
MATHEMATICS OF COMPUTATION
Volume 80, Number 273, January 2011, Pages 395–407
S 0025-5718(2010)02391-9
Article electronically published on June 18, 2010

FAST LATTICE REDUCTION FOR F2-LINEAR

PSEUDORANDOM NUMBER GENERATORS

SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

Abstract. Sequences generated by an F2-linear recursion have wide appli-
cations, in particular, pseudorandom number generation. The dimension of
equidistribution with v-bit accuracy is a most important criterion for the uni-
formity of the generated sequence. The fastest known method for computing
these dimensions is proposed by Couture and L’Ecuyer, based on Lenstra’s
lattice basis reduction and the dual lattice to the lattice of vector-valued gen-
erating functions (with components in the formal power series F2[[t−1]]) asso-
ciated to the output F2-vector sequence. In this paper we propose a similar
but faster algorithm, where (1) the state space is used to represent vectors
with components in the formal power series, (2) the dual lattice is not nec-
essary, and (3) Lenstra reduction is replaced with a simpler basis reduction.
The computational complexity of our method is smaller than for the Couture-
L’Ecuyer method. Experiments show that our method improves the speed by
a factor of 10 for Mersenne Twister MT19937 and for WELL generators with
state sizes of 19937 bits and 44497 bits.

1. Introduction

Let F2 := {0, 1} denote the two element field. Sequence generators based on
F2-linear recursion are widely used in practical applications, in particular, as pseu-
dorandom number generators. Among the quality criteria of the generators, the
notion of the dimension of equidistribution with v-bit accuracy is widely used as a
most informative criterion for the higher dimensional uniformness of the distribu-
tion of the sequence (see [6]). When the state space is large, the computation of
these dimensions is time consuming, and at the designing stage of the generator, it
becomes a bottleneck in finding good parameters. Couture, L’Ecuyer and Tezuka [2]
introduced a lattice basis reduction method to compute these dimensions, over the
formal power series field F2((t

−1)). Couture and L’Ecuyer [1] improved Tezuka’s
resolutionwise lattice method [15] by using the dual lattice. The aim of this paper
is to propose a simpler and more efficient method. In §2, we briefly recall the no-
tion of F2-linear generators and computation of the dimensions of equidistribution
using lattices. In §3, we introduce a method to compute a reduced basis from a
generating set, a method to compute the dimension of equidistribution with v-bit

Received by the editor July 15, 2009 and, in revised form, October 18, 2009.
2010 Mathematics Subject Classification. Primary 11K45, Secondary 65C10.
The first author was partially supported by Grant-in-Aid for JSPS Fellows 21·4427.
The second author was partially supported by JSPS Grant-in-Aid for Challenging Exploratory

Research 21654017, Scientific Research (A) 19204002 and JSPS Core-to-Core Program 18005.
The third author was partially supported by JSPS Grant-in-Aid for Challenging Exploratory

Research 21654004.

c©2010 American Mathematical Society

395

396 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

accuracy for v = w,w − 1, w − 2, . . . inductively in this order, and an efficient rep-
resentation of the lattice elements (and operations on them) in terms of the state
space. We give the computational complexity of the proposed method in §4. We
compare the speeds of the state representation method and the dual basis method
[1] in §5 using a C++ implementation.

2. Linear generator and lattice method

2.1. Dimension of equidistribution. We recall basic materials; see [6] and its
references for the original definitions. An F2-linear sequence generator consists of a
state space S = Fp

2, an F2-linear state transition function f : S → S, an F2-linear
output function o : S → O where O = Fw

2 is the set of outputs (w intended for
the word size of the machine). Once an initial state s0 ∈ S is given, the generator
computes the next state by the recursion si+1 = f(si) (i = 0, 1, 2, . . .) every time
unit, and the output sequence is given by o(s0), o(s1), o(s2), . . . ∈ O. Throughout
this paper, P (t) denotes the characteristic polynomial of f .

The dimension of equidistribution k(v) of such a generator is defined as follows.
We identify the output set Fw

2 with the set of unsigned w-bit binary integers. Let
us consider the most significant v bits (v MSBs) in the outputs. We regard this to
consider the output with v-bit accuracy. This amounts to consider the composition

ov : S
o→ Fw

2 → Fv
2, where the latter map denotes taking the v MSBs. Define the

k-tuple output function for any k ≥ 0 by

o(k)v : S → (Fv
2)

k, s0 �→ (ov(s0), ov(f(s0)), . . . , ov(f
k−1(s0))),

namely, o
(k)
v (s0) is the consecutive k-tuple of the outputs from the state s0.

Definition 2.1. If o
(k)
v : S → (Fv

2)
k is surjective, then the generator is said to be

k-dimensionally equidistributed with v-bit accuracy. The largest value of k with
this property is called the dimension of the equidistribution with v-bit accuracy,
denoted by k(v).

Since o
(k)
v is linear, k-dimensional equidistribution means that every element

in (Fv
2)

k occurs with the same probability, when the initial state s0 is uniformly
distributed over the state space. If the generator has the maximal period 2p−1, then
this amounts to saying that every kv-bit pattern occurs as consecutive overlapping
k-tuples of v-bit integers equally often for the whole period, except the all-zero
pattern which occurs once less often.

The larger k(v) for each of 1 ≤ v ≤ w is desirable. By comparing the dimensions
of S and (Fv

2)
k, we have a trivial bound p = dim(S) ≥ kv, and hence k(v) ≤ �p/v�.

If the equality holds, then the generator is said to be maximally equidistributed.
We may compute k(v) by checking the surjectivity by linear algebra [3]. For a

large p, Couture et al. [2] and Tezuka [15] proposed much faster algorithms based
on lattice structures over power series.

2.2. Lattice structure. We briefly recall the above-mentioned lattice method.
Let K denote the formal power series field

K := F2((t
−1)) =

⎧
⎨

⎩

∞∑

j=j0

ajt
−j | aj ∈ F2, j0 ∈ Z

⎫
⎬

⎭
.

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 397

For α =
∑∞

j=j0
ajt

−j ∈ K, we define a standard norm by

|α| :=
{

max{−j ∈ Z | aj 	= 0} if α 	= 0,
−∞ if α = 0.

For a vector γ = (α1, α2, . . . , αv) ∈ Kv, we define ||γ|| := max1≤i≤v|αi|. Note that
|α| and ||γ|| are often negative integers. For γ 	= 0, we define its coefficient vector
at the leading term π(γ) ∈ Fv

2 by

π(γ) := (a1,||γ||, a2,||γ||, . . . , av,||γ||), so that γ = π(γ)t||γ||+lower degree terms in t.

A subset L ⊂ Kv is called an F2[t]-lattice if it is the set of a linear combination of
ω1, ω2, . . . , ωv with coefficients in F2[t], where ω1, . . . , ωv are linearly independent
over K. Such a set of vectors is called a basis of L.

Theorem 2.2 (Lemma 1 of [9]). Let ω1, . . . , ωv be the points in an F2[t]-lattice
L ⊂ Kv with the following properties:

(1) ω1 is a shortest nonzero vector in L;
(2) for i = 2, . . . , v, ωi is a shortest vector among the set of vectors ω in L such

that ω1, . . . , ωi−1, ω are linearly independent over K.

Then ω1, . . . , ωv form a basis of L.

Such a basis is called a reduced basis for L. It is not unique, but the numbers
νi := ||ωi|| are invariants of the lattice, called successive minima (see [8]). Let us
consider an F2-linear generator. For a v-bit output sequence from an initial state
s0 ∈ S, let χv denote a (v-dimensional vector-valued) generating function in Kv:

(2.1) χv(s0) :=
∞∑

j=0

ov(f
j(s0))t

−1−j = ov(s0)t
−1 + ov(s1)t

−2 + · · · ∈ Kv.

This gives an F2-linear map χv : S → Kv. We define a lattice Λv in Kv as the set
of F2[t]-linear combinations of χv(s0) and the unit vectors, namely, the F2[t]-linear
span

Λv := 〈χv(s0), e1, e2, . . . , ev〉F2[t],(2.2)

where ei is the vector whose i-th component is 1 and 0 for the other components
(i = 1, . . . , v). The vectors χv(s0), e1, e2, . . . , ev form a generating set of Λv over
F2[t], but they are K-linearly dependent because they form a set of cardinality
v + 1. Still, these v + 1 vectors generate a lattice: after multiplying each vector
by the characteristic polynomial P (t), every coordinate becomes a polynomial, and
thus there is a basis consisting of v vectors.

Theorem 2.3 ([2, 15]). Assume that P (t) is irreducible. Take nonzero s0 ∈ S.
Then, k(v) = −νv holds, where νv is the v-th successive minimum of the lattice Λv

in Kv.

In [1], to obtain a reduced basis, the authors used the Lenstra reduction algorithm
[7], which requires a basis of Λv as an initial input. Since P (t)χv(s0) ∈ F2[t]

v, one
can define polynomials (g1(t), g2(t), . . . , gv(t)) := P (t)χv(s0). Let g1(t)

−1 denote a
polynomial which is a multiplicative inverse to g1(t) modulo P (t) (which exists if
the MSB of the sequence is not constantly 0), and define a vector with polynomial
components

Ψ := (g1(t)
−1 · P (t)χv(s0)) mod P (t).

398 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

The first component of Ψ is 1, and the vectors Ψ/P (t), e2, . . . , ev form a basis of Λv.
In applying the Lenstra basis reduction, to avoid the infinite formal power series
Ψ/P (t), we multiply this basis by P (t) to reduce to the polynomial computation.
We apply Lenstra’s reduction to the polynomial vectors

(2.3) (1, ḡ2(t), . . . , ḡv(t)), (0, P (t), . . . , 0), . . . , (0, . . . , 0, P (t)) ∈ F2[t]
v,

where ḡj(t) := g1(t)
−1gj(t) mod P (t) (2 ≤ j ≤ v).

Later we use the following.

Lemma 2.4. Let ν1, . . . , νv be the successive minima of Λv. We have

− dim(S) =

v∑

i=1

νi.

Proof. From (25) in [8] (or (3) in [1]), the lemma follows. �

2.3. Dual lattice. For a lattice L ⊂ Kv, its dual lattice L′ is defined by

L′ := {h′ ∈ Kv | h · h′ ∈ F2[t], for all h ∈ L},

where h · h′ =
∑l

j=1 hj(t) · h′
j(t) (the scalar product) for h = (h1(t), . . . , hv(t)) and

h′ = (h′
1(t), . . . , h

′
v(t)). The vectors

(2.4) (P (t), 0, . . . , 0), (−ḡ2(t), 1, . . . , 0, 0), . . . , (−ḡv(t), 0, · · · , 0, 1)

form (the so-called dual) basis of the dual lattice Λ′
v. The next theorem reduces

the computation of successive minima of Λv to those of the dual.

Theorem 2.5 ([1]). Let ν1, ν2, . . . , νv be the successive minima of Λv, and let ν′1,
ν′2, . . . , ν

′
v be the successive minima of Λ′

v. We have, for i = 1, 2, . . . , v,

νi + ν′v−i+1 = 0.

A big advantage of using the dual in [1] is that we can use the reduced basis of
Λ′
v−1 to compute that of Λ′

v.
Assume 1 < v ≤ w. Let ι : Kv−1 → Kv be an inclusion by supplementing 0

at the vth coordinate, and ρ : Kv → Kv−1 the projection by deletion of the vth
coordinate.

Theorem 2.6 ([1]). For 1 < v ≤ w, we have

(1) ρ(Λv) = Λv−1.
(2) Λ′

v = ι(Λ′
v−1)⊕ 〈(−ḡv(t), 0, · · · , 0, 1)〉F2[t],

where 〈(−ḡv(t), 0, · · · , 0, 1)〉F2[t] denotes the space spanned by a single vector.

The first claim follows from the definition of Λv. The second follows from (2.4).
Thus, for the dual lattice Λ′

v, we may choose its lattice basis as the union of a
reduced basis of Λ′

v−1 and the vector (−ḡv(t), 0, · · · , 0, 1). Consequently, if we
compute reduced bases of Λ′

2,Λ
′
3, . . . in this order, then we can use a reduced basis

of Λ′
v−1 in computing that of Λ′

v. Computational complexity given in [1] shows a
significant advantage of this method, which we call the dual lattice method.

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 399

3. Main result

3.1. Schmidt’s generating set reduction. The Lenstra basis reduction requires
a basis of the lattice. Although it is not difficult to obtain a basis from a set of
generating vectors (cf. [5]), there is an even simpler reduction algorithm by Schmidt
[14, p. 200], which can be easily generalized to an algorithm to obtain a reduced
basis from a generating set. We describe this generalized version, which we call
Schmidt’s generating set reduction (SGR).

procedure : Schmidt’s generating set reduction
input : a generating set ω1, ω2, . . . , ωm which spans a lattice L over F2[t].
output : a reduced basis ω1, ω2, . . . , ωv ∈ L.
begin
while π(ω1), π(ω2), . . . , π(ωm) are linearly dependent over F2 do
(reduction step)
Find a vector (α1, α2, . . . , αm) ∈ Fv

2 such that
∑m

i=1 αiπ(ωi) = (0, . . . , 0).
Find an integer imax such that ||ωimax

|| = max{||ωi|| | 1 ≤ i ≤ m,αi 	= 0}.
Set ωimax

←
∑m

i=1 αit
−||ωi||+||ωimax ||ωi.

If ωimax
= 0 then swap ωimax

and ωm, and set m ← m− 1.
end while
Renumber ω1, ω2, . . . , ωm in such a way that ||ω1|| ≤ ||ω2|| ≤ . . . ≤ ||ωm||.
end

Each reduction step decreases
∑

i ||ωi||, and since there is a shortest vector in a
lattice, the algorithm terminates. Then, the number m of vectors is reduced to
v, and π(ω1), . . . , π(ωv) are linearly independent. Such a basis is called a reduced
basis in [14, p. 199], and its equivalence to that in Theorem 2.2 follows from the
uniqueness of their length ([14, p. 201]).

Using SGR, we can use ρ and (1) in Theorem 2.6 to obtain a reduced basis of Λv

from that of Λv+1: if ω1, . . . , ωv+1 is a reduced basis of Λv+1, we obtain a generating
set ρ(ω1), . . . , ρ(ωv+1) of Λv, hence we may apply SGR. Since ρ(ω1), . . . , ρ(ωv+1)
are short, this lowers computational complexity significantly when one computes
all k(v) for 1 ≤ v ≤ w (see §3). We call this method inductive projection. Note
that this method computes k(w), k(w− 1), . . . , k(1) in this order, which is converse
to the standard techniques (e.g., [1], [5]).

SGR in the inductive projection is proved to terminate when one vector is elim-
inated, as follows.

Theorem 3.1. Let ω1, . . . , ωv+1 be a generating set of an F2[t]-lattice L ⊂ Kv.
Suppose that π(ω1), . . . , π(ωv+1) has rank v. When we apply the SGR algorithm to
this generating set, then it terminates when the number of the vectors becomes v,
namely, when a vector is reduced to zero.

Let ω′
1, . . . , ω

′
v be the obtained reduced basis. The number of reduction steps in

SGR required before the termination is bounded from above by

(3.1)

v+1∑

i=1

||ωi|| −
v∑

i=1

||ω′
i|| − ||ωlast||+ 1,

where ωlast denotes the last vector reduced to zero at the final step in SGR.
In particular, let L be Λv in (2.2). Then, the value of (3.1) is bounded from

above by −||ωlast||+ 1, if ω1, . . . , ωv+1 are the image by ρ of a reduced basis of the
lattice Λv+1 and the characteristic polynomial P (t) is irreducible.

400 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

Proof. In SGR, in one reduction step, one vector is reduced by subtracting an
F2[t]-linear combination of the other v vectors. Looking at the coefficient vectors
at the leading term, this amounts to eliminating one F2 vector by subtracting
an F2-linear combination of the other v vectors. The coefficients of the leading
term of the reduced vector changes, but the other v vectors do not change. The
reducibility implies that even if we throw away the reduced vector, still the rank
of the coefficient vectors at the leading terms does not decrease. Thus, the rank of
vectors π(ω1), . . . , π(ωv+1) is always v. Consequently, if the reduced vector becomes
zero, then the other v vectors have rank v at the leading terms, which means the
termination.

In each reduction step, the sum
∑v+1

i=1 ||ωi|| is decreased at least by one. When
one vector is reduced to zero, then this value becomes −∞. We look at the last
step of reduction. There is a vector ωlast that is reduced to zero, while the other v
vectors are unchanged and become the reduced basis. At this stage, the above sum
is ||ωlast||+

∑v
i=1 ||ω′

i||. Hence, the number of steps is bounded by their difference
+ 1, namely (3.1).

If the lattices are from an F2-linear generator, then
∑v

i=1 ||ω′
i|| = − dim(S) holds

by Lemma 2.4. If ω̃i (i = 1, . . . , v + 1) is a reduced basis of Λv+1, then

v+1∑

i=1

||ρ(ω̃i)|| ≤
v+1∑

i=1

||ω̃i|| = − dim(S),

hence the result. �

We check that in inductive projection, SGR satisfies the condition in Theo-
rem 3.1. For v = w, we apply SGR to a generating set (2.2), whose cardinality
is v + 1. In the induction step, we have v + 1 generators projected from a re-
duced basis, and SGR reduces them to v generators. In both cases, the coeffi-
cient vectors of the leading terms of the generating set have rank v as F2 vectors.
Namely, π(χw(s0)), π(e1), π(e2), . . . , π(ew) have rank w. In the induction step, let
ω1, . . . , ωv+1 be a reduced basis of Λv+1. Then π(ρ(ω1)), . . . , π(ρ(ωv+1)) have rank
v, since π(ω1), . . . , π(ωv+1) have rank v + 1 and the rank of all π(ρ(ωi)) is at least
the rank of ρ(π(ω1)), . . . , ρ(π(ωv+1)), which is v, and consequently the rank must
be v. Thus, both cases satisfy the condition of Theorem 3.1.

Corollary 3.2. Under a heuristic assumption that on average ||ωlast|| ≥ −
dim(S)/v holds, the average number of the reduction steps in SGR to obtain a
reduced basis of Λv from that of Λv+1 is bounded from above by dim(S)/v + 1.

Proof. The assumption is that, ||ωlast|| in the proof of the theorem is on average
larger than or equal to the average of ||ω′

1||, . . . , ||ω′
v||. This is justified by the fact

that ωlast is reduced by ω′
i, hence has on average a larger norm than the average

norm of ||ω′
i||, which is − dim(S)/v by Lemma 2.4. �

Note that ωlast is reduced often by using the longest vector or the second longest
vector among ω′

i, hence the above bound dim(S)/v + 1 seems overestimated: SGR
tends to stop in a smaller number of steps, which agrees with our experiments.

Remark 3.3. There is a modified Lenstra reduction algorithm [13] applicable to a
generating set of a lattice, but its efficiency seems comparable to SGR. Wang and
Zhu [17] and Wang, Zhu and Pei [18] applied SGR to compute the linear complexity

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 401

of a multisequence. A more informative complexity, based on the successive minima
obtained using SGR, is given by Wang and Niederreiter [16].

3.2. State representation. Another merit of the dual lattice method in [1] is
that the space complexity is reduced. If we apply SGR to the generating set (2.2)
polynomialized by multiplying by P (t), each vector has components being polyno-
mials of degree smaller or equal to deg(P (t)) = dim(S). Thus, one vector requires
dim(S)× v bits of memory, and the generating set consumes v(v + 1) dim(S) bits.
We need to start from v = w, which costs a lot if dim(S) is large. On the contrary, in
the dual lattice method, for v = 1 we have no reduction step (and k(1) = dim(S)),
and for v = 2 we need 2 dim(S) bits of memory for each of two vectors, and after
a basis reduction, the components of the vectors in a reduced basis have degree
dim(S)/2 on average, thus dim(S) bits for one vector and 2 dim(S) bits for a re-
duced basis. In the same way, the reduced basis for Λ′

v consumes v dim(S) bits,
which improves on v(v + 1) dim(S) for the original lattice.

Instead of using the dual lattice, we propose a method to represent a vector in
the lattice Λv by a state, which we call the state representation. Since one vector
consumes only dim(S) bits of memory, memory efficiency is comparable to the dual
lattice method (or better, since we need no assumption on the reducedness). Recall
the map χv : S → Kv defined in (2.1). Note that K = F2[t]⊕ (F2[[t

−1]] · t−1) as an
F2-vector space, since any element of K is a sum of its polynomial part (namely,
a linear combination of tj with j ≥ 0) and its fractional part (namely, an infinite
linear combination of tj with j < 0) in a unique way. Hence we have

Kv = F2[t]
v ⊕ (F2[[t

−1]] · t−1)v.

The first direct summand is called the polynomial part, and the second is the frac-
tional part which we denote by F v. Let F (Λv) be the fractional part F

v∩Λv. Since
Λv contains F2[t]

v, the polynomial part of any element in the lattice is in Λv, and
so is the fractional part, namely:

Λv = F2[t]
v ⊕ F (Λv)

as an F2-vector space. Note that the image of χv lies in F (Λv). Note also that
Λv/(F2[t]

v) is an F2[t]-module.

Lemma 3.4.
χv : S → Λv/(F2[t]

v)

is a homomorphism as F2[t]-modules. If the characteristic polynomial P (t) is irre-
ducible and χv is nonzero, then χv is an isomorphism.

If P (t) is irreducible, then this lemma implies that the fractional part of a lattice
element has a unique representation by a state in S, and the sum and multiplication
by t for lattice elements can be computed by those for the corresponding states.
Thus, we can implement lattice reduction algorithms using operations on S. This
is a key to reduce the space and time complexities by the state representation.

Proof. The action of t on s ∈ S is defined by t · s := f(s). Since χv is linear, to
show homomorphy, it suffices to show that

χv(f(s0)) ≡ t · χv(s0) mod F2[t]
v.

But by the definition (2.1), χv(f(s0)) =
∑∞

j=0 ov(f
j+1(s0))t

−1−j and t · χv(s0) =
∑∞

j=0 ov(f
j(s0))t

−j , hence their difference is an F2 vector ov(s0) ∈ F2[t]
v.

402 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

Suppose that P (t) is irreducible. Then, since P (t) trivially acts on S, S is a
k := F2[t]/(P (t))-module with k being a field. Since dim(S) = deg(P (t)), S is a
one-dimensional k-vector space. On the other hand, Λv/(F2[t]

v) is also a k-vector
space, which is generated by a single element χv(s0). Thus, χv is a K-linear map
between two one-dimensional spaces, so χv is an isomorphism if nonzero. �

From now on, we assume irreducibility of P (t). By the above lemma, we can
represent the fractional part of an element of Λv as χv(s) in a unique way. Thus,
any element of Λv has a unique representation as poly+χv(s) with polynomial part
poly and the fractional part χv(s).

Definition 3.5. A pair of a polynomial vector poly and a state s ∈ S is called the
state representation of poly+ χv(s) ∈ Λv.

The addition of two representations is given by adding their polynomial parts,
and by adding the states in the state space. Multiplication by t is given by

t(poly+ χv(s)) = (t · poly+ ov(s)) + χv(f(s)).

In applying SGR to (2.2), note that e1, . . . , ev are not in the image of χv, but
once such a vector is reduced, then the result has only the fractional part, having a
representation χv(s). Thus, most computation can be done inside the state space.

There is a slightly improved version. In a lattice-reduction procedure, we need
to compute the norm and the leading term of χv(s). A direct method is to com-
pute ov(s), ov(f(s)), ov(f

2(s)), . . . in this order, until one gets a nonzero vector.
If ov(f

j(s)) is the first nonzero vector, then this vector is the leading coefficient
π(χv(s)) and ||χv(s)|| = −j − 1 holds. This method is time-consuming if the norm
is small, which is the case for the last steps of the reduction.

To avoid this, we adopted the following representation. Let s be a nonzero
state that represents a lattice element χv(s). If ||χv(s)|| = −n, then we keep the
pair (n − 1, fn−1(s)) as a representation of χv(s), instead of s. More precisely,

consider the set S̃ := {(m, s′) ∈ Z × S | m ≥ 0, ||χv(f
−m(s′))|| = −m − 1}.

The above mapping s �→ (n − 1, fn−1(s)) ∈ S̃ gives the inverse to the mapping

φ : S̃ −{0} → S −{0}; (m, s′) �→ f−m(s′). Through this bijection, we use elements

in S̃ as representations of lattice elements. It is easy to check that ||χv(φ(m, s′))|| =
−m − 1 and π(χv(φ(m, s′))) = ov(s

′), so there is no need to search for the first
nonzero term. One can check that in the reduction steps in SGR, we need only
the norm and the leading term, hence this representation works. We leave it as an
exercise to detail how to compute the sum and the multiplication by t in S̃.

We propose a combination of SGR, inductive projection, and state representation
for computing all k(v)’s, which we call SIS for short. Thus, first SIS computes a
reduced basis of Λw using SGR with state representation. By taking the projection,
SIS computes a generating set of Λw−1, then reduces it to a reduced basis by SGR
with state representation. SIS inductively computes reduced bases of Λw, Λw−1,
Λw−2, . . ., Λ2, in this order (inductive projection). Theorem 2.3 gives k(v) for
v = w,w − 1, . . . , 2.

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 403

4. Computational complexities

In a practical F2-linear generator, f and ov can be computed by a few operations,
often independently of the size of the state space, which we assume is negligible
from the total cost of the computation.

Theorem 4.1. The average number of bit operations to obtain the reduced basis
by the SGR from the generating set in (2.2) is bounded by (v + 1) dim(S)2 + (v3 +
v2) dim(S), when using the state representation.

Proof. One step of the reduction in SGR consists of v3 bit operations for Gaussian
elimination to find a linear relation among v+1 F2 vectors, and v additions to reduce
a vector. Each addition requires dim(S) bit operations in the state representation.
Thus, one reduction step has v dim(S) + v3 bit operations. By Theorem 3.1 and
Corollary 3.2, on average, the number of reduction steps does not exceed

||χv(s0)||+ ||e1||+ · · ·+ ||ev|| −
v∑

i=1

||ω′
i||+ dim(S)/v + 1.

From Lemma 2.4, ||χv(s0)|| ≤ −1 and ||ei|| = 0, it follows that this bound is
equal to dim(S)(1 + 1/v). By multiplying, we have a complexity upper bound
dim(S)(1 + 1/v)(v dim(S) + v3) = (v + 1) dim(S)2 + (v3 + v2) dim(S). �

Theorem 4.2. The average number of bit operations for an SGR algorithm to
obtain a reduced basis of Λv from that of Λv+1 has an upper bound dim(S)2+(v2+
v) dim(S) + v3, when we use the state representation.

Proof. By Corollary 3.2, SGR needs at most dim(S)/v + 1 reduction steps on av-
erage. As in the proof of Theorem 4.1, each reduction step has v dim(S) + v3

bit operations, hence we have (dim(S)/v + 1)(v dim(S) + v3) = dim(S)2 + (v2 +
v) dim(S) + v3. �

These theorems give an upper bound of computational complexity of SIS. The-
orem 4.1 implies that the first step of SIS computing requires at most w dim(S)2 +
w3 dim(S) bit operations. At the step of the inductive projection from Λv to Λv−1 in
SIS, Theorem 4.2 gives an upper bound of the complexity dim(S)2+v2 dim(S)+v3.
By summing for v = w − 1, w − 2, . . . , 1, w dim(S)2 + 1

3w
3 dim(S) + 1

4w
4 bit oper-

ations will suffice to compute the other w − 1 values k(w − 1), k(w − 2), . . . , k(1).
By summing, we have:

Theorem 4.3. SIS requires at most 2w dim(S)2+ 4
3w

3 dim(S)+ 1
4w

4 bit operations
to compute all k(v), w ≥ v ≥ 1.

We compare this complexity to the following result for the dual lattice method
described in §2.3. A lattice Λv is said to be regular if the minimum and the maxi-
mum of its successive minima have a difference of at most 1.

Theorem 4.4 ([1, Theorem 2 and §4]). Suppose that Λ′
v−1 is regular. The number

of bit operations for computing a reduced basis of Λ′
v from that of Λ′

v−1 does not
exceed

Cv(dim(S) + v − 1)2, v ≥ 2,

where C is an absolute constant.

404 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

The number of bit operations for computing all k(1), . . . , k(w) does not exceed

C ′w2

2 (dim(S)+w−1)2 for an absolute constant C ′, under the regularity assumption
for each lattice Λ′

v.

The comparison of the orders show that our SIS method is expected to be more
efficient than this by a factor of w. (As pointed out by a referee, strictly speaking,
these are only upper bounds and do not compare the efficiency). Note that there
are differences in the estimation: our estimation does not assume the regularity on
the lattices, but does depend on a heuristic argument on the average. Actually, the
regularity implies that our estimation in Corollary 3.2 plus 1 gives an upper bound
as a worst case analysis, since ||ωlast|| ≥ ν1 ≥ − dim(S)/v − 1 is regular.

Remark 4.5. We are also interested in whether SGR is more efficient than Lenstra’s
algorithm or not, when used for dual lattice. According to our experiments, the
answer is yes, but not that much, see the next section. We implemented a version
of the dual lattice method, replacing the Lenstra algorithm with SGR.

There is one caution when SGR is used with the dual lattice method: to keep
the efficiency, we need a triangulation process, as stated below. In the dual lattice
method, let ω1, . . . , ωv−1 be the computed reduced basis of Λ′

v−1. Let B be the
square matrix of size v−1 whose j-th column is ωj . As explained after Theorem 2.6,
the vector t(−ḡv(t), 0, · · · , 0, 1) is reduced by using ι(ω1), . . . , ι(ωv−1) (called the
first phase, see [1, Proof of Theorem 2]), then the Lenstra algorithm is applied to
obtain a reduced basis of Λ′

v (the second phase). Let π(B) be the square matrix
whose j-th column is π(ωj). In the first phase, in one reduction step, a linear
equation π(B)x = y with coefficients in F2 is solved, until the vector becomes
non-reducible by ι(ω1), . . . , ι(ωv−1) (where y may change at every step). If π(B)
happens to be triangular, then solving these linear equations is efficient.

If B is obtained by the Lenstra algorithm, then π(B) is triangular. If B is
obtained by SGR, π(B) may be not triangular, but it is easy to transform B to
another reduced basis B′ with π(B′) being triangular. We use SGR with this
triangulation procedure, then the dual lattice method with SGR is often faster
than that using the Lenstra algorithm.

5. Speed comparison

The following computer experiments compare our SIS method and the dual lat-
tice method. We assume w = 32, and choose three F2-linear generators. We
measured the CPU time for computing each k(v) for 2 ≤ v ≤ 32, by using the
following three methods:

(1) SIS method (our proposal in §4).
(2) the dual lattice method with

(a) SGR algorithm applied as in Remark 4.5.
(b) Lenstra reduction algorithm (the method proposed in [1]).

We implemented these three methods in C++. In the SIS method, we com-
pute k(32) from (2.2), and then k(31), . . . , k(2) inductively. In the dual lattice
method, we need to compute the characteristic polynomial P (t) by the Berlekamp-
Massey algorithm [10], and then transform (2.3) into (2.4) by arithmetic opera-
tions modulo P (t). We refer to this phase as the precomputation for the dual lattice

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 405

method. For polynomial arithmetic in the precomputation, we used the library
NTL (http://www.shoup.net/ntl). We compute k(2) by applying SGR algorithm
(a), or Lenstra’s algorithm (b), to the basis (2.4), and then inductively compute
k(3), . . . , k(32). The tests were performed on a computer with 64-bit AMD-Athlon
64 3200+ CPU and 2.0 GB of memory, on a Linux operating system. The programs
were compiled using gcc compiler version 4 with the -O2 optimization flag.

We applied these methods to WELL44497a’, which is a maximally equidis-
tributed version of WELL44497a [12] by improving its tempering (see [4]). The
generator has dim(S) = 44497. The lattice Λv turns out to be regular for every
2 ≤ v ≤ 32, except for v = 7. Table 1 gives the CPU time (in seconds) for computing
a reduced basis. As predicted from the computational complexities (Theorems 4.1
and 4.2), in the SIS method, the CPU time for computing k(32) is comparable
to the sum of all the rest of the computations. Note that the consumed time for
k(31) to k(2) is almost the same, as predicted from Theorem 4.2. In the dual lat-
tice methods, computation of k(2) is fast, and computation time of k(v) increases,
roughly proportional to v, as predicted from Theorem 4.4. In these experiments,
SGR is a little faster than Lenstra’s algorithm.

The comparison of the CPU time is in accordance with the ratio v between
the complexity of our method and that of the dual lattice method, in inductive
computation of k(v). In total, our method is much faster.

We also compared the timings for two other F2-linear generators with dim(S) =
19937, namely WELL19937a’ (a maximally equidistributed version of WELL19937a
[12] introduced in [4], Λv being regular except for v = 6) and Mersenne Twister
MT19937 [11] whose lattices are far from being regular (whose total dimension
defect [12] Δ is 6750). Table 2 lists the total CPU time (in seconds) to compute
all k(v) (2 ≤ v ≤ 32) by the three methods for the three generators. The first line
lists the total time for each method applied for WELL44497a’, copied from the last
line of Table 1. The experiments on WELL19937a’ show the same tendency. In
MT19937, Lenstra’s algorithm is faster than SGR.

http://www.shoup.net/ntl

406 SHIN HARASE, MAKOTO MATSUMOTO, AND MUTSUO SAITO

Table 1. The CPU time for computing k(v) (2 ≤ v ≤ 32) of
WELL44497a’ (in seconds). For the SIS methods, they are listed
in descending order with respect to v, according to the order of
computation.

SIS dual lattice

SGR SGR Lenstra

precom. 1.829 1.845

k(32) 1.996 k(2) 0.064 0.064

k(31) 0.059 k(3) 0.138 0.140

k(30) 0.058 k(4) 0.212 0.217

k(29) 0.058 k(5) 0.286 0.298

k(28) 0.059 k(6) 0.364 0.379

k(27) 0.057 k(7) 0.445 0.468

k(26) 0.057 k(8) 0.527 0.553

k(25) 0.057 k(9) 0.612 0.646

k(24) 0.058 k(10) 0.700 0.739

k(23) 0.056 k(11) 0.791 0.836

k(22) 0.057 k(12) 0.879 0.940

k(21) 0.057 k(13) 0.977 1.047

k(20) 0.057 k(14) 1.071 1.157

k(19) 0.056 k(15) 1.183 1.266

k(18) 0.057 k(16) 1.284 1.383

k(17) 0.058 k(17) 1.386 1.491

k(16) 0.058 k(18) 1.505 1.619

k(15) 0.051 k(19) 1.623 1.761

k(14) 0.052 k(20) 1.742 1.895

k(13) 0.053 k(21) 1.857 2.008

k(12) 0.053 k(22) 1.985 2.148

k(11) 0.054 k(23) 2.114 2.288

k(10) 0.050 k(24) 2.247 2.468

k(9) 0.051 k(25) 2.365 2.595

k(8) 0.052 k(26) 2.516 2.739

k(7) 0.048 k(27) 2.682 2.929

k(6) 0.050 k(28) 2.824 3.098

k(5) 0.049 k(29) 2.969 3.248

k(4) 0.049 k(30) 3.117 3.443

k(3) 0.048 k(31) 3.308 3.630

k(2) 0.048 k(32) 3.456 3.806

total 3.622 total 49.053 53.139

Table 2. The cumulative CPU-time (in seconds) for computation
of all k(v) (2 ≤ v ≤ 32) of three F2-linear generators, by the SIS
method and the dual lattice methods. The number in () shows the
pre-computation time. The column Δ shows the total dimension
defect.

generators SIS dual lattice Δ
SGR Lenstra

WELL44497a’ 3.622 49.053(1.829) 53.139(1.845) 0
WELL19937a’ 0.939 12.360(0.398) 13.476(0.392) 0

MT19937 0.529 9.399(0.403) 5.654(0.408) 6750

LATTICE REDUCTION FOR F2-LINEAR GENERATORS 407

Acknowledgement

The authors are thankful to the anonymous referees for many useful comments.

References

1. R. Couture and P. L’Ecuyer, Lattice computations for random numbers, Math. Comput. 69
(2000), no. 230, 757–765. MR1651748 (2000i:11125)

2. R. Couture, P. L’Ecuyer, and S. Tezuka, On the distribution of k-dimensional vectors for
simple and combined tausworthe sequences, Math. Comput. 60 (1993), 749–761. MR1176708
(93h:11085)

3. M. Fushimi and S. Tezuka, The k-distribution of generalized feedback shift register pseudo-
random numbers, Commun. ACM 26 (1983), no. 7, 516–523.

4. S. Harase, Maximally equidistributed pseudorandom number generators via linear out-
put transformations, Math. Comput. Simul. 79 (2009), no. 5, 1512–1519. MR2488100
(2010a:65012)

5. P. L’Ecuyer and R. Couture, An implementation of the lattice and spectral tests for multiple
recursive linear random number generators, INFORMS Journal on Computing 9 (1997), no. 2,
206–217. MR1477315

6. P. L’Ecuyer and F. Panneton, F2-linear random number generators, Advancing the Frontiers
of Simulation: A Festschrift in Honor of George Samuel Fishman (C. Alexopoulos, D. Golds-
man, and J. R. Wilson, eds.), Springer-Verlag, 2009, pp. 169–193.

7. A. K. Lenstra, Factoring multivariate polynomials over finite fields, Journal of Computer and
System Sciences 30 (1985), no. 2, 235 – 248. MR801825 (87a:11124)

8. K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series, The Annals
of Mathematics 42 (1941), no. 2, 488–522. MR0004272 (2:350c)

9. , On a theorem in the geometry of numbers in a space of Laurent series, Journal of
Number Theory 17 (1983), no. 3, 403–416. MR724538 (85e:11043)

10. J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory IT-15
(1969), 122–127. MR0242556 (39:3887)

11. M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1998),
no. 1, 3–30.

12. F. Panneton, P. L’Ecuyer, and M. Matsumoto, Improved long-period generators based on
linear recurrences modulo 2, ACM Trans. Math. Softw. 32 (2006), no. 1, 1–16. MR2272349
(2007h:94033)

13. S. Paulus, Lattice basis reduction in function fields., Algorithmic Number Theory. Lec-
ture Notes in Computer Science (Berlin), vol. 1423, Springer-Verlag, 1998. MR1726102
(2000i:11193)

14. W. M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory
39 (1991), no. 2, 181 – 224. MR1129568 (93b:11079)

15. S. Tezuka, The k-dimensional distribution of combined GFSR sequences, Math. Comput. 62
(1994), no. 206, 809–817. MR1223233 (94i:65014)

16. L. Wang and H. Niederreiter, Successive minima profile, lattice profile, and joint linear
complexity profile of pseudorandom multisequences, J. Complex. 24 (2008), no. 2, 144–153.
MR2400313 (2009d:94063)

17. L. Wang and Y. Zhu, F [x]-lattice basis reduction algorithm and multisequence synthesis, Sci.

in China Ser. F 44 (2001), 321–328. MR1895107 (2003g:94031)
18. L. Wang, Y. Zhu, and D.-Y. Pei, On the lattice basis reduction multisequence synthesis algo-

rithm, IEEE Trans. Inform. Theory 50 (2004), no. 11, 2905–2910. MR2097012

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

E-mail address: sharase@orange.ocn.ne.jp

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

E-mail address: matumoto@ms.u-tokyo.ac.jp

Department of Mathematics, Hiroshima University, Hiroshima, Japan

E-mail address: saito@math.sci.hiroshima-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=1651748
http://www.ams.org/mathscinet-getitem?mr=1651748
http://www.ams.org/mathscinet-getitem?mr=1176708
http://www.ams.org/mathscinet-getitem?mr=1176708
http://www.ams.org/mathscinet-getitem?mr=2488100
http://www.ams.org/mathscinet-getitem?mr=2488100
http://www.ams.org/mathscinet-getitem?mr=1477315
http://www.ams.org/mathscinet-getitem?mr=801825
http://www.ams.org/mathscinet-getitem?mr=801825
http://www.ams.org/mathscinet-getitem?mr=0004272
http://www.ams.org/mathscinet-getitem?mr=0004272
http://www.ams.org/mathscinet-getitem?mr=724538
http://www.ams.org/mathscinet-getitem?mr=724538
http://www.ams.org/mathscinet-getitem?mr=0242556
http://www.ams.org/mathscinet-getitem?mr=0242556
http://www.ams.org/mathscinet-getitem?mr=2272349
http://www.ams.org/mathscinet-getitem?mr=2272349
http://www.ams.org/mathscinet-getitem?mr=1726102
http://www.ams.org/mathscinet-getitem?mr=1726102
http://www.ams.org/mathscinet-getitem?mr=1129568
http://www.ams.org/mathscinet-getitem?mr=1129568
http://www.ams.org/mathscinet-getitem?mr=1223233
http://www.ams.org/mathscinet-getitem?mr=1223233
http://www.ams.org/mathscinet-getitem?mr=2400313
http://www.ams.org/mathscinet-getitem?mr=2400313
http://www.ams.org/mathscinet-getitem?mr=1895107
http://www.ams.org/mathscinet-getitem?mr=1895107
http://www.ams.org/mathscinet-getitem?mr=2097012

	1. Introduction
	2. Linear generator and lattice method
	2.1. Dimension of equidistribution
	2.2. Lattice structure
	2.3. Dual lattice

	3. Main result
	3.1. Schmidt's generating set reduction
	3.2. State representation

	4. Computational complexities
	5. Speed comparison
	Acknowledgement
	References

