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AN EFFECTIVE ASYMPTOTIC FORMULA

FOR THE STIELTJES CONSTANTS

CHARLES KNESSL AND MARK W. COFFEY

Abstract. The Stieltjes constants γk appear in the coefficients in the regular
part of the Laurent expansion of the Riemann zeta function ζ(s) about its
only pole at s = 1. We present an asymptotic expression for γk for k � 1.
This form encapsulates both the leading rate of growth and the oscillations
with k. Furthermore, our result is effective for computation, consistently in
close agreement (for both magnitude and sign) for even moderate values of k.
Comparison to some earlier work is made.

1. Introduction and main result

The Riemann zeta function has but one simple pole, at s = 1 in the complex
plane [13, 15]. In the Laurent series about that point,

(1.1) ζ(s) =
1

s− 1
+

∞∑

k=0

(−1)kγk
k!

(s− 1)k,

γk are called the Stieltjes constants [2, 3, 5, 7, 8, 12, 14, 16], where γ0 = γ, the Euler
constant. These constants have many uses in analytic number theory and elsewhere.
Among other applications, estimates for γn may be used to determine a zero-free
region of the zeta function near the real axis in the critical strip 0 < Re s < 1.

In this paper, we are interested in the leading asymptotic form of these constants

for k � 1. Throughout we write f(n) ∼ g(n) when the limit relation limn→∞
f(n)
g(n) =

1 holds. We have

Theorem 1. Let v = v(n) be the unique solution of the equation

(1.2) 2π exp[v tan v] = n
cos v

v
,

in the interval (0, π/2), with v → π/2 as n → ∞. Let u = v tan v with u(n) ∼ log n
as n → ∞. Then we have for n � 1,

(1.3) γn ∼ B√
n
enA cos(an+ b),
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where

A =
1

2
log(u2 + v2)− u

u2 + v2
,

B =
2
√
2π

√
u2 + v2

[(u+ 1)2 + v2]1/4
,

a = tan−1
(v

u

)
+

v

u2 + v2
,

and

b = tan−1
( v

u

)
− 1

2
tan−1

(
v

u+ 1

)
.

Formula (1.3) holds as long as we stay bounded away from zeros of the cosine
factor. We note that, in view of (1.2), the functions A, B, a, b depend weakly on
n as log n and log log n. To leading order, A ∼ log log n and B ∼ π

2 (log n)
−1.

The result (1.3) has many advantages. It captures both the basic growth rate
exp(n log log n) and the oscillations cos[n(π/2)/ logn]. It therefore has implications
for the sign changes observed in γn with increasing n. Furthermore, (1.3) is found
to be numerically accurate for even modest values of n. After the proof of Theorem
1 in the next section, we describe numerical results in Section 3. There, we also
compare and contrast our result with earlier work of Matsuoka [9, 10]. Although
Matsuoka has given an asymptotic series to high order, it does not appear to be
effective for computation. This is because the fractional part of the argument of
the cosine factor modulo 2π in his result is not sufficiently controlled.

It has been known for some time that the Stieltjes constants of both even and
odd indices are both positive and negative infinitely often [2, 12, 10]. This is one
corollary of Theorem 1.

Recent analytic results for the Stieltjes constants may be found in [3] and [4]. The
latter includes an addition formula for the constants together with series represen-
tations. Many open questions concerning the Stieltjes constants remain, including
characterizing their arithmetic properties.

Proof of Theorem 1. We begin with the integral representation ([17], pp. 153-154;
[6], pp. 5) for n ≥ 1,

(2.1) γn =

∫ ∞

1

P1(x)
logn−1 x

x2
(n− log x)dx.

Here, P1(x) = B1(x−[x]) = x−[x]−1/2 is the first periodized Bernoulli polynomial,
and it has the standard Fourier series [1, p. 805],

(2.2) P1(x) = −
∞∑

j=1

sin(2πjx)

πj
.

With the change of variable t = log x, from (2.1) and (2.2) we then have

γn = −
∞∑

L=1

∫ ∞

0

sin(2Lπet)

πL
tn−1e−t(n− t)dt

= −Im

{ ∞∑

L=1

1

Lπ

∫ ∞

0

exp[i2Lπet + n log t]e−t
(n

t
− 1

)
dt

}
.(2.3)
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We apply the saddle point method, and find that the L = 1 term in (2.3)
dominates the others. With the function h(t) ≡ i2Lπet + n log t, the saddle points
occur for h′(t) = 0. Therefore, they satisfy

(2.4) tet =
ni

2Lπ
,

and are asymptotically given by t ∼ log n − log log n + α + β. For integers M , we
have α =

(
2M + 1

2

)
πi − log(2Lπ) and β = log log n/ logn − α/ logn = o(1). This

gives

tM = log n− log log n− log(2Lπ) +

(
2M +

1

2

)
πi

+
log log n

log n
[1 + o(1)], M = 0,±1,±2, . . . .

(2.5)

We find that |eh(tM )| as a function of M is maximized at M = 0, and as a function
of L, at L = 1.

More precisely, we have the estimate

log |eh(tM )| = Re[h(tM )]

= n log log n− n

log n
[log log n+ 1 + log(2Lπ)]− 1

2

n

log2 n

(
2M +

1

2

)2

π2

+
1

2

n

log2 n
[log log n+ log(2Lπ)]2 +OR

(
n

log3 n

)
,(2.6)

where the OR “rough” error term may omit some factors of log log n. From the
second term in the right-hand side of (2.6) we see that the terms in (2.3) with
L ≥ 2 are roughly exponentially smaller than the first term. In terms of M , (2.6) is
largest at M = 0, but we can also easily show that the original contour (t ∈ [0,∞))
can be deformed to a steepest descent contour that passes only through the saddle
t0. In Figure 1 we plot the curves Re[h′(t)] = 0 and Im[h′(t)] = 0 in the (x, y)
plane, with L = 1 and t = x + iy. The intersection points of these curves are the
saddle points, and the figure captures 3 saddles in the range y = Im(t) ∈ [−2π, 3π]
(here we used n = 1, 000). The steepest descent (SD) curve through the saddle
t0 = u+ iv is given by Im[h(t)] = Im[h(t0)] so that

(2.7) n tan−1
(y

x

)
+ 2πex cos y =

nv

u2 + v2
+ n tan−1

( v

u

)
.

The right side of (2.7), for n → ∞, is approximately nπ/(2 logn) so that the SD
contour starts at the origin roughly at the slope y/x = π/(2 logn), traverses the
saddle in a nearly horizontal direction (since h′′(t0) is to leading order real and
negative) and winds up at t = ∞ + iπ/2. In Figure 2 we sketch the SD contour
when n = 1, 000, along with the steepest ascent (SA) contour that is also a branch
of (2.7), and which orthogonally intersects the SD contour at the saddle t0 (here
t0 ≈ 3.706 + 1.246i).
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Figure 1. The real and imaginary parts of the saddle point
equation h′(t) = 0 are plotted in the (x, y) plane, with L = 1
and t = x + iy. Three saddle points are present in the range
y = Im(t) ∈ [−2π, 3π]. Here, n = 1, 000 in (2.4).

We have h′′(t) = 2Lπiet − n/t2, so that h′′(t0) = −n/t0 − n/t20. We therefore
have

∫ ∞

0

eh(t)
(n

t
− 1

)
e−tdt ∼

(
n

t0
− 1

) √
2π√

n
t0

+ n
t20

eh(t0)e−t0

∼ n

√
2π

n

e−t0

√
t0 + 1

eh(t0).(2.8)

Then we have

(2.9) eh(t0) = exp

[
n

(
log t0 −

1

t0

)]
= en[A(n)+ia(n)],

where A(n) = Re[log t0 − 1/t0] and a(n) = Im[log t0 − 1/t0]. From (2.3), (2.8), and
(2.9) we then have

(2.10) γn ∼ −
√

2n

π
enA(n)Im

[
e−t0

√
t0 + 1

eina(n)
]
.
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Figure 2. The steepest descent and ascent contours intersecting
at the saddle point t0 are shown. Here, n = 1, 000.

Finally, putting t0 = u + iv in the relation (2.4) at L = 1 gives the pair of
equations

2πeu cos v =
nv

u2 + v2
,(2.11a)

u cos v = v sin v.(2.11b)

Since u can be eliminated through the relation 2πeu = n(cos v)/v, the single equa-
tion (1.2) for v follows. �

Remarks. The representation (2.1) may be readily verified by substitution in the
defining relation (1.1). Then we obtain

(2.12) ζ(s) =
1

s− 1
+

1

2
− s

∫ ∞

1

x−(s+1)P1(x)dx,

and this is equivalent to [15, p. 14].

As a byproduct of the proof of Theorem 1, we have the n → ∞ forms (cf. (2.5))
u ∼ log n− log log n− log(2π) and v ∼ (π/2)(1− 1/ log n).

The above calculations also show that to refine Theorem 1, the terms in (2.3)
with L ≥ 2 will play no role, and the full asymptotic series will come from refining
the Taylor expansion of h(t), as well as the “slowly varying” factors e−t(n/t− 1),
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about t = t0. Computing the first correction term would refine (1.3) by changing
the amplitude factor B/

√
n to (B + C/n)/

√
n and the argument of the cosine to

an+b+c/n, where c and C would again depend only weakly on n. Such corrections
should be numerically significant if an + b is close to a zero of the cosine, which
occurs, for example, when n = 137.

From Theorem 1, the leading order frequency of γn is given by tan−1
(

π
2

1
logn

)
.

In turn, this implies that the scale for sign changes is 2 log n. Then subsequences
γn+j with j < 2 log n with the same sign will appear infinitely often. Similarly,
subsequences γkn+j with 0 ≤ j < k will change sign infinitely often, and for j <
2 log n can have the same sign.

2. Numerical results and comparisons

The formula (1.3) was implemented in Mathematica and the ratio of γn to this
asymptotic expression was examined for n from 2 to 35, 000. In only one instance,
at n = 137, was a difference in sign found to occur. In this case, the cosine factor
is small, approximately 0.000169881. For larger values of n, typically (1.3) gives γn
to approximately 1%.

The short table below displays known values of γn together with values obtained
from (1.3). The level of agreement for such small values of n is remarkable. Later
in the table we observe the start of the exponential growth.

n γn γn from (1.3)
3 0.00205383 0.00190188
4 0.00232537 0.00231644
5 0.000793324 0.000812965
6 -0.000238769 -0.000242081
7 -0.00052729 -0.000541476
8 -0.000352123 -0.00036176
9 -0.0000343948 -0.0000350704
10 0.000205333 0.000210539
15 -0.000283469 -0.000288108
20 0.000466344 0.000471981
25 -0.00107459 -0.00108588
30 0.00355773 0.00359535
35 -0.020373 -0.0205982
40 0.248722 0.251108
45 -5.07234 -5.10969
50 126.824 127.549

Matsuoka [9, 10] determined an asymptotic series for γk and developed interest-
ing consequences from it. From γn = n!

2πi

∫
C
z−n−1ζ(1 − z)dz, with C a contour

encircling 0, he wrote and decomposed another contour integral expression. He then
applied the saddle point method to the main term. However, his result presents
some difficulties.

At the leading order, we have ([10, p. 281]; [11])

(3.1) γn =

√
2n

π

eG(n)

log n!

[
cosF (n) +O

(
log log n

log n

)]
,
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where

(3.2) F (n) = −π

2

n

log n
+O

(
n log log n

log2 n

)
.

Perhaps surprisingly, we have as n → ∞ [10, p. 286],

(3.3) G(n) = −n logn+ n log log n+ n+ o(n).

Then for sufficiently large n, the factor eG in (3.1) is a decreasing rather than an
increasing exponential.

We have implemented (3.1) in Mathematica as well as the subsidiary quantities
a0 = a0(n), b0 = b0(n), F (n), and G(n). Here x = a0 and y = b0 are the solutions
of the pair of equations

−(n+ 1)
y

x2 + y2
+

π

2
− Im ψ(x+ iy) = 0,(3.4a)

−(n+ 1)
x

x2 + y2
− log 2π − Re ψ(x+ iy) = 0,(3.4b)

where x > y > 0 and ψ = Γ′/Γ is the digamma function. We have numerically
observed the expected behaviour of all quantities. As it stands, (3.1) is problematic
in that both eG does not grow with n and the cosF (n) factor is too imprecise.

On the other hand, Matsuoka also showed that for n ≥ 10 [10, Theorem 6]

(3.5) |γn| < 0.0001en log log n.

Our Theorem 1 is consistent with this result.
We may also compare the magnitudes |γn| with the upper bound found by Zhang

and Williams [17],

(3.6) |γn| ≤
[3 + (−1)n](2n)!

nn+1(2π)n
∼ [3 + (−1)n]

√
πn2nnn−1

e2nπn
.

Owing to the factor nn = exp(n logn) � exp(n log log n), the right side of this
inequality gives a considerable overestimation. This is not surprising, as the upper
bound originates without taking into account cancellation due to an oscillating
integrand. We also note that if |γn| had roughly nn growth, with some geometric
factors as in (3.6), then the series in (1.1) would have a finite radius of convergence,
contradicting the fact that ζ(s)− 1/(s− 1) is an entire function.

3. Summary

We have given an asymptotic expression for the Stieltjes constants γn that is
complementary to earlier work by Matsuoka [9, 10]. Our result is very suitable for
computation, and indeed it provides useful results for even moderate values of n.
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