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ON THE EXPONENT OF DISCREPANCIES

GRZEGORZ W. WASILKOWSKI AND HENRYK WOŹNIAKOWSKI

Abstract. We study various discrepancies with arbitrary weights in the L2

norm over domains whose dimension is proportional to d. We are mostly
interested in large d. The exponent p of discrepancy is defined as the smallest
number for which there exists a positive number C such that for all d and ε
there exist C ε−p points with discrepancy at most ε. We prove that for the
most standard case of discrepancy anchored at zero, the exponent is at most
1.41274 . . . , which slightly improves the previously known bound 1.47788 . . . .
For discrepancy anchored at �α and for quadrant discrepancy at �α, we prove
that the exponent is at most 1.31662 . . . for �α = [1/2, . . . , 1/2]. For unanchored
discrepancy we prove that the exponent is at most 1.27113 . . . . The previous

bound was 1.28898 . . . . It is known that for all these discrepancies the exponent
is at least 1.

1. Introduction

Various discrepancies have been extensively studied in number theory and nu-
merical analysis, see, e.g., [2, 5, 7, 10, 11, 12, 16, 17, 18, 19, 25], and theoretical
computer science, see, e.g., [3, 4] and the references given there. In this paper, we
study the so-called B-discrepancies in the L2-norm which measure how well the
volumes of certain sets B(t) can be approximated knowing only which of the n
pre-specified points tj belong to the set B(t). The sets B(t) ⊆ R

d are parameter-
ized by vectors t whose number of components depends on d; see [14]. For specific
definitions of B(t) we obtain the most standard discrepancy anchored at zero, as
well as the discrepancy anchored at �α, the quadrant discrepancy anchored at �α,
and the unanchored discrepancy.

The main discrepancy problem is to find n points that minimize discrepancy
for the d-dimensional case. There are many deep theoretical results pertaining to
optimal bounds on how fast discrepancy tends to zero as n tends to infinity. These
bounds are usually weak if n is not sufficiently large relative to d. For instance, a
celebrated result due to Roth [16, 17] and Frolov [6] provides a sharp asymptotic
bound of order n−1[lnn](d−1)/2 on the discrepancy anchored at zero. However, this
bound is an increasing function of n for n ≤ e(d−1)/2.

We believe that for large values of d, the exponent of discrepancy provides more
practical information on the behavior of minimal discrepancies. It is defined as fol-
lows. Letting nB(ε, d) be the smallest number of points for which the corresponding
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B-discrepancy does not exceed ε, we want to find the smallest number pB such that

nB(ε, d) ≤ C ε−pB

for all d ≥ 1 and ε > 0.

Such a number is called the exponent of B-discrepancy.
The main result of this paper is to provide an upper bound on the exponent pB.

In particular, we show that

• pB ≤ 1.41274 . . . for the L2 discrepancy anchored at 0,
• pB ≤ 1.31662 . . . for the L2 discrepancy anchored at �α as well as for the
quadrant discrepancy anchored at �α for �α = [1/2, . . . , 1/2],

• pB ≤ 1.27113 . . . for the L2 unanchored discrepancy.

It is known that for all the discrepancies mentioned above, the exponent is at
least 1. For the discrepancy anchored at zero, the exponent is at least 1.0669;
see [9]. The previous upper bounds on the exponent of discrepancy anchored at
0 and unanchored discrepancy were derived in [24] and they were 1.47788 . . . and
1.28898 . . . , respectively. Hence, we provide a small improvement of these bounds
here, although their exact values are still unknown.

We briefly comment on the proof technique. As in [24], we use relations between
discrepancy and multivariate integration in the worst case and average case settings,
and approximation in the average case setting. More precisely, B-discrepancy for
the d-dimensional case is related to multivariate integration in the worst case setting
over a reproducing kernel Hilbert space H(KB

d ) whose kernel KB
d depends on B;

see [14]. Then we use the known fact that multivariate integration over H(KB
d ) is

equivalent to multivariate integration in the average case setting with the zero-mean
Gaussian measure whose covariance kernel is KB

d . The next step is to use a relation
established in [23] between multivariate integration and approximation both in the
average case setting when we are allowed to use only function values. In [24], we use
Smolyak’s algorithms for estimating the average case errors for the approximation
problem. Here, we use the optimal average case bounds for the approximation
problem due to a recent result from [8]. The latter result states that the minimal
average case errors of algorithms using function values are essentially the same as
the minimal average case errors of algorithms using arbitrary linear functionals. It is
known that when we can use arbitrary linear functionals, then the minimal average
case errors depend on the truncated trace of the eigenvalues of the corresponding
integral operators Wd; see (2.5). For specific B-discrepancies mentioned before, it is
relatively easy to compute the eigenvalues since the operatorWd is given by a tensor
product of univariate operators, and therefore the eigenvalues for the d-dimensional
case are the product of the univariate eigenvalues. Using results from [13], we know
necessary and sufficient conditions for the truncated trace of the eigenvalues for
the d-dimensional case to be independent of d. This finally leads to the bounds on
the exponent of B-discrepancy. We stress that this proof is non-constructive; i.e.,
we prove the existence of n points with specific bounds on B-discrepancy without
constructing them.

2. Basic definitions and main result

Following [14], we briefly recall in this section the definition of B-discrepancy.
We also state the main result on the exponent of B-discrepancies.

For d ∈ N and a function κ : N → N, let D ⊆ R
κ(d) be a Lebesgue measurable

set and ρ : D → R be a probability density function. Let B be a mapping from
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D into the set of measurable subsets of Rd such that the measure of B(·), denoted
here by vol(B(·)), is a measurable mapping and

(2.1)

∫
D

[vol(B(x))]
2
ρ(x) dx < ∞.

For given points t1, . . . , tn ∈ D and numbers a1, . . . , an ∈ R, let disc(x) be the
error of approximating the volume of B(x) by a weighted sum

∑n
j=1 aj 1B(x)(tj),

disc(x) := vol(B(x))−
n∑

j=1

aj 1B(t)(tj),

where 1B(x) stands for the indicator function of the set B(x). By B-discrepancy
of points {tj}nj=1 and coefficients {aj}nj=1 (or simply B-discrepancy for short) we
mean the L2-norm of disc(·), i.e.,

discB({tj , aj}nj=1) :=

[ ∫
D

[
vol(B(x))−

n∑
j=1

aj 1B(x)(tj)

]2
ρ(x) dx

]1/2
.

We illustrate this by the following important example.

Example 2.1 (L2-discrepancy anchored at 0). Consider D = [0, 1]d, κ(d) = d,
ρ ≡ 1, and B(x) = [0,x) := [0, x1) × · · · × [0, xd). This corresponds to one of
the most classical discrepancies, the L2-discrepancy anchored at 0. It has been
considered in a number of books; see, e.g., [2, 5, 10, 12, 18, 19] and the references
therein, especially for equal weights aj = 1/n for which

disc(x) =

n∏
j=1

xj −
1

n
|{tj ∈ [0,x)}| .

For arbitrary weights aj we have

[
discB({tj , aj}nj=1)

]2
= 3−d − 2−d+1

n∑
j=1

aj

d∏
k=1

(1− t2j,k)

+

n∑
i,j=1

aiaj

d∏
k=1

(1−max(ti,k, tj,k)).

By the n-th minimal B-discrepancy we mean the smallest B-discrepancy among
all n-tuples of points and coefficients, i.e.,

discB(n, d) := inf
{tj ,aj}n

j=1

discB({tj , aj}nj=1).

The initial B-discrepancy is the B-discrepancy for n = 0, which reduces to

discB(0, d) =

[ ∫
D

[vol(B(t))]2 ρ(t) dt

]1/2
.

For ε ∈ (0, discB(0, n)], let

nB(ε, d) := inf
{
n : discB(n, d) ≤ ε

}
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be the smallest number of points tj for which the B-discrepancy is at most ε. We
say that the B-discrepancy is strongly tractable iff there exist numbers C and p such
that

(2.2) nB(ε, d) ≤ C ε−p for all d ≥ 1 and ε ≤ discB(0, d).

Then the exponent of the B-discrepancy, pB, is the smallest p for which (2.2) holds.
That is,

pB := inf {p : (2.2) holds with p} .
As shown in [14], B-discrepancies are related to integration problems over re-

producing kernel Hilbert spaces whose kernel KB
d depends on the functions B and

ρ. We will use this relation in the proof of the main result stated at the end of this
section. Here we need to recall from [14] the following facts. Define

DB :=
⋃
x∈D

B(x) ⊆ R
d

and KB
d : DB ×DB → R by

KB
d (x,y) :=

∫
D

1B(t)(x)1B(t)(y) ρ(t) dt for all x,y ∈ DB.

Clearly, KB
d is symmetric and non-negative definite and, hence, can be regarded

as a reproducing kernel. Consider therefore the corresponding reproducing kernel
Hilbert space H(KB

d ). For a more detailed discussion on reproducing kernel Hilbert
spaces we refer the reader to [1, 21]. Here we only recall the following basic facts.
The space H(KB

d ) consists of functions f : DB → R. For every t ∈ DB and
f ∈ H(KB

d ), we have

KB
d (·, t) ∈ H(KB

d ) and 〈f,KB
d (·, t)〉H(KB

d ) = f(t).

Actually, H(KB
d ) is the completion of the span of functions KB

d (·, t) for t ∈ DB.
Due to (2.1), the integral of KB

d (x,y) is finite,

(2.3)

∫
DB

∫
DB

KB
d (x,y) dx dy =

∫
D

[vol(B(x))]2 ρ(x) dx < ∞.

We need to assume that the function

(2.4) hd(x) =

∫
DB

KB
d (x,y) dy for all x ∈ DB

belongs to H(KB
d ). This and (2.3) make the integrals

∫
DB f(x) dx well defined for

f ∈ H(KB
d ). The relation between B-discrepancy and integration will be explained

in Section 4.
The embedding operator

Id : H(KB
d ) → L2(D

B) with Id(f) = f

is continuous, and the operator

Wd := Id∗Id : H(KB
d ) → H(KB

d )

is selfadjoint, semi-positive definite, and has a finite trace,

trace(Wd) =

∫
DB

KB
d (x,x) dx =

∫
DB

vol(B(x)) dx < ∞.
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Clearly,

(2.5) (Wdf)(x) =

∫
DB

f(y)KB
d (x,y) dy.

Let {(λd,j , ηd,j)}∞j=1 be the eigenpairs of Wd with ordered eigenvalues,

Wdηd,j = λd,j ηd,j and λd,j ≥ λd,j+1 for all j ≥ 1.

The finite trace of Wd means that
∑∞

j=1 λd,j =
∫
DB KB

d (x,x) dx < ∞ and, there-

fore, λd,j = O(j−r) for some r ≥ 1.
We are ready to state the main result of the current paper.

Theorem 2.2. Suppose there exist positive Cd,0 and p such that[ ∞∑
j=n+1

λd,j

]1/2
≤ Cd,0

(n+ 1)p
for all n ≥ 0.

Then there exists a positive number Cp dependent only on p such that

(2.6) discB(2n, d) ≤ Cd,0√
n

· min

(
1√
2
,

Cp

(n+ 1)p
· [ln(ln(n+ 2))]

p+1/2

)

for all n ≥ 1. Moreover, if there exists τ ∈ (0, 1) such that

(2.7) sup
d≥1

∞∑
j=1

λτ
d,j < ∞,

then B-discrepancy is strongly tractable with the exponent pB bounded by

pB ≤ 2 τ.

The proof of this theorem is given in Section 4.

3. Tensor product kernels

We now specialize Theorem 2.2 to the case of tensor product kernels KB
d . That

is, we assume that for every d ≥ 2 we have DB
d = DB

1 × · · · ×DB
1 (d times) and

(3.1) KB
d (x,y) =

d∏
j=1

KB
1 (xj , yj)

for some reproducing kernel KB
1 . As we will illustrate below, (3.1) holds for a

number of important B-discrepancies. For such kernels, the operators Wd also
have a tensor product form and, therefore, their eigenvalues λd,j are products of
the eigenvalues of the univariate operator W1,

(W1f)(x) =

∫
DB

1

f(y)KB
1 (x, y) dy.

Such tensor products have been considered in a number of papers. The following
result from [13, Thm.6.6] is especially useful here. Suppose that there exists τ∗

such that

(3.2) τ∗ ∈ (0, 1] with τ∗ := inf

{
τ :

∞∑
j=1

λτ
1,j ≤ 1

}
.

Then (2.7) holds for any τ > τ∗, which yields

pB ≤ 2 τ∗.
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We summarize this in the following proposition.

Proposition 3.1. If KB
d is of the tensor product form (3.1) and the eigenvalues

of W1 satisfy (3.2), then the B-discrepancy is strongly tractable with the exponent

pB ≤ 2 τ∗.

Using this proposition, we now derive bounds on the tractability exponents for
a number of B-discrepancies. For these B-discrepancies, multivariate integration is
well defined and (2.4) holds. We begin with

Example 3.2 (Discrepancy anchored at 0). It is well known that for d = 1 we
have KB

1 (x, y) = min(x, y). The space H(KB
1 ) consists of absolutely continuous

functions vanishing at zero whose first derivatives are in L2([0, 1]). The eigenvalues
of the operator

(W1f)(x) =

∫ 1

0

f(y) min(x, y) dy

are given by

λ1,j =
4

π2 (2j − 1)2
for j = 1, 2, . . . .

Note that (2x− 1)−2τ is convex for x ≥ 1. For τ > 1/2, we clearly have

f(τ ) :=
∞∑
j=1

(2j − 1)−2τ =
k∑

j=1

(2j − 1)−2τ + Ek,τ ,

where Ek,τ is between
∫∞
k+1

(2x− 1)−2τ dx and
∫∞
k+1/2

(2x− 1)−2τ dx, i.e.,

1

(4τ − 2)(2k + 1)2τ−1
< Ek,τ <

1

(4τ − 2)(2k)2τ−1
.

This truncation allows us to compute numerically f(τ ) with arbitrary precision.
Using bisection, we checked that (3.2) holds for 2τ∗ ∈ (1.412742, 1.412746). That
is,

pB ≤ 1.41274...

Note that this gives a small improvement over the bound 1.4778... obtained in [24].

Example 3.3 (Discrepancy anchored at �α). As in the previous example, we have
D = [0, 1]d, κ(d) = d, and ρ ≡ 1. For the anchor �α = [α1, . . . , αd] ∈ [0, 1]d, we take

B(x) = [min(α1, x1),max(α1, x1))× · · · × [min(αd, xd),max(αd, xd)) .

For simplicity, we now assume that αj = α ∈ (0, 1) for all j. (Note that α = 0
corresponds to the previous example, and the case of α = 1 is equivalent to α = 0.)
Then

KB
1 (x, y) =

⎧⎨
⎩

min(x, y) if x, y < α,
1−max(x, y) if x, y ≥ α,
0 otherwise.

The eigenvalues of W1 are obtained in the standard way by double differentiation
of the equation ∫ 1

0

f(y)KB
1 (x, y) dy = λf(x).
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This leads to the equation −f(x) = λf ′′(x) with the boundary conditions f(α) =
f ′(0) = 0 for x ∈ [0, α], and f(α) = f ′(1) = 0 for x ∈ [α, 1]. In this way we obtain
that the eigenvalues of W1 are given by

{λj}∞j=1 =

{
4α2

π2(2k − 1)2

}∞

k=1

∪
{

4(1− α)2

π2(2k − 1)2

}∞

k=1

.

We computed approximations to 2τ∗ in a similar way as in the previous example,
and we obtained for α = 1/2 that 2τ∗ ∈ (1.3166258, 1.3166259). That is

pB ≤ 1.31662....

Example 3.4 (Quadrant discrepancy anchored at �α). As beforeD = [0, 1]d, κ(d) =
d, and ρ ≡ 1. For �α = [α1, . . . , αd], we take

B(x) = [w1(x1), z1(x1))× · · · × [wd(xd), zd(xd)),

where [wj(x), zj(x)) equals [0, x) if x < αj , and [x, 1) otherwise. For simplicity we
take αj = α and then

KB
1 (x, y) =

1

2
(|x− α|+ |t− α| − |x− t|) .

It can be verified that the operator W1 has the same eigenvalues as in the case of
discrepancy anchored at �α. Hence, for αj = 1/2 we have

pB ≤ 1.31662....

Example 3.5 (Unanchored discrepancy). We now have D = {[x,y] ∈ [0, 1]2d :
xj ≤ yj for j = 1, . . . , d}, κ(d) = 2d, ρ ≡ 1, and take

B([x,y]) = [x,y) = [x1, y1)× · · · × [xd, yd).

Then

KB
1 (x, y) = min(x, y)− xy.

The eigenvalues of W1 are obtained as indicated earlier (this time the boundary
conditions are f(0) = f(1) = 0) and are given by

λ1,j = (π j)−2 for j = 1, 2, . . . .

As before, we obtained the following estimate: 2τ∗ ∈ (1.27110, 1.27113) and hence

pB ≤ 1.27113...

4. Proof of Theorem 2.2

As already mentioned, the proof uses, in particular, the relation between B-
discrepancies and the worst case errors for integration problems defined over the
spaces H(KB

d ).
More precisely, for given {tj , aj}nj=1, consider a linear algorithm

Q{tj ,aj}n
j=1

(f) :=
n∑

j=1

aj f(tj)

for approximating integrals
∫
DB f(x) dx. Its worst case error is defined by

ewor(Q{tj ,aj}n
j=1

, INTH(KB
d )) := sup

‖f‖
H(KB

d
)
≤1

∣∣∣∣
∫
DB

f(x) dx−Q{tj ,aj}n
j=1

(f)

∣∣∣∣ .
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Let ewor(n, d, INTH(KB
d )) denote the n-th minimal worst case error, i.e.,

ewor(n, d, INTH(KB
d )) := inf

{tj ,aj}n
j=1

ewor(Q{tj ,aj}n
j=1

, INTH(KB
d )).

We know from [14] that

discB(n, d) = ewor(n, d, INTH(KB
d )).

Hence, to estimate the B-discrepancies, it is enough to estimate the n-th minimal
worst case errors for the corresponding integration problem.

Due to (2.3), the reproducing kernel KB
d has a finite trace and can be viewed as

the covariance kernel of a zero-mean Gaussian measure µB. Consider therefore the
integration problem in the average case setting in which the error of Q{tj ,aj}n

j=1
is

measured by

eavg(Q{tj ,aj}n
j=1

, INTµB ) =

[
EµB

(∫
DB

f(x) dx−Q{tj ,aj}n
j=1

(f)

)2]1/2
,

where EµB denotes the expectation with respect to the measure µB . For more
discussions on the average case setting, see, e.g., [15, 20]. It is well known that for
any algorithm we have

eavg(Q{tj ,aj}n
j=1

, INTµB ) = ewor(Q{tj ,aj}n
j=1

, INTH(KB
d )),

as well as
eavg(n, d, INTµB ) = ewor(n, d, INTH(KB

d )),

where eavg(n, d, INTµB ) denotes the n-th minimal error in the average case setting,
i.e.,

eavg(n, d, INTµB ) := inf
{tj ,aj}n

j=1

eavg(Q{tj ,aj}n
j=1

, INTµB ).

This is why it is enough to estimate the latter n-th minimal error. For that
purpose, consider the problem of approximating functions f with the error mea-
sured in the L2-norm. We will refer to it as the L2-approximation problem. It is
well known, see [22], that in the average case setting we can consider only linear
algorithms of the form

A{tj ,qj}n
j=1

(f) =
n∑

j=1

f(tj) qj ,

where now the qj are functions from the L2 = L2(D
B) space. Let eavg(n, d,APPµB )

be the corresponding n-th minimal error,

eavg(n, d,APPµB ) := inf
{tj ,qj}n

j=1

[
EµB (‖f −A{tj ,aj}n

j=1
(f)‖2L2

)
]1/2

.

The n-th minimal error defined above is important also for the integration problem
since, as shown in [23], it yields the following upper bound on the n-th minimal
error for the integration problem,

eavg(2n, d, INTµB ) ≤ 1√
n
eavg(n, d,APPµB ).

Hence, to complete the proof we only need to know that the following inequality
holds:

eavg(n, d,APPµB ) ≤ Cd,0Cp

(n+ 1)p
[ln(ln(n+ 2))]p+1/2 .
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Such an inequality is proved in [8], p. 490, which completes the proof of (2.6).
The second part of the theorem follows from the following argument; see also

[13, Thm. 6.1]. Of course,

λτ
d,n · n ≤ Mτ := sup

d≥1

∞∑
j=1

λτ
d,j ,

which implies that
∞∑

j=n+1

λd,j ≤ M1/τ
τ

∞∑
j=n+1

j−1/τ ≤ M
1/τ
τ

1/τ − 1
n1−1/τ .

Since we can take

Cd,0 =
[
M1/τ

τ /(1/τ − 1)
]1/2

and p =
1

2τ
− 1

2
,

we get

discB(2n, d) = O
(
[ln ln(n+ 1)]p+1/2

n1/(2τ)

)

with the factor in the big O notation independent of n and d. Therefore pB ≤ 2τ ,
as claimed. This completes the proof of the theorem.
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13. E. Novak and H. Woźniakowski, “Tractability of Multivariate Problems,” European Mathe-
matical Society, Vol. 6, Zürich, 2008. MR2455266
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