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OPTIMIZED GENERAL SPARSE GRID APPROXIMATION

SPACES FOR OPERATOR EQUATIONS

M. GRIEBEL AND S. KNAPEK

Abstract. This paper is concerned with the construction of optimized sparse
grid approximation spaces for elliptic pseudodifferential operators of arbitrary
order. Based on the framework of tensor-product biorthogonal wavelet bases
and stable subspace splittings, we construct operator-adapted subspaces with
a dimension smaller than that of the standard full grid spaces but which have
the same approximation order as the standard full grid spaces, provided that
certain additional regularity assumptions on the solution are fulfilled. Specifi-
cally for operators of positive order, their dimension is O(2J ) independent of
the dimension n of the problem, compared to O(2Jn) for the full grid space.
Also, for operators of negative order the overall cost is significantly in favor
of the new approximation spaces. We give cost estimates for the case of con-
tinuous linear information. We show these results in a constructive manner
by proposing a Galerkin method together with optimal preconditioning. The
theory covers elliptic boundary value problems as well as boundary integral
equations.

1. Introduction

In this paper we deal with the construction of finite element spaces for the
approximate solution of elliptic problems in Sobolev spaces Hs(Ω), s ∈ R. It is well
known [48, 50] that the cost of approximatively solving, e.g., Poisson’s equation
in n dimensions in the Sobolev space H1

0 ∩ H2 on a bounded domain up to an
accuracy of ε is O(ε−n); i.e., it is exponentially dependent on n. This dependence
on n is called the curse of dimensionality. Hence, for higher-dimensional problems,
a direct numerical solution on a regular uniform mesh is prohibitive [48]. The curse
of dimensionality can be overcome if additional assumptions on the regularity of
the solution of the elliptic problem are posed, i.e., if we further restrict the space
from which the solution is allowed to be.1 To this end, if the solution is in the
space of functions with dominating mixed second derivative, then the cost reduces
to O(ε−1) [5, 6, 21].

However, standard finite element algorithms that use regular full grids for the
discretization lead to a cost of O(ε−n). Hence they are not suited for such prob-
lems. A corresponding algorithm that realizes the cost of O(ε−1) up to an ad-
ditional logarithmic term has been presented in [18, 52]. It uses tensor products
of hierarchical linear splines as basis functions, and the so-called regular sparse
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grid space/hyperbolic cross space as the approximation space in the finite element
method. Together with an optimal multigrid solver for sparse grid discretizations
[19, 27], the cost of this algorithm is O(ε−1 · | ln ε|n−1). See also the subsequent
papers [3, 29]. For a survey on sparse grids, see [6].

This regular sparse grid scheme is well established in approximation and inter-
polation theory. It continues to attract significant attention and has also been used
successfully in connection with other multiscale function systems, for example pre-
wavelets, interpolets and higher order splines. It was successfully employed for the
solution of partial differential equations [3, 4, 6, 17, 20, 26, 29]. Furthermore, the
sparse grid approach together with prewavelets was used in [28] for the solution
of boundary integral equations of order between − 1

2 and 1
2 . For a study of the

complexity of integral equations with smooth kernels we refer to [16, 32, 33, 34, 40].
The regular sparse grid approach still involves a Jn−1-term in its cost complexity.

Therefore the curse of dimensionality is still somewhat present, albeit only for the
logarithmic J-term. In practice this limits the method to problems with up to about
12 dimensions. In [5] it was shown how to get rid of the additional logarithmic term
by the use of a subspace of the sparse grid space. This results in so-called energy-
norm based sparse grid spaces. Then the overall cost for the solution of Poisson’s
equation is indeed of the order O(ε−1).

In this paper we generalize the construction of [5] to differential and pseudo-
differential operators of arbitrary order s ∈ R; compare also [22, 23, 24, 25, 30, 32,
33, 34]. We construct operator-adapted finite-element subspaces of lower dimension
than the standard full-grid spaces. These new subspaces preserve the approximation
order of the standard full-grid spaces, provided that certain additional regularity as-

sumptions are fulfilled; i.e., we assume that the solution possesses Ht,l
mix-regularity.

To this end, we analyze the approximation of the embedding Ht,l
mix → Hs on the

n-dimensional torus; i.e., we measure the approximation error in Hs and estimate

it from above by terms involving the Ht,l
mix-norm of the solution. Here Ht,l

mix is a cer-
tain intersection of classes of functions with bounded mixed derivatives, see (2.25)

below, and Hs is the standard Sobolev space. The parameter l in Ht,l
mix governs

the isotropic smoothness whereas t governs the dominating mixed smoothness. We
use norm equivalences to facilitate the decoupling of the subspaces arising from
the tensor-product approach and to ensure the stability of the resulting subspace
splittings. Hence, the analysis is reduced to diagonal mappings between Hilbert
sequence spaces. It turns out that the optimal approximation space in terms of
the quotient of cost versus accuracy is only dependent on the quotient (s− l)/t
of isotropic smoothness s − l to dominating mixed smoothness t. We will identify
those approximation spaces that lead to algorithms with minimal cost. Specifically
we show that one can break the curse of dimension in the case (s− l)/t > 0 and
get rid of all asymptotic dependencies2 on n. In the case (s− l)/t < 0 (e.g., for
operators of negative order and spaces with dominating mixed derivative) there
remains a certain moderate dependence on the dimension.

2Note that the constant in the order notation still depends on the dimension n. In a very special
case, i.e., for the parameters s = 1, t = 2, l = 0, for the unit cube as domain and for the hierarchical
Faber basis as expansion system, it was shown that it can be bounded by Cn20.97515n‖u‖Ht,l

mix
,

i.e., the part of the constant related to the approximation scheme decays exponentially with n,
which is a manifestation of the concentration of measure phenomena. For details, see [21].
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The remainder of this paper is as follows. Section 2 introduces some notation,
collects basic facts about biorthogonal wavelet bases and tensor-product spaces
and gives motivations for the construction of optimized sparse grids. Section 3
contains some theory about norm equivalences in Sobolev spaces. In Section 4
the optimized spaces are defined and estimates on the dimension of the optimized
spaces and their order of approximation are given. Section 5 contains remarks
on the cost complexity of solving elliptic equations for the case that continuous
linear information is permissible, i.e., that the stiffness matrix as well as the load
vector can be computed exactly. We show these results in a constructive manner
by proposing a Galerkin method, working with the optimized approximation spaces
together with a multilevel preconditioned iterative solver. Section 6 discusses two
elliptic problems as examples of our theory, the Poisson problem and the single layer
potential equation. Section 7 collects further generalizations for the construction
of optimized grids. Some concluding remarks close the paper.

2. Motivation and assumptions

Let us denote by Ht(Tn), t ∈ R, a scale of Sobolev spaces on the n-dimensional
torus, and by L2(Tn) the space of L2-integrable functions on Tn; see [1]. For ease
of presentation and to avoid restrictions on the smoothness exponent t we restrict
ourselves to the n-dimensional torus in the first sections of this paper.3 Applications
to nonperiodic problems will be discussed in Section 6. We represent Tn by the
n-dimensional cube T := [0, 1], Tn = T × T × · · · × T where opposite faces are
identified. If t < 0, then Ht(Tn) is defined as the dual of H−t(Tn), i.e.,

(2.1) Ht(Tn) := (H−t(Tn))′.

When the meaning is clear from the context, we will write Ht instead of Ht(Tn)
and we proceed analogously for other function spaces.

Consider an elliptic variational problem: Given f ∈ H−s, find u ∈ Hs such that

(2.2) a(u, v) = (f, v) ∀v ∈ Hs,

where a is a symmetric positive definite form satisfying4

(2.3) a(v, v) ≈ ‖v‖2Hs .

Here x ≈ y means that there exist C1, C2 independent of any parameters that x or y
may depend on, such that C1 · y ≤ x ≤ C2 · y.

In the rest of the paper, C denotes a generic constant that may depend on the
smoothness assumptions and on the dimension n of the problem, but does not
depend on the number of levels J . In the following, multi-indices (vectors) are
written boldface, for example j for (j1, . . . , jn). Inequalities such as l ≤ t or l ≤ 0
are to be understood componentwise.

Model examples for (2.2) would be the variational form of the biharmonic equa-
tion (s = 2)

∆2u = f,

3Note that the nonperiodic case with, e.g., Dirichlet or Neumann boundary conditions can
be basically treated in the same way. Then, basis functions whose support intersects with the
boundary have to fulfill special boundary conditions.

4 Clearly, the lower estimate a(u, u) ≥ α · ‖u‖2Hs in (2.3) is in general not fulfilled for problems
on the torus without additional constraints ensuring uniqueness of the solution of (2.2). In the
following we will assume that the solution of the variational problem (2.2) is unique. Note however
that for the construction of optimized grids, we will only need the upper estimate in (2.3).
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which has applications in plate bending and shell problems or the (anisotropic)
Helmholtz equation (s = 1)

(2.4) −∇ ·K∇u+ cu = f on Tn,

where K(x) ≈ I and ∃C > 0 : 0 ≤ c(x) ≤ C, modeling for example the single phase
flow in a porous medium with permeability K, or a diffusion process in a (possibly)
anisotropic medium characterized by the diffusion tensor K. Other examples would
be the hypersingular equation (s = 1

2 )

1

c

∫
Tn

∂

∂nx

∂

∂ny

(
1

|x− y|

)
· u(y)dy = f(x),

Fredholm equations of the second kind (s = 0) u(x)−
∫
Tn

k(x, y) u(y)dy = f(x),

with given kernel function k defined on Tn × Tn, specifically the double layer
potential equation

u(x)− 1

c

∫
Tn

ny · (y − x)

|x− y|3 u(y)dy = f(x),

arising from a reformulation of Laplace’s equation via the indirect method, or the
single layer potential equation (s = − 1

2 )

(2.5)
1

c

∫
Tn

u(y)

|x− y| dy = f(x).

The Galerkin method for numerically solving problem (2.2) selects a finite-
dimensional subspace from Hs ∩L2 and solves the variational problem in this sub-
space instead of Hs. It is well known that the most efficient way of solving such
problems exploits the interaction of several scales of discretization. These multi-
level schemes use a sequence of closed nested subspaces S0 ⊂ S1 ⊂ · · · ⊂ Hs ∩ L2

of the basic Hilbert space Hs, whose union is dense in Hs. Fixing a basis of SJ

finally leads to a linear system of equations

(2.6) AJxJ = bJ

of dimension dim(SJ). Here AJ is called the stiffness matrix and bJ is the load
vector. Storage requirements and computation time mostly exclude the use of
direct solvers, since dim(SJ) is usually very large. Specifically for full grid spaces
with subdivision rate two we have dim(SJ) = O(2J·n). That is, the dimension of
SJ grows exponentially with the dimension n.

In order to iteratively solve (2.2) or (2.6), respectively, the following problems
and questions arise. Accuracy requirements necessitate a fine partitioning of Tn ,
i.e., dim(SJ) is large. Is it possible to select SJ as a subspace of the full grid space
with dim(SJ) only polynomially dependent on the dimension n, compared to an
exponential dependence on n of the dimension of the full grid space? Choosing such
a finite element space would require that one can identify those basis functions that
add most to an accurate representation of the solution of the variational problem.

For differential operators, the resulting linear systems are sparse if the basis
functions have local support. However, the discretization of integral operators
results in most cases in discrete systems that are dense; i.e., on a regular full
grid with O(2nJ) unknowns the discrete operator has O(22nJ) entries. This makes
matrix-vector multiplications, as they are needed in iterative methods, prohibitively
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expensive for large n and enforces the use of bases that result in nearly sparse
matrices, e.g., biorthogonal wavelet bases with a sufficient number of vanishing
moments. Then, most entries in these matrices are close to zero and can be replaced
by zero without destroying the order of approximation (compression) [11, 13, 15,
43, 47].

Let us recall the definition of the tensor product of two separable Hilbert spaces
H with associated bilinear form a(·, ·) and Ĥ with bilinear form â(·, ·); see for

example [49]. Let {ej}mj=1, {êi}m̂i=1 be complete orthonormal systems in H and Ĥ .
Then {ej ⊗ êi} is a complete orthonormal system in

(2.7) H ⊗ Ĥ :=

{∑
j,i

γi,j ej ⊗ êi :
∑
j,i

γ2
i,j < ∞

}

with scalar product a ⊗ â
(∑

j,i γi,j ej ⊗ êi,
∑

k,� γ
′
k,� ek ⊗ ê�

)
=

∑
j,i γj,iγ

′
j,i. We

identify the tensor product H ⊗ Ĥ with a function space over the corresponding

product domain via the mapping f ⊗ f̂ 
→ f(x)f̂(x̂). Hence, a basis in H ⊗ Ĥ is
given by {ψj(x) = ej1(x1)êj2(x2) : 1 ≤ j ≤ (m, m̂)}. These definitions extend
naturally to higher dimensions n > 2.

The finite element spaces considered here are tensor products of univariate func-
tion spaces. Starting from a one-dimensional splitting L2 =

⊕
j≥0 Sj we assume

that the complement spaces5

(2.8) Wj = Sj � Sj−1

of Sj−1 in Sj are spanned by some L2-stable bases

(2.9) Wj = span{ψj,k, k ∈ τj},

where τj is some finite-dimensional index set defined from the subdivision rate of
successive refinement levels. Here we stick to dyadic refinement. Furthermore we
assume that

(2.10)

∥∥∥∥∑
k∈τj

Ckψj,k

∥∥∥∥
L2

≈
∥∥{Ck}k

∥∥
�2(k∈τj)

, j ∈ N0,

where as usual ‖
∑

k∈τj
Ckψj,k‖L2 denotes the norm induced from the scalar product

on L2 and ‖{Ck}k‖2�2(τj) =
∑

k∈τj
|Ck|2.

Let there be given a biorthogonal system {ψ̃j,k, k ∈ τj , j ∈ N0}, i.e.,

(2.11) 〈ψj,k, ψ̃j′,k′〉 = δj,j′δk,k′ , j, j′ ∈ N0, k ∈ τj , k
′ ∈ τj′ .

Assuming that {ψj,k, k ∈ τj , j ∈ N0} forms a Riesz basis in L2, i.e.,

(2.12)

∥∥∥∥ ∑
j∈N0,k∈τj

Cj,kψj,k

∥∥∥∥
L2

≈
∥∥{Cj,k}j,k

∥∥
�2(j∈N0,k∈τj)

,

5Here, S−1 := {}. Furthermore, in the periodic setting on the torus, we have S0 = span{const}
and for homogeneous boundary conditions we even have S0 = {}. To later allow for the case of
the unit n-square and nonperiodic, nonhomogeneous boundary conditions, we start counting with
j = 0 here. We will switch to start counting with j = 1 when we derive specific estimates for the
periodic homogeneous case.
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every u ∈ H has a unique expansion

(2.13) u =
∞∑
j=0

∑
k∈τj

〈u, ψ̃j,k〉ψj,k =
∞∑
j=0

∑
k∈τj

〈u, ψj,k〉ψ̃j,k

and the biorthogonal system also forms a Riesz basis in L2.
Let us recall the notion of vanishing moments. In one dimension, a function ψ

is said to have vanishing moments of order N if

(2.14)

∫
R

xrψ(x)dx = 0 (0 ≤ r ≤ N − 1).

Note that due to the biorthogonality of the basis functions (i.e., due to (2.13)) the

number of vanishing moments N of the biorthogonal basis {ψ̃j,k} is exactly the
order of polynomial reproduction of the wavelet basis {ψj,k} and vice versa. It is
well known [13, 43] that the number of vanishing moments governs the compression
capacity of a wavelet and that the order of polynomial reproduction governs the
approximation power. Estimates of the order of approximation are mainly based on
the local L2-stability (2.3) and an inequality of Jackson type, which in turn depends

on estimates of the coefficients 〈u, ψ̃j,k〉, i.e., on a moment condition for the dual
wavelet. For purposes of compression, one usually assumes specific decay properties
of the Schwarz kernel of the pseudodifferential operator under consideration. Then
estimates of the size of the entries a(ψj,k, ψl,m) of the Galerkin stiffness matrix are
obtained by expansions of the Schwarz kernel in a polynomial basis together with
the cancellation properties of the primal wavelets ψj,k [10, 15].

One of the merits of biorthogonal wavelets is that the number of vanishing mo-
ments can be chosen independently of the order of polynomial exactness. We will
see later on that it is the number of vanishing moments of the dual wavelets ψ̃j,k that
governs the form of the resulting optimized grids if we pose specific assumptions on
the solution of the variational problem.

Let

S =

∞⋃
i=0

Si and S̃ =

∞⋃
i=0

S̃i with S̃i :=

i⋃
j=0

{ψ̃j,k, k ∈ τj}.

Moreover, we assume that the ψj,k and ψ̃j,k are scaled and dilated versions of single

scale functions (mother wavelets) ψ0 and ψ̃0, i.e.,

(2.15) ψj,k(x) = 2j/2ψ0

(x− k

2−j

)
and ψ̃j,k(x) = 2j/2ψ̃0

(x− k

2−j

)
.

We assume the following conditions to hold: First, we need a direct estimate
(estimate of Jackson type, approximation order m)

(2.16) inf
uj∈Sj

‖u− uj‖L2 ≤ C2−jm‖u‖Hm ∀u ∈ Hm

for some positive integer m, and second, we need an inverse estimate (Bernstein
inequality)

(2.17) ‖uj‖Hr ≤ C2jq‖uj‖L2 ∀uj ∈ Sj

for q < r with r ∈ (0,m]. We also assume that similar relations hold for the

dual system S̃ with parameters m̃ and r̃. Then the validity of the following norm
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equivalences can be inferred from (2.16) and (2.17); see [9, 38]:6

(2.18) ‖u‖2Ht ≈
∞∑
j=0

‖wj‖2Ht ≈
∞∑
j=0

22tj‖wj‖2L2

for t ∈ (−r̃, r), where u =
∑∞

j=0 wj , wj ∈ Wj . Note that (2.18) with t = 0 together

with the local stability (2.10) enforces the global stability

‖u‖L2 ≈ ‖{〈u, ψ̃j,k〉}j,k‖�2(j∈N0,k∈τj);

i.e., condition (2.12) holds. The two-sided estimate (2.18) allows us to characterize
the smoothness properties of a function from the properties of a multiscale decom-
position. This estimate is a consequence of approximation theory in Sobolev spaces
together with interpolation and duality arguments [9, 38]. Moreover, it states that
bilinear forms a(·, ·) satisfying the two-sided estimate (2.3) are spectrally equivalent
to the sum of the bilinear forms 22sj(·, ·)L2 on Wj×Wj induced from the right-hand
side of (2.18). A similar result holds for the analogous construction using the dual
wavelets instead of the primal ones. This leads to the range t ∈ (−r, r̃). See [10]
for an overview over multiscale methods dealing with biorthogonal wavelets.

For the higher-dimensional case n > 1, let j ∈ Nn
0 , j ≡ (j1, . . . , jn), be given,

and consider the tensor product partition with uniform step size 2−ji into the i-th
coordinate direction. By Wj we denote the corresponding function space of tensor
products of one-dimensional function spaces, i.e.,

Wj := Wj1 ⊗ · · · ⊗Wjn .

A basis of Wj is given by⋃
k∈τj

{ψj,k(x) = ψj1,k1
(x1) · · ·ψjn,kn

(xn)}

with τj ≡ (τj1 , . . . , τjn).
Given an index set7 IJ ⊂ Nn, J ∈ N, we consider the approximation spaces

(2.19) VJ :=
∑
j∈IJ

Wj.

Here, J is the maximal level in VJ , i.e., ji ≤ J, for i = 1, . . . , n and for all j ∈ IJ .
Associated with rectangular index sets I−∞

J := {|j|∞ ≤ J} are the full grid spaces

(2.20) V −∞
J :=

⊕
|j|∞≤J

Wj, J > 0.

The so-called sparse grid space

(2.21) V 0
J :=

⊕
|j|1≤J+n−1

Wj, J > 0

is associated with the index set I0J := {|j|1 ≤ J +n−1}. The approximation spaces
V −∞
J and V 0

J will later turn out to be special choices of a family of approximation
spaces V T

J that are adapted to Sobolev spaces. Specifically, V 0
J will turn out to be

the appropriate choice for H0. See Figure 1 for the index sets of the full grid space
V −∞
3 and the sparse grid space V 0

3 in the two-dimensional case. The dimensions

6 Here, for t < 0, the L2-convergence has to be replaced by distributional convergence.
7We now restrict ourselves to the case of homogeneous boundary conditions and consider only

indices j with ji > 0, i = 1, . . . , n.
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(1,2) (2,2)

(2,1) (3,1)

(3,2)

(3,3)(2,3)(1,3)

(1,1)

1

1

2 3

2

3

j
1

j
2

(1,2)

(3,1)

(1,3)

(1,1)

1

1

2 3

2

3

j
1

j
2

(2,2)

(2,1)

Figure 1. Index sets of the full grid space V −∞
3 (left) and of the

sparse grid space V 0
3 (right), case n = 2.

of Wj, V
−∞
J and V 0

J are (note that IJ ⊂ Nn, that is, we count only interior grid
points)

|Wj| = 2|j|1−n,(2.22)

|V −∞
J | = (2J − 1)n = O(2Jn)(2.23)

and

(2.24) |V 0
J | = 2J

(
Jn−1

(n− 1)!
+O(Jn−2)

)
;

see [3, 5, 6, 21, 25]. The estimates of |Wj| and |V −∞
J | are clear. The estimate of |V 0

J |
is straightforward and will follow as a byproduct of the estimate of the dimensions
of the spaces from a more general class of spaces in Section 4.2.

In this paper we introduce index sets that are optimized with respect to Sobolev
norms and spaces with specific bounded mixed derivatives. To this end, we consider
smoothness assumptions on the solution u of the variational problem or on the right-
hand side f (that in turn leads to smoothness assumptions on u). This leads us to

the definition of more general spaces Ht,l
mix than the standard Sobolev spaces Ht.

They are defined as follows:

Definition 2.1. Let t ∈ R, l ∈ R+
0 . Furthermore, denote 1 = (1, . . . , 1) and let

ei = (0, . . . , 0, 1, 0, . . . , 0) be the i-th unit vector in Rn. Then

(2.25) Ht,l
mix(T

n) := Ht1+le1
mix (Tn) ∩ · · · ∩ Ht1+len

mix (Tn),

where
Hk

mix(T
n) := Hk1(T )⊗ · · · ⊗ Hkn(T ).

For l < 0, Ht,l
mix is defined as the dual of H−t,−l

mix ; i.e. we set Ht,l
mix := (H−t,−l

mix )′.

Furthermore we write

(2.26) Ht
mix(T

n) := Ht(T )⊗ · · · ⊗ Ht(T ), t ≥ 0.

These are spaces of dominating mixed derivative. For t ∈ Nn the space Ht
mix

possesses the equivalent norm

(2.27) ‖u‖2Ht
mix

≈
∑

0≤k≤t

‖u(k)‖2L2 .

Here, u(k) is the generalized mixed derivative ∂|k|1

∂k1 ···∂kn
u. For example, u(t,...,t) is the

n·t-th order mixed derivative and describes the additional smoothness requirements
for the space Ht

mix compared to the larger isotropic Sobolev space Ht.
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Note that the relations

(2.28) Ht
mix ⊂ Ht ⊂ Ht/n

mix for t ≥ 0 and Ht/n
mix ⊂ Ht ⊂ Ht

mix for t ≤ 0

hold. See [42] for problems connected with the spaces Ht
mix and further references.

In the general case, with s ∈ R, the relation

(2.29) Ht,l
mix ⊂ Hs

holds for either s ≤ t+ l, t ≥ 0 or s ≤ nt+ l, t ≤ 0.

The spaces Ht,l
mix with l ≥ 0, t ≥ 0 are special cases of the spaces

(2.30) H(t1,...,tn)
mix,∩ (Tn) := Ht1

mix(T
n) ∩ · · · ∩ Htn

mix(T
n),

where ti ∈ Rn and ti ≥ 0, where 1 ≤ i ≤ n. On the other hand, the standard
Sobolev spaces Ht(Tn), as well as the spaces Ht

mix(T
n) with dominating mixed

derivative, are special cases of the spaces Ht,l
mix(T

n). We have

(2.31) Ht(Tn) = H0,t
mix(T

n) and Ht
mix(T

n) = Ht,0
mix(T

n).

Indeed, for t ∈ R+
0 we have the representation

H0,t
mix(T

n) = H(t,0,...,0)
mix (Tn) ∩ · · · ∩ H(0,...,0,t)

mix (Tn)

= Hte1
mix(T

n) ∩ · · · ∩ Hten
mix(T

n)(2.32)

= Ht(Tn),

where

H(0,··· ,0,1,0,··· ,0)
mix (Tn) := L2(T )⊗ · · · ⊗ L2(T )⊗Ht(T )⊗ L2(T )⊗ · · · ⊗ L2(T ).

To show the last equality in (2.32), choose an orthogonal basis of Ht(T ) and use the
definition of the tensor product via orthonormal systems (2.7). More precisely, using
periodic continuation on R and the fact that {sin(n(2xπ − π))} defines a complete
orthonormal system in L2(T ) and Ht(T ), it is clear that every u ∈ Ht(Tn) can be
represented as a Fourier sine series and (2.32) follows directly from the definition
of the tensor product (2.7) and the definition of intersection of Hilbert spaces.
Note that similar results hold for problems with Dirichlet or Neumann boundary
conditions and certain cases of mixed boundary conditions. See [27] for more details
and some examples. The rightmost equation in (2.31) is clear from the definition

of Ht
mix(T

n) in (2.26). A norm on Ht,l
mix(T

n) can be defined directly via

‖u‖2Ht,l
mix

≈
∑

1≤i≤n

‖u‖2
Ht1+lei

mix

.

Hence, the spaces Ht,l
mix from (2.25) give a unified framework for the study of the

special cases Ht = H0,t
mix and Ht

mix = Ht,0
mix.

3. Norm equivalences

To get norm equivalences analogous to (2.18) in n ≥ 2 dimensions, we use the
representations of Ht and Ht

mix above as tensor products of 1D spaces and inter-
sections.

We use the notation {V ; a} to denote a Hilbert space V equipped with the
scalar product a(·, ·). Consider a collection of Hilbert spaces Hl, where 1 ≤ l ≤ n
for some n ∈ N and a collection of closed subspaces Vl,i ⊂ Hl such that topologically
Hl =

∑
i Vl,i. An additive subspace splitting {Hl; al} =

∑
i{Vl,i; bl,i} is called stable
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if the norm equivalence al(u, u) ≈ |||u|||2 := infui∈Hl,i:u=
∑

i ui
(bl,i(ui, ui)) holds true,

i.e., if the characteristic numbers

λmin,l = min
0�=u∈Hl

al(u, u)

|||u|||2 , λmax,l = max
0�=u∈Hl

al(u, u)

|||u|||2 , κl =
λmax,l

λmin,l

are finite and positive. We have the following two propositions.

Proposition 3.1. If the splittings

{Hl; al} =
∑
i

{Vl,i; bl,i}, l ∈ {1, . . . , n}, n ∈ N

are stable and possess the condition numbers κl, then the tensor product splitting

{H1⊗H2⊗· · ·⊗Hn; a1⊗· · ·⊗an} =
∑
i1

· · ·
∑
in

{V1,i1 ⊗· · ·⊗Vn,in ; b1,i1 ⊗· · ·⊗bn,in}

is also stable and possesses the condition number
∏n

l=1 κl.

See [27] for a proof in the case n = 2. The extension to the n-dimensional case
is straightforward.

Proposition 3.2. Let there be given sequences {αl,i}i, l = 1, . . . , n, n ∈ N. Suppose
that the splittings

{Hl; al} =
∑
i

{Vi;αl,ib}, l = 1, . . . , n,

are stable and that the sums are direct. Then, for all αl > 0, l = 1, . . . , n, the
splitting

(3.1) {H1 ∩ · · · ∩Hn;α1a1 + · · ·+ αnan} =
∑
i

{Vi; (α1α1,i + · · ·+ αnαn,i)b}

is stable with condition number

κ ≤ max{λmax,1, . . . , λmax,n}
min{λmin,1, . . . , λmin,n}

.

Proof. See [27] for a proof in the case n = 2. The n-dimensional case is analogous.
�

Combining the representation (2.32) of Ht(Tn), where t ≥ 0, with these proposi-
tions and the stability result (2.18) in one dimension we come up with the following
norm equivalence and stable splitting of Ht(Tn).

Theorem 3.3. Let u ∈ Ht(Tn), u =
∑

j wj, wj ∈ Wj (for t < 0 with distributional

convergence) and let the assumptions (2.16) and (2.17) on the validity of a Jackson
and a Bernstein inequality for the primal as well as the dual system hold. Then

‖u‖2Ht ≈
∑
j

22t|j|∞‖wj‖2L2 for t ∈ (−r̃, r), where |j|∞ = max
1≤i≤n

ji.(3.2)

Proof. In the one-dimensional case, (2.18) yields

‖u‖2Ht(T ) ≈
∞∑
j=0

22tj‖wj‖2L2(T ), 0 ≤ t < r,

u =
∞∑
j=0

wj , wj ∈ Wj , u ∈ Ht(T )
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and from (2.12),

‖u‖L2 ≈ ‖{〈u, ψ̃j,l〉}j,l‖�2(j∈N0,l∈τj),

u =

∞∑
j=0

wj , wj ∈ Wj , u ∈ L2(T ).

This shows the stability of the one-dimensional splittings

{Ht(T ); ‖ · ‖2Ht(T )} =
∑
j

{Wj ; 2
2tj‖ · ‖2L2(T )}

and

{L2(T ); ‖ · ‖2L2(T )} =
∑
j

{Wj ; ‖ · ‖2L2(T )}.

From Proposition 3.1 we obtain the stability of the splittings{
H(0,...,0,t,0,...,0)

mix ; (·, ·)L2 ⊗ · · · ⊗ (·, ·)L2 ⊗ a(·, ·)⊗ (·, ·)L2 ⊗ · · · ⊗ (·, ·)L2

}
=

∑
j

{
Wj1 ⊗ · · · ⊗Wjn ; 2

2tji(·, ·)L2 ⊗ · · · ⊗ (·, ·)L2

}
.

Now we represent Ht(Tn) as in (2.32) and we apply Proposition 3.2. Then we
obtain the stability of the splitting

{Ht(Tn); ‖ · ‖2Ht(Tn)} =
∑
j

{
Wj ;

( n∑
i=1

22tji
)
‖ · ‖2L2(Tn)

}
for nonnegative t < r. Because of 22t|j|∞ ≤

∑n
i=1 2

2tji ≤ n22t|j|∞ for t ≥ 0 we
then have (3.2) for positive t. To obtain the validity of (3.2) for −r̃ < t < 0, note
that the same reasoning as above applied to the representation of u in the dual
wavelet system shows that we have a similar result for the spaces spanned by the
dual wavelets for 0 ≤ t < r̃. By the duality (Ht)′ = H−t, the assertion follows then
for the range −r̃ < t < 0 and hence for the whole range t ∈ (−r̃, r). �

For the space Ht
mix the following norm equivalence holds:

Theorem 3.4. Let u ∈ Ht
mix have the representation u =

∑
j wj, where wj ∈

Wj, and let the assumptions (2.16) and (2.17) on the validity of a Jackson and a
Bernstein inequality for the primal as well as the dual system hold. Then

(3.3) ‖u‖2Ht
mix

≈
∑
j

22t|j|1‖wj‖2L2 for t ∈ (−r̃, r).

Proof. The two-sided estimate (3.3) is a direct consequence of Proposition 3.1 and
the definition of the space Ht

mix as a tensor product of one-dimensional Hilbert
spaces. Again we use the stable one-dimensional splittings

{Ht(T ); ‖ · ‖2Ht(T )} =
∑
j

{Wj ; 2
2tj‖ · ‖2L2(T )},

{L2(T ); ‖ · ‖2L2(T )} =
∑
j

{Wj ; ‖ · ‖2L2(T )}
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(which we get from (2.18) and (2.12)) and Proposition 3.1 to obtain the stability
of the splitting

{Ht
mix; a(·, ·)⊗ · · · ⊗ a(·, ·)}
= {Ht(T )⊗ · · · ⊗ Ht(T ); a(·, ·)⊗ · · · ⊗ a(·, ·)}
=
∑
j

{Wj1 ⊗ · · · ⊗Wjn ; 2
2tj1(·, ·)L2 ⊗ · · · ⊗ 22tjn(·, ·)L2}

=
∑
j

{Wj1 ⊗ · · · ⊗Wjn ; 2
2t|j|1(·, ·)L2 ⊗ · · · ⊗ (·, ·)L2}.

This shows (3.3). �

Note that, under the assumptions of the Theorems 3.3 and 3.4, we have similar
relations for the subspace splittings induced by the dual wavelets. There, r must
be replaced by r̃ and vice versa.

Remark 3.5. The norm equivalences in Theorems 3.3 and 3.4 are special cases

of norm equivalences for the spaces H(t1,...,tn)
mix,∩ from (2.30). Again using Proposi-

tions 3.1 and 3.2 it is straightforward to show that

(3.4) ‖u‖2
H(t1,...,tn)

mix,∩
≈

∑
j

(
n∑

i=1

22〈t
i, j〉

)
‖wj‖2L2 for ti ≥ 0,−r̃ < ti < r.

Furthermore, with straightforward duality arguments, we have the norm equiv-
alency

(3.5) ‖u‖2Ht,l
mix

≈
∑
j

(
n∑

i=1

22t|j|1+2lji

)
‖wj‖2L2 ≈

∑
j

22t|j|1+2l|j|∞‖wj‖2L2

for the spaces Ht,l
mix, where 0 ≤ t < r and 0 ≤ t + l < r. Compared to (3.2) and

(3.3), the additional factors 22t|j|1 or 22l|j|∞ in (3.5) reflect the different smoothness
requirements. Note that for t = 0 or l = 0 we regain (3.2) from Theorem 3.3 and
(3.3) from Theorem 3.4, respectively. Analogous relations hold for the dual spaces.

Remark 3.6. For the construction of optimized approximation spaces, we will use
the upper estimate from (3.2) and the lower estimates in (3.3) and (3.5).

Remark 3.7. One of the merits of the norm equivalences (3.2), (3.3) or the more
general one (3.5) is the fact that they lead directly to optimal preconditioning. For
example, if one chooses the scaled system {2−s|l|∞ψl,k : |l|∞ ≤ J,k ∈ τl} as the
basis in the finite element approximation space V −∞

J , then the spectral condition

numbers κ(AJ) of the discretization matrices AJ = {2−s|l+l′|∞a(ψl,k, ψl′,k′)}l,l′,k,k′

are bounded uniformly in J , i.e.,

(3.6) κ(AJ) = O(1);

see [12, 31]. This leads to fast iterative methods with convergence rates independent
of the number of unknowns of the approximation space. Note that this result can
be trivially extended to the case of discretization matrices built from arbitrary
collections of scaled basis functions.
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4. Optimized approximation spaces for Sobolev spaces

Suppose a symmetric elliptic problem (2.2) and its variational formulation

(4.1) a(uFE, v) = (f, v) ∀v ∈ VFE

on a finite element approximation space VFE ⊂ Hs are given. Using the Hs-
ellipticity condition (2.3) and Cea’s Lemma, we have the estimate√

a(u− uFE, u− uFE) ≈ ‖u− uFE‖Hs ≈ inf
v∈VFE

‖u− v‖Hs

for the error
√
a(u− uFE, u− uFE) between the solution u of the continuous prob-

lem (2.2) and the solution uFE of the approximate problem (4.1) measured in the
energy norm. In this section we give bounds on the term

inf
v∈VFE

‖u− v‖Hs

for various choices of the approximation space VFE, under the constraint

u ∈ Ht,l
mix, where 0 ≤ t < r and − r̃ < s < t+ l < r.

We define grids and associated approximation spaces that are adapted to the pa-
rameter s and to the constraint on the smoothness of the solution and give estimates
on their dimension and the order of approximation. The definition of the grids is
motivated by the results of Section 3, specifically on the norm equivalence (3.5)
and the special cases (3.2) and (3.3). We are particularly interested in construct-
ing approximation spaces that break the curse of dimensionality, that is, whose
dimensions are at most polynomially dependent on n.

4.1. Approximation spaces for problems with constraint on the solution.
We first deal with the cases u ∈ Ht and u ∈ Ht

mix. More general cases will be
discussed at the end of Section 4.1.2; see Theorem 4.1. In this section let u =

∑
j wj,

where wj ∈ Wj. Furthermore let −r̃ < s < t < r. Then Ht ⊂ Hs. For notational
convenience we restrict ourselves to the case t ≥ 0. Note that the case t < 0 could
be covered by analogous reasoning.

4.1.1. Estimates on the order of approximation for the spaces V −∞
J and V 0

J . First,
we consider the order of approximation for the full grid case. Let u ∈ Hs. Applying
the norm equivalence (3.2) gives us

inf
v∈V −∞

J

‖u− v‖2Hs ≤ ‖u−
∑

|j|∞≤J

wj‖2Hs

(3.2)
≈

∑
|j|∞>J

22s|j|∞‖wj‖2L2

=
∑

|j|∞>J

22(s−t)|j|∞22t|j|∞‖wj‖2L2

≤ max
|j|∞>J

22(s−t)|j|∞
∑

|j|∞>J

22t|j|∞‖wj‖2L2 .(4.2)

To continue, we assume additional smoothness of the solution, i.e., u ∈ Ht. Then
we can apply (3.2) once more, now with u ∈ Ht. This yields

max
|j|∞>J

22(s−t)|j|∞
∑

|j|∞>J

22t|j|∞‖wj‖2L2

(3.2)

≤ C · max
|j|∞>J

22(s−t)|j|∞‖u‖2Ht(4.3)

≤ C · 22(s−t)(J+1)‖u‖2Ht .
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Altogether we have the standard error estimate

(4.4) inf
v∈V −∞

J

‖u−v‖2Hs ≤ C ·22(s−t)22(s−t)J‖u‖2Ht for u ∈ Ht and − r̃ < s < t < r.

From the exponent on the right-hand side we get O(t−s) as order of approximation.
It is easy to see that the order of approximation does not change when u ∈ Ht

mix ⊂
Ht, i.e.,8 when

inf
v∈V −∞

J

‖u− v‖2Hs ≤ C · 22(s−t)22(s−t)J‖u‖2Ht
mix

for − r̃ < s < t < r.

Note that we are implicitly using several times the vanishing moment condition of
the dual wavelets, which is implicitly contained in the Jackson inequality (2.16).

Changing from the full grid space V −∞
J to the approximation space V 0

J changes
the situation significantly. Applying again the norm equivalence (3.2), we have for
u ∈ Hs,

inf
v∈V 0

J

‖u− v‖2Hs ≤ ‖u−
∑

|j|1≤J+n−1

wj‖2Hs

(3.2)
≈

∑
|j|1>J+n−1

22s|j|∞‖wj‖2L2

=
∑

|j|1>J+n−1

22(s−t)|j|∞22t|j|∞‖wj‖2L2

≤ max
|j|1>J+n−1

22(s−t)|j|∞
∑

|j|1>J+n−1

22t|j|∞‖wj‖2L2 .

Now we again require u to be of higher regularity, i.e., u ∈ Ht. This yields

max
|j|1>J+n−1

22(s−t)|j|∞
∑

|j|1>J+n−1

22t|j|∞‖wj‖2L2

(3.2)

≤ C · max
|j|1>J+n−1

22(s−t)|j|∞‖u‖2Ht ≤ C · 22(s−t)(J+n−1)/n‖u‖2Ht ,

where we used in the penultimate step the fact that the maximum is obtained for
|j|∞ = �(J + n− 1)/n�. Altogether we have for u ∈ Ht and −r̃ < s < t < r,

(4.5) inf
v∈V 0

J

‖u− v‖2Hs ≤ C · 22(s−t)(1−1/n)22(s−t)J/n‖u‖2Ht .

Compared to the result for the full grid approximation space, the order of approx-
imation deteriorates from O(t− s) to O((t− s)/n).

However, for the smaller space Ht
mix ⊂ Ht, t ≥ 0, and operators of positive

order, i.e., s ≥ 0, no loss in the order of approximation occurs if the full grid space
is replaced by the space V 0

J . This is because we can apply the norm equivalence
(3.3) instead of (3.2).9 We apply (3.2) for functions from Hs and (3.3) for u ∈ Ht

mix

8 For t < 0 we would have to assume u ∈ Ht
mix ∩Hs here.

9Remember the different exponents in the terms 22t|j|∞ and 22t|j|1 in (3.2) and (3.3),
respectively.
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and get

inf
v∈V 0

J

‖u− v‖2Hs ≤ ‖u−
∑

|j|1≤J+n−1

wj‖2Hs

(3.2)
≈

∑
|j|1>J+n−1

22s|j|∞‖wj‖2L2

=
∑

|j|1>J+n−1

22s|j|∞−2t|j|122t|j|1‖wj‖2L2

≤ max
|j|1>J+n−1

22s|j|∞−2t|j|1
∑

|j|1>n+J−1

22t|j|1‖wj‖2L2(4.6)

(3.3)

≤ C · max
|j|1>J+n−1

22s|j|∞−2t|j|1‖u‖2Ht
mix

≤ C · 22s(J+1)−2t(J+n)‖u‖2Ht
mix

for u ∈ Ht
mix,

where we used in the last step the fact that the term 22s|j|∞−2t|j|1 takes its maximum
in (J+1, 1, . . . , 1). Altogether we have for u ∈ Ht

mix and −r̃ < s < t < r with t ≥ 0
(compare (2.29) for l = 0) that

inf
v∈V 0

J

‖u− v‖2Hs ≤ C · 22(s−tn)22(s−t)J‖u‖2Ht
mix

.

That is, there appears to be no loss in the order of approximation compared to the
result for the full grid approximation space.

For operators of negative order, i.e., s < 0, the situation is different. Here,
compared to the estimate (4.4) for u ∈ Ht, the order of approximation improves
when changing to the space Ht

mix, but in contrast to the case s ≥ 0, the optimal
order of convergence cannot be attained. Applying (3.2) for functions from Hs and
(3.3) we find that if u ∈ Ht

mix, then

inf
v∈V 0

J

‖u− v‖2Hs ≤ ‖u−
∑

|j|∞>J+n−1

wj‖2Hs

(3.2)
≈

∑
|j|1>J+n−1

22s|j|∞‖wj‖2L2

=
∑

|j|1>J+n−1

22s|j|∞−2t|j|122t|j|1‖wj‖2L2

≤ max
|j|1>J+n−1

22s|j|∞−2t|j|1
∑

|j|1>n+J−1

22t|j|1‖wj‖2L2(4.7)

(3.3)

≤ C · max
|j|1>J+n−1

22s|j|∞−2t|j|1‖u‖2Ht
mix

≤ C · 22s(1−1/n)−2tn22(s/n−t)J‖u‖2Ht
mix

,

where we used in the last step that 22s|j|∞−2t|j|1 takes its maximum for |j|∞ =
�(J + n− 1)/n� and |j|1 = J + n for s < 0. That is, although the order of approxi-
mation is improved when changing from Ht to Ht

mix, there still appears a loss in the
order of approximation of s(1/n− 1) compared to the full grid. This fact has been
described already in [28] for the case −1 ≤ s < 0 and prewavelets (i.e., wavelets
that are L2-orthogonal between different subspaces Wj and build a Riesz basis in
the subspaces Wj). In summary we have that for operators with s ≥ 0 the order of
approximation is kept for u ∈ Ht

mix, s < t, when changing from the approximation
space V −∞

J to the sparse grid space V 0
J . For operators of negative order a slight

deterioration of the order of approximation appears.
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4.1.2. Definition and order of approximation of the approximation spaces V T
J . In

the following we construct approximation spaces for functions from Ht,l
mix, t > 0,

−r̃ < s < t + l < r, and operators of positive or negative order by carefully
selecting subspaces of the full grid space. These subspaces are chosen so that the
order of approximation of the full grid space is kept. The sparse grid space V 0

J and

the full grid space V −∞
J are special cases. We start with the space Ht

mix = Ht,0
mix.

The inequality

max
j�∈I0

J

22s|j|∞−2t|j|1‖u‖2Ht
mix

≤ C · 22(s−t)J‖u‖2Ht
mix

for u ∈ Ht
mix, 0 ≤ s < t,

from (4.6) reveals that for s ≥ 0 one could discard indices from the index set I0J
without destroying the optimal order of approximation. Consider an index set
IJ ⊂ I0J such that

(4.8) max
j�∈IJ

22s|j|∞−2t|j|1 ≤ C · 22(s−t)J ,

where C �= C(s, t, J). Then the order of approximation is kept for the approxima-
tion space defined from the index set IJ . Taking logarithms on both sides of (4.8)
and dividing by 2t (remember that we have t > 0) shows that (4.8) is equivalent to

(4.9) j ∈ IJ ⇔ −|j|1 +
s

t
|j|∞ ≥ −J +

s

t
J + c,

where c �= c(j, J) is essentially the logarithm of the constant C on the right-hand
side of the asymptotic estimate (4.8). For operators of negative order we deduce
from (4.7) that we have to add indices to the index set I0J to keep the optimal order
of approximation. Again, the order is kept if IJ is such that (4.8) and hence (4.9)
holds.

Therefore we define the optimized grid as the minimal index set for which (4.9)
holds. Fixing (J, 1, . . . , 1) to be the index with maximal | · |∞-norm to be included
into the index sets leads to c = n− 1 and the index sets

I
s/t
J :=

{
j ∈ Nn : −|j|1 +

s

t
|j|∞ ≥ −(n+ J − 1) +

s

t
J

}
.

These index sets depend on the parameter J and on the quotient s/t.
To give the results more flexibility we parametrize the index sets with a new

parameter T and finally get

(4.10) ITJ :=

{
j ∈ Nn : −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ

}
with the related approximation spaces

V T
J :=

⊕
j∈IT

J

Wj =
⊕

−|j|1+T |j|∞≥−(n+J−1)+TJ

Wj.

The new parameter T allows us to decouple the definition of the index sets and
the resulting grids from the smoothness parameters s and t. This parameter T also
allows us to more closely investigate the relation between smoothness assumptions,
the choice of approximation space and the order of approximation. In the following
we will consider terms such as

inf
v∈V T

J

‖u− v‖2Hs
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Figure 2. Index sets ITJ for T > 0, T = 0 and T < 0.

for varying T , where we assume again that u ∈ Ht or u ∈ Ht
mix. Definition (4.10)

ensures that the optimal order of approximation is kept for T ≤ s/t and functions
from Ht

mix (compare (4.8) and (4.9)). For T > s/t the order of approximation
deteriorates. We discuss this point in more detail below.

Note that for T = 0 we have V T
J = V 0

J and for T → −∞ we have V T
J → V −∞

J ,
i.e., the full grid space. Furthermore we have the natural restriction to T < 1.
Obviously the inclusions

V 1
J ⊂ V T1

J ⊂ V T2

J ⊂ V 0
J ⊂ V T3

J ⊂ V T4

J ⊂ V −∞
J for T4 ≤ T3 ≤ 0 ≤ T2 ≤ T1 < 1

hold. Schematically the behavior of the index sets ITJ is depicted in Figure 2 with
varying T for the two-dimensional case. Figures 3–6 show some examples for the
two-dimensional case.

We now discuss the dependence of the order of approximation of the approxi-
mation space V T

J on the parameter T in more detail. Let us first consider the case
u ∈ Ht. Remember that Ht ⊂ Hs. Similarly to (4.5), we have

inf
v∈V T

J

‖u− v‖2Hs ≤ ‖u−
∑
j∈IT

J

wj‖2Hs

(3.2)

≤ C ·max
j�∈IT

J

22(s−t)|j|∞‖u‖2Ht

(4.10)
= C · max

T |j|∞−|j|1<TJ−(n+J−1)
22(s−t)|j|∞‖u‖2Ht(4.11)

= C · 22(s−t)((1−T )J−n+1)/(n−T )‖u‖2Ht

= C · 22(s−t)(1−n)/(n−T )22(s−t)((1−T )/(1−T/n))J/n‖u‖2Ht .

Here we used the fact that maxT |j|∞−|j|1<TJ−(n+J−1) 2
2(s−t)|j|∞ takes its maximum

at |j|∞ = �((1−T )J−n+1)/(n− T )�. If we compare (4.11) for the space V T
J with

T > 0 to the result (4.5) for the space V 0
J , we see that the order of approximation

deteriorates by the factor (1−T )/(1−T/n). For T < 0 the order of approximation
is improved by the factor (1−T )/(1−T/n). If we compare (4.11) for the space V T

J

with T < 0 to the result (4.4) for the full grid space V −∞
J , we see that the order of

approximation deteriorates by the factor (1− T )/(n− T ). Note that for T = 0 we
regain the same approximation order as for estimate (4.5).

For u ∈ Ht
mix we have (compare (4.8) and remember that Ht

mix ⊂ Hs)

inf
v∈V T

J

‖u− v‖2Hs ≤ ‖u−
∑
j∈IT

J

wj‖2Hs

(3.2),(3.3)

≤ C ·max
j�∈IT

J

22s|j|∞−2t|j|1‖u‖2Ht
mix

= C · max
T |j|∞−|j|1<TJ−(n+J−1)

22s|j|∞−2t|j|1‖u‖2Ht
mix

.(4.12)
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It is straightforward to show that for T ≥ s/t the maximum is obtained for |j|∞ =
�((1 − T )J − n + 1)/(n − T )�, and for T ≤ s/t the maximum is obtained in j =
(J + 1, 1, . . . , 1).

We continue (4.12) and have for T ≥ s/t,

inf
v∈V T

J

‖u− v‖2Hs ≤ C · 22(s−nt)((1−T )J−n+1)/(n−T )‖u‖2Ht
mix

= C · 22(s−nt)(1−n)/(n−T )22(s−t+(Tt−s)(n−1)/(n−T ))J‖u‖2Ht
mix

and for T ≤ s/t, we have

inf
v∈V T

J

‖u− v‖2Hs ≤ C · 2−2t(n−1)22(s−t)(J+1)‖u‖2Ht
mix

= C · 22(s−t)−2t(n−1)22(s−t)J‖u‖2Ht
mix

.
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Note that for T = s/t both estimates give the same approximation order.
This estimate shows once more that for u ∈ Ht

mix there appears to be no loss of
asymptotic approximation power if the full grid is replaced by an optimized grid
induced by the index set ITJ with T ≤ s/t. Note that ITJ is of lower dimension than
the index set I−∞

J of the full grid. However, a further reduction of the number
of grid points by using an index set ITJ with T > s/t results in a deterioration of
the order of approximation. In this case, the order of approximation is reduced by
(Tt− s)(n− 1)/(n− T ).

Note that smoothness assumptions on the right-hand side f in the variational
problem (2.2) imply smoothness properties of the solution. Consider for example

the case of a differential operator. Then for example f ∈ Ht
mix implies u ∈ Ht,s

mix.

Therefore we now deal also with the more general case u ∈ Ht,l
mix. We summarize

the discussion in a theorem.

Theorem 4.1. Let 0 ≤ t < r and −r̃ < s < t+ l < r. Then for u ∈ Ht,l
mix we have

(4.13)

inf
v∈V T

J

‖u− v‖2Hs ≤
{

C · 22(s−l−t+(Tt−s+l)(n−1)/(n−T ))J‖u‖2Ht,l
mix

for T ≥ (s− l)/t,

C · 22(s−l−t)J‖u‖2Ht,l
mix

for T ≤ (s− l)/t.

Specifically for u ∈ Ht = H0,t
mix we have

(4.14) inf
v∈V T

J

‖u− v‖2Hs ≤ C · 22(s−t)((1−T )/(n−T ))J‖u‖2Ht

and for u ∈ Ht
mix = Ht,0

mix we have

(4.15) inf
v∈V T

J

‖u−v‖2Hs ≤
{

C · 22(s−t+(Tt−s)(n−1)/(n−T ))J‖u‖2Ht
mix

for T ≥ s/t,

C · 22(s−t)J‖u‖2Ht
mix

for T ≤ s/t.

Proof. Let u ∈ Ht,l
mix. To show (4.13) we use the upper estimate from the norm

equivalence (3.2) and the lower estimate from (3.5). Then

inf
v∈V T

J

‖u− v‖2Hs ≤ ‖u−
∑
j∈IT

J

wj‖2Hs

(3.2)
≈

∑
j�∈IT

J

22s|j|∞‖wj‖2L2

≤ max
j�∈IT

J

22(s−l)|j|∞−2t|j|1 ·
∑
j�∈IT

J

22l|j|∞+2t|j|1‖wj‖2L2

(3.5)

≤ C ·max
j�∈IT

J

22(s−l)|j|∞−2t|j|1‖u‖2Ht,l
mix

.

Evaluating the maximum with respect to ITJ shows (4.13). The inequalities (4.14)
and (4.15) are special cases of the inequality (4.13) with t = 0 and l = 0, respec-
tively. �

Theorem 4.1 shows that the optimal order of approximation of a function in

Ht,l
mix is kept when changing from the full grid approximation space V −∞

J to an
approximation space V T

J with T ≤ (s− l)/t. The use of approximation spaces V T
J

with T > (s − l)/t leads to a deterioration of the optimal order of convergence.
Hence, for purposes of discretization of large scale problems with a solution in

the space Ht,l
mix, the spaces V

(s−l)/t
J with T ≤ (s − l)/t are well suited. From the

nestedness of the spaces V T
J we conclude that the choice T = (s−l)/t will lead to the
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most economical algorithms. This holds true especially in higher dimensions, where
the benefits of the spaces V T

J become most obvious, as we will see in Section 4.2.

4.2. Dimension of the approximation spaces V T
J . The following lemma dis-

cusses the dimension of the spaces V T
J . In general, we may split the basis functions

into two sets, one with those functions that correspond to the interior of the unit
cube and the other with those functions that correspond to the boundary. For ease
of exposition we again restrict ourselves to homogeneous boundary conditions; that
is, we count only those basis functions/indices that correspond to the interior of
the unit cube. Hence j ∈ Nn and the index j with minimal | · |∞ and | · |1-norm
in an index set ITJ is j = (1, . . . , 1). Note that other boundary conditions could be
dealt with by analogous reasoning, but we would then have to count also indices j
with ji = 0 for some 1 ≤ i ≤ n.

Lemma 4.2. It follows that

dim
(
V T
J

)
≤

⎧⎨⎩
n
2

(
1/(1− 2−1/(1/T−1))

)n · 2J = O(2J) for 0 < T < 1,

O(2((T−1)/(T/n−1))J) for T < 0.

(4.16)

The case T = 0 is covered by the estimate

(4.17) dim
(
V T
J

)
≤
(

Jn−1

(n− 1)!
+O(Jn−2)

)
· 2J = O(2JJn−1) for 0 ≤ T ≤ 1/J.

Proof. The case T ≥ 0: Let |j|1 = n+ J − 1− i and 0 < T ≤ 1. Then

Wj ⊂ V T
J ⇔ −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ ⇔ |j|∞ ≥ J − 1

T
i.

Since ∑
|j|1=n+J−1−i

1 =

(
|j|1 − 1

n− 1

)
and

(4.18)
∑

|j|1=n+J−1−i,
|j|∞≥J−i/T

1 ≤
(
�|j|1 − (J − i/T )�

n− 1

)
=

(
�n− 1 + (1/T − 1)i�

n− 1

)
,

the number of subspaces Wj with |j|1 = n+ J − 1− i belonging to V T
J is bounded

by

n

(
�n− 1 + (1/T − 1)i�

n− 1

)
.

Hence, with the definition of V T
J , we have

|V T
J | =

J−1∑
i=0

∑
|j|1=n+J−1−i,
|j|∞≥J−i/T

|Wj | ≤
J−1∑
i=0

2J−1−in

(
�n− 1 + (1/T − 1)i�

n− 1

)

= 2J−1n
J−1∑
i=0

2−i

(
�n− 1 + (1/T − 1)i�

n− 1

)
.(4.19)

For T < 1 the substitution i → i/(1/T − 1) leads to

|V T
J | ≤ 2J−1n


(1/T−1)(J−1)�∑
i=0

2−i/(1/T−1)

(
n− 1 + i

i

)
.
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Since (xn−1+i)(n−1) = ((n− 1 + i)!)xi/i! ∀x ∈ R, we get

|V T
J | ≤ 2J−1n

1

(n− 1)!


(1/T−1)(J−1)�∑
i=0

(xn−1+i)(n−1)

∣∣∣∣
x=2−1/(1/T−1)

= 2J−1n
1

(n− 1)!

⎛⎝xn−1


(1/T−1)(J−1)�∑
i=0

xi

⎞⎠(n−1) ∣∣∣∣
x=2−1/(1/T−1)

= 2J−1n
1

(n− 1)!

(
xn−1 1− x
(1/T−1)(J−1)�+1

1− x

)(n−1) ∣∣∣∣
x=2−1/(1/T−1)

= 2J−1n
1

(n− 1)!

[(
xn−1

1− x

)(n−1)

−
(
x
(1/T−1)(J−1)�+n

1− x

)(n−1)
] ∣∣∣∣

x=2−1/(1/T−1)

.

Since

1

(n− 1)!

(
xk 1

1− x

)(n−1)

=
1

(n− 1)!

n−1∑
i=0

(
n− 1

i

)
(xk)(i)

(
1

1− x

)(n−i−1)

=
1

(n− 1)!

n−1∑
i=0

(
n− 1

i

)
k!

(k − i)!
xk−i(n− 1− i)!

(
1

1− x

)n−i

= xk−n
n−1∑
i=0

(
k

i

)(
x

1− x

)n−i

,(4.20)

we get

|V T
J | ≤ 2J−1n

[(
1

1− x

)n

− x
(1/T−1)(J−1)�+1

×
n−1∑
i=0

(
�(1/T − 1)(J − 1)�+ n

i

)(
x

1− x

)n−i
] ∣∣∣∣

x=2−1/(1/T−1)

≤ 2J−1n

(
1

1− 2−1/(1/T−1)

)n

.

Hence we obtain (4.16).
To prove (4.17) we again let |j|1 = n+ J − 1− i and T ≤ 1/J . Then

Wj ⊂ V T
J ⇔ −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ ⇔ |j|∞ ≥ 0.

That is, every Wj with |j|1 ≤ n+ J − 1− i is in V T
J . Hence∣∣V T

J

∣∣ =
∑

|j|1≤n+J−1

|Wj | =
J−1∑
i=0

2J−1−i
∑

|j|1=n+J−1−i

1

=
J−1∑
i=0

2J−1−i

(
n− 1 + J − 1− i

n− 1

)
=

J−1∑
i=0

2i
(
n− 1 + i

n− 1

)
.

This results in (see [5], proof of Lemma 7 for details)∣∣V T
J

∣∣ = (−1)n + 2J
n−1∑
i=0

(
n+ J − 1

i

)
(−2)n−1−i =

(
Jn−1

(n− 1)!
+O(Jn−2)

)
· 2J .

This completes the proof for the case T ≥ 0.
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Figure 7. Schematic representation of ITJ (left) and IT
Ĵ
(right) for

T < 0, n = 2.

The case T < 0 : Now we deal with the approximation spaces V T
J , T < 0. We

introduce an auxiliary index set IT
Ĵ

with IT
Ĵ
⊂ I0J given by

IT
Ĵ
=

{
j : −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ/n

}
and the related approximation spaces V T

Ĵ
:=

⊕
j∈IT

Ĵ

Wj. Note that IT
Ĵ

is just a

shifted version of ITJ . See Figure 7 for a schematic comparison of the index sets ITJ
and IT

Ĵ
in the case n = 2.

Obviously dim(IT
Ĵ
) = O(2J). Equation (4.7) shows that if T ≤ s/t, then the or-

der of approximation of the space V T
Ĵ

for functions from Ht
mix is the same as for the

space V 0
J , which is O(2(s/n−t)J). On the other hand, (4.15) implies that the order

of approximation of the space V
s/t

Ĵ
is O(2(s−t)Ĵ). This shows that O(2(s/n−t)J) =

O(2(s−t)Ĵ) must hold. Hence we have that J = ((s−t)/(s/n−t))Ĵ+C and therefore

dim(V
s/t

Ĵ
) = O(2((s−t)/(s/n−t))Ĵ) and dim(V

s/t
J ) = O(2((s−t)/(s/n−t))J).

This completes the proof. �

Note that the coefficient in the asymptotic estimate of the second inequality
in (4.16) is unbounded for T → 0 whereas the coefficient in the estimate (4.17)
remains bounded. Asymptotically, for T > 0, the estimate (4.16) is sharper than
(4.17). However, for computationally relevant sizes of J , estimate (4.17) might
be sharper than (4.16) for T near 0. Similar results have been obtained in [5] for
s = 1, t = 2, l = 0, and approximation spaces spanned by piecewise linear functions.

The estimates (4.16) and (4.17) should be compared to the results for the full
grid spaces V −∞

J with dimension dim(V −∞
J ) = (2J−1)n. The first two estimates in

(4.16) show that for T > 0 the dependence of the dimension of the approximation
space on the dimension n of the problem has been reduced from 2nJ to nCn · 2J ,
with some constant C independent of n and J . Note that C is explicitly given by
Lemma 4.2 for this case. For the case T < 0 we see that using the spaces V T

J in
the Galerkin method leads to a significant reduction of the number of unknowns,
and hence the number of entries in the stiffness matrices. Note that dim(V T

J ) �
dim(V −∞

J ) for large n or large T . Hence, using the spaces given above in the
Galerkin method leads to a significant reduction of the number of unknowns and
hence the number of entries in the stiffness matrices.

In summary, Theorem 4.1 and Lemma 4.2 show that for approximation problems

with u ∈ Ht,l
mix the use of the approximation spaces V T

J with T ≤ (s− l)/t leads to a
significant reduction of the number of degrees of freedom compared to the full grid,
while the order of approximation remains the same as for the full grid. This will
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become even more clear in Section 5, where we consider the overall cost of solving
the operator equations up to a prescribed tolerance.

4.3. Optimization procedures and subspace selection. In this section we
present another way of obtaining the approximation spaces V T

J . The idea is to
explicitly use an optimization procedure to select subspaces. We describe this
briefly in the following. See [5] for a longer discussion in the case of s = 1, where
we use basis functions of piecewise linear splines. Further details can be found in
[6, 21].

As we already noticed several times, the norm equivalence (3.2) and the ellipticity
condition (2.3) together with the local stability (2.10) and the two-sided estimate
for s ∈ (−r̃, r) yield that

a(u, u)
(2.3)
≈ ‖u‖2Hs

(3.2)
≈

∑
j

22s|j|∞‖wj‖2L2

(2.10)
≈

∑
j

22s|j|∞
(∑

m∈τj

〈u, ψ̃j,m〉2
)
.

From this we see that the contribution of the subspace Wj to a(u, u) is bounded by
Profitj · C, where

(4.21) Profitj := 22s|j|∞‖wj‖2L2 ≈ 22s|j|∞
∑
m∈τj

〈u, ψ̃j,m〉2.

Together with an upper estimate of ‖wj‖2L2 or of the coefficients 〈u, ψ̃j,m〉, the
resulting upper estimate of Profitj can be considered as a measure of how the ap-
proximation power improves when Wj is included into the approximation space.

Note that such an estimate of ‖wj‖2L2 or an upper estimate of 〈u, ψ̃j,m〉 by ‖u‖2Ht,l
mix

can be obtained easily for elements of the considered smoothness classes by ex-
ploiting the vanishing moment condition on the dual wavelets ψ̃j,m (compare the
Jackson inequality). Implicitly we used this several times in the latter sections.

On the other hand, the inclusion of Wj into the approximation space causes some
cost in the discretization and hence in the solution procedure. The easiest measure
for this cost is the dimension of the subspace |Wj|. The task is now to find a grid
(i.e., to select subspaces Wj) such that a given error bound is minimal for some
fixed cost; that is, the dimension of the approximation space is bounded by some
given value b. This problem of deciding which subspaces should be included into
the approximation space given some prescribed overall cost can be reformulated as
a classical binary knapsack problem. Restricting the range of possible subspaces
Wj to |j|∞ ≤ J for some integer J , and arranging the possible indices j in some
linear order, the optimization problem reads as follows:

Find a binary vector y ∈ {0, 1}n×J such that∑
|j|∞≤J

Profitj · yj constrained to
∑

|j|∞≤J

|Wj| · yj ≤ b(4.22)

is maximal.
Here the binary array y indicates which subspaces are to be included into the

approximation space. Unfortunately such a binary knapsack problem is NP-hard.
However, the situation changes when we allow the array y to be a rational array in
([0, 1] ∩Q)n×J . Then we know that the solution can be obtained by the following
algorithm [36]:
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(1) Arrange the possible indices in some linear order such that {Profitj/|Wj |}j
is decreasing in size, that is,

Profiti1
|Wi1 |

≥ Profiti2
|Wi2 |

≥ · · · .

(2) Let M := max{i :
∑i

k=1 |Wjk | ≤ b}.
(3) The solution of the rational knapsack problem is given by

y1 = · · · = yM = 1;

yM+1 =
b−

∑M
i=1 |Wji |

|WjM+1
| ;

yM+2 = yM+3 = · · · = 0.

Note that yM+1 may be rational in [0, 1]. Therefore the solution of the rational
knapsack problem is in general no solution of the binary knapsack problem. How-
ever, we still have the freedom of slightly changing the size of the cost b. We can
do this in such a way that yM+1 is in {0, 1}. Then, y is also a solution of the
corresponding binary knapsack problem. We refer to [5, 6, 21] for more details of
this optimization procedure. The optimization process can thus be reduced to the
discussion (of the upper bounds) of the profit/cost quotients of the subspaces

(4.23) γj :=
Profitj
|Wj|

;

that is, for an optimal grid in this sense one has to include those Wj into the ap-
proximation space with γj bigger than some threshold. Note that the optimization
has to be performed with the use of upper bounds for Profitj and not with the
exact (but unknown) values. Hence, the optimization procedure is optimal only in
this sense. Combining (4.21), (4.23) and using the moment condition on the dual
wavelets together with the smoothness assumptions on the solution, we end up with
spaces similar to V T

J as in Section 4.1.2 with basically the same properties.

5. Cost estimates

In this section we deal with the cost of solving the elliptic variational prob-
lem (2.2) up to some prescribed error when using the approximation spaces V T

J

and preconditioners arising from the norm equivalences from Section 3; compare
Remark 3.7. We consider the worst case setting; that is, the error of an approxi-
mation uFE from a finite element approximation space VFE compared to the exact
solution u is measured in the Hs-norm. The cost of computing an approximation to
the solution of the variational problem (2.2) can be divided into two parts, namely
the cost of obtaining the discrete system (2.6) and the cost of computing an ap-
proximate solution to this discrete system. The prices for these two parts are often
called the informational cost and the combinatorial cost, respectively.

Note that due to the larger supports of the wavelets from coarser scales, the
resulting stiffness matrices AJ are rather densely populated. Here we have to dis-
tinguish two cases, namely integral and differential operators. In the case of integral
operators, AJ is dense and thus has O(dim(VFE)

2) entries. In the case of differen-
tial operators, AJ has O (dim(VFE) (log (dim(VFE)))

n
) entries and is therefore much

sparser than in the case of integral operators.
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Let us first take a closer look at the case of integral operators. There are tech-
niques to estimate the size of the entries in the stiffness matrix a priori and to
avoid the computation of entries below a prescribed threshold [13, 43]. See [28]
for numerical experiments regarding compression with respect to the single layer
potential equation and approximation spaces built with the index sets I0J . Here
we refrain from incorporating the effect of additional compression into the overall
cost complexity, so as not to mix the effects of the use of the approximation spaces
V T
J and of compression. Moreover, note that additional compression provides us

with purely asymptotic estimates only, whereas the choice of optimized approxi-
mation spaces pays for computationally relevant problem sizes especially in higher
dimensions.

For differential operators it is important to note that one needs not to assem-
ble the stiffness matrix, because all that is required in an iterative scheme is the
application of the preconditioned stiffness matrix to a vector. Exploiting the pyra-
mid structure of the multiscale transformations and the tensor product structure
of our wavelet basis functions, the matrix-vector product can be performed with
O(dim(VFE)) operations for differential operators with constant or separable coef-
ficients. The same holds true in the case of general coefficient functions on uniform
grids, i.e., for the approximation space V −∞

J . However, note that computing a
matrix-vector product with linear cost is a very involved and delicate task.

In the following, we assume that the matrix-vector product can be performed
with O(dim(VFE)) operations for differential operators and with O(dim(VFE)

2) op-
erations for integral operators. We furthermore assume that arbitrary continuous
linear information [48, 50] is permissible, i.e., that the stiffness matrix as well as
the load vector have been computed exactly (or at least with sufficient accuracy).
Once the stiffness matrix and the load vector have been computed, we are left with
the issue of proposing an algorithm for the approximate solution of the discrete
problem.

We discuss an algorithm whose cost is O(dim(VFE)) for differential operators
and O(dim(VFE)

2) for integral operators. Concerning the computational cost, we
mentioned already in Remark 3.7 that a simple diagonal scaling of the stiffness ma-
trix is enough to obtain optimal preconditioning if the related norm equivalences
hold. This allows us to construct solvers whose cost is of the order of the number of
entries in the stiffness matrix. To be a bit more precise, let us estimate the cost to
solve (4.1) up to a discretization error ε, which is of order O(2−cJ), with some c > 0
depending on the order of approximation of the wavelet basis. From (3.6) in Sec-
tion 3 we have that the preconditioned (diagonally scaled) Galerkin stiffness matrix

{2−s|l+l′|∞a(ψl,k, ψl′,k′)}l,l′,k,k′ has a condition number that is bounded indepen-
dently of the number of levels involved. Hence, the convergence rate ξ of a gradient
method is independent of the dimension of the finite element approximation space
VFE if the stiffness matrix is symmetric. Applied to the preconditioned system,
the initial error is reduced by at least the factor ξ in every iteration step and the
number of iterations necessary to obtain an approximation within the prescribed
accuracy is then | logξ(ε)| = cJ . Hence, the overall cost of computing an approxima-
tion to the solution of the variational problem (2.2) within discretization accuracy
ε is O(J · dim(VFE)

2) if the stiffness matrix is dense and O(J · dim(VFE)) if the
matrix-vector product can be performed with O(dim(VFE)) operations. Note that
it is possible to get rid of the J-term in the cost estimate by embedding the solver
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in a nested iteration scheme [35]. The idea is to compute a suitable starting value
by first applying some iteration steps to the problem on a coarser level and then
applying this procedure recursively starting from the coarsest level. This makes
the optimized spaces defined in Section 4 good candidates for the approximation
space VFE provided that the required regularity assumptions on the solution of the
variational problem hold.

To obtain an approximation of the exact solution that has an error of O(ε) in the
energy norm, we must choose the number J of levels such that the approximation
error is smaller than O(ε). Combining the results for the approximation error from

Theorem 4.1 with the estimate of the dimension of the space V
(s−l)/t
J in Section 4.2

gives us the order of the cost. Tables 1 and 2 summarize the discussion above.

There the cost of solving the problem (2.2) in the space Ht,l
mix up to an error of the

order of ε is given for positive and for negative smoothness parameters s.

Table 1. Cost of solving an Hs-elliptic variational problem with
a differential operator up to an error of O(ε) measured in the Hs-

norm under the constraint that the solution is in Ht,l
mix.

V
(s−l)/t
J V −∞

J

s > l O
(
ε1/(s−l−t)

)
O
(
εn/(s−l−t)

)
s = l O

(
ε−1/t

(
ln(ε−1/t)

)n−1
)

O
(
ε−n/t

)
s < l O

(
ε1/((s−l)/n−t)

)
O
(
εn/(s−l−t)

)

Table 2. Cost of solving an Hs-elliptic variational problem with
an integral operator up to an error of O(ε) measured in the Hs-

norm under the constraint that the solution is in Ht,l
mix.

V
(s−l)/t
J V −∞

J

s > l O
(
ε2/(s−l−t)

)
O
(
ε2n/(s−l−t)

)
s = l O

(
ε−2/t

(
ln(ε−1/t)

)2(n−1)
)

O
(
ε−2n/t

)
s < l O

(
ε2/((s−l)/n−t)

)
O
(
ε2n/(s−l−t)

)
Tables 1 and 2 show that for problems with solution u ∈ Ht,l

mix and optimized
approximation spaces, the asymptotic cost is independent of the dimension n if
s − l > 0. For fixed dimension n and 1 − (s − l)/t < n, the cost is in favor of the

approximation space V
(s−l)/t
J also for the case s− l < 0.

Note that the costs for integral operators in Table 2 are not yet optimal, as
we made no use of the potential of further compression of the stiffness matrix
[11, 13, 15, 32, 33, 34, 43, 47].
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6. Examples

In this section we give some applications of the ideas described above. We deal
with the Poisson problem with homogeneous Dirichlet boundary conditions and
with the screen problem. These are two prominent elliptic problems that show
the conceptual approach and may therefore serve as a guideline for dealing with
other elliptic variational problems. First of all, we are looking for candidates of
univariate wavelet bases that fulfill our requirements. Note that because of our
tensor product approach we can reduce the questions to the one-dimensional case.
Specifically, those basis functions whose support intersects with the boundary have
to fulfill special boundary conditions. To this end, we refer the interested reader to
the literature and state that these problems can be settled. See [7, 8] for appropriate
constructions of localized functions and their boundary adaptation.

Sobolev spaces of interest for the study of integral and differential equations on
the n-dimensional unit square In = [0, 1]n are defined by

Hs(In) = {f ∈ D′(In) : ∃g ∈ Hs(Rn) : g|In = f and

‖f‖Hs(In) = inf
f=g|In

‖g‖Hs(Rn)}

and

H̃s(In) = {f = g|In : g ∈ Hs(Rn) and supp g ⊂ In}
equipped with the norm

‖f‖H̃s(In) = ‖g‖Hs(Rn).

The interpolation spaces Hs(In) and H̃s(In) are dual to each other, i.e.,

(Hs(In))′ = H̃−s(In), (H̃s(In))′ = H−s(In), −∞ < s < ∞.

Furthermore

H̃s(In) = Hs
0(I

n) ≡ closHs(In)C∞
0 (In) for s > 1

2 , s �= k + 1
2 , k ∈ N;

i.e., H̃s(In) is the appropriate space for problems with homogeneous essential

boundary conditions and H̃s(In) = Hs for − 1
2 < s < 1

2 . Which of these spaces

is appropriate depends on the application. For example, H̃1(In) = H1
0(I

n) is the
appropriate space for the Poisson problem with homogeneous essential boundary
conditions. For the screen problem the space H̃1/2 is appropriate.

Sobolev spaces of functions in other spaces of interest, such as those with domi-
nating mixed derivative on In are defined analogously. For example, we have

Hs
mix(I

n) := Hs(I)⊗ · · · ⊗ Hs(I) and H̃s
mix(I

n) := H̃s(I)⊗ · · · ⊗ H̃s(I).

To be able to repeat the reasoning above, function spaces fulfilling the required
boundary conditions and a Jackson and a Bernstein inequality have to be con-
structed. Then the argument of Section 4 can be repeated with obvious modifica-
tions.

Here, we concentrate on semi-orthogonal linear spline wavelets (prewavelets) on
uniform dyadic grids as introduced in [7]. Figure 8 (left) shows a prewavelet in
the interior of the domain. Concerning our cases of interest, suitable boundary
constructions have been given for example in [2, 8, 27] and [28], respectively.
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-6

Figure 8. Semi-orthogonal linear spline prewavelet (left), nodal
basis function ψ1,0 corresponding to the coarsest level W1 (mid-
dle) and boundary wavelet for the left boundary for homogeneous
Dirichlet boundary conditions (right).

6.1. Example: The Poisson equation. We consider the problem

(6.1) −∆u = f

with homogeneous Dirichlet boundary conditions in its variational form on H1
0(I

n).
In this case we have s = 1. Estimates of the cost10 of solving (6.1) for u ∈ H2

mix

and continuous linear information up to an accuracy ε have been given in [5]. The
authors constructed a finite element method using tensor products of piecewise

linear splines and index sets that are asymptotically equal to I
2/5
J . They proposed

the use of a multilevel method to solve the resulting discrete problems. The resulting
overall cost is then O(ε−1) because of the optimality of the proposed multilevel

method and dim(I
2/5
J ) = O(2J).

Let us discuss our method in more detail. The basis function assigned to the
coarsest level is the usual nodal basis function; see Figure 8 (middle). The or-
thogonal complement spaces Wj , for j ≥ 2, are spanned by scaled and dilated
versions of the functions shown in Figure 8 (left) for the interior grid points and
Figure 8 (right) for the left boundary and an analogous construction for the right
boundary. The resulting multilevel system incorporating homogeneous Dirichlet
boundary conditions is a semi-orthogonal Riesz basis in Hs

0(I) for 0 ≤ s < 3
2 .

We assume that the solution of the variational problem is in the space Ht,l
mix for

some parameters t, l with t + l ≥ 1. From Table 1 we take the following orders of
the cost:

cost(ε) =

⎧⎪⎨⎪⎩
O
(
ε1/(1−l−t)

)
for l < 1,

O
(
ε−1/t

(
ln(ε−1/t)

)n−1
)

for l = 1,

O
(
ε1/((1−l)/n−t)

)
for l > 1.

Specifically for the cases u ∈ H2 = H0,2
mix,H2

mix = H2,0
mix and H1,1

mix we obtain

cost(ε) =

⎧⎪⎨⎪⎩
O
(
ε−1

)
for u ∈ H2

mix,

O
(
ε−1

(
ln(ε−1)

)n−1
)

for u ∈ H1,1
mix,

O (ε−n) for u ∈ H2.

Hence we regain the result O(ε−1) of [5] as a special case. Note that for u ∈ Ht,1
mix

the resulting optimized approximation space is V 0
J . Hence the cost is of the order

O
(
ε−1/t(ln(ε−1/t))n−1

)
.

10Estimates of the ε-complexities of solving (6.1) with f ∈ Ht
mix and standard information can

be found in [51].
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1 1 1

-1 -1
-6

1

-12

11

Figure 9. Basis functions ψ0,0, ψ0,1 and ψ1,0 corresponding to the
spaces W0 and W1 (first, second and third from left), boundary
wavelet for the left boundary (right).

6.2. Example: Single layer potential equation. The second example we con-
sider is the single layer potential equation

1

c

∫
In

u(y)

|x− y| dy = f(x)

in its variational form on H̃−1/2(In). Here we have s = − 1
2 . The corresponding

bilinear form

a(u, v) =

(
1

c

∫
In

u(y)

| · −y| dy, v

)
H1/2×H̃−1/2

, ∀u, v ∈ H̃−1/2(In),

is symmetric and H̃−1/2-elliptic. For problems in H̃−1/2 the basis does not have to
fulfill special boundary conditions. The bases for W0 and W1 are shown in Figure 9.
The orthogonal complement spaces Wj for j ≥ 2 are spanned by scaled and dilated
versions of the functions shown in Figure 8 (left) for the interior grid points and
Figure 9 (right) for the left boundary and an analogous construction for the right
boundary. The resulting multilevel system is a semi-orthogonal Riesz basis in Hs(I)

for 0 ≤ s < 3
2 , and in H̃s(I) for − 3

2 < s < 0. Hence this example is fully covered by
the theory of Sections 3 and 4. In particular, the preconditioning and approximation
results and the estimates of Section 5 can be applied. Regularity theory for the
screen problem shows that if the right-hand-side vector f is smooth enough, then
the solution u can be decomposed into a regular part ureg and a singular part due
to corner and edge singularities; compare also [28]. Here we restrict ourselves to an
approximation of the regular part of the solution. For a treatment of the singular
parts, see [28, 39].

Hence we assume that the solution of the variational problem is in the space

H̃t,l
mix for some parameters t, l with t+ l ≥ − 1

2 . From Table 2 we take the following
orders of the cost:

cost(ε) =

⎧⎪⎨⎪⎩
O
(
ε−2/(1/2+l+t)

)
for l < − 1

2 ,

O
(
ε−2/t

(
ln(ε−1/t)

)2(n−1)
)

for l = − 1
2 ,

O
(
ε−2/((1/2+l)/n+t)

)
for l > − 1

2 .

Note that a further reduction of the cost complexity can be achieved by compression
strategies as described in [11, 13, 15, 32, 33, 34, 43, 47].



2252 M. GRIEBEL AND S. KNAPEK

7. Further aspects

We now give some hints on extensions to problems with large ellipticity con-
stants, non-stable splittings and expansion systems other than wavelet-type mul-
tilevel bases. Specifically we derive modifications of the optimized spaces by in-
corporating additional information from the operators considered. This leads to
the definition of anisotropic sparse grids [41]. Furthermore we discuss the potential
possibilities of incorporating a priori known information about singularities of the
solution into the construction process of optimized grids. Finally, we show how non-
stable multilevel splittings, which only allow for an upper estimate instead of a full
norm equivalence, still may be used to construct optimal sparse grid approximation
spaces.

7.1. Anisotropic sparse grids. For problems with large ellipticity constants, the
constants in the estimates of the approximation error become large and badly influ-
ence the behavior of the approximation in actual implementations, as the constants
may dominate the error approximation for practical problem sizes. In these cases,
the asymptotic estimates do not provide full insight into the behavior of the ap-
proximants. It is advisable to spare the detour via the Hs-norm and to use norm
estimates applied directly to a(·, ·). Then a further adaptation of the approximation
space to the operator at hand can be obtained. This is important for precondition-
ing purposes also.

As a simple example consider the anisotropic elliptic problem

−
n∑

i=1

di
∂2

∂2xi
u = f, di > 0,(7.1)

in its variational form on H1(In). Tensor product approximation spaces are well
suited for such problems as they allow easily for anisotropic refinement. Let a(·, ·)
denote the corresponding H1-elliptic variational form. The problem with the nu-
merical solution of (7.1) is that the condition number of the Galerkin stiffness
matrix on an isotropic full grid is linearly dependent on max1≤i≤n di/min1≤i≤n di.
The same is true for the coefficient in the asymptotic estimate of the approximation
error. Hence, for a fixed refinement level J and varying coefficients d ≡ (d1, . . . , dn),
the convergence rate of iterative methods, as well as the approximation error, de-
pend on d. For problems with large anisotropies this leads to a slowdown of con-
vergence and a deterioration of approximation. It is well known that some kind
of semi-coarsening in the subspace splittings or in the construction of the approx-
imation spaces can remedy these problems. These ideas can also be used for the
approximation spaces defined here. It amounts to the use of a norm estimate on

a(·, ·) 1
2 instead of ‖ · ‖H1 .

Again using Propositions 3.1 and 3.2, an argument analogous to that in the proof
of Theorem 3.3 shows that

(7.2) a(u, u) ≈
∑
j

(
n∑

i=1

di 2
2ji

)
‖wj‖2L2 ≈

∑
j

max
1≤i≤n

(di2
2ji)‖wj‖2L2

for u ∈ H1, u =
∑

j wj.
11 Compared to the norm equivalence (3.2) (set s = 1) the

weight 22|j|∞ is substituted by the weight max1≤i≤n(di2
2ji), including information

11 See [27] for a proof in the case of prewavelets, where this norm estimate was used to obtain
robust preconditioners for anisotropic problems.
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from the anisotropy. Let u ∈ Ht,l
mix, where 0 ≤ t < r and 1 ≤ t+ l < r. Let IJ be a

subset of I−∞
J and let VFE be the corresponding approximation space. Then (7.2)

together with (3.5) shows that

(7.3) inf
v∈VFE

a(u− v, u− v) ≤ C ·max
j�∈IJ

(
max
1≤i≤n

(di2
2ji) · 2−2l|j|∞−2t|j|1

)
‖u‖2Ht,l

mix

.

Without loss of generality we may assume that

d1 = argmax1≤i≤n{di} and dn = argmin1≤i≤n{di}.
Fixing (J, 1, . . . , 1) to be the index with maximal | · |∞-norm to be included into
the index sets leads to c = 1

2t log2(d12
2J )− n+ 1− 1

t J and the index sets

I l,t,dJ := {j ∈ Nn : −|j|1−
l

t
|j|∞+

1

2t
log2

(
max
1≤i≤n

( di
d1

22(ji−2J)
))

≥ −(n+J−1)− l

t
J},

where the index d indicates the dependence on the parameters di, 1 ≤ i ≤ n. Fixing
(1, . . . , 1, J) to be the index with maximal n-th component to be included into the
index sets leads to c = 1

2t log2(dn2
2J )− n+ 1− 1

t J and the index sets

Î l,t,dJ := {j ∈ Nn : −|j|1−
l

t
|j|∞+

1

2t
log2

(
max
1≤i≤n

( di
dn

22(ji−2J)
))

≥ −(n+J−1)− l

t
J}.

Then the corresponding approximation spaces keep the order of approximation of
the full grid approximation space. Estimates on the dimension and the order of
approximation can be derived in the spirit of the preceding sections. We obtain

the same orders of approximation as for the spaces V
(1−l)/t
J but with different

coefficients. Note that in the case of the index set I l,t,dJ the coefficient is dependent
on d1 = argmax1≤i≤n{di} and the number of unknowns is further reduced, as

I l,t,dJ ⊂ I
(1−l)/t
J . For the case Î l,t,dJ the number of unknowns is increased compared

to I
(1−l)/t
J , but the coefficient only depends on dn = argmin1≤i≤n{di}. The norm

equivalence (7.2) leads also to robust preconditioners; compare [27]. In the case of
extreme anisotropy, the resulting grid consists of extremely stretched grids in the
direction of the anisotropy, corresponding to semicoarsening. Figures 10 and 11
show some examples in two dimensions.

At this point note that there is a close relation to the so-called weighted spaces
from [44, 45], where weights are introduced into Sobolev norms. There, the curse of
dimensionality no longer shows up if certain conditions on the weights are fulfilled.
Thus strong tractability [48] of integration can be achieved. These weights resemble
to some extent our diffusion coefficients di.

7.2. Adaptive sparse grids. So far, our theory involves an a priori approach, i.e.,
we beforehand assume the solution to be from a specific function class and we then
determine the best approximation space with respect to cost and accuracy. For
practical purposes however such an a priori approach is not always feasible. This
may be because the class of data (and thus the regularity of the solution of the
problem) is not known beforehand or due to the fact that the smoothness needed
is not present. Then, our previous algorithms need to be complemented with some
special treatment of singular parts of the solution of the variational problem. The
idea is that a few wavelets of high level clustered around the singularity will suffice,
while the optimized grids of the previous sections are enough to treat the smooth
parts of the solution. To this end, it is helpful to refine the selection criterion to
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Figure 10. Index sets I2,0,d10 for d1/d2 = 1, d1/d2 = 10 and
d1/d2 = 1000 from left to right, two-dimensional case.

5 10 15

2

4

6

8

10

5 10 15

2

4

6

8

10

5 10 15

2

4

6

8

10

Figure 11. Index sets Î2,0,d10 for d1/d2 = 1, d1/d2 = 10 and
d1/d2 = 1000 from left to right, two-dimensional case.

the atomic level, i.e., to allow for single basis functions/grid points to be selected.
From (4.23) together with (4.21) we obtain the profit/cost quotient of a single basis
function

(7.4) γj,l := 22s|j|∞〈u, ψ̃j,l〉2.
Suppose that for example the leading singularity component χ of the solution u
is known. Decomposing χ with respect to the given basis, we can use the weights
|〈χ, ψ̃j,l〉| in (7.4) instead of the weights |〈u, ψ̃j,l〉|. This leads to the definition of
grids adapted to χ by choosing those indices that have

(7.5) γj,l := 22s|j|∞〈χ, ψ̃j,l〉2

larger than some threshold. This a priori adaptivity leads to a relatively high
degree of adaptivity without complicated mesh refinement strategies especially for
problems in higher dimensions. Nevertheless, for singularly perturbed problems
with large ellipticity constants and problems that exhibit boundary singularities
where χ is not known beforehand, a posteriori adaptivity is still necessary. Locally
adaptive sparse grid methods can be found in [3, 4, 6, 17, 20]. We further refer to
[10, 14] for results on nonlinear approximation and adaptivity and to [37] for results
on nonlinear approximation with sparse grids.

7.3. Other multilevel systems. The constructions of the approximation spaces
presented in this paper are not restricted to biorthogonal wavelets as basis func-
tions, but can be carried over to other multiscale basis functions as well. Specifi-
cally, the construction of optimized grids given in Subsection 4.3 is not limited to
stable multilevel splittings, that is, to multilevel finite element spaces that possess
norm equivalences such as those described in Section 3. Instead only an upper
estimate is needed. Consider for example the case of an H1-elliptic operator and
multiscale basis functions of tensor products of piecewise linear splines φj,k. Let
Wj = span{φj,k,k ∈ τj} denote the hierarchical difference space between two suc-
cessive spaces spanned by piecewise n-linear functions. It is easy to see that in this
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case a Bernstein inequality holds:

(7.6) ‖wj‖H1 ≤ C2|j|∞‖wj‖L2 ∀wj ∈ Wj, j ∈ Nn
0 ,

and that the estimate

(7.7) ‖wj‖L2 ≤ C2−2|j|1‖u‖H2
mix

∀u =
∑
j

wj ∈ H2
mix

holds; see [5]. Inequality (7.7) can again be inferred from decay properties of the
coefficients in the representation of u in the bases of piecewise linear splines. Then,
applying the triangle inequality together with (7.6) and (7.7) yields

inf
v∈V T

J

‖u− v‖H1 ≤ ‖
∑
j�∈IT

J

wj‖H1 ≤
∑
j�∈IT

J

‖wj‖H1

(7.6),(7.7)

≤ C
∑
j�∈IT

J

2|j|∞−2|j|1‖u‖H2
mix

for u ∈ H2
mix. Summing up, a longer calculation gives a generalized Jackson in-

equality

(7.8) inf
v∈V T

J

‖u− v‖H1 ≤ C2−J‖u‖H2
mix

for T < 1
2 , where C = C(T ). Hence the optimal order of approximation is kept as

long as T < 1
2 . That is, we obtain a similar result for a multilevel approximation

space without the direct use of norm equivalences. This can also be used as the
starting point for enlarging the range of the validity of the estimates presented in
this paper. In particular, the upper range of the parameters t and l which were
restricted from above by t+ l < r and t < r could be enlarged to the whole range
t + l ≤ m and t ≤ m; see (2.17). Apart from eventual logarithmic terms in the
extremal cases, the results remain the same.

8. Concluding remarks

In this paper we constructed approximation spaces for elliptic variational prob-

lems with solutions in Ht,l
mix. We gave cost estimates for the case of continuous

linear information. We showed these results in a constructive manner by proposing
a Galerkin method together with optimal preconditioning. Specifically, we iden-
tified smoothness assumptions that make it possible to choose the approximation
space in such a way that the number of degrees of freedom is O(2J) compared to
O(2nJ) for the full grid space, while keeping the optimal order of approximation.

A disadvantage of the approaches described in this paper is that generalizations
to more general geometries are not easy to handle. Research in this direction is
mainly based either on domain transformation techniques or on some kind of domain
decomposition approach where the computational domain is decomposed locally
and transformed to unit cubes. On these local domains the wavelet techniques can
be applied. Note however that [0, 1]n is a natural computational domain for many
higher-dimensional physical applications.
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