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SPECTRAL APPROXIMATION OF PATTERN-FORMING

NONLINEAR EVOLUTION EQUATIONS WITH DOUBLE-WELL

POTENTIALS OF QUADRATIC GROWTH

NICOLAS CONDETTE, CHRISTOF MELCHER, AND ENDRE SÜLI

Abstract. This paper is concerned with the analysis of a numerical algo-
rithm for the approximate solution of a class of nonlinear evolution problems
that arise as L2 gradient flow for the Modica–Mortola regularization of the
functional

v ∈ BV(Td; {−1, 1}) �→ E(v) :=
γ

2

∫
Td

|∇v|+ 1

2

∑
k∈Zd

σ(k)|v̂(k)|2.

Here γ is the interfacial energy per unit length or unit area, Td is the flat torus
in R

d, and σ is a nonnegative Fourier multiplier, that is continuous on R
d,

symmetric in the sense that σ(ξ) = σ(−ξ) for all ξ ∈ R
d and that decays to

zero at infinity.
Such functionals feature in mathematical models of pattern-formation in

micromagnetics and models of diblock copolymers. The resulting evolution
equation is discretized by a Fourier spectral method with respect to the spa-
tial variables and a modified Crank–Nicolson scheme in time. Optimal-order
a priori bounds are derived on the global error in the �∞(0, T ; L2(Td)) norm.

1. Introduction

We are interested in pattern-formation phenomena that stem from a competition
of interfacial and dipolar energies. More precisely, we consider discrete evolution
problems that approximate local minimizers u : Td → {±1} of variational problems
on a 2π-periodic domain T

d (flat torus of dimension d = 2, 3) for energy functionals
of the form

(1.1) v �→ E(v) =
γ

2

∫
Td

|∇v|+ 1

2

∑
k∈Zd

σ(k)|v̂(k)|2.

Recall that 1
2

∫
Td |∇v| = Per({v = 1};Td) agrees with the perimeter functional.

The parameter γ > 0 is the interfacial energy per unit length or area, for d = 2
and d = 3, respectively, and v �→ Fv = v̂ : Zd → C denotes the Fourier transform
on T

d. The Fourier multipliers we are considering are mostly given in terms of
nonnegative continuous functions σ ∈ C0(R

d) that are symmetric in the sense that
σ(ξ) = σ(−ξ) for all ξ ∈ R

d and that decay to zero at infinity. Such dipolar
interactions prefer, from a variational standpoint, high frequencies and therefore
give rise to oscillations. Typical examples include the following:
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• magnetic garnet films (with d = 2); cf. [9, 11]:

σ(k) =
1− exp(−δ|k|)

δ|k| for k �= 0 and σ(0) = 1;

• diblock copolymers (with d = 3); cf. [4]:

σ(k) = |k|−2 for k �= 0,

on the restricted class A = {v ∈ BV(Td; {−1, 1}) :
∫
T3 v dx = 0}.

In view of specific applications it is interesting to let the Fourier multiplier σ
depend on a system parameter such as, for example, the relative sample thickness δ
in our first example of a magnetic film, and to study the morphology and bifurcation
of patterns when the parameters γ and δ of the two competing energy contributions
vary. Parameter studies of this kind are one of the main motivations for performing
numerical simulations of physical phenomena for pattern-formation equations.

Our approach is based on a Modica–Mortola approximation for the perimeter
functional and the associated L2(Td) gradient flow. Recall that for a nonnegative
double-well potential W , with wells at ±1 and the renormalization∫ 1

−1

√
2W (v) dv = 1,

the functional

v �→ γ

∫
Td

(
ε

2
|∇v|2 + 1

ε
W (v)

)
dx

approximates the interfacial energy in the sense of Γ-convergence by finite transition-
layers of thickness ε > 0; cf. e.g. [1, 2, 5]. Expressing the dipolar energy in units of
the typical interfacial energy, i.e., renormalizing the multiplier σ = σ(k) by γ, we
can assume that γ = 1. Hence our considerations will be based on the energy

v �→ Eε(v) :=

∫
Td

(
ε

2
|∇v|2 + 1

ε
W (v)

)
dx+

1

2

∑
k∈Zd

σ(k)|Fv(k)|2

for ε > 0 small but fixed and the associated gradient flow with variational formu-
lation

∂tu+∇uEε(u) = 0

that, in its long-time asymptotics, leads to local minimizers approximating those
of the sharp-interface problem. The energy gradient decomposes as

∇uEε(u) = Lεu−Nε(u),

where the linear part Lε can be represented in terms of the Fourier multiplier
pε : k ∈ Z

d �→ pε(k) = ε |k|2 + σ(k) ∈ R≥0 and is therefore, for any ε > 0,
uniformly second-order elliptic. Thus we consider the nonlinear evolution equation

(1.2) ut + Lεu = Nε(u) for u(t) : Td → R and t > 0,

subject to periodic boundary conditions and the initial condition u(·, 0) = u0(·),
where u0 is a given 2π-periodic function defined and continuous on T

d. Further,
for positive ε, let Lε and Nε denote, respectively, the linear and nonlinear operator
defined by

Lεv := F−1
[
(ε|k|2 + σ(k))Fv(k)

]
,

Nε(v) := −DWε(v),
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with Wε(·) := 1
εW (·). We shall assume that W ∈ C2(R) is a nonnegative double-

well potential, with local minima at ±1, and that W has at most quadratic growth
at infinity in the sense that there exist positive real numbers K and L such that

(1.3) |DW (v)|2 ≤ KW (v) and |D2W (v)| ≤ L for all v ∈ R.

To prove that, under appropriate assumptions on the regularity of the analytical
solution u, the error in the 	∞(0, T ; L2(Td)) norm between u and its numerical
approximation generated by our spectral Crank–Nicolson method is of the size
O(N−� +Δt2), where N is the number of spectral basis functions used, Δt is the
time step, and 	 ≥ 2. In Section 4 we shall assume in addition the existence of
derivatives of W of order 	+ 1, such that

(1.4) sup
v∈R

(
|D3W (v)|+ · · ·+ |D�+1W (v)|

)
< ∞.

The existence and uniqueness of the analytical solution u follows from an ab-
stract reasoning. In fact, as Lε : H2(Td) ⊂ L2(Td) → L2(Td) is positive and
self-adjoint on L2(Td) and hence sectorial, it generates an analytic semi-group
Sε = Sε(t) on L2(Td). Then, the uniform Lipschitz condition in (1.3) implies,
in view of Duhamel’s principle, the existence of a unique classical solution u ∈
C([0,∞); L2(Td)) ∩ C1((0,∞); L2(Td)) with u(t) ∈ H2(Td) for any t ≥ 0 for the
Cauchy problem

ut + Lεu = Nε(u), u(0) = u0,

with initial datum u0 ∈ H2(Td); cf. [8, 12]. Assuming that W ∈ C∞(R) with
bounded higher order derivatives, a bootstrap argument yields smoothness; that
is, u ∈ C∞((0,∞)× T

d). Note that from the variational structure Lεu −Nε(u) =
∇uEε(u), where ∇u denotes the L2 gradient, we have for a classical solution∫ T

0

‖ut(t)‖2 dt+ Eε(u(T )) = Eε(u(0))

for any T > 0, with ‖ · ‖ signifying the L2 norm on T
d. The discrete counterpart of

this energy equality, satisfied by the sequence of numerical approximations to the
analytical solution u, is stated in Lemma 3.1.

The use of a Fourier spectral method for this problem is particularly convenient,
for a number of reasons. Above all, the pattern-formation mechanism driven by
dipolar energies with Fourier multipliers can be incorporated directly. Moreover,
higher-order gradient flows can be implemented easily. In fact, the discussion below
applies to any nonlinear evolution equation of the form

(1.5) ut + F−1 (Λ(|k|)Fu(k)) = −DW (u),

subject to periodic boundary conditions, where Λ is a nonnegative function with
0 ≤ Λ(|k|) ≤ Const.(1+ |k|2), k ∈ Z

d, and W is a nonnegative double-well potential
with at most quadratic growth at infinity in the sense of (1.3); in order to reproduce
the error bound stated in Section 4 for equation (1.2) in the case of the more general
equation (1.5), hypothesis (1.4) should still be assumed.

We shall show that for such nonnegative double-well potentials W with at most
quadratic growth at infinity the numerical approximation of the initial boundary-
value problem, based on our modified Crank–Nicolson approximation in time and
Fourier spectral collocation in space, converges unconditionally in the sense that
there is no restriction on the size of the time-step, Δt, in terms of the number of
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Fourier modes, N . In particular, in the singularly perturbed version of the problem,
with 0 < ε 
 1, the size of the time-step Δt depends only on the parameter ε (in
a dimensionally consistent fashion). Moreover, if W satisfies (1.3) and (1.4), we
shall show that, under appropriate regularity hypotheses on the analytical solution
u, the numerical method converges at an optimal rate of O(N−s + (Δt)2) in the
	∞(0, T ; L2(Td)) norm, with an error constant that only depends on ε and s; here
s ≥ 2 is the Sobolev index of the analytical solution (x, t) �→ u(x, t) with respect to
its spatial variable x ∈ T

d. Finally, we illustrate our analytical results by a series
of numerical experiments.

2. Notations and preliminary considerations

2.1. The Fourier system. For N ∈ N>0 we define the set ZN := {−N, . . . , N}
and denote its d-fold Cartesian product by Z

d
N . Let us consider first the finite-

dimensional linear subspace of L2(Td;C) defined as

SN := span
C

{
x ∈ T

d �→ exp(i k · x) ∈ C : k ∈ Z
d
N

}
.

Since card(ZN ) = 2N + 1, clearly dimC(SN ) = (2N + 1)d. We denote by PN :
L2(Td;C) → SN the orthogonal projection operator based on truncating the Fourier
series at the Nth term. Here L2(Td;C) is the set of all complex-valued square-
integrable 2π-periodic functions. We also introduce the subspace of SN of real-
valued functions

XN :=
{
x ∈ T

d �→
∑
k∈Z

d
N

c(k) exp(i k · x) ∈ SN : c(−k) = c(k)
}

with dimR(XN ) = (2N + 1)d. Note that PN : L2(Td;R) → XN .

Motivated by the discussion in [3], we define the following “symmetrized space”
as a substitute for the space SN for certain discretizations:

ΞN := {v ∈ SN : c(k) = c(l) for k ∼ l};

here the equivalence relation k ∼ l means that k and l differ at most in the sign of
the components kj and lj with |kj | = |lj | = N . Whenever the symmetrized space
ΞN is concerned, we adopt the convention that summation is also symmetrized in
the sense that terms whose indices are equal to the highest wave numbers, ±N , are
multiplied by appropriate powers of 1

2 ; cf. [3] for details. In this case we redefine
the space XN by setting

XN :=
{
x ∈ T

d �→
∑
k∈Z

d
N

c(k) exp(i k · x) ∈ ΞN : c(−k) = c(k)
}
,

with the summation sign understood in the above symmetrized sense.

2.2. Discretization and discrete Fourier transform. For M ∈ N>0, we use
the notation NM := {0, 1, 2, . . . ,M − 1}; we denote the d-fold Cartesian product of
NM by N

d
M and we define the collocation points

(2.1) xj :=
2πj

M
∈ T

d, j ∈ N
d
M ,
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referred to as the spectral nodes, that will be used in our spatial discretization.
For M = 2N or M = 2N + 1, respectively, and complex-valued functions v, w ∈
C(Td;C), we consider the inner product

〈v, w〉N :=

(
2π

M

)d ∑
j∈N

d
M

v(xj)w(xj), N = N(M) :=

[
M

2

]
,

and the associated norm ‖ · ‖N , defined by

‖v‖2N := 〈v, v〉N .

The discrete Fourier coefficients of a function v ∈ C(Td;C) with respect to the set

of collocation points xj =
2πj
M , j ∈ N

d
M , are

ṽ(k) = (FNv)(k) :=
1

Md

∑
j∈N

d
M

v(xj) e
−i k·xj , k ∈ Z

d
N .

The case M = 2N + 1 is particularly convenient: for all v, w ∈ SN we then have
that

(2.2) 〈v, w〉N = (v, w)L2(Td;C),

and therefore also ‖v‖N = ‖v‖ := ‖v‖L2(Td;C) for all v ∈ SN . In this case the
discrete Fourier inversion formula yields

v(xj) = (F−1
N ṽ)(xj) :=

∑
k∈Z

d
N

ṽ(k) ei k·xj , j ∈ N
d
M .

Note that ṽ(k) = 1
(2π)d

〈
v, ei k·(·)

〉
N
; therefore, on SN the discrete Fourier coefficients

ṽ(k) and the exact Fourier coefficients

v̂(k) =
1

(2π)d

∫
Td

v(x) e−i k·x dx, k ∈ Z
d,

coincide, i.e. ṽ(k) = v̂(k) for all v ∈ SN and all k ∈ Z
d
N .

In the case of M = 2N , Zd
N is replaced by the d-fold cartesian product of the

set {−N + 1, . . . , N} and the summation sign
∑

k∈Z
d
N

is understood in the above

symmetrized sense, with terms whose indices are equal to the highest wave numbers,
±N , being multiplied by appropriate powers of 1

2 .

2.3. Trigonometric interpolation. For M = 2N + 1, and collocation points
xj defined by (2.1), every real-valued function f : R → R induces a mapping
v ∈ XN �→ INf(v) ∈ XN , where

x ∈ T
d �→ INf(v(x)) :=

∑
j∈N

d
M

f(v(xj)) exp (i j · (x− xj)).

A relevant special case of this is INv, corresponding to f(s) = s, s ∈ R. Equiva-
lently, for v ∈ C(Td;C), one can define the trigonometric interpolant INv ∈ SN or
ΞN , respectively, of the function v by

〈INv, w〉N = 〈v, w〉N
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for every w ∈ SN if M = 2N + 1 or every w ∈ ΞN if M = 2N . The existence of a
unique INv in each case is an immediate consequence of the Riesz representation
theorem. More explicitly we have, for M = 2N + 1, the formula

INv(x) =
∑
k∈Z

d
N

ṽ(k) ei k·x, x ∈ T
d,

where ṽ(k), k ∈ Z
d
N , are the discrete Fourier coefficients. In the case of M = 2N

this formula needs to be symmetrized at the highest wave numbers according to the
definition of ΞN ; cf. [3] for details. By the Fourier inversion formula we have that
INv(xj) = v(xj) for all j ∈ N

d
M . In particular, for the restriction to real-valued

functions we have

v ∈ C(Td;R) �→ INv ∈ XN .

For any given v ∈ C(Td;C), the function INv represents an approximation of v. In
fact, INv converges to v in the L2(Td;C) norm, i.e.,

lim
N→∞

‖v − INv‖ = 0, v ∈ C(Td;C).

We also define the aliasing error RNv := PNv− INv, which is L2(Td;C)-orthogonal
to the projection error v−PNv with PN being the L2(Td;C)-orthogonal projection
onto XN . Thus, for v ∈ C(Td;C),

‖v − INv‖2 = ‖v − PNv‖2 + ‖RNv‖2.
For functions v ∈ Hs(Td;C), s ≥ 0, and with Hs(Td;C) equipped with the norm
‖ · ‖s defined by

‖v‖s :=

⎡
⎣∑
k∈Zd

(1 + |k|2s)|v̂(k)|2
⎤
⎦

1
2

,

we have

‖v − PNv‖ ≤ C(s, d) N−s ‖v‖s
for all N ∈ N>0 and, in the supercritical case, s > d/2,

(2.3) ‖RNv‖ ≤ C(s, d) N−s ‖v‖s
for all N ∈ N>0. Concentrating on the physically relevant dimensions d = 2, 3 we
have, in particular, that

‖RNv‖ ≤ C(s, d)N−s ‖v‖s and therefore ‖v − INv‖ ≤ C(s, d)N−s ‖v‖s
for all v ∈ Hs(Td;C), s ≥ 2, and all N ∈ N>0.

2.4. Discrete Fourier integral operators. Recall that for a function m : Zd →
C the associated Fourier integral operator m(D), with symbol m, is for sufficiently
regular functions v : Td → C defined by

m(D) : v �→ F−1(m v̂).

Note that if m is symmetric in the sense that m(−k) = m(k) for k ∈ Z
d and v

is real-valued, then m v̂ shares this symmetry: (m v̂)(−k) = (mv̂)(k) for k ∈ Z
d,

and m(D) v is real-valued. As one of its main properties, the L2(Td;C)-orthogonal
projection operator PN commutes with m(D) for generic functions, i.e.,

PN

(
m(D)v

)
= m(D)PNv for all sufficiently regular v.
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In other words, [PN ,m(D)]v = 0 where [PN ,m(D)] := PNm(D) −m(D)PN is the
commutator of PN and m(D). For the interpolation operator IN , however, and a
generic function v ∈ C∞(Td;C), [IN ,m(D)]v �= 0 so that an aliasing error needs
to be taken into account. For N ∈ N>0 the corresponding discrete Fourier integral
operator on SN is simply the restriction of m(D) to trigonometric polynomials in
SN ; the restriction of m(D) to SN , which we still denote by m(D), can be expressed
in terms of the discrete Fourier transform only as follows:

m(D) : v ∈ SN �→ F−1
N (m ṽ) ∈ SN .

As in the “continuous” case, if m is symmetric and v ∈ XN , then (m ṽ)(−k) =

(m ṽ)(k) for k ∈ Z
d
N , and hence m(D) v ∈ XN . Since σ is real-valued with σ(k) =

σ(−k), the action of the operator Lε on the space XN given by

Lε : v ∈ XN �→ Lεv = F−1
N

[
(ε| · |2 + σ(·)) ṽ(·)

]
∈ XN

is well-defined. In view of (2.2) and Plancherel’s theorem, in L2(Td;C), we observe
that Lε is symmetric with respect to the discrete inner product, i.e.,

(2.4) 〈Lεv, w〉N = 〈v,Lεw〉N for all v, w ∈ XN .

Finally, we define the energy-norm ‖ · ‖Lε
on XN as follows:

‖v‖2Lε
:= 〈Lεv, v〉N =

∑
k∈Z

d
N

(
ε|k|2 + σ(k)

)
|ṽ(k)|2, v ∈ XN .

With these preliminary considerations, we are now ready to formulate the numerical
method.

3. The Crank–Nicolson scheme

We begin by stating the spectral Crank–Nicolson discretization of the variational
problem (1.2). We shall then show that the scheme is correctly defined by proving
the existence and uniqueness of solutions.

3.1. Definition and stability of the Crank–Nicolson scheme. We consider a
modification of the Crank–Nicolson scheme based on a first-order difference quotient
of the nonlinear potential Wε. With Wε as above, we set

(3.1) Nε(v, w) := −Wε(v)−Wε(w)

v − w
for v �= w

with
Nε(v, v) := Nε(v) = −DWε(v).

Given T > 0 and J ∈ N>0, let Δt := T/J . Let us further suppose that u0 ∈
C(Td;R), and let u0

N := INu0 ∈ XN where N ∈ N>0. For n = 0, 1, . . . , J − 1, the

numerical solution un+1
N ∈ XN on time level n+ 1 is then defined by the equation

un+1
N (xj)− un

N (xj)

Δt
+ Lε

(
un+1
N (xj) + un

N (xj)

2

)
(3.2)

= INNε(u
n+1
N (xj), u

n
N (xj)) ∀j ∈ N

d
N .

In condensed notation, (3.2) can be restated as follows:

un+1
N (xj)− un

N (xj)

Δt
+ Lεu

n+1/2
N (xj)(3.3)

= INNε(u
n+1
N (xj), u

n
N (xj)) ∀j ∈ N

d
N .



212 NICOLAS CONDETTE, CHRISTOF MELCHER, AND ENDRE SÜLI

Multiplication of (3.3) by un+1
N (xj) − un

N (xj) and summation over the collocation
points xj , j ∈ N

d
N using (2.4), yields the following energy equality, which is one of

the main features of the scheme.

Lemma 3.1. Consider the sequence (un
N )Jn=0 ⊂ XN with N ∈ N>0, defined by

the Crank–Nicolson scheme (3.2) with initial value u0
N := INu0 ∈ XN , where u0 ∈

C(Td;R). Then, letting

EN (v) :=
1

2
〈v,Lεv〉N + 〈1,Wε(v)〉N ,

the following discrete energy law holds:

1

Δt
‖un+1

N − un
N‖2N + EN (un+1

N ) = EN (un
N ), n = 0, 1, . . . , J − 1.

Next, we consider the existence and uniqueness of solutions to this scheme.

3.2. Existence and uniqueness for the Crank–Nicolson scheme. We shall
next show by a fixed-point argument, based on a succession of lemmas proved
below, that, for each n ∈ {0, 1, . . . , J − 1} and un

N ∈ XN given, there exists a

unique solution un+1
N ∈ XN to (3.2). We begin by restating (3.2) in an equivalent

form. By writing z = un+1
N and v = un

N , equation (3.2) can be rewritten as follows:
given v ∈ XN , find z ∈ XN such that, for all w ∈ XN ,

(3.4) 〈z, w〉N +
Δt

2
〈z,Lεw〉N = 〈v, w〉N − Δt

2
〈v,Lεw〉N +Δt 〈Nε(z, v), w〉.

By defining the adapted inner product 〈·, ·〉Δt and the induced norm ‖ · ‖Δt by

〈v, w〉Δt := 〈v, w〉N +
Δt

2
〈Lεv, w〉N

and

‖v‖2Δt := 〈v, v〉Δt = ‖v‖2N +
Δt

2
‖v‖2Lε

,

respectively, equation (3.4) can be written as follows:

(3.5) 〈z, w〉Δt = 〈v, w〉Δt +Δt 〈Nε(z, v)− Lεv, w〉N ∀w ∈ XN .

Given v, z ∈ XN , motivated by the form of (3.5) we define Z = T ε
v z as follows:

(3.6) 〈Z,w〉Δt = 〈v, w〉Δt +Δt 〈Nε(z, v)− Lεv, w〉N ∀w ∈ XN .

By virtue of the Riesz representation theorem, the operator T ε
v : XN → XN is well

defined. The task of showing the existence of a unique un+1
N ∈ XN , given un

N ∈ XN ,
is then equivalent to showing the existence of a unique fixed point z of T ε

v in XN

with v := un
N given, and then defining un+1

N := z.

Next, we establish a Lipschitz property of Nε(v, w) and in turn the contraction
property of T ε

v . Suppose for the moment that ε = 1. Using definition (3.1) we have,
for v > w, that

−∂N
∂v

(v, w) =
DW (v) +N (v, w)

v − w

=
1

(v − w)2

∫ v

w

(
DW (v)−DW (s)

)
ds

=
1

(v − w)2

∫ v

w

∫ v

s

D2W (y) dy ds,
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and similarly for v < w. Thus, for all v, w ∈ R, v �= w,∣∣∣∣∂N∂v (v, w)

∣∣∣∣ ≤ sup
{
|D2W (y)| : y ∈ [min(v, w),max(v, w)]

}
=: C(v, w).

Now, by the mean value theorem,

(3.7) |N (v1, w)−N (v2, w)| ≤ max
θ∈[0,1]

C(θv1 + (1− θ)v2, w) |v1 − v2|.

As L := sup{|D2W (y)| : y ∈ R} is finite, we have the uniform Lipschitz property

|N (v1, w)−N (v2, w)| ≤ L |v1 − v2| ∀v1, v2 ∈ XN .

More generally,

|Nε(v1, w)−Nε(v2, w)| ≤
L

ε
|v1 − v2| ∀v1, v2 ∈ XN .

By Young’s inequality, setting w = Z − Z ′ and subtracting the identities (3.6)
for Z = T ε

v z and Z ′ = T ε
v z

′ yields

‖Z − Z ′‖2Δt ≤ (Δt)2‖Nε(z, v)−Nε(z
′, v)‖2N .

Thus we have shown the following result.

Lemma 3.2. Let Z := T ε
v z and Z ′ := T ε

v z
′, where v, z, z′ ∈ XN , and suppose that

Δt ≤ ε/(2L). Then

(
‖Z − Z ′‖N ≤

)
‖Z − Z ′‖Δt ≤

1

2
‖z − z′‖N

(
≤ 1

2
‖z − z′‖Δt

)
.

Consider the sequence (zk)
∞
k=0 ⊂ XN , where zk+1 := T ε

v zk with z0 := v ∈
XN . By expressing the difference between any two members z� and zk+1 of the
sequence, with 	 > k+1, in terms of a telescoping sum of differences of intervening
terms, taking norms, using the triangle inequality, the bound above, and summing
a geometric progression, we deduce that (zk)

∞
k=1 is a Cauchy sequence in the finite-

dimensional normed linear space XN , with respect to the norm ‖ · ‖Δt. Hence, by
completeness of XN with respect to the norm ‖ · ‖Δt, the sequence (zk)

∞
k=0 ⊂ XN ,

where zk+1 := T ε
v zk with z0 := v, converges to a fixed point z ∈ XN for any v ∈ XN .

By passing to the limit 	 → ∞ in the bound on ‖z� − zk+1‖Δt we deduce that, for
Δt ≤ ε/(2L),

(3.8) ‖z − zk+1‖Δt ≤ 2−k‖z1 − v‖Δt.

It remains to control the size of ‖z1 − v‖Δt, where v is the initial iterate and z1 is
the first iterate in the iteration scheme. To do so, let w := z1 − v = T ε

v v− v. Then

‖w‖2Δt = Δt 〈Nε(v)− Lεv, w〉N

≤ 1

2
(Δt)2‖DWε(v)‖2N +

1

2
‖w‖2N +Δt 〈Lεv, v〉N +

Δt

4
〈Lεw,w〉N ,

where we used that Nε(v) = Nε(v, v) = −DWε(v). By transferring the terms
involving w from the right-hand side to the left-hand side and multiplying the
resulting inequality by 2, we obtain the following result.

Lemma 3.3. Suppose that Δt ≤ ε/(2L). Then

‖T ε
v v − v‖2Δt ≤ (Δt)2‖DWε(v)‖2N + 2Δt〈Lεv, v〉N ∀v ∈ XN .
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With the bound stated in Lemma 3.3 we now return to the analysis of the fixed-
point iteration operator T ε

v : XN → XN associated with the problem

〈Z,w〉Δt = 〈v, w〉Δt +Δt 〈Nε(z, v)− Lεv, w〉N ,

where Nε(z, v) is defined as in (3.1) by

Wε(·) :=
1

ε
W (·) and Lε := ε(−Δ) + σ(D).

Note that the inner product 〈·, ·〉Δt = 〈·, ·〉Δt,ε depends on ε too, but we will sup-
press this dependence in our notation. As discussed in the Introduction, we assume
that W is a nonnegative double-well potential with wells at ±1 and quadratic
growth at infinity in the sense that |D2W (v)| ≤ L and |DW (v)|2 ≤ KW (v) for all
v ∈ R; cf. (1.3). A typical example of such a double-well potential is a truncated
Ginzburg–Landau potential

W (v) = c0
(1− v2)2

1 + v2

with a renormalization constant c0 > 0 chosen so that
∫ 1

−1

√
2W (v) dv = 1 and

−DW (v) = c0v
1− v2

1 + v2

(
4 + 2

1− v2

1 + v2

)
.

We shall now rephrase the bound from Lemma 3.3 in terms of ε and the associ-
ated energy

EN (v) :=
1

2

〈
Lεv, v

〉
N
+ 〈1,Wε(v)〉N .

Note that if Δt ≤ ε/(2L), then, by Lemma 3.3 and for M0 := max
{

K
2L , 4

}
, we have

(3.9) ‖T ε
v v − v‖2Δt ≤ M0 Δt EN (v).

Hence we obtain from (3.8) and (3.9) the following result.

Theorem 3.4. Suppose that W ∈ C 2(R) is nonnegative and there exist positive
real numbers K and L such that

|DW (v)|2 ≤ KW (v) and |D2W (v)| ≤ L ∀v ∈ R.

Suppose further that, for v ∈ XN , ε > 0 fixed and N ≥ 1,

EN (v) < ∞ and Δt ≤ ε/(2L).

Then, the sequence (zk)
∞
k=0, generated by the fixed-point iteration zk+1 := T ε

v zk with
initial value z0 := v ∈ XN , converges in L2(Td;C) to a fixed point z ∈ XN , with
EN (z) ≤ EN (v) such that

‖z − zk+1‖2Δt ≤ 4−k M0 Δt EN (v) for any k ≥ 0,

where M0 := max
{

K
2L , 4

}
. In particular, M0 is independent of N , Δt, ε and the

dimension d, although the range of Δt for which the result holds is dependent on
ε/L (but not on K or N).

Denoting by un+1
N the unique fixed point z in XN of T ε

v with v = un
N ∈ XN , for

Δt ≤ ε/(2L) and N ≥ 1, Theorem 3.4 implies the existence of a unique solution to
the (n+ 1)st step of the Crank–Nicolson scheme (3.2). Proceeding inductively for
n = 0, 1, . . . , J−1, we then deduce the existence of a unique solution (un

N )Jn=0 ⊂ XN

to the scheme for a given initial value u0
N = INu0 ∈ XN , for all Δt ≤ ε/(2L) and

all N ≥ 1.
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4. A priori error estimates

In this section we keep the parameter ε fixed (and therefore, for the sake of
clarity of exposition, omit the subscript ε from Nε and Wε) and we assume in
addition that W has a uniformly bounded third derivative on R. The argument
below is inspired by the one in [13]. We let u be the solution of the exact equation
ut+Lu = N (u). Letting enN = un

N−PNu(tn), where PN is the L2(Td;C)-orthogonal
projection operator, and defining

e
n+1/2
N :=

1

2
(enN + en+1

N ),

we obtain from the discrete and continuous equation with e
n+1/2
N as a test function

and the Cauchy–Schwarz inequality,

1

2Δt

(∥∥en+1
N

∥∥2 − ∥∥enN∥∥2
)
+
∥∥en+1/2

N

∥∥2
L

≤
(∥∥N (un

N , un+1
N )−N (u(tn+1/2))

∥∥
N
+
∥∥∥u(tn+1)− u(tn)

Δt
− ut(t

n+1/2)
∥∥∥

+
∥∥RNN (u(tn+1/2))

∥∥
)∥∥en+1/2

N

∥∥+
∥∥∥u(tn) + u(tn+1)

2
− u(tn+1/2)

∥∥∥
L

∥∥en+1/2
N

∥∥
L,

with the energy norm ‖v‖2L := (Lv, v)L2(Td;C) and where RN := PN−IN . Therefore,
by Young’s inequality, we have

1

Δt

(∥∥en+1
N

∥∥2 − ∥∥enN∥∥2
)
+
∥∥en+1/2

N

∥∥2
L ≤ 3

∥∥en+1/2
N

∥∥2(4.1)

+

(∥∥N (un
N , un+1

N )−N (u(tn+1/2))
∥∥2
N
+
∥∥RNN (u(tn+1/2))

∥∥2
)

+
∥∥∥u(tn) + u(tn+1)

2
− u(tn+1/2)

∥∥∥2
L
+
∥∥∥u(tn+1)− u(tn)

Δt
− ut(t

n+1/2)
∥∥∥2.

By virtue of Taylor’s theorem the last two terms can be bounded by

(4.2) c (Δt)3
∫ tn+1

tn

(
‖utt(t)‖2L + ‖uttt(t)‖2

)
dt.

By the definition of N (v, w) and with an interpretation as a central difference
quotient we have ∣∣∣∣N (v, w)−N

(
v + w

2

)∣∣∣∣ ≤ C |v − w|2,

where, by Taylor’s theorem, C = 1
24 supy∈[min(v,w),max(v,w)] |D2N (y)|. By the Lips-

chitz property (3.7), the inequality

|N (u1, w)−N (u2, w)| ≤ L |u1 − u2|

holds, with L independent of w ∈ R. We obtain the following lemma, which is an
adaptation (and, in fact, a generalization) of Lemma 4.3 in [6].

Lemma 4.1. Suppose that N (v) = −DW (v) satisfies a uniform Lipschitz condition
and has a bounded second derivative; then, there exists a constant c > 0 that only
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depends on N such that

‖N (un
N , un+1

N )−N (u(tn+1/2))‖2N ≤ c

(
‖un

N − u(tn)‖2N + ‖un+1
N − u(tn+1)‖2N

+ ‖(u(tn+1)− u(tn))2‖2N +

∥∥∥∥u(t
n+1) + u(tn)

2
− u

(
tn+1/2

)∥∥∥∥
2

N

)
.

By virtue of Taylor’s theorem the bound provided in the lemma can be estimated
further:

‖N (un
N , un+1

N )−N (u(tn+1/2))‖2N ≤ c

(
‖enN‖2N + ‖en+1

N ‖2N(4.3)

+‖RNu(tn)‖2 + ‖RNu(tn+1)‖2 + (Δt)3
∫ tn+1

tn
‖utt(t)‖2N + ‖(ut(t))

2‖2N dt

)

where RNu is the aliasing error. Finally, we obtain from (4.1), (4.2) and (4.3):
∥∥en+1

N

∥∥2 − ∥∥enN∥∥2 +Δt
∥∥en+1/2

N

∥∥2
L

≤ c (Δt)4
∫ tn+1

tn

(
‖uttt(t)‖2 + ‖utt(t)‖2L +

(
‖utt(t)‖2N + ‖(ut(t))

2‖2N
))

dt

+cΔt
(
‖enN‖2 + ‖en+1/2

N ‖2 + ‖en+1
N ‖2

+‖RNu(tn)‖2 + ‖RNu(tn+1)‖2 +
∥∥RNN (u(tn+1/2))

∥∥2),
and after summation from n = 0 to k − 1, where 1 ≤ k ≤ J ,

∥∥ekN∥∥2 +Δt

k−1∑
n=0

∥∥en+1/2
N

∥∥2
L(4.4)

≤ c (Δt)4
∫ T

0

(
‖uttt(t)‖2 + ‖utt(t)‖2L +

(
‖utt(t)‖2N + ‖(ut(t))

2‖2N
))

dt

+cΔt

k∑
n=0

(
‖enN‖2 + ‖RNu(tn)‖2 +

∥∥RNN (u(tn+1/2))
∥∥2) .

Regarding the third and fourth term under the integral sign, we recall that in view
of the Sobolev embedding ‖v‖N � ‖v‖L∞(Td;C) � ‖v‖s for s > d/2. Since Hs(Td;C)

is a Banach algebra for s > d/2, we also have that ‖v2‖s � ‖v‖2s. Therefore, in the
case of d = 2, 3 the integral terms are finite, provided

ut ∈ H2
tL

2
x ∩ H1

t H2
x((0, T )× T

d).

Turning to the third line of (4.4), according to (2.3) we have, for d = 2, 3,

‖RNu(t)‖ � N−2‖u(t)‖2,

and similarly, if W is three times differentiable on R and v ∈ R �→ |DN (v)| =
|D2W (v)| and v ∈ R �→ |D2N (v)| = |D3W (v)| are bounded functions, we have that

‖RNN (u(t))‖ � N−2‖N (u(t))‖2 � N−2‖u(t)‖2, t ≥ 0.
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Hence the terms containing RN can be bounded provided L∞
t H2

x((0, T )× T
d).

More generally, if W is 	+ 1 times differentiable on R, 	 ≥ 2, so that

sup
v∈R

(
|D2W (v)|+ · · ·+ |D�+1W (v)|

)
< ∞

(cf. (1.3) and (1.4)) and u ∈ H3
tL

2
x∩H2

tH
s
x∩ L∞

t Hs
x((0, T )×T

d) for 2 ≤ s ≤ 	, then

‖RNu(t)‖+ ‖RNN (u(t))‖ � N−s‖u(t)‖s, t ≥ 0.

We can then apply the discrete Gronwall inequality to (4.4) and obtain the following
result.

Theorem 4.2. Suppose that d = 2, 3, W is 	+1 times differentiable on R for some
	 ≥ 2 and satisfies (1.3) and (1.4), and that for some s, 2 ≤ s ≤ 	, we have

u ∈ H3
tL

2
x ∩H2

tH
2
x ∩ L∞

t Hs
x((0, T )× T

d).

Then, there exists a positive constant C = C(T/ε) such that

max
1≤n≤J

‖un
N − u(tn)‖ ≤ C

(
N−s + (Δt)2

)
.

Note that by virtue of Sobolev embedding the assumption u ∈ L∞
t Hs

x((0, T )×T
d)

can be omitted in the case of s = 2.
The next section is devoted to numerical experiments aimed at assessing the

practical performance of the proposed numerical method and to undertaking a
parameter study of the energy functional (1.1).

5. Numerical experiments

We have implemented the numerical scheme (3.2) in MATLAB. Our numerical
experiments focus on the two-dimensional domain T

2 = (0, 2π)2. For the purpose of
our parameter studies we reintroduce the parameter γ > 0, the interfacial energy per
unit length, which balances the relative strength of the domain-wall energy against
the dipolar energy. We consider, for ε > 0, the linear and nonlinear operators

v �→ Lεv = γ ε (−Δ)v + σ(D)v

and

v �→ Nε(v) = −γ

ε
DW (v),

where σ : k ∈ Z
d �→ σ(k) ∈ R≥0 is a Fourier multiplier

σ(k) =
1− exp(−|k|)

|k| for k �= 0 and σ(0) = 1

and W : v ∈ R �→ W (v) ∈ R≥0 is the double-well potential

W (v) = c0
(1− v2)2

1 + v2
where c0 =

1

2

(∫ 1

−1

1− v2√
1 + v2

dv

)−2

.

Our model problem is motivated by micromagnetic models for garnet films, where
σ appears in reduced representations for the dipolar energy; cf. [9]. As indicated
in the Introduction such models include an additional dilation parameter δ > 0,
which corresponds to the relative film thickness. The precise energy scaling and
morphology, depending on all system parameters, is subtle and is hard to capture in
a rigorous analytic fashion. Current investigations reported in the physics literature
mainly rely on further reductions and optimization through a special ansatz; cf.
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[7, 10]. Our numerical experiments provide an adequate account of characteristic
patterns and structures in more generality and support the latter results.

5.1. Procedure. The implementation is based on the nonlinear system

un+1
N (xj) =

(
1 +

Δt

2
Lε

)−1[(
1− Δt

2
Lε

)
un
N (xj) + ΔtINNε(u

n+1
N (xj), u

n
N (xj))

]
,

j ∈ N
2
N = {0, 1, 2, . . . , N − 1}2,

that we solve at each time-step by a fixed-point iteration. Inspection in Fourier
space shows that the inverse (1+ Δt

2 Lε)
−1 is well defined. In order to compute the

numerical solution at time iteration n+ 1, we use the following predictor-corrector
algorithm:

un+1
N,[0](xj) =

(
1 +

Δt

2
Lε

)−1[(
1− Δt

2
Lε

)
un
N (xj) + ΔtINNε(u

n
N (xj), u

n
N (xj))

]
,

j ∈ N
2
N = {0, 1, 2, . . . , N − 1}2,

un+1
N,[k+1](xj) =

(
1 +

Δt

2
Lε

)−1[(
1− Δt

2
Lε

)
un
N (xj) + ΔtINNε(u

n
N,[k](xj), u

n
N (xj))

]
,

j ∈ N
2
N = {0, 1, 2, . . . , N − 1}2, k = 0, 1, 2, . . . .

The iterations to solve the system at each time-step are considered to have con-
verged when the discrete L2(Ω) norm of the difference of two successive iterates
becomes smaller than a chosen positive tolerance; in our case the stopping toler-
ance was set to 10−8. The quantities on the right-hand side of the above equations
are computed by applying the following procedure:

1. Evaluation of
(
1− Δt

2 Lε

)
un
N (xj) in Fourier space;

2. Evaluation of the quantity ΔtINNε(u
n
N,[k](xj), u

n
N (xj)) in physical space,

followed by switching to Fourier space using Fast Fourier Transform (FFT);

3. Evaluation of
(
1+Δt

2 Lε

)−1[(
1−Δt

2 Lε

)
un
N (xj)+ΔtINNε(u

n
N,[k](xj), u

n
N (xj))

]
in Fourier space, followed by an Inverse Fast Fourier Transform (IFFT) to
return to physical space.

The terminal time T = J Δt for the evolution, i.e., the total number of time-steps J ,
is determined through a smallness condition for the energy gradient, which indicates
that a local minimum has been reached approximately.

Remark 5.1. Our numerical analysis shows the convergence of the numerical scheme
for temporal meshes with uniform spacing Δt, once Δt is sufficiently small relative
to ε. However, with regard to the different time-scales involved in the morpho-
logical evolution of the patterns (quick formation of domains at the beginning,
much slower evolution afterwards), adaptive time-stepping based on the number
of iterations needed to solve the fixed-point iteration was also implemented in the
algorithm. This allows us to locally (in time) adapt the time-step to the evo-
lution of the solution: on time intervals of slow/fast evolution the time-step is
increased/decreased, respectively. This simple step-size selection process reduces
drastically the computing time needed to reach a local minimum of the free energy.

5.2. Morphological evolution and interpretation. Figures 1(a)–(e) and Fig-
ures 2(a)–(e) show typical examples of temporal evolution of morphological patterns
during spinodal decomposition and subsequent growth. Black represents positive
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Figure 1. (a)–(e) Formation and temporal evolution of a
labyrinth pattern obtained for a randomly distributed initial con-
dition. (f) Temporal evolution of the associated discrete energy.

values, typically around +1, and white represents negative values around −1. Dur-
ing the spinodal decomposition, we observe the formation of domains on a relatively
short time-scale and with a corresponding substantial drop in the value of the dis-
cretized free energy of the system. During the succeeding growth period, we observe
domain expansion and possibly nucleation on a much longer time-scale. The de-
crease of the energy on that period is also much smaller.

Figures 1(a)–(e) show the formation and evolution of a so-called labyrinth pat-
tern that typically arises in the study of magnetic garnet films. It was obtained
for randomly distributed initial values on a lattice of 512× 512 grid points and for
parameter values γ = 1/100 and ε = 1/20.
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Figures 2(a)–(e) show the evolution obtained for the initial condition u0 defined
by

(5.1) u0(x1, x2) := sin(4x1) sin(4x2)

discretized on a lattice of 512 × 512 grid points and parameter values γ = 1/100
and ε = 1/20. The drops of the energy seen in Figure 2(f) each correspond to
topological changes in the pattern: the first drop occurs during the transition from
the initial state to the checkerboard pattern, the second one during the transition
from the checkerboard pattern to the stripe pattern. The last decrease, which is
much less prominent, occurs during the transition from the rectilinear pattern to
the curly-stripe pattern.

time=0

(a)

time=33.1776

(b)

time=83.968

(c)

time=135.3045

(d)

time=1794118.6667

(e)
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Time

E
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Figure 2. (a)–(e) Formation of a checkerboard pattern and sub-
sequent evolution towards a stripe pattern. (f) The corresponding
energy profile.
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(a) (b) (c)

Figure 3. Typical domain sizes observed for increasing values of
the interfacial energy parameter, respectively, (a) γ = 1/300, (b)
γ = 1/100 and (c) γ = 1/20.

Based on a reduction of (1.1) through corresponding trial functions and an opti-
mization argument, Gehring and Kaplan [7] showed that a stripe pattern is a lower
energy state than a checkerboard pattern. The numerical results shown in Figure 2
are consistent with these predictions. Indeed, the checkerboard pattern obtained in
Figure 2(b) appears as an unstable configuration, as we observe a further evolution
of the system into an energetically lower, stripe pattern, configuration; cf. Figure
2(d).

5.3. Parameter-dependence. We have investigated the influence of the interfa-
cial energy parameter γ on the domain morphology and the scaling of the asymp-
totic energy. Qualitatively, a decrease in the typical domain wall energy γ triggers
the influence of the dipolar interaction, and therefore tends to favor oscillating so-
lutions and eventually microstructure. Consequently, as displayed in Figure 3, we
observe a decrease of the typical size of the domains. In the opposite regime, for
increasing values of the interfacial energy parameter, the dipolar interaction has
a declining influence. For sufficiently large γ, the problem almost reduces to the
minimal interface problem. In that case, the absolute minimizer is a single domain
state taking the value either +1 or −1 everywhere. This statement is illustrated in
Figure 4. The pattern-evolution was obtained again for the initial condition (5.1),
but with the parameter value γ = 1000.

(a) (b) (c)

Figure 4. Temporal evolution towards a single-domain state. The
patterns were obtained on a 512×512 grid for the initial condition
u0(x1, x2) = sin(4x1) sin(4x2) and the parameter value γ = 1000.

In a more quantitative study we have investigated the precise scaling law for
the energy as γ varies. As pointed out earlier, real micromagnetic applications
involve a second parameter δ that corresponds to the film thickness relative to the
dimension of the periodicity cell. Formal results have been obtained in the physics
literature: the theory of Kooy and Enz [10] predicts an algebraic energy scaling of
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order (γ/δ)1/2 for γ 
 δ, whereas for γ � δ the approach of Gehring and Kaplan
[7] predicts an exponential dependence of type δC1(1 − C2 exp[−C3(γ/δ)]) with
positive constants C1, C2 and C3.
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Figure 5. Evolution of the asymptotic discrete energy as a func-
tion of the interfacial energy parameter γ. (a) Logarithmic plot
for values of γ ranging from 1/400 to 1/2 and comparison with the
algebraic scaling γ1/2 predicted by [10]. (b) Plot of the asymptotic
discrete energy for values of γ ranging from 10 to 500.

In our model problem we bypass the additional complexity arising from the pres-
ence of a thickness parameter δ by setting it to 1 for convenience. Accordingly, we
have studied the evolution of the asymptotic energy as a function of the interfacial
energy parameter γ only. Taking a random initial condition and ε = 1/20, we ran
the algorithm for values of γ ranging from 1/400 to 1/2 in the first instance, and
subsequently for values ranging from 10 to 500. For the small values of the interfa-
cial energy parameter, we obtain a scaling of the asymptotic energy as an algebraic
power of γ; cf. Figure 5(a). For larger values of γ, the solutions converge towards
a single domain state. The stepwise decrease in the energy is much less prominent
than in the previous case; nevertheless, the plot of the asymptotic energy as a func-
tion of γ suggests a scaling law of exponential type, as predicted by Kaplan and
Gehring; cf. Figure 5(b). These scaling laws are consistent with the formal results
predicted in [10] and [7], and a crossover in the energy scaling can be observed.
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