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VALUES OF SYMMETRIC CUBE L-FUNCTIONS
AND FOURIER COEFFICIENTS
OF SIEGEL EISENSTEIN SERIES OF DEGREE-3

DOMINIC LANPHIER

ABSTRACT. We obtain formulas for certain weighted sums of values of the
symmetric square and triple product L-functions. As a consequence, we get
exact values at the right critical point for the symmetric square and symmetric
cube L-functions attached to certain cuspforms. We also give applications to
Fourier coefficients of modular forms.

1. INTRODUCTION

In [23] Zagier found exact values of the standard degree-2 L-function and the
symmetric square L-function attached to the weight 12 and level 1 cuspform Aja(z).
The values of the symmetric square L-function were given in terms of the square
of the Petersson norm of Aj2(z), powers of 7, and explicit rational numbers. From
these results and numerical computations, predictions were given in [23] for certain
exact values of the symmetric cube and the symmetric fourth power L-functions
attached to Aqa(z).

Using the methods of [23], Dummigan [6] found values of symmetric square L-
functions attached to cuspforms of level 1 and weights 12, 16, 18, 20, 22, and 26 at all
the critical points in the sense of Deligne [5]. He also studied the rational numbers
that occur in these values and related primes that occur in the numerators of the
rational parts to Shafarevich-Tate groups. In [15] Katsurada applied the method
of pullbacks of Eisenstein series due to Bocherer [I] and Garrett [8, @, [I1] to the
study of the values of the symmetric square L-functions. These results illustrate
how the rational parts of the values can be naturally expressed in terms of Bernoulli
numbers B,, and the generalized class numbers H(r,n) of Cohen [3]. This method
was used by Heim [I3] to study Ramanujan’s 7-function, which gives the Fourier
coefficients of Aja(2).

In [10] Garrett discovered an integral representation of an L-function attached
to three cuspforms by investigating the pullback of a Siegel Eisenstein series of
degree-3. Taking the three cuspforms to be identical, special value results were
obtained for the symmetric cube L-function. These results for the triple product
and the symmetric cube were extended in [12] and [I7]. In [20] Mizumoto verified
Zagier’s predictions for the symmetric cube L-function of Ajs(z). His method
started from Garrett’s integral but went via the 2+ 1 diagonal and so replaced one
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TABLE 1. Values of symmetric cube L-functions at the right crit-
ical point.

[ [ L(2rk—2,Sym3A)L(k — 1,A0)% (A, Ag)3mo" =0

12 [ 257/312.57 .75 .11-13-17- 19 - 23 - 6912

16 | 273.37/319.59.77. 111 .13% . 17.19 .23 .29 - 31 - 36172

18 | 276.59/325 .58 .79 . 115 . 13% . 17-19- 23 - 29 - 31 - 438672

20 | 281 .157/328 . 514 .75.114.13%.17%.19.23 .29 - 31 - 37 - 2832 - 6172

22 | 297 .38329/33% . 513 .78 . 116 .13% . 17%4.197.23.29- 31 - 37 - 41 - 1312 - 5932

26 | 2103.173.311/329.515.710.119.133 . 174.19%.23%.29 .31 .37 -41 - 43 - 47 - 6579312

TABLE 2. Values of symmetric square L-functions at the right crit-
ical point.

| &k | L(2k — 2,Sym2A)/(Aw, Ay )m3r—3

12 [ 224/39.5%.72.11-13-17-19 - 23 - 691

16 | 239/313.56.72.11-13-17-19-23-29-31 - 3617

18 | 232/317.55. 74 . 11213 - 17-19- 23 - 29 - 31 - 43867

20 | 232.712/318 .59 .73 .112.132.17%2.19-23-29 - 31 - 37- 283 - 617

22 [ 237.612.103/32T . 5% .74 .117.132.17-192-23-29-31-37-41-131-593

26 | 241.163-187273/326 . 510 .77 . 114 . 132 . 172 . 192 - 232.29 - 31 - 37 - 41 - 43 - 47 - 657931

of the degree-1 cuspforms with a Klingen Eisenstein series. This avoided the degree-
3 Eisenstein series and so avoided certain difficulties that arise by using Garrett’s
integral directly. Note that Mizumoto’s method applies to other critical points as
well, and these difficulties are most relevant for obtaining these other values.

In this paper we use the pullback of Siegel Eisenstein series of degree-3 to obtain
exact values for certain cuspforms of symmetric cube L-functions at the right critical
point. We avoid some difficulties by switching to adelic language in certain places.
We first redo the results of [15] for level 1 cuspforms and express the rational
parts of the values of certain symmetric square L-functions in terms of the Fourier
coeflicients of Siegel Eisenstein series of degree-2. This gives an expression for the
values in terms of B,, and H(r,n). We use Garrett’s integral to express a weighted
sum of the values of certain triple L-functions in terms of values of symmetric square
L-functions and Fourier coefficients of Eisenstein series of degrees 1 and 3. From
the values of the symmetric square L-functions and Katsurada’s explicit formula for
the Fourier coefficients of Siegel Eisenstein series of degree-3 in [14] we can express
the weighted sum in terms of B,, and H(r,n). For certain weights, this gives exact
values for the product of a symmetric cube L-function and the square of a standard
degree-2 L-function. The method here leads to essentially different computations
than those done by Mizumoto for the right critical point, as the latter involve values
of twisted degree-1 L-functions.

The values of the symmetric square and the symmetric cube L-functions are
given in Tables 1 and 2, respectively. Those of the symmetric square are known
and those of the symmetric cube are mostly new. The special value results follow
from Theorem 1 and equation (3.9) in Section 3. The precise definitions of the
L-functions and of B,, and H(r,n) are given in Section 2.

Theorem 1. Let B,, be a basis for the space of cuspforms of weight x and level
1 consisting of Hecke eigenfunctions and normalized so that their first Fourier co-
efficients are 1. Let B,, denote the n'" Bernoulli number and H(r,n) Cohen’s
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generalized class number. Then

Z L(?Ii -2, f1® fo® fg)
f1,f2,f3€Bx <f1’f1><f2;f2><f37f3>ﬂ—5575

28k—9 K 2K

— Bopoo (142 (1428

<n—2>!3<2n—2)!( : ( +B,ﬂ)( +Bn>
3K

2k —1) (4+ —) H(k—1,3) — 3(r — 1) (1 + i) H(k — 1,4)
B, B,
BI{BQK72
|BHB2N—2|
For k € {12,16,18,20,22,26} let A,(z) denote the unique weight x and level 1
cuspform normalized so that the first Fourier coefficient is 1. We have
L(s,Ax @ A @ Ag) = L(s,Sym® A, ) L(s — (k — 1), Ax)?,

and so Theorem 1 immediately gives the values in Table 1. Let Agg1(z) and
Ag42(2) denote the two normalized Hecke eigenfunctions of weight 24. Then The-

orem 1 gives a sum of the values of L-functions attached to these cuspforms in
(1.1):

L(467 Sym3A24,1)L(23, A24,1)2 3L(46, Sym2A24,1 ® A24,2)L(23, A24,2)

—(=D)"%(k—1) (224 2.3 L p ot 23)).

[VACYRIWACYIRDES et (Aga,1,A241)2(Asa 2, Aoy o)mis
(11) 4 3L(46, Sym2A2472 X A24,1)L(23, A2471) L(46, Sym3Ag4,2)L(23, A2472)2
(D242, A2a2)2(Noa1, Agg 1 )witd (Aga,2, Aoy 2)3t1o

_ 297 . 11946543687936526663741
T 340519714117 . 136 . 174. 194 .23 .29 - 31 - 37 - 41 - 43 - 47 - 1032 - 22947972

The values in Table 2 are obtained by equation (3.9) and are all contained in
Dummigan’s article [6], who used the methods of [23]. As in (1.1) we can also use
(3.9) to get the following result for the cuspforms of weight 24:

L(46, Sym2A24’1) L(46, Sym2A24,2)

<A24,1, A24,1>71'69 <A24,27 A24,2>7T69

B 238 .59 . 691 - 2294824233197

©326.512.77.113.134.172-192-23-29-31-37 - 41 -43 - 47 - 103 - 2294797

Based on numerical computations, Zagier in [23] made several predictions about
the exact values of L(s,Sym®*A) and L(s, Sym*A;;). Among them is

L(22,Sym®A15) 216

C3C_w3  38.55.73.11-13-17-19-23

where Cy and C_ are certain periods in the sense of [22] attached to Aj2(z). With
Zagier’s normalization we have C,C_ = 2 (A5, A1s). From [23] we have the
value

L(ll,A12)2 _ 28
C2r22  31.52.72.6912°
Therefore, the prediction in [23] is equivalent to
L(22,Sym®A12)L(11, A15)? 257
(A2, A)3755 T 31257 75 11-13-17-19- 23 - 6912
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and this is the first entry of Table 1. Mizumoto in [20] also obtained this value using
other methods. Using Maass-Shimura type operators as in [I5] we hope to obtain
further critical values of these and other symmetric cube L-functions in future work.

For the real part of s € C sufficiently large, we can write the respective L-
functions of the normalized weight x and level 1 Hecke eigencuspform f(z) =
oo ap(n)e?™= in the following ways:

L(s, /)= ] Q=asp+p'7)7",

p prime

L(s,Sym?f) = [ (1= (app)? —2p" " )p~" +p*272)(1 = p" 7)),
p prime

L(s,Sym*f) = [ ((1 = (as(p)* = 3p" *as(p))p~*

—3— 11— _3_ -1
+p3re 3 23)(1_af(p)pn 1 S+p3l€ 3 28)) .

Therefore, for A, (z) = Y07, 7x(n)e*™™* we have the ratio

L(2k — 2,Sym>A,)L(k — 1, A,) gt 4
L(2Kk — 2,Sym?A,)3

(1.2)
— gind H (1 — (T (p)? — 2p" L)p28H2 4 p=2542)3(] _y=rtl)3
(1= (1x(p)3 = 3p" 27 (p))p=25F2 + p=r+1) (1 — T (p)p—"+! + p—=t+1)2°

p prime

We calculated (1.2) numerically using 2000 factors in the Euler product for  as in
Tables 1 and 2. We compared these to the values of the ratios obtained using the
results in Tables 1 and 2, and found agreement to 47 decimal places.

In Section 2 we define the Eisenstein series and the L-functions that we work
with and give the definitions of B,, and H(r,n). In Section 3 we prove an explicit
decomposition of the restriction to the diagonal of Siegel Eisenstein series of degree-
2 which gives the values in Table 2. We also give certain applications of this formula.
We prove a decomposition formula for the restriction to the diagonal of Siegel
Eisenstein series of degree-3 in Section 4. This makes precise a general description
of the restriction first stated in Section 6 in [I0]. We switch to adelic language in
certain places of both sections to simplify some computations. In the last section
we use Katsurada’s formula for the Fourier coefficients of Siegel Eisenstein series
of degree-3 in [14] to prove Theorem 1. The numerical computations here were
performed using Mathematica 6.0.

The author thanks the referee for numerous suggestions and corrections which
greatly improved the paper.

2. SIEGEL EISENSTEIN SERIES AND L-FUNCTIONS

0, -1,
w=(1 o)

in n x n blocks. For a commutative ring R let R* denote the group of units of R,
M, (R) the set of n x n matrices with entries in R, and let

Spn(R) = {g € Ma,n(R) | QTJng =Jn}

Let
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where g7 is a matrix transpose. Consider the Siegel parabolic subgroup

Poo(R) = {(‘8‘ A§_1> € Spa(R) | A€ GLn(R)} ,

the Klingen parabolic subgroup for n = 2,

a ok *
0

Pam =40 o S o esmm [aer (3F) estam .
0 v *x 9

and the Borel subgroups for n =1 and 2,

Bi(R) = {(g abl) € SLy(R) |a € R*, be R},

By(R) = {(‘g Af_1> € Spa(R) | A= (g l;) c GLQ(R)}.

Let n € Z~( and let kK > n + 2 be an even integer. The degree-n Siegel upper
half-space is

Hn={2€ M,(C) | 2T =2, z=x+iy, y > 0}.

Then Sp,(Z) acts on H, by (4 5)(2) = (Az+ B)(Cz+ D) ! for (4 5) € Sp,(Z)
and z € £,. Recall that a coprime symmetric pair of matrices {C, D} satisfies
CDT = DCT and the entries are coprime in the sense that if GC and GD are
both matrices with integral entries, then so is the matrix G. From Maass [19]
this is the same as the ordered pair (C, D) having a completion to an element
(4 B) e Sp,(Z). Note that two coprime symmetric pairs are said to be equivalent
if (C,D) = G(C",D’) for some G € GL,(Z). Then we define the weight x and level
1 Siegel Eisenstein series of degree-n by

(2.1) Enn(2)= > |Cz+ D"
{C.D}

where {C, D} ranges over all representatives of equivalence classes of coprime sym-
metric pairs of degree-n.

For computational reasons, it will be convenient to temporarily switch to adelic
language. Recall that the profinite completion of the integers is 7= @Z /nZ and

the ring of integral adeles is Az = R x Z. The ring of rational adeles is Ag = Q® Ay
and Jo = Ag) denotes the ideles. Let A denote the finite adeles of Q.

Following [II], we can associate to a holomorphic modular form f(z) on $,
a holomorphic modular form on Sp,(R) and then a holomorphic modular form
on Sp,(Ag) in the following way. For ¢ = (A2 B) € Sp,(R) and z € $, let
pr(g) = det(A +iB)* and u(g,z) = det(Cz + D)~'. To a modular form f(z) on

9y, define ¥y (g) = p(g,i1,)" f(g(ily)). Setting
Koo ={g € Spu(R) | g(il,) = iln},

then U(g) is left Sp,(Z)-invariant and right p.-equivariant with respect to K.
We say that W¢(g) is a holomorphic cuspform on Sp, (R) if f(z) is a holomorphic
cuspform on $),,.

The Strong Approximation Theorem states that Sp,(Q)Sp,(R) is dense in
Spn(Ag). Thus the natural injection Sp, (Z)\Spn(R) = Spn(Q)\Spn(Ag)/Spn(Ao)
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is a diffeomorphism. It follows that to a left Sp,(Z)-invariant and right (Ko, px)-
equivariant continuous function ¥y on Sp,(R) we can associate a left Sp, (Q)-
invariant, right (K., ps)-equivariant and right Sp,(Ag)-invariant function on
Spn(Ag). We temporarily label this function \T/f(g) and we say that \T/f(g) is
holomorphic of weight « if ¥;(g) (and also f) is holomorphic of weight x. Simi-
larly, \Ilf (9) is a cuspform if ¥ ;(g) (and f) is a cuspform. By abuse of notation, for
simplicity we relabel T #(g) by f(g) throughout.

For p = (‘3 Aql?fl) € P, o(Ag) we define €, ,(p) = | det A|. For g € Sp,(Ag) let
€n,x be a smooth function so that €, (pg) = €n x(P)€n,x(g). The adelic version of
the Eisenstein series (2.1) is

En,n(g) = Z en,m(Vg)
YEPR,0(Q\Spr(Q)
for g € Spn(Ag).
Consider the diagonal embedding ¢ : 1 X - -+ X 1 — $,, where
Zl DY O
(21, yzn) = | ¢ :

O DR Zn
The respective embedding of groups is ¢ : SLa(R) X - -+ X SLy(R) < Sp,(R) where

ay by

These embeddings are compatible in the sense that for g € SLa(Z) X - -+ x SLo(Z)
and z € H; X -+ x H1 we have 1(g(z)) = t(g)(¢(z)). Note that for g = (¢g1,...,9n) €
Bi(Ag)x---xB1(Ag) then €, .. (¢(9)) = €1,.(g1) - - - €1,6(9n ), and note that this holds
also for g € SLy(Ag) X -+ X SLa(Ag). Similarly, for ¢ : Spa(Ag) X SLa(Ag) —
Sp3(Ag) and (g1, g2) € Sp2(Ag) x SLa(Ag) we have €3, (¢(g1,92)) = €2,x(91)€1,6(92)-

Set ¢ = e?™* and let f(z) = > .-, af(n)g™ be a normalized cuspform of weight
k and level 1 that is an eigenfunction of the Hecke operators at all primes. We
define the standard degree-2 L-function attached to f(z) by

Lis, = [[ (1—aw=)1—app )",

p prime

which converges for Re(s) > (k + 1)/2. For any prime p, {a,,a;} are the Satake
parameters of f(z) where o, = p"~' and a, + o), = ag(p). Via the Mellin
transform, this L-function has a holomorphic continuation to C with a functional
equation and critical set {1,...,x — 1} in the sense of [5].

For the real part of s sufficiently large, the symmetric power L-functions of f(z)

are defined by the Euler products

L(s,Sym"f) = H H(l—ag_jagp_s)_l

p prime 7=0
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and, in particular,
—s k—1—s —s\\ 1
L(s,sym’f) = [[ (A =ap™)(1—=p" ') (1 —alp™))
p prime
and
_s — - —s\\ 1
L(s,Sym*f) = [ (1 =adp )1 = afa,p™)(1 - apalyp*) (1 — aip™)) .
p prime

These last two are known to have analytic continuations to C from [1I] and [16], [17],
for example. The critical set of both L-functions is {1,...,2x — 2}.

For 3 cuspforms f1, fa, f3 of weight x and respective Satake parameters {c, ;, a;) j
for j = 1,2,3 we define the triple product L-function by

L(s, f1® f2® f3)

= H ((1 —ap1ap2ap3p °)(1 — Oépylapﬂa;z,spfs)(l - ap,l%/ozapﬂpﬂ)
p prime
x (1— 0‘;,10411,20‘107317_8)(1 - ap,la;ga;,gp_s)(l - 04;40%20‘;,31’_8)
- ey -1
x (1 - 04;),104;;,20%31) (1 - 042),104),204;,310 3))
From [10] this has a meromorphic continuation, a functional equation, and critical
set {k,...,2x — 2}. Note that since ay jo, ; = p"~" we have the decompositions

L(s,f® f® f) = L(s,Sym’f) L(s — (v — 1), f)?

and
L(s, i ® f1 ® f2) = L(s,Sym®f1 @ fo)L(s — (k — 1), fo)
where
L(s,Sym*f1 ® fo) = H (1- a;,lap,ﬂfs)(l - 04;27,104;,21775)(1 - 04;2,10417721773)

p prime

(1= a0 p ™) (1 = app™ 7)1 = 0, 0p" 1 77))

The Bernoulli numbers B,, are rational numbers defined by the generating func-

tion
(o)
T B, ,
D DR

From [3] the generalized class numbers H(r,n) are rational numbers and H(r,0) =
((1—2r) = =By, /2r. For n > 0and D = (—1)"n let xp(r) = (£) and L(s, xp) =
Y rey xp(k)k~*. Define

h(r,n) = (=)A= D= Y221 """ L(r xp)
for D = 0,1 (mod 4), and 0 otherwise. Then the generalized class numbers are

defined by
H(r,n) = Zh(r,%) .

d?|n

-1

If D is a discriminant of a quadratic field extension, then H(r,n) = L(1 —r,xp) =

B
—*L where

| D]

Brnn = D' xp(j ( )
x Z D]
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is a generalized Bernoulli number and

is a Bernoulli polynomial.

3. RESTRICTION OF SIEGEL EISENSTEIN SERIES
OF DEGREE-2 AND APPLICATIONS

In this section we give a decomposition formula for the restriction to the diagonal
of Siegel Eisenstein series of degree-2. In essence this result is already known; see
[1] and [9] for example. Let wy = (9 §) and for g € GLa(R) let g* = wagws and let
fi(g) = f(g?). Tt is formal that f7 is an eigenfunction of the Hecke operators if f
is. Throughout, for a group G we write G2 for G x G, G for G x G x G, G* for
the diagonal {(g,g) | g € G} € G2, and G2 for {(g,¢") | g € G} C G2. Recall that
by a cuspform on SLs(Ag) we mean in the sense of Section 2. That is, f(g) is the

cuspform ¥¢(g) associated to a cuspform f(z) on $;.

Lemma 1 ([2,0]). The double coset space P o(Q)\Sp2(Q)/L(SL2(Q)?) has repre-
sentatives 14 and & = (12 02). The respective isotropy groups in 1(SLo(Q)?) are

1(B1(Q)?) and (S Ly ((@)UAJ%).2

The following integral representation has a generalization to n € Z~q, but the
n = 1 case is the one relevent for our purposes.

Theorem 2 ([2,[8]). For f € B,, we have
(Eanlen) f) = G2 g o2 symi (e
BN . KCICEEE) o ‘

From Lemma 1 we have P o(Q)\Sp2(Q) = ¢(SL2(Q)?) UE(SLy(Q)?) and there-
fore we get the decomposition of the adelic Eisenstein series

E «(1(91,92)) = Z 2,0 (7L(91,92))

Y€B1(Q)*\SL2(Q)?

(3.1) + > €2,x(§71(91, 92))-

YESL2(Q)A'\SL2(Q)2

As
B1(Q)*\SLy(Q)* = (B1(Q)\SL2(Q)) x (B1(Q)\SL2(Q))

and setting v = (y1,72) for v; € B1(Q)\SL2(Q) we have yi(g1, g2) = (71,72)¢(91, 92)
= 1(7191,7292). Furthermore, we have €2 ,(t(7191,7292)) = €1,5(7191)€1,1(7292)-
Therefore,

> eo. (7191, 92)) = > €2, (1(7191,7202))

Y€B1(Q)2\SL2(Q)? (71,72)€B1(Q)2\SL2(Q)2

= Z €1,x(7191)€1,5(7292)

(3.2) 71,72€B1(Q\SL2(Q)

Z €1, (7191) Z €1,1(7292)

71 E€B1(Q\SL2(Q) v2€B1(Q\SL2(Q)
E1,x(91)F1,k(g2).
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From [9] we have the following.

Lemma 2. }° o7 @)a\s1.(@)2 €2x(§70(91,92)) is a cuspform on SLy(Aq) of
weight k in each of the variables g1 and go.

Thus we can write

> e2n(E7(g1.92)) = > c(f1)(g2) ()

YESL2(Q)A\SL2(Q)? f1€Bs
where ¢(f1)(g2) is a cuspform of weight x in go € SL2(Ag). Thus c¢(f1)(g2) =
> pen, €(f1, f2) f2(g2). This gives
> (g g2) = Y elfi f2)f1(91) f2(g2)
YESL2(Q)A\SL2(Q)? f1,f2€Bs
for constants ¢(f1, f2). By Theorem 2 and Lemma 2 we have for any f; € By,
(_1)5/2,”237&
(k= 1)C(K)C(2k = 2)
:< Z 62,~(§7L(917')),f1> = Z c(fr, f2)(f1s 1) f2(g2)-
YESL2(Q)A'\SL2(Q)? f2€B,

It follows that

L(2k — 2,Sym>£1) fi(g1) = (Bo.n(g1,), 1)

(=1)%/2723—%  L(2k — 2,Sym?f)
(k= 1)¢(r)C(25 — 2) (f1, fr)
if fo = flh and 0 otherwise. Thus

Z €2, (E7(91, 92))
7ESL2(QA\SL(Q)?
Ut s Lze 2 Syulf)
T (r-1C(R)CR—2) A (f,.f)

C(f17f2) =

(3.3)
Fla1) f4(g2)-

Applying (3.2) and (3.3), the decomposition in (3.1) can be precisely written
B (u(91,92)) = En,k(91)E1,k(92)
(3.4) n (—1)%/2723=" Z L(2k — 2,Sym?f)
- DCRCEn-2) 22 (D)

The Fourier expansion of a (classical) Siegel Eisenstein series of degree-2 is

E2,n(2) — Z AQ,N(T)GQWiTr(TZ)

TeA
T30

Flg1) f(g2).

where Tr is the matrix trace and A = {(b‘/lQ bf) | a,b,c€Z}. Let T = (b72 béz).

From [7] we have

) dac — b?
35) Ay (T) = dHH( _1’—>
(3.5) 2,x(T) ¢(3—-2r)C(1—k) d(;b,C) ' :
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where H(r,n) is the generalized class number defined in Section 2. By applying
Siegel’s ®-operator (see the proof of Lemma 6 in Section 5 for a discussion of this

operator) we have
n 0\ _ 204-1(n)
o (5 0) = unl) = G2

Note that formula (3.5) reduces to this for 7' = (2 J).
Set g; = €272 Restricting the Fourier expansion above we get

27rzTrTLz,z ni n
Es . (1(21,22)) g Ag (T (=172 E Az (T)qi" q5°

TeA TeA
T>0 T>0

(3.6) = > > Agk(T) | gty

n1,m2>0 \T€A(ni,n2)

where A(ny,ng) = {(;72 Z;L/f) eA ‘ dning — b% > 0}. Taking the Fourier expan-

sions of the terms in the right-hand side of (3.4) (in classical language)

EZK(L(Z;[,Zz)) = (1 Z or—1(n1)q ) ( (1_5) Z Tr_1 nz)q2 )

n1=0 no=0

2" (—1)~/? L(2k — 2,8ym*f) [ & . & n
N S LTI 2 estm)ai | O as(m)a? |-

fEBK ni=1 ng=1
Setting zo = 0 in (3.7) and applying (3.6) we get

oo

Z Z AQ,R(T) Q?l = E17,;(21).

n1=0 \T€A(n1,0)
Equating (3.6) and (3.7) and setting ns = 1 gives us

oo

Z Z Az (T) | a1

n1=0 \TeA(ni,1)
2 23R (=1)r/2 L(2k — 2,Sym?f)

S s A Y
From (3.5) we can write
5 V) )
Az (T H(k —1,4n, — b?).
L A = g 2 e A=)
For ny > 1 this gives
5 [vm] ; 5 N2
w2, "= (qrem) )
(—1)"/2m23=" 2/{—2 ,Sym? f)
) BCENRERETEE Z R

€B.
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Now take n; = 1 and apply the values ((n) = (—=1)"/?*12"=1B, 7" /n! and (1 —

n) = —B,/n for n even to (3.8). For B, and B,, as in Theorem 1 we then have
Z L(2k —2,Sym*f) 2415
35=3 (g — D2k — 2)!
PRI (5~ 2)1(25 —2)
KBak—2
(39 % (T By o DH(x—1.3) ~ (s~ DH(x—1,4) ).

This is essentially in [I5] but is used in the proof of Theorem 1, so we include it
here for completeness. Taking k € {12, 16, 18,20, 22,26} gives Table 2.
For k = 4,6,8, 10, 14, (3.8) gives

[v/an]
S Hiw— 1,40 — 1) = B2 0y (KBQH

—=—= 0x_1(n).
o C(1—k) k—1)By

Note that the k = 4,6 cases of this are on p. 277 of [3] and the x = 8,10 cases are
in [7].

Recall from Section 1 that Agy j(2) = > 07| T24;(n)g™ for j = 1,2 are the two
normalized Hecke eigencuspforms of weight 24 where 794 (1) = 1 and 7241(2) =
540 + 12v/144169 and 724 2(2) = 540 — 121/144169. From (3.8) we get the values

L(46, Sym2A2471) .
(VACYRIWACYRDE
227(—2'0.3%.52. 72.11° - 1719 - 59 - 691 - 144169 - 2294824233197
+47- 19661 - 294062653 - 432927907 - 5332396711v/144169)
328.514.79.116.131.173.193 - 2329 - 31 - 37- 41 - 43 - 47- 103 - 144169 - 2294797

where replacing Agy 2(2) for Agy1(2) on the left-hand side gives the (Galois) con-
jugate of the right-hand side.
As a further application of (3.8) we obtain the formula

[vVan)
23691 >  H(11,4n—b%) =2%-3.5-7-13- 13159301, (n) +2° - 3" - 57 - Try5(n).
|b|=0

This implies the well-known congruence 712(n) = o11(n) (mod 691) due to Ra-
manujan. See [I3] for details where this was obtained independently. Note that in
a similar way we can also obtain further congruences for higher weights as in [4].

4. RESTRICTION OF SIEGEL EISENSTEIN SERIES OF DEGREE-3

In this section we prove a precise decomposition formula for Siegel Eisenstein se-
ries of degree-3 restricted to the diagonal. Such a decomposition was first described
in Section 6 in [I0], but there only the last term below was given explicitly.
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Proposition 1. Let Ej . (z) be the Siegel Eisenstein series of degree-3 and let By,
be as in Theorem 1. Then
E3 . (1(21, 22, 23)) = F1,x(21)E1,x(22) E1,x(23)

Sl o . D@e—28ymf) o o
DR —2) <E< 1)f§~ T F(z2)f(23)

L(2x — 2,Sym*f) b L(2x — 2,Sym* f) b
+ E1,x(22) —— i f(z3)f (21) + B1,x(23) —— o f(z1) f(22)
’ fe% 1) O f;;n ) 2)
_1)R/298=5K 3=2r(,. _ 9|3 o — 2 2
L~z (= —2) > L3r—27h85h8 fs)fl(zl)f2(22)f3(z3)<

(k= DIC(K)C(2k — 2) f1oiogeeny 1 f1)(f2, f2) (3, f3)

Let ¢ denote the diagonal embedding (either of degree 2 or 3 depending on the
context). For gi,g2 € SL2(Q) we define the following embeddings of SLa(Q)?

into SLy(Q)3, 112(g1,92) = L(ghgivfh)’ t13(91, 92) = L(gl,gg,gﬁ), and 123(g1,92) =
[’(92791792)' Let wIQ = (? _01)

Lemma 3. The double coset space
(4.1) Ps0(Q)\Sps(Q)/1(SL2(Q)%)
has 5 orbits, with representatives 1g, L(lg,g),g,@(lg,71),&(%,72) where

100000
0100 100 0 010000
100 0 110 0 ~ oo 100 0

Mm=10 00 10" oo 1 -1l ™ =g 0110 0
001 0 000 1 0000T10

100001

The respective isotropy groups inside 1(SL2(Q)3) are 1(B1(Q)?), 112(SL2(Q),
B1(Q)), t13(SL2(Q), B1(Q)), t23(SL2(Q), B1(Q)), and

f(fa a b a bs x
- ({3 2)-6 2)+o 2) ecor
b1,b02,b53 € Q, by +by+ b3 = 0}
Proof. From Proposition 3.1 of [9] we have that

P3.0(Q)\Sps(Q)/1(SL2(Q) x Sp2(Q))

has 2 orbits, with representatives 14 and E and respective isotropy groups ¢(B1(Q) x
P20(Q)) and

(e vy
m@={a(2 90 8 Lo (@) esn@.
0 ~ a §

aeQ”, z,2',y,y €Q
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Consider

U(B1(Q) X Py0(Q))\e(SLa(Q) x Spa(Q))/e(SL2(Q)?)
= B1(Q) x P2o(Q)\SL2(Q) x Sp2(Q)/SL2(Q) x 1(SL2(Q)?)
(4.2) = P, 0(Q)\Sp2(Q)/u(SL2(Q)?).

From Lemma 1, the last double coset of (4.2) has 2 orbits, with representatives
1y and ¢ = (12 9?) and respective isotropy groups +(B1(Q)?) and L(SLa(Q)2).

w2 12

Thus the double coset on the left-hand side of (4.2) has 2 orbits with represen-

tatives ¢(12,14) = 1g and ¢(12,£) and respective isotropy groups ¢(B1(Q)3) and

123(SL2(Q) x B1(Q)). It follows that the double coset (4.1) has these representatives

(so far) with the respective isotropy groups ¢(B1(Q)?) and t23(B1(Q) x SL2(Q)).
Consider

(4.3)  Hi(Q)\u(SL2(Q) x Sp2(Q))/e(SL2(Q)?) = Po1 (Q)\Sp2(Q)/e(SL2(Q)?).

Note that
P2,1(Q)\Sp2((@) = {iL'/ | (E/ € Q}\{(x’yvzaw) € Q4 ‘ z,Y,z,w not all O} .

By the right action of ¢(SL2(Q)?) on this space, we can assume that (z,w) = (0,0).
Thus this action transforms the above space into

{z | 2 € Q\{(az, 'y, bz, V'y) | (2,y), (a,b), (a,) # (0,0)}.

If x # 0 and y = 0, then the right action gives the representative (1,0,0,0). If
x=0and y # 0, we get (0,1,0,0), and if z,y # 0, then we get (1,1,0,0). These
correspond to the following representatives of (4.3),

0100 100 0
. (1 00 0 (110 o
LN= g 00 12T lo 01 -1

0010 000 1

respectively. See also Proposition 2.4 of [I0]. These representatives have the re-
spective isotropy groups ¢(B1(Q), SL2(Q)), t(SL2(Q), B1(Q)), and

a O b 0
0 a O v

H@ =410 0 o' o0 acQ*, bt eQ
00 0 at

Thus the isotropy groups of (4.3) are written as t13(S5L2(Q), B1), t12(SL2(Q), By),
and O(Q) with the representatives as in the statement of the theorem. O

Lemma 3 implies the decomposition

Ps.0(Q)\Sp3(Q) =t(SL2(Q)%) L 1(12,€)e(SL2(Q)*) U E1(SLa(Q)?)
U E(12,71)e(SLa(Q)?) U Eu(why, 72)e(SLa(Q)?).
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As in Section 3 this implies the following decomposition of the pullback of Ej . (g),

E3,K(L(glag2393)) = Z 637,{(’}/L(g1792793))
vE€B1(Q)3\SL2(Q)*
+ Z 63,;{@(12,5)’}%(91;92;93))
YEt23(SL2(Q),B1(Q))\SL2(Q)?3
(44) + Z 63,%(6,-}%(91792793))
YEt13(SL2(Q),B1(Q))\SL2(Q)3
+ Z €3, (§t(12, 71)v(91, G2, 93))

v€L12(SL2(Q),B1(Q)\SL2(Q)*

+ Z €3ﬁ(f~b(w/2, Y2)vL(21, 22, 23)).
7EO(Q\SL2(Q)?

We consider each term in (4.4). Following Section 2 we have that
(4.5) > €3, (7L(915 925 93)) = E1,x(91) E1,15(92) En,x(93)-
YEB1(Q)*\SL2(Q)?

Note that
125(SL2(Q), B (Q)\USL2(Q)*) = (B1(Q\SL2(Q)) x (SL2(Q)*'\SL2(Q)?)

Thus for the second term in (4.4) we have

Z E3VK(L(]-2,5)75(91792,93))

YEt23(SL2(Q),B1(Q))\SL2(Q)3
= > €3,x(¢(7191,§720(92, 93))
(71,72)€(B1(Q\SL2(Q) % (SL2(Q)A"\SL2(Q)?)

= Z €1, (7191)€2,5(§72L(92, 93))
(71:72)€(B1(Q\SL2(Q)) X (SL2(Q)A'\SL2(Q)?)

= Z €16 (791) X Z €2, (7192, 93))-

YEB1(@\SL2(Q) YESL2(Q)A\SL2(Q)?

From (3.3) we have

> e2,n(67¢(92, 93))

YESL2(Q)A\SL2(Q)?

. w23 L(2k — 2, Smef) !
G G e

and }°. . (9)\SLa(@) €1.x(791) = E1,x(g1). Thus this term is
T2r—3 Z L(2xk — 2,Sym*f)
(k= 1)¢(r)((2K — 2) (£, 1)

feBk

(4.6) E1.(g1) £g2) f*(g3)-

The representative gL(lg,fyl) can be given as ¢(&, 12) and for g1, 2,93 € SL2(Ag)
we can write £t(g1, g2, g3) as t(£(g1, 93), g2). Thus we can apply the same analysis
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as above to the third and the fourth terms in (4.4). This gives

72r—3 L(2xk — 2,Sym?*f) !
EI,R(QQ) (KJ — 1)((%)((25 — 2) ng:K <f> f> f(g3>f (91)7
T2r 3 L(2k — 2, Sym?*f) "
(47) El,ﬁ(g3) (K)— 1)((/‘7)4'(2/{_2) f§N <f, f> f(gl)f (92)7
respectively.

We now consider the last term. Note that Mizumoto [20] states that the identity
in Theorem 1.3 in [I0] should be multiplied by 4. This is due to a non-archimedean
computation in Section 3 of [I0]. In particular, in the notation of [I0], for 4 €
Po1(Z)\Spa(Z) we can wiite § = €111(7, Acy) for 1,7’ € Pro(Z)\Spi(Z) and

Ay = (Vée e?”) for €, € Z (and not just in Z~¢). Thus the expression (3.6.2) in

[10] should read
¢(2s+2k) DY (s + 2k — 1)

—2K
i,z
//(51/SL2(Z))2 Z Z ( 1)

e,v€Z—{0} 7Y €P1,0(Z)\Sp1(Z)
€,v relatively prime

)i (e 4 VP 2) f(21)(22) (y1y2)* 2 day dwy dyy dys

where f, ¢ are elliptic cuspforms of weight 2x and fo) is a certain Dirichlet series

attached to an elliptic cuspform v of weight 2x. Here we consider cuspforms of
weight k, so this implies the following integral representation.

M(fyla z2

Theorem 3 ([I0)). Let f1, f2, f3 € By, then

(((Bsn(t(s-,0), 1) f2), f3)
(—1)%/228~4s=1053=5=25 (g | o — 1)3T(s + 2k — 2)
I'(2s+ 2k —2)['(s + k)
L(s+26—2 /1 ® 2 ® f3)
C(2s+ K)((4s + 2k — 2)

Furthermore, as a consequence of this and [I0] we have the result.

Lemmad. }° o)\ s1,(0) €3, (EL(why, ¥2)v0(g1, g2, g3)) s a cuspform on SLa(Ag)
in each of the variables g1, g2 and gs.

Following Section 3, from the integral representation of Theorem 3 and Lemma
4 we have that the last term in (4.4) is

(_l)n/22875nﬂ.372n(li _ 2)|3

3 €3, (E(wh, 12)7e(g1, 92, 95)) = (k= 1)IC(K)C(26 — 2)

7€O(Q\SL2(Q)?

L2k —2,f1 ® fo® f3)
(4.8) X flyfmzfgesﬁ T o o) o o) fi(g1) f2(g2) f3(g3).

Substituting (4.5), (4.6), (4.7), and (4.8) into (4.4) and switching to classical lan-
guage gives Proposition 1.
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5. PROOF OF THEOREM 1

We consider the Fourier expansion of both sides of Proposition 1 in the variables
q; = €2™"i% for j = 1,2,3. Equating the first Fourier coefficients and determining

their exact values will give Theorem 1. For simplicity we denote the matrix (% i l%)
(&
by (a,b,c).

Lemma 5. For positive definite T € Ms (37Z) let A3 .(T) be the T*" Fourier
coefficent of the Siegel Eisenstein series Es ,,. Then

(—1)"/223k(k — 1)

A3 :(0,0,0) = BBy (2274 1),
—1)"22k(k—1) .
~1)F2Bk(k—1) .,

A3,(0.1/2,1/2) = ¢ )|B B (2 ]

Proof. These formulas follow from Katsurada’s explicit formula for the Fourier co-
efficients of a Siegel Eisenstein series of degree-3 from [I4]. More precisely, for T
a positive definite half-integral matrix over Z of degree-3, Theorem 1.1 from [14]
gives the formula

(—=1)%/225= % (K — 1)(det(27))"2
Az . (T) = F,.(T
3, ( ) |BHB2K72| H D, ( )
pl4 det(T)

where B, is the i*® Bernoulli number and F, .(T) is a polynomial in p defined
on p. 203 of [I4]. It is straightforward that for " = (0,0,0) we have p = 2 and
F»,:(0,0,0) = 22*~% — 1. In a similar way we have F3 ,(0,0,1/2) = 3"~2 — 1 and
F,.(0,1/2,1/2) = 2571 — 1. Also, F, .(T) = 1 for all other primes and T’s as
above, and this gives the result. Also see the tables from [21]. O

The Fourier coefficents of the right-hand side of Proposition 1 at ny = ny = ng =
1 are readily computed from the special value results and (3.9) in Section 3. We use
Lemma 5 to compute this Fourier coefficient on the left-hand side of Proposition 1.

Lemma 6. The Fourier coefficient of the q1qaqs-term of Es . (1(21, 22,23)) s

2k 23k(k —1)
o T (2PH(k— 1 H(k—-1,4

Brb + BK,B2H72 ( (K ,3) M s (H ’ ))

(=1)%/223k(k — 1)

|BHB2I€72|

(27 42.3°71 4272 — 23).

Proof. We have

E3 . (1(21,22,23)) Z As,m(T)ezﬂTr(TL(zl’ZQ’z3))

TeA
T30

= > Yo AT | aa5ras

ni,m2,m3>0 \TEA(n1,n2,n3)
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where
ny a b
Alny,no,n3)=<T=1|a ns c ‘ T >0, 2a,2b,2¢c,n1,n9,n3 € Z
b ¢ ns3

Thus the g1 g2g3-Fourier coefficient of Fs ,;(¢(21, 22, 23)) is ZTGA(LM) As (T) where

)

1 b
(5.1) A1L1L,1)={T=|a c ‘T>O, 2a,2b,2c € Z
b 1

o = Q

Let & = (z,y,2) € R3, so for T € A(1,1,1) we have
FTT = 2% + 3 + 2% + 2azy + 2bxz + 2cyz > 0.

Taking (z,y,2) = (—1,1,0) gives 1 > a and taking (x,y, z) = (1, 1,0) gives a > —1.
By symmetry we have 1 > a,b,¢ > —1 in (5.1). We distinguish 3 cases.

(i) At least one of a,b, ¢ is 1.

If a = 1, then FT7 = (z + y)? + 2% + 22(bz + cy) > 0. Taking x = —y = 1 we
get 224+ 22(b—c) > 0, so for z > 0 this implies that z > 2(b— ¢). This holds for all
real z > 0 and so we must have b = c. If z < 0, then z < 2(b—¢) and we get b = c.
Similarly, if b =1, then @ = ¢ and if ¢ =1, then a = b.

If a = —1, then x = y = 1 implies b = —c and similarly for b = —1 or ¢ =
—1. Thus the possible choices for T in this case are (1,a,a), (a,1,a), (a,a,1),
(-1,a,—a), (a,—1,—a), (a,—a,—1) where a € {0,+1/2,4+1}. Note that all of
these matrices are degenerate. Thus the possible matrices in A(1,1,1) satisfying
condition (i) are

(1a Oa 0)7 (15 17 1)v (17 1/25 1/2)5 (17 _15 _1)a (17 _1/27 _1/2)7 (Oa 17O)v (1/2a 11 1/2)7

(-1/2,1,-1/2),(-1,1,-1),(0,0,1),(1/2,1/2,1),(-1/2,-1/2,1),(—1,—1,1),

(-1,0,0),(-1,1/2,-1/2),(-1,-1/2,1/2),(0,-1,0),(-1/2,—-1,1/2),

(1/2,—1,-1/2),(0,0,—1), (1/2, —-1/2, —1),(=1/2,1/2,-1).

Denote the the 2 x 2 matrix (§§) by 77 and (! ¢) by T} for ¢ € {0,£1/2}. For T} =
(‘é g) let T; = (g % §). It is elementary that the matrices above are respectively
equivalent to
TOaTl, T1/2; Ty, T—1/2, TOv Tla T1/23 T—1/27 TOa T, T1/2; T—l/?; To, T1/2, T—1/2;
(52) T07T71/27T1/27T07T1/27T71/2'
The Fourier coefficients A . (T}) for all of these T;’s can be determined by Siegel’s

®-operator. Recalling the definition from [I8] , let z = (ZOI 3) € 9,, where 2’ € 9,,_1

and ¢t € R. Then Siegel’s ®-operator on a modular form f(z) of degree-n and weight
K is
P Z 0
wper-ms(; 1)
The operator maps modular forms of degree-n to modular forms of degree-(n — 1)
and is surjective for kK > 2n. For a modular form of degree-n with Fourier expansion
f(2) = S pag An ks (T)e?™ T (T2) we have

’ 7 0 2miTr(T'2")
((I)f)(z):ZAn,n 0 0 e .

T'>0
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From Theorem 2 on p. 72 of [I§] we have that ® takes Siegel Eisenstein series

of degree-n to Siegel Eisenstein series of degree-(n — 1). It follows that we have
Az 5 (Ty) = A2 (Tj).
Letting Ay = {T'€ A(1,1,1) | T satisfies (i)}, then from (5.2) this gives

Z A3 x(T) = 6A3(To) +4A3 . (T1) + 1243 (T1/2)
TEA(,L)
(5.3) = 645,(Ty) + 442 . (T7) + 1242 (T o).

(ii) None of a, b, ¢ is £1 and at least one is 0.
This condition gives the possible matrices

(0,0,0),(0,0,+1/2),(0,+1/2,0), (£1/2,0,0), (0, £1/2, £1/2),
(£1/2,0,£1/2), (£1/2,£1/2,0).

Note that if the triple (a’,d’,¢’) is a permutation of the triple (a,b,c), then the
respective matrices are equivalent. Also note that (0,0,—1/2) is equivalent to
(0,0,1/2) and (0,£1/2,41/2) is equivalent to (0,1/2,1/2). It follows that for
Ay ={T € A(1,1,1) | T satisfies (ii)} we have

(5.4) Z As ((T) = A3.5(0,0,0) + 643 ,,(0,0,1/2) + 1243 ,,(0,1/2,1/2).
TGA(“)

(iii) None of a,b,c is 0 or +1.

Let sgn(x) denote the sign of . It is easy to see that for T = (a, b, ¢) satisfying
(iil) that sgn(a)sgn(b)sgn(c) = —1 if and only if det(7") = 0. In these cases we have
the possible T"s,

(1/2,1/2,-1/2),(1/2,-1/2,1/2),(—-1/2,1/2,1/2),(-1/2,-1/2,-1/2).
These are all equivalent to T /2. In the cases where sgn(a)sgn(b)sgn(c) = 1 we have
(1/2,1/2,1/2),(1/2, —1/2,—1/2), (—=1/2,1/2, ~1/2), (~1/2, —~1/2,1/2),

and these are all equivalent to (0,1/2,1/2). Setting
Ay ={T € A(1,1,1) | T satisfies (ii7)}
we get

D Agu(T) = 443,.(Tyys) + 445.£(0,1/2,1/2)
TGA(,;,;,;)

(5.5) = 4A2,H(T1’/2) +445,(0,1/2,1/2).

As A(1,1,1) = Ay U Ay U Agiay, then (5.3), (5.4), and (5.5) give

Z A37H(T) :6A27H(T6) + 4A2),§(T1/) + 16‘42,/'@( 11/2)
TeA(1,1,1)

(5.6) + A3,(0,0,0) + 643,.(0,0,1/2) + 1645 ,(0,1/2,1/2).
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TABLE 3. The Fourier coeffiicent of the term n; = ny = ns =1 of
the restriction of the weight x Siegel Eisenstein series of degree-3,
B3 o (1(21, 22, 23))-

| K | q192q3 Fourier coefficient of Es . (t(21, 22, 22)) |
4 | 13824000
6 | -128024064
8 | 110592000

10 | -18399744

12 | 54446805504000/53678953

14 | -13824

16 | 1819899560558592000/6232699579062017

18 | -44969531539968,/6651496075469717

20 | 9322484674060800000,/26926798278409918871

22 | -3309606048905127411236352,/118085745272487494165444953

24 | 13608303486944159980965888000/6129548905123243895958210091237
26 | -1900871878110931472817360384,/13028539284058750961123342020031

We have from (3.5) that

Az o(T7) = ﬁ,
s (1)) = g = 14)
Az o (T4 )5) = G 2"§C(1 — K)H(H -1,3).
Applying this and Lemma 6 to (5.6) gives the result. O

We give some of the values of this coefficient of the pullback of Ej ,(z) in Table
3. Note that for k € {4,6,8,10,14} the values in Table 3 obtained fom Lemma 5
are equal to (—2k/B,)3.

We take the Fourier expansion of both sides of Proposition 1 and equate the
q192q3-Fourier coefficients. From Lemma 6 this gives us

_23_/<; 23k(k — 1)
B, = BxBa2x 2
(=1)"/223k(k — 1)
| By Bay 2|
_ (_ 2%k )3 ()RR R3 2 3 L(2k — 2,Sym?f)
(T-w) om0 -m A A
(_1),4/2287557@72,{(” _ 1)!3 Z L2k —2,f1® f2® f3)
(k = DIC(r)C(2K — 2) (fu, F)(fas f2)(fas f3)

(2°H(k —1,3) + 3H(x — 1,4))

(22}-{—4 + 2 ) 3}@—1 + 2K,+2 _ 23)

f1,f2,f3€Bx

We then apply the relevant critical values of {(s) and the result from (3.9). Solving
for the weighted sum of the triple product L-functions proves Theorem 1.
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