−1 ln N < 0, xi ∈ ΩN
ε ∩ (d − σ1, d),

â = b2(U) − θ2 −
θ2
2h2

4ε
> 0, xi ∈ ΩN

ε ∩ (d, d + σ2),

b̃

λ(xi−1)
=

θ2
1

4ε
+

θ1b1(U)
2ε

+ cu′
ε

(
1 +

θ1h1

2ε

)

<
1
ε

(
cεu′

ε −
θ2
1

4
+ CN−1 ln N

)
< 0, xi ∈ ΩN

ε ∩ (d − σ1, d),

b̂

λ(xi+1)
=

θ2
2

4ε
− θ2b2(U)

2ε
+ cu′

ε

(
1 +

θ2h

2ε

)

<
1
ε

(
cεu′

ε −
θ2
2

4
+ CN−1 ln N

)
< 0, xi ∈ ΩN

ε ∩ (d, d + σ2).

Also,

ε2D+Ψ(xi) = CN−1 σ2

σ2
, xi > d, −ε2D−Ψ(xi) = CN−1 σ2

σ1
, xi < d,

and δ2Ψ(xi) = 0, xi �= d. Hence, for xi �= d,

MN
U (λΨ) ≥ C|ã|

(
1 +

θh

2ε

)−1

λ(xi)
N−1σ

ε2
≥ |MN

U (u − U)|.

Noting that θ1h1 = θ2h2, we have the following bound at the point of discontinuity
xi = d,

MN
U (λΨ)=λ(d − h)

(
D+Ψ(d)−D−Ψ(d)− θ1 + θ2

2ε
Ψ(d)

)
≥C

h

ε2
≥|MN

U (u − U)(d)|.

Applying the discrete comparison principle to Ψ ± (Uε − uε) over the interval
[d − σ1, d + σ2], we get

|Uε(xi) − uε(xi)| ≤ CN−1 + C
N−1σ2

ε2
≤ CN−1(lnN)2.

We complete the proof by considering the case where at least one of the two transi-
tion points σ1, σ2 takes the value d

2 or 1−d
2 . In all such cases ε−1 ≤ C ln N . Apply

the above argument across the entire domain ΩN to complete the proof. �

Remark 6.3. Note that (6.2) is a restriction on the problem class. In this remark,
we show that this restriction is satisfied if ε is sufficiently small and the data is
further restricted. We first examine the restrictions placed on the data when we
require that

b2(x, uε) − 4εcu′
ε > 0, ∀x ∈ (0, 1).

Note that uε = vε + wε and so for ε sufficently small, u′
ε > 0, x ∈ (0, 1); u′′

ε (x) >
0, x < d, u′′

ε (x) < 0, x > d. Thus

(b2(x, uε) − 4εcu′
ε)(x) ≥ max{(1 − cuε(d))2, (1 + cuε(d))2} − 4εcu′

ε(d), ∀x ∈ (0, 1).
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Note also that

εu′(d) − εu′
ε(0) =

∫ d

0

(−δ1 + (1 − cuε(t))uε(t)) dt

= −dδ1 +
1
2c

(
2cuε(d) − c2u2

ε(d) − 2cuε(0) + c2u2
ε(0)

)
= −dδ1 +

1
2c

(
(1 − cuε(0))2 − (1 − cuε(d))2

)
,

and so

(1 − cuε(d))2 − 4εcu′
ε(d) > 4cδ1d + 3(1 − cuε(d))2 − 2(1 − cuε(0))2.

If −η < cuε(0) < cuε(1) < η, then 1 − η < 1 − cuε(1) < 1 − cuε(d) < 1 − cuε(0) <
1 + η. This means that (1− cuε(d))2 − 4εcu′

ε(d) > 4cδ1d + (1− η)2 − 8η = 4cδ1d +
1 − 10η + η2. Hence, we require the data to be such that

4c max{δ1d, δ2(1 − d)} + 1 − 10η + η2 > 0,

where −η < cuε(0) < cuε(1) < η and δ1d < −uε(0) and δ2(1 − d) < uε(1). For
example, if η = 0.1, c = 1, δ1d < −uε(0) < 0.1 and δ2(1 − d) < uε(1) < 0.1, then
the data constraints (3.5) and (6.2) in Theorem 6.2 are both satisfied.

7. Numerical results

To solve the nonlinear difference scheme (5.2) we use the continuation method
described in [8]. Table 1 displays the computed rates of convergence pN

ε and the
uniform rates of convergence pN , using the double mesh principle (see [4] for details
on how these quantities are calculated), when the numerical method (5.2) is applied
to the problem (1.1) with u(0) = −0.5, δ1 = 0.8, u(1) = 0.7, δ2 = 1.2, d = 0.5, c = 1.
Note that the conditions in (3.5) are satisfied for this data. The computed rates
of convergence are in line with the theoretical rates of convergence established in
Theorem 6.2.

Table 1. Table of computed orders pN
ε and computed ε-uniform

orders pN for the numerical method (5.2) applied to problem (1.1)
with u(0) = −0.5, δ1 = 0.8, u(1) = 0.7, δ2 = 1.2, d = 0.5, c = 1.

Number of Intervals N
ε 32 64 128 256 512 1024

2−1 0.96 0.98 0.99 0.99 1.00 1.00
2−2 0.92 0.96 0.98 0.99 0.99 1.00
2−3 0.88 0.94 0.96 0.98 0.99 0.99
2−4 0.77 0.86 0.93 0.96 0.98 0.99
2−5 0.62 0.78 0.86 0.93 0.96 0.98
2−6 -0.25 0.63 0.78 0.86 0.93 0.96
2−8 0.24 0.28 0.48 0.58 0.75 0.77
2−10 0.26 0.29 0.48 0.59 0.76 0.77
2−12 0.27 0.29 0.48 0.59 0.76 0.77

. . . . . . .

. . . . . . .
2−23 0.27 0.29 0.48 0.59 0.76 0.77
pN 0.29 0.63 0.63 0.59 0.76 0.75
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8. Appendix on discrete comparison principles

Consider the following linear problem:

L1u := εu′′ + pu′ + qu = f, x ∈ (0, 1), u(0) = u0, u(1) = u1,

p ≥ α > 0, q ≤ β, α2 − 4εβ > 0.

Lemma 8.1. If w(0) ≤ 0, w(1) ≤ 0, L1w ≥ 0, then w ≤ 0, x ∈ [0, 1].

Proof. If β ≤ 0, then the standard proof by contradiction argument applies. For
β > 0, use the transformation w = e−

α
2ε xv. �

Consider the corresponding discrete problem on an arbitrary mesh ΩN ,

LN
1 U := εδ2U + pD+U + qU = f, xi ∈ ΩN , U(0) = u0, U(1) = u1, p ≥ α > 0.

If q ≤ 0, then the standard discrete comparison principle holds for LN
1 . Below

we extend this comparison principle to the case of q > 0. As in the proof of the
continuous operator, consider the transformation

W (xi) = λ(xi)V (xi),

where λ will be specified below. For any such mesh function λ,

D+(λ(xi)V (xi)) = λ(xi+1)D+V (xi) + V (xi)D+λ(xi),

D−(λ(xi)V (xi)) = λ(xi−1)D−V (xi) + V (xi)D−λ(xi),

δ2(λ(xi)V (xi)) = V (xi)δ2(λ(xi)) +
1
h̄i

(
λ(xi+1)D+V (xi) − λ(xi−1)D−V (xi)

)
,

where h̄i = (hi + hi+1)/2. Hence

δ2(λ(xi)V (xi))=V (xi)δ2(λ(xi))+
(λ(xi+1) − λ(xi−1))

h̄i
D+V (xi)+λ(xi−1)δ2(V (xi)).

Then, for W (xi) = λ(xi)V (xi) we have

(εδ2W + pD+W + qW )(xi) =
[
ελ(xi−1)δ2V + λ(xi+1)p̂D+V + q̂V

]
(xi) ,

where

p̂ =
ε

h̄i

((
1 +

ph̄i

ε

)
− λ(xi−1)

λ(xi+1)
<

)
, q̂ = εδ2(λ(xi)) + pD+(λ(xi)) + qλ(xi) .

In the following three lemmas, we assume that hi ≤ CN−1 ln N and that ε is
sufficiently small (independently of N) and N is sufficiently large (independently
of ε).

Lemma 8.2. Assume that p ≥ α > 0. Under any one of the following three
assumptions:

(1) q(xi) ≤ C2, ∀xi,
(2) p > α > 0, α2−4εq > 0 and ΩN is a uniform mesh with h/ε ≤ CN−1 ln N ,
(3) ΩN = ΩN

ε is a piecewise uniform mesh which uses a uniform mesh in each
of the subintervals [0, σ and [σ, 1] (with a fine mesh step h ≤ CεN−1 ln N
and a coarse mesh step H ≤ CN−1 ln N) and

q(xi) ≤ C1(1 + (εN)−1), xi < σ, q(xi) ≤ C2, xi ≥ σ;
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then for any mesh function W , if W (0) ≤ 0, W (1) ≤ 0, LN
1 W ≥ 0, then W (xi) ≤

0, ∀xi ∈ ΩN .

Proof. We employ functions of the form λ(xi) = Πi
j=1(1 + θjhj)−1, which satisfy

D+λ(xi) = −θi+1λ(xi+1), D−λ(xi) = −θiλ(xi),
D+λ(xi) − D−λ(xi) = ((θi − θi+1) + θi+1θihi+1)λ(xi+1),

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
=

h̄i

ε

(
p − ε

h̄i
(hiθi + hi+1θi+1 + hiθihi+1θi+1)

)
,

q̂(xi) = λ(xi+1)
[
(1 + θi+1hi+1)

(
ε

h̄i
θi + q(xi)

)
− θi+1

(
ε

h̄i
+ p(xi)

)]
.

In each of the three cases, we choose the θj so that p̂ ≥ 0, q̂ < 0 and then the
normal proof by contradiction argument can be applied. Assume Wi > 0 and let
Vj = max Vi > 0, then D+Vj ≤ 0, D−Vj ≥ 0, δ2Vj ≤ 0, LNWj ≤ 0.

Case 1. Take, θj = θ = 2C2+1
α . Then if ε is sufficiently small (independently of

N) and N is sufficiently large (independently of ε),

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
≥ h̄i

ε

(
α − 2εθ(1 + θh)) ≥ 0, h = min{hi, hi+1},

q̂ ≤ λ(xi+1)
(
2εθ2 + q − αθ + qθhi+1

)
< 0.

Case 2. Take θj = α
2ε . Then, if N is sufficiently large (independently of ε),

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
=

h

ε

(
p − α(1 +

αh

2ε
)
)

≥ 0,

using the strict inequality p > α and

q̂ ≤ λ(xi+1)
(
εθ2 + q − αθ + qθh

)
< 0,

using the strict inequality 4εq < α2.
Case 3. If εN ≥ 1, then follow the argument in Case 1. Otherwise, take

θi =
ζ1

εN
, i ≤ N/2, θi = ζ2, i > N/2,

where

ζ1 =
2C1 + 1

α
, αζ2 > q + ζ1.

In the layer region, when i < N/2 and h ≤ CεN−1 ln N ,

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
≥ h

ε

(
p − ζ1

N
(2 +

ζ1h

Nε
)
)

≥ 0, for any ζ1,

q̂

λ(xi+1)
=

1
εN

(qεN − pζ1) +
ζ1

Nε
(qh +

ζ1

N
) < 0,

using qεN ≤ C1(εN + 1) ≤ 2C1. Outside the layer region, when i > N/2, for ε
sufficiently small,

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
=

H

ε

(
p − εζ2(2 + ζ2H)) ≥ 0

and
q̂

λ(xi+1)
≤ q − αζ2 + ζ2(2εζ2 + qH) < 0.
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At the transition point, when i = N/2 and N is sufficiently large,

1 +
ph̄i

ε
− λ(xi−1)

λ(xi+1)
=

h̄

ε
(p − (hζ1 + εNHζ2 + hζ1ζ2H)) ≥ 0,

q̂(xi)
λ(xi+1)

= (1 + ζ2H)(q(xi) + ζ1) − ζ2(α + εN) < 0,

using the strict inequality αζ2 > q + ζ1. �

In the case of a negative convective coefficient p < 0, we employ the operator

LN
2 U := εδ2U + pD−U + qU.

Lemma 8.3. Assume that p ≤ −α < 0 and any one of the following:
(1) q(xi) ≤ C2, ∀xi,
(2) p < −α < 0, α2 − 4εq > 0 and ΩN is a uniform mesh with h/ε ≤

CN−1 ln N ,
(3) ΩN = ΩN

ε is a piecewise uniform mesh and

q(xi) ≤ C1(1 + (εN)−1), xi > 1 − σ, q(xi) ≤ C2, xi ≤ 1 − σ;

then for any mesh function W , if W (0) ≤ 0, W (1) ≤ 0, LN
2 W ≥ 0, then W (xi) ≤

0, ∀xi ∈ ΩN .

Proof. The proof is analogous to the case of p > 0. As before, if W (xi) =
λ(xi)V (xi), then

(εδ2W + pD−W + qW )(xi) =
[
ελ(xi+1)δ2V + p̃λ(xi−1)D−V + q̃V

]
(xi) ,

where

p̃ =
ε

h̄i

(
λ(xi+1)
λ(xi−1)

− (1 − ph̄i

ε
)
)

, q̃ = εδ2(λ(xi)) + pD−(λ(xi)) + qλ(xi) .

Consider functions of the form λ(xi) = Πi
j=1(1 + θjhj), which satisfy

D+λ(xi) = θi+1λ(xi), D−λ(xi) = θiλ(xi−1),
D+λ(xi) − D−λ(xi) = ((θi+1 − θi) + θi+1θihi)λ(xi−1),

λ(xi+1)
λ(xi−1)

−
(

1 − ph̄i

ε

)
=

h̄i

ε

(
p +

ε

h̄i
(hiθi + hi+1θi+1 + hiθihi+1θi+1)

)
,

1
λ(xi−1)

q̂ ≤ (1 + θihi)
(

ε

h̄i
θi+1 + q

)
− θi

(
ε

h̄i
+ α

)
.

The proof is analogous to the previous proof. �

In the case of a discontinuous convective coefficient p < −α < 0, x < d, and
p > α > 0, x > d we use the upwind finite difference operator

LN
3 U := εδ2U + pDU + qU.

Lemma 8.4. Under any one of the following assumptions:
(1) q(xi) ≤ C2, ∀xi,
(2) α2 − 4εq > 0 and ΩN is a uniform mesh with h/ε ≤ CN−1 ln N ,
(3) ΩN = ΩN

ε is a piecewise uniform mesh, and

q(xi) ≤ C1(1 + (εN)−1), d − σ < xi < d + σ, q(xi) ≤ C2, otherwise;
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then for any mesh function W , if W (0) ≤ 0, W (1) ≤ 0, LN
3 W ≥ 0, D+W (d) ≥

D−W (d), we have W (xi) ≤ 0, ∀xi ∈ ΩN .

Proof. Use functions of the form:

λ(xi) = Πi
j=1(1 + θjhj), i ≤ N/2, λ(xi) = λ(d)Πi

j=i−N/2(1 + θjhj)−1, i > N/2.

In all three cases, using the choices from the previous two lemmas, we get λ(xN/2−1)
= λ(xN/2+1). Then

δ2W (d) = λ(xN/2−1)
(

δ2V (d) − 2
θ

h
V (d)

)
.

If W > 0 and maxV = V (d) > 0, then δ2W (d) < 0, which is a contradiction. �
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