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FUNCTION CLASSES FOR SUCCESSFUL
DE-SINC APPROXIMATIONS

KEN’ICHIRO TANAKA, MASAAKI SUGIHARA, AND KAZUO MUROTA

Abstract. The DE-Sinc formulas, resulting from a combination of the Sinc
approximation formula with the double exponential (DE) transformation, pro-
vide a highly efficient method for function approximation. In many cases they
are more efficient than the SE-Sinc formulas, which are the Sinc approximation
formulas combined with the single exponential (SE) transformations. Function
classes suited to the SE-Sinc formulas have already been investigated in the
literature through rigorous mathematical analysis, whereas this is not the case
with the DE-Sinc formulas. This paper identifies function classes suited to the
DE-Sinc formulas in a way compatible with the existing theoretical results for
the SE-Sinc formulas. Furthermore, we identify alternative function classes
for the DE-Sinc formulas, as well as for the SE-Sinc formulas, which are more
useful in applications in the sense that the conditions imposed on the functions
are easier to verify.

1. Introduction

The Sinc approximation formula, expressed as

f(x) ≈
N∑

k=−N

f(kh) S(k, h)(x),(1.1)

is an interpolation formula to approximate a function f on the real line R based on
sampled values {f(kh) | −N ≤ k ≤ N} at a finite number of equally-spaced points
on R, where N ∈ N and h > 0. Here S(k, h) denotes the Sinc function defined as

S(k, h)(x) :=
sin[π(x/h − k)]

π(x/h − k)
.(1.2)

The formula (1.1) is known to achieve very high accuracy if f is a well-behaved
function decaying sufficiently rapidly as |x| tends to infinity. Numerical methods
based on this Sinc approximation, initiated by McNamee, Stenger and Whitney
[2], have been developed and applied to various scientific computations in the last
three decades. They are now accepted under the name of Sinc numerical methods
[6, 7, 11].
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The formula (1.1) can be adapted to approximations on general intervals with
the aid of appropriate variable transformations x = ψ(t). When f is approximated
on an interval I ⊆ R, the formula is modified to

f(x) ≈
N∑

k=−N

f(ψ(kh)) S(k, h)(ψ−1(x))(1.3)

with a transformation function ψ : R → I. This approach works if ψ is chosen
appropriately so that the transformed function f(ψ(·)) satisfies certain conditions,
say, about the decay rate.

As for the transformation function ψ(t) we can employ an appropriate double
exponential (DE) transformation such as

ψDE1 : (−∞,∞) → (−1, 1), ψDE1(t) := tanh((π/2) sinh t),(1.4)

ψDE2 : (−∞,∞) → (−∞,∞), ψDE2(t) := sinh((π/2) sinh t),(1.5)

ψDE3 : (−∞,∞) → (0,∞), ψDE3(t) := exp((π/2) sinh t),(1.6)

ψDE4 : (−∞,∞) → (0,∞), ψDE4(t) := exp(t − exp(−t)),(1.7)

ψDE5 : (−∞,∞) → (0,∞), ψDE5(t) := log(exp((π/2) sinh t) + 1).(1.8)

The formulas (1.3) with ψ = ψDEi (i = 1, . . . , 5) are called the DE-Sinc approxima-
tion formulas.

The DE transformations were originally proposed for numerical integration by
Takahasi and Mori [12], followed by subsequent extensions and generalizations [3];
ψDE5 mentioned above was proposed recently in [4]. Use of DE transformations in
the Sinc approximation is due to Sugihara [8, 10].

On the other hand, use of single exponential (SE) transformations has been
advocated by Stenger [5, 6]. Formulas (1.3) with SE transformations ψ are called the
SE-Sinc approximation formulas, where the explicit forms of the SE transformations
as well as the SE-Sinc formulas are given in Section 2. Historically, the SE-Sinc
approximation formulas preceded the DE-Sinc formulas by twenty years.

It is understood in general terms that the SE-Sinc formulas are applicable to
larger classes of functions than the DE-Sinc formulas, whereas the DE-Sinc formulas
are more efficient for well-behaved functions. Rigorous error analysis has been
done for the SE-Sinc formulas and certain classes of functions suited to the SE-Sinc
formulas have been identified by Stenger [6]. For the DE-Sinc formulas, on the other
hand, Sugihara [8, 10] made an error analysis that led to an observation that the
DE-Sinc formulas are nearly optimal in a certain mathematical sense. It must be
said, however, that no theorems exist that describe precisely those function classes
for which the DE-Sinc formulas are successful.

The first objective of this paper is to identify the function classes suited to
the DE-Sinc formulas in a way compatible with the existing results for the SE-
Sinc formulas. The DE-Sinc formulas are applicable to more restricted classes of
functions, but more efficient for such functions. It may be said that the essence of
the present results is already implicit in [8, 10] and the contribution of this paper
is to tailor the implicit observation there to explicit statements that are compatible
with the corresponding results for the SE-Sinc formulas.

Our theorems for DE-Sinc formulas, as well as the existing theorems of Stenger
for SE-Sinc formulas, involve some conditions that are not convenient to verify from
a practical point of view. To be more specific, the theorems require certain estimates
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of the function f over complex regions, although approximations are sought on real
intervals. To make the theoretical analysis more useful in applications, we present
another set of theorems that describe alternative function classes for the DE-Sinc
formulas, as well as for the SE-Sinc formulas. The point is that the theorems do not
involve upper bound conditions over complex regions but refer only to conditions
on the real intervals on which the approximations of f are considered.

Thus the objective of this paper is twofold:

(1) To identify function classes for DE-Sinc formulas in parallel to Stenger’s
results for SE-Sinc formulas.

(2) To relax the conditions for easier verification, both for DE-Sinc formulas
and for SE-Sinc formulas.

This paper is organized as follows. In Section 2, we review Stenger’s theorems
for the SE-Sinc formulas by way of comparison with our results. In Section 3, we
present our theorems of error estimates for the DE-Sinc formulas as the main result
of this paper. Similar error estimates for the DE-Sinc and SE-Sinc formulas are
derived under weaker assumptions in Section 4. Sections 5, 6, and 7 are devoted to
the proofs.

2. Function classes for successful SE-Sinc approximations

This section is a review of some relevant results on the approximation formulas
based on single exponential transformations.

The single exponential transformations are given by the following functions:

ψSE1 : (−∞,∞) → (−1, 1), ψSE1(t) := tanh(t/2),(2.1)

ψSE2 : (−∞,∞) → (−∞,∞), ψSE2(t) := sinh t,(2.2)

ψSE3 : (−∞,∞) → (0,∞), ψSE3(t) := exp t,(2.3)

ψSE4 : (−∞,∞) → (0,∞), ψSE4(t) := arcsinh(exp t).(2.4)

The formulas (1.3) with ψ = ψSEi (i = 1, . . . , 4) are called the SE-Sinc approxima-
tion formulas.

In the theorems below, functions suited to the SE-Sinc formulas are specified
with reference to complex regions. For d > 0 we define a strip region Dd as

Dd := {z ∈ C | |Im z| < d}.(2.5)

Then we define DSEi(d) as the image of Dd through ψSEi; that is,

DSEi(d) := {z = ψSEi(w) | w ∈ Dd} (i = 1, . . . , 4).

Figures 1 to 4 illustrate these regions together with their boundaries ∂DSEi(d).
Theorems 2.1 to 2.4 below give asymptotic error estimates for the SE-Sinc for-

mulas with mathematical rigor.

Theorem 2.1 (Stenger [6]). Assume that f is holomorphic on DSE1(d) for d with
0 < d < π and satisfies

∀z ∈ DSE1(d) : |f(z)| ≤ C1|(1 − z2)β|
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for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
−1<x<1

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψSE1(kh)) S(k, h)(ψSE1
−1(x))

∣∣∣∣∣≤C
√

N exp
(
−

√
πdβN

)
,

where h =
√

πd/(βN).
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Figure 1. Region DSE1(1) and its boundary ∂DSE1(1)
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Figure 2. Region DSE2(1) and its boundary ∂DSE2(1)

i

0

−i
−0.5 0  0.5 1  1.5 2  2.5

i

0

−i
−0.5 0  0.5 1  1.5 2  2.5

Figure 3. Region DSE3(1) and its boundary ∂DSE3(1)
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Figure 4. Region DSE4(1) and its boundary ∂DSE4(1)

Theorem 2.2 (Stenger [6]). Assume that f is holomorphic on DSE2(d) for d with
0 < d < π/2 and satisfies

∀z ∈ DSE2(d) : |f(z)| ≤ C1

∣∣∣∣ 1
(1 + z2)β/2

∣∣∣∣
for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψSE2(kh)) S(k, h)(ψSE2
−1(x))

∣∣∣∣∣≤C
√

N exp
(
−

√
πdβN

)
,

where h =
√

πd/(βN).

Theorem 2.3 (Stenger [6]). Assume that f is holomorphic on DSE3(d) for d with
0 < d < π/2 and satisfies

∀z ∈ DSE3(d) : |f(z)| ≤ C1

∣∣∣∣ zβ

(1 + z2)β

∣∣∣∣
for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
0<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψSE3(kh)) S(k, h)(ψSE3
−1(x))

∣∣∣∣∣≤C
√

N exp
(
−

√
πdβN

)
,

where h =
√

πd/(βN).

Theorem 2.4 (Stenger [6]). Assume that f is holomorphic on DSE4(d) for d with
0 < d < π/2 and satisfies

∀z ∈ DSE4(d) : |f(z)| ≤ C1

∣∣∣∣∣
(

z

1 + z

)β

exp(−βz)

∣∣∣∣∣
for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
0<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψSE4(kh)) S(k, h)(ψSE4
−1(x))

∣∣∣∣∣ ≤ C
√

N exp
(
−

√
πdβN

)
,

where h =
√

πd/(βN).
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3. Function classes for successful DE-Sinc approximations

In this section, we present our theorems for the error estimate of the DE-Sinc
formulas. Recall the transformation functions ψDEi (i = 1, . . . , 5) in (1.4)–(1.8):

ψDE1 : (−∞,∞) → (−1, 1), ψDE1(t) := tanh((π/2) sinh t),

ψDE2 : (−∞,∞) → (−∞,∞), ψDE2(t) := sinh((π/2) sinh t),

ψDE3 : (−∞,∞) → (0,∞), ψDE3(t) := exp((π/2) sinh t),

ψDE4 : (−∞,∞) → (0,∞), ψDE4(t) := exp(t − exp(−t)),

ψDE5 : (−∞,∞) → (0,∞), ψDE5(t) := log(exp((π/2) sinh t) + 1).

To state our theorems we need to introduce complex regions, DDEi(d), that are
defined as the images of Dd in (2.5) through the transformation functions ψDEi;
that is,

DDEi(d) := {z = ψDEi(w) | w ∈ Dd} (i = 1, . . . , 5).

Figures 5 to 9 illustrate these regions together with their boundaries ∂DDEi(d). We
regard DDEi(d) as a region on the Riemann surface.

We are now in the position to state the main theorems. The proofs are shown
in Section 5.
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Figure 5. Region DDE1(1) and its boundary ∂DDE1(1)

8i

6i

4i

2i

0

−2i

−4i

−6i

−8i
−10 −5 0 5  10

8i

6i

4i

2i

0

−2i

−4i

−6i

−8i
−10 −5 0 5  10
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Figure 7. Region DDE3(1) and its boundary ∂DDE3(1)
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Figure 8. Region DDE4(1) and its boundary ∂DDE4(1)
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Figure 9. Region DDE5(1) and its boundary ∂DDE5(1)

Theorem 3.1. Assume that f is holomorphic on DDE1(d) for d with 0 < d < π/2
and satisfies

(3.1) ∀z ∈ DDE1(d) : |f(z)| ≤ C1|(1 − z2)β|
for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
−1<x<1

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE1(kh)) S(k, h)(ψDE1
−1(x))

∣∣∣∣∣≤C exp
(
− πdN

log(2dN/β)

)
,

where h = (log(2dN/β))/N .
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Theorem 3.2. Assume that f is holomorphic on DDE2(d) for d with 0 < d < π/2
and satisfies

∀z ∈ DDE2(d) : |f(z)| ≤ C1

∣∣∣∣ 1
(1 + z2)β/2

∣∣∣∣(3.2)

for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE2(kh)) S(k, h)(ψDE2
−1(x))

∣∣∣∣∣≤C exp
(
− πdN

log(4dN/β)

)
,

where h = (log(4dN/β))/N .

Theorem 3.3. Assume that f is holomorphic on DDE3(d) for d with 0 < d < π/2
and satisfies

∀z ∈ DDE3(d) : |f(z)| ≤ C1

∣∣∣∣ zβ

(1 + z2)β

∣∣∣∣(3.3)

for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
0<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE3(kh)) S(k, h)(ψDE3
−1(x))

∣∣∣∣∣ ≤ C exp
(
− πdN

log(4dN/β)

)
,

where h = (log(4dN/β))/N .

Theorem 3.4. Assume that f is holomorphic on DDE4(d) for d with 0 < d < π/2
and satisfies

∀z ∈ DDE4(d) : |f(z)| ≤ C1

∣∣∣∣∣
(

z

1 + z

)β

exp(−β z)

∣∣∣∣∣(3.4)

for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
0<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE4(kh)) S(k, h)(ψDE4
−1(x))

∣∣∣∣∣ ≤ C exp
(
− πdN

log(πdN/β)

)
,

where h = (log(πdN/β))/N .

Theorem 3.5. Assume that f is holomorphic on DDE5(d) for d with 0 < d < π/2
and satisfies

∀z ∈ DDE5(d) : |f(z)| ≤ C1

∣∣∣∣∣
(

z

1 + z

)β

exp(−β z)

∣∣∣∣∣(3.5)

for constants C1 > 0 and β > 0. Then there exists a constant C, independent of
N , such that

sup
0<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE5(kh)) S(k, h)(ψDE5
−1(x))

∣∣∣∣∣ ≤ C exp
(
− πdN

log(4dN/β)

)
,

where h = (log(4dN/β))/N .
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4. Alternative classes for DE-sinc and SE-sinc approximations

Our theorems in the previous section involve upper bounds on the behavior of f
over the complex regions DDEi(d). For instance, Theorem 3.1 imposes the condition
in (3.1) that |f(z)| ≤ C1|(1 − z2)β| holds for all z ∈ DDE1(d). Such conditions,
however, are difficult to verify in practical situations. It would be nicer if they could
be replaced by conditions only on real intervals, such as |f(x)| ≤ C1|(1 − x2)β| for
all x ∈ (−1, 1).

It is in fact possible to establish theorems for the DE-Sinc formulas that do not
involve upper bound conditions over the complex regions DDEi(d), but refer only
to conditions on the real intervals on which the approximations of f are considered.
To be more precise, such theorems have two types of assumptions1:

(1) f is holomorphic and bounded on DDEi(d), and
(2) f is upper bounded by a certain simple function on the real interval,

under which error estimates similar to Theorems 3.1 to 3.5 are obtained.
We state the theorem for ψDE1(t) only, while referring the reader to [14] for

the theorems for ψDEi(t) (i = 2, 3, 4, 5). The theorems for ψDEi(t) (i = 2, 3, 4, 5)
can be obtained easily from Theorems 3.2, 3.3, 3.4 and 3.5, respectively, just as the
theorem for ψDE1(t) below is obtained from Theorem 3.1. The proof of the theorem
below is given in Section 6.

Theorem 4.1. Assume that f is holomorphic and bounded on DDE1(d) for d with
0 < d < π/2 and satisfies

∀x ∈ (−1, 1) : |f(x)| ≤ C1|(1 − x2)β|

for constants C1 > 0 and β > 0. Then, for any ε with 0 < ε < d, there exists a
constant Cε, independent of N , such that

sup
−1<x<1

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψDE1(kh)) S(k, h)(ψDE1
−1(x))

∣∣∣∣∣≤Cε exp
(
− π(d − ε)N

log(2dN/β)

)
,

where h = (log(2dN/β))/N .

Theorems of the same vein can also be established for the SE-Sinc formulas. Such
theorems do not involve upper bound conditions over the complex regions DSEi(d),
but refer only to conditions on the real intervals on which the approximations of f
are considered.

Here we show the theorem for ψSE1(t) only for the same reason as above; see
[14] for the other cases. The proof of the theorem below is given in Section 7.

Theorem 4.2. Assume that f is holomorphic and bounded on DSE1(d) for d with
0 < d < π and satisfies

∀x ∈ (−1, 1) : |f(x)| ≤ C1|(1 − x2)β|

1Boundedness of f is not assumed in Theorems 3.1 to 3.5 because it is implied by each of the
conditions (3.1) to (3.5).



1562 KEN’ICHIRO TANAKA, MASAAKI SUGIHARA, AND KAZUO MUROTA

for constants C1 > 0 and β > 0. Then, for any ε with 0 < ε < d, there exists a
constant Cε, independent of N , such that

sup
−1<x<1

∣∣∣∣∣f(x) −
N∑

k=−N

f(ψSE1(kh)) S(k, h)(ψSE1
−1(x))

∣∣∣∣∣
≤ Cε

√
N exp

(
−

√
π(d − ε)βN

)
,

where h =
√

πd/(βN).

5. Proofs of Theorems 3.1 to 3.5

In this section, we prove Theorems 3.1 to 3.5 in turn. The proofs are based on
Theorem 5.1 below, which is a well known error estimate for the Sinc formula on
(−∞,∞) for functions with double exponential decay.

5.1. Fundamental theorems for DE-Sinc formula. As a preliminary we present
here the error estimate for the basic Sinc formula on (−∞,∞) for functions with
double exponential decay. For ε with 0 < ε < 1, we define

Dd(ε) := {z ∈ C | |Re z| < 1/ε, |Im z| < d(1 − ε)}
and also

N1(f,Dd) := lim
ε→0

∫
∂Dd(ε)

|f(z)||dz|

for a function f on Dd. With these definitions, we introduce a function space

H1(Dd) := {f : Dd → C | f is holomorphic on Dd and satisfies N1(f,Dd) < ∞}.

Theorem 5.1 ([10], [11, Theorem 5]). Assume that a function f satisfies

f ∈ H1(Dd),(5.1)

∀x ∈ R : |f(x)| ≤ A exp(−B exp(γ|x|))(5.2)

for positive constants A, B, γ and d, where γd ≤ π/2. Then there exists a constant
C, independent of N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ C exp
(
− πdγN

log(πdγN/B)

)
,

where

h =
log(πdγN/B)

γN
.(5.3)

Proof. A sketch of the proof is given here in view of its fundamental role in subse-
quent arguments. We divide the error into two parts as

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣
(5.4)

≤ sup
−∞<x<∞

∣∣∣∣∣f(x) −
∞∑

k=−∞
f(kh)S(k, h)(x)

∣∣∣∣∣ + sup
−∞<x<∞

∣∣∣∣∣∣
∑

|k|>N

f(kh)S(k, h)(x)

∣∣∣∣∣∣ .
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The first term on the right-hand side may be referred to as the sampling error and
the second as the truncation error. For the sampling error it follows from (5.1),
(5.3), and an estimate by a contour integral that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
∞∑

k=−∞
f(kh)S(k, h)(x)

∣∣∣∣∣(5.5)

≤ C ′ exp
(
−πd

h

)
= C ′ exp

(
− πdγN

log(πdγN/B)

)
,

where C ′ > 0 is a constant. For the truncation error we have from (5.2) and (5.3)
that

sup
−∞<x<∞

∣∣∣∣∣∣
∑

|k|>N

f(kh)S(k, h)(x)

∣∣∣∣∣∣ ≤
∑

|k|>N

|f(kh)|(5.6)

≤ 2A exp(−B exp(γNh))
Bγ exp(γNh)

=
2A exp(−2πdγN)

2πdγ2N
.

Hence follows the claim. �

The following lemma gives a sufficient condition for f to satisfy the first assump-
tion f ∈ H1(Dd) in Theorem 5.1 in terms of a dominating function g of f .

Lemma 5.2. A function f holomorphic on Dd belongs to H1(Dd), if there exists
a function g on Dd such that

∀z ∈ Dd : |f(z)| ≤ |g(z)|,(5.7)

∀x ∈ R, ∀y ∈ R (|y| ≤ d) : |g(x + i y)| ≤ A′ exp(−B′ exp(γ′|x|))(5.8)

for constants A′, B′, γ′ > 0.

Proof. By (5.8) we have∫ ∞

−∞
(|g(x + i d)| + |g(x − i d)|) dx < ∞,

lim
x→±∞

∫ d

−d

|g(x + i y)| dy = 0.

Then, by (5.7), we see that N1(f,Dd) ≤ N1(g,Dd) < ∞. �

Some comment is in order on the inequality γd ≤ π/2 in Theorem 5.1. This
inequality condition is natural and inevitable because of the following fact, which
is an immediate corollary of [9, Lemma 4.2].

Theorem 5.3 (Vanishing Theorem). Let A and B be positive constants, and let γ
and d be positive constants with γd > π/2. If a function f on Dd satisfies

f ∈ H1(Dd),

∀x ∈ R : |f(x)| ≤ A exp(−B exp(γ|x|)),
then f ≡ 0.

It should be clear that the above theorem does not affect the proofs of the
theorems and lemmas in this paper.
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5.2. Proof of Theorem 3.1. In the proofs of Theorem 3.1 to 3.5 in Subsections
5.2 to 5.6, we show that the transformed function f̃ = f(ψDEi(·)) satisfies the
assumptions of Theorem 5.1 by demonstrating a dominating function g for f̃ as
described in Lemma 5.2.

In this subsection we deal with ψDE1. The transformed function f̃ = f(ψDE1(·))
is holomorphic on Dd. Since

∀z ∈ Dd : |f(ψDE1(z))| ≤ C1

∣∣∣∣ 1
{cosh2((π/2) sinh z)}β

∣∣∣∣
follows from (3.1), we can take

g(z) = C1
1

{cosh2((π/2) sinh z)}β

to meet the first requirement (5.7) in Lemma 5.2. We can also show that this
function g(z) satisfies (5.8) by letting B = β in Lemma 5.4 below. Therefore, we
have f(ψDE1(·)) ∈ H1(Dd) by Lemma 5.2. For the condition (5.2) in Theorem 5.1,
it follows from the above inequality that, for x ∈ R, we have

|f(ψDE1(x))| ≤ A exp
(
−πβ

2
exp(|x|)

)

for a constant A > 0. Therefore, f(ψDE1(·)) satisfies the assumptions of Theorem
5.1 for B = πβ/2 and γ = 1. Hence follows the claim of Theorem 3.1.

Lemma 5.4. Let d be a constant with 0 < d < π/2, and B be a positive constant.
Then the function g(z) := 1/{cosh2((π/2) sinh z)}B satisfies (5.8).

Proof. Let x, y ∈ R and |y| ≤ d. We have

| cosh((π/2) sinh(x + i y))|2

= cosh2((π/2) sinhx cos y) − sin2((π/2) coshx sin y)

≥ cosh2(((π/2) cosd) sinhx) − sin2((π/2) coshx sin y)

≥
{

1 − sin2((π/2) cosh δ sin d) = 1/2 (|x| ≤ δ),
cosh2(((π/2) cosd) sinh x) − 1 = sinh2(((π/2) cosd) sinhx) (|x| > δ),

where δ = arccosh(1/(2 sin d)). Hence

|g(x + i y)| ≤
{

22B (|x| ≤ δ),
1/[sinh(((π/2) cosd) sinhx)]2B (|x| > δ).

�

5.3. Proof of Theorem 3.2. First, the transformed function f(ψDE2(·)) is holo-
morphic on Dd. By (3.2), we have

∀z ∈ Dd : |f(ψDE2(z))| ≤C1

∣∣∣∣ 1
{cosh2((π/2) sinh z)}β/2

∣∣∣∣ .

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set
B = β/2 in Lemma 5.4 to show (5.8).
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5.4. Proof of Theorem 3.3. First, the transformed function f(ψDE3(·)) is holo-
morphic on Dd. By (3.3), we have

∀z ∈ Dd : |f(ψDE3(z))| ≤ C1

2β

∣∣∣∣ 1
{cosh2((π/2) sinh z)}β/2

∣∣∣∣ .

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set
B = β/2 in Lemma 5.4 to show (5.8).

5.5. Proof of Theorem 3.4. First, the transformed function f(ψDE4(·)) is holo-
morphic on Dd. It follows from (3.4) that

∀z ∈ Dd :

|f(ψDE4(z))| ≤ C1

∣∣∣∣∣
{

exp z

exp z + exp(exp(−z))

}β

exp(−β exp z · exp(− exp(−z)))

∣∣∣∣∣ .
Accordingly, we choose the right-hand side above as g(z) in Lemma 5.2. Then (5.7)
is met. This function g(z) also satisfies (5.8). Therefore, we have f(ψDE4(·)) ∈
H1(Dd) by Lemma 5.2. As for the other condition (5.2) in Theorem 5.1, it follows
from the above inequality that, for x ∈ R we have

|f(ψDE4(x))| ≤ A exp(−β exp(|x|))
for a constant A > 0. Thus f(ψDE4(·)) satisfies the assumptions of Theorem 5.1
for B = β and γ = 1. Hence follows the claim of Theorem 3.4.

5.6. Proof of Theorem 3.5. First, the transformed function f(ψDE5(·)) is holo-
morphic on Dd. Since

∀z ∈ Dd : |f(ψDE5(z))| ≤ C1

∣∣∣∣∣
(

log(exp((π/2) sinh z) + 1)
1 + log(exp((π/2) sinh z) + 1)

)β

· exp(−β log(exp((π/2) sinh z) + 1))

∣∣∣∣∣
by (3.5), we can choose the right-hand side above as g(z) in Lemma 5.2. Then (5.7)
is met. This function g(z) also satisfies (5.8). Therefore, we have f(ψDE5(·)) ∈
H1(Dd) by Lemma 5.2. As for the second condition (5.2) in Theorem 5.1, it can
be shown that

|f(ψDE5(x))| ≤ A exp
(
−πβ

4
exp(|x|)

)
holds for x ∈ R with a constant A > 0. Therefore, f(ψDE5(·)) satisfies the assump-
tions of Theorem 5.1 for B = πβ/4 and γ = 1. Thus we have proven Theorem
3.5.

6. Proof of Theorem 4.1

To cope with the weaker decay condition in Theorem 4.1 we first modify the fun-
damental theorem (Theorem 5.1) for the Sinc formula on (−∞,∞). To be specific,
we relax the assumption by replacing the requirement of f ∈ H1(Dd) in (5.1) with
the condition that f is holomorphic and bounded on Dd. The resulting theorem
(Theorem 6.2), giving almost the same error estimate under milder conditions, will
serve as the basis of our proof, just as Theorem 5.1 did for Theorem 3.1; see Table 1.

The following is a key lemma.
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Table 1. Fundamental theorems for approximation on (−∞,∞)

DE-Sinc formula SE-Sinc formula
Theorem 5.1 Theorem 6.2 Theorem 7.1 Theorem 7.2
f ∈ H1(Dd) hol/bnd on Dd f ∈ H1(Dd) hol/bnd on Dd

double exponential decay on R single exponential decay on R
(“hol/bnd” = “holomorphic and bounded”)

Lemma 6.1 ([13, Lemma 5.5]). Assume that a function f is holomorphic and
bounded on Dd for d > 0, and it satisfies

∀x ∈ R : |f(x)| ≤ A exp(−B exp(γ|x|))

for constants A, B > 0, and γ > 0 with γd ≤ π/2. Then there exists a constant Md

such that

∀x ∈ R, ∀y ∈ R (|y| < d) : |f(x + i y)| ≤ Md exp
(
−B

sin(γ(d − |y|))
sin(γd)

exp(γ|x|)
)

.

With this lemma, we can show the following.

Theorem 6.2. Assume that a function f is holomorphic and bounded on Dd for
d > 0, and it satisfies

∀x ∈ R : |f(x)| ≤ A exp(−B exp(γ|x|))(6.1)

for constants A, B > 0 and γ > 0 with γd ≤ π/2. Then, for arbitrary ε with
0 < ε < d, there exists a constant Cε, independent of N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ Cε exp
(
− π(d − ε)γN

log(πdγN/B)

)
,(6.2)

where h = (log(πdγN/B))/(γN).

Proof. By the assumption, f is holomorphic and bounded on Dd−ε/2. It then follows
from Lemma 6.1 that

∀z ∈ Dd−ε : |f(z)| ≤ Md−ε/2 exp
(
−B

sin(γε/2)
sin(γ(d − ε/2))

exp(γ|Re z|)
)

for some Md−ε/2. This implies f ∈ H1(Dd−ε) by Lemma 5.2.
The rest of the proof is similar to that of Theorem 5.1. Just as (5.5) we have

sup
−∞<x<∞

∣∣∣∣∣f(x) −
∞∑

k=−∞
f(kh)S(k, h)(x)

∣∣∣∣∣
≤ C ′

ε exp
(
−π(d − ε)

h

)
= C ′

ε exp
(
− π(d − ε)γN

log(πdγN/B)

)
for the sampling error. For the truncation error we have

sup
−∞<x<∞

∣∣∣∣∣∣
∑

|k|>N

f(kh)S(k, h)(x)

∣∣∣∣∣∣ ≤
2A exp(−2πdγN)

2πdγ2N
,

the same estimate as in (5.6). Hence follows (6.2). �
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Proof of Theorem 4.1. The transformed function f̃ = f(ψDE1(·)) is holomor-
phic and bounded on Dd. For the condition (6.1) we have

|f(ψDE1(x))| ≤ A exp
(
−πβ

2
exp(|x|)

)

for x ∈ R with a constant A > 0. Therefore, f̃ = f(ψDE1(·)) satisfies the assump-
tions of Theorem 6.2 for B = πβ/2 and γ = 1. Hence follows the claim. �

7. Proof of Theorem 4.2

We mention here two fundamental theorems for the Sinc formula on (−∞,∞)
for functions with single exponential decay. The first is a well-known fact due to
Stenger and the second is a similar statement under a weaker assumption; see also
Table 1.

Theorem 7.1 (Stenger [6]). Assume that a function f satisfies

f ∈ H1(Dd),(7.1)

∀x ∈ R : |f(x)| ≤ α exp(−β |x|)(7.2)

for positive constants α, β, and d. Then there exists a constant C, independent of
N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ C
√

N exp
(
−

√
πdβN

)
,(7.3)

where h =
√

πd/(βN).

Proof. A sketch of the proof is given here in view of its fundamental role in sub-
sequent arguments. Recall (5.4). By the assumption (7.1), the sampling error is
estimated as

sup
−∞<x<∞

∣∣∣∣∣f(x) −
∞∑

k=−∞
f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ C ′ exp
(
−πd

h

)
= C ′ exp

(
−

√
πdβN

)(7.4)

for a constant C ′. By (7.2), on the other hand, the truncation error is estimated as

sup
−∞<x<∞

∣∣∣∣∣∣
∑

|k|>N

f(kh)S(k, h)(x)

∣∣∣∣∣∣ ≤
∑

|k|>N

|f(kh)|(7.5)

≤ 2α

βh
exp (−βNh) =

2α
√

N√
πβd

exp
(
−

√
πdβN

)
.

Hence follows (7.3). �

To cope with the weaker decay condition in Theorem 4.2, we need to modify the
fundamental theorem above to the following form.

Theorem 7.2. Assume that a function f is holomorphic and bounded on Dd for
d > 0, and it satisfies

∀x ∈ R : |f(x)| ≤ α exp(−β |x|)(7.6)
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Figure 10. W and Zd

for positive constants α and β. Then, for arbitrary ε with 0 < ε < d, there exists a
constant Cε, independent of N , such that

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ Cε

√
N exp

(
−

√
π(d − ε)βN

)
,(7.7)

where h =
√

πd/(βN).

Proof. The proof is given later. �

Proof of Theorem 4.2. The transformed function f(ψSE1(·)) is holomorphic and
bounded on Dd. For the condition (7.6) we have

|f(ψSE1(x))| ≤ α exp (−β |x|)(7.8)

for x ∈ R with a constant α > 0. Therefore, f(ψSE1(·)) satisfies the assumptions
of Theorem 7.2. Hence follows the claim. �

Finally, we prove Theorem 7.2 by establishing a new lemma (Lemma 7.5), which
plays the role of Lemma 6.1 in the proof of Theorem 6.2.

We start with the following theorem, a variant of the Phragmén-Lindelöf theorem
[1, Theorem 1.4.1]. As in Figure 10 (left) we define a complex region W as

W := {x + i y | x, y ∈ R, x, y > 0, x2 + y2 > 1}.

Theorem 7.3. Assume that a function f : W → C is holomorphic on W and
continuous on W. Also assume that

∀w ∈ ∂W : |f(w)| ≤ M

for a constant M > 0. If there exists a real number ρ < 2 such that∣∣f (
r eiθ

)∣∣ = O (exp (rρ)) (r → ∞)

holds uniformly with respect to θ ∈ (0, π/2), then we have

∀w ∈ W : |f(w)| ≤ M.

Proof. The proof is similar to that of [1, Theorem 1.4.1], and is omitted here. �
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For d > 0 define a complex region Zd (see Figure 10) as

Zd := {x + i y | x, y ∈ R, x > 0, 0 < y < d}
and a mapping zd : W → Zd as

zd(w) :=
2d

π
log w,

where the logarithm is considered on C \ (−∞, 0] with the argument in (−π, π).
By translating Theorem 7.3 for W to a statement for Zd through the mapping

zd we obtain the following.

Corollary 7.4. For d > 0 assume that a function f : Zd → C is holomorphic on
Zd and continuous on Zd, and that

∀z ∈ ∂Zd : |f(z)| ≤ M

for a constant M > 0. If there exists a real number ρ < 2 such that

|f (x + i y)| = O
(
exp

(
exp

(πρ

2d
x
)))

(x → ∞)

holds uniformly with respect to y ∈ (0, d), then we have

∀z ∈ Zd : |f(z)| ≤ M.

The following is the key lemma, which we derive from Corollary 7.4 above.

Lemma 7.5. For d > 0 assume that a function f : Dd → C is holomorphic on Dd

and continuous on Dd, and that

∀z ∈ Dd : |f(z)| ≤ M

for a constant M > 0. Also assume that

∀x ∈ R : |f(x)| ≤ M exp(−β|x|)
for a constant β > 0. Then we have

∀x ∈ R, ∀y ∈ R (|y| < d) : |f(x + i y)| ≤ M exp
(
−β

(
1 − |y|

d

)
|x|

)
.

Proof. We assume x ≥ 0 and 0 ≤ y < d and define F (z) := f(z)ω(z) with

ω(z) := exp
(
β

(
1 + i

z

2d

)
z
)

.

Since

|ω(x + i y)| =
∣∣∣∣exp

(
β

(
1 +

−y + i x
2d

)
(x + i y)

)∣∣∣∣ = exp
(
β

(
1 − y

d

)
x
)

,

we have |F (z)| ≤ M for all z ∈ ∂Zd. In addition, for sufficiently large x, we have

|F (x + i y)| ≤ M exp(βx) ≤ M exp
(
exp

(πρ

2d
x
))

with ρ > 0. Therefore, by Corollary 7.4, we obtain

∀z ∈ Zd : |F (z)| ≤ M.

Finally, we note that

|f(z)| = |F (z)|/|ω(z)| ≤ M exp
(
−β

(
1 − y

d

)
x
)

.

Thus we are done with the case where x ≥ 0 and 0 ≤ y < d. Other cases, with
x ≤ 0 and/or 0 ≥ y > −d, can be treated in a similar manner. �
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With the lemma above we can prove Theorem 7.2 as follows. By the assumptions,
f is holomorphic and bounded on Dd−ε/4. It then follows from Lemma 7.5 that
there exists a constant M > 0 such that

∀z ∈ Dd−ε/2 : |f(z)| ≤ M exp
(
−β

ε/4
d − ε/4

|Re z|
)

.

This implies f ∈ H1(Dd−ε/2) by Lemma 5.2.
The rest of the proof is similar to that of Theorem 7.1. Just as for (7.4) we have

sup
−∞<x<∞

∣∣∣∣∣f(x) −
∞∑

k=−∞
f(kh)S(k, h)(x)

∣∣∣∣∣ ≤ C ′
ε exp

(
−π(d − ε/2)

h

)

= C ′
ε exp

(
−

√
π((d − ε/2)2/d)βN

)
≤ C ′

ε exp
(
−

√
π(d − ε)βN

)
for the sampling error. For the truncation error we have

sup
−∞<x<∞

∣∣∣∣∣∣
∑

|k|>N

f(kh)S(k, h)(x)

∣∣∣∣∣∣ ≤
2α

βh
exp (−βNh) =

2α
√

N√
πβd

exp
(
−

√
πdβN

)
,

the same estimate as in (7.5). Hence follows (7.7). This completes the proof of
Theorem 7.2.
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