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NONSYMMETRIC COUPLING OF BEM AND MIXED FEM ON
POLYHEDRAL INTERFACES

SALIM MEDDAHI, FRANCISCO-JAVIER SAYAS, AND VIRGINIA SELGAS

ABSTRACT. In this paper we propose and analyze some new methods for cou-
pling mixed finite element and boundary element methods for the model prob-
lem of the Laplace equation in free space or in the exterior of a bounded
domain. As opposed to the existing methods, which use the complete matrix
of operators of the Calderén projector to obtain a symmetric coupled sys-
tem, we propose methods with only one integral equation. The system can
be considered as a further generalization of the Johnson—-Nédélec coupling of
BEM-FEM to the case of mixed formulations in the bounded domain. Using
some recent analytical tools we are able to prove stability and convergence
of Galerkin methods with very general conditions on the discrete spaces and
no restriction relating the finite and boundary element spaces. This can be
done for general Lipschitz interfaces and in particular, the coupling boundary
can be taken to be a Lipschitz polyhedron. Both the indirect and the direct
approaches for the boundary integral formulation are explored.

1. INTRODUCTION

Very early in the history of modern numerical analysis, the coupling of Finite
and Boundary Element Methods was recognized to be a promising field for re-
search and applications. The possibility of enjoying the best of both worlds [29] is
an attractive feature of these coupled schemes. We can use the Boundary Element
Method (BEM) to deal with unbounded regions where simple equations (linear,
homogeneous, with constant coefficients) take place. We thus leave to the Finite
Element Method (FEM) the task of dealing with source terms, nonlinearities, com-
plex geometrical details, but relieve it of having to discretize huge regions where
small variations happen. We also free the problem of modeling errors produced by
cutting off an unbounded domain and devising approximate boundary conditions.

The first analytical approach to coupling of BEM and FEM appeared in [18], [4]
and [5]. It probably constitutes the first successful effort in the direction of a fully
analyzed coupled numerical scheme, at least in the realm of variational methods
for PDEs. The method of [I8] ends up in a nonsymmetric system of operator
equations, even though the original problem is the Laplace equation, which is clearly
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symmetric. The proof in [I8] uses the discrete Fredholm theorems that can be traced
back to [20]. However, an important requirement for the applicability of this proof
technique is the compactness of a certain integral operator that appears in the
formulation. In the case of the Laplace equation, this operator is compact when
the coupling boundary is smooth enough, but it is not for polygonal/polyhedral
coupling interfaces. Obviously, this was considered as a drawback from the point of
view of the finite element method, which is better applied on polygonal domains. In
the case of the linear elasticity system, the smoothness of the interface is not enough
to provide compactness of the corresponding integral operator and the method
seemed not applicable in any situation. On smooth enough interfaces, a way around
was found in [2] by using a nonstandard coupling in the pseudostress.

The smoothness requirement was not a deterrent for the development of this
kind of coupled BEM-FEM formulations (called one-equation couplings in [I3]),
with extensions to the Stokes system [28] and to nonlinear problems [13], or with
the use of curved triangles [24]. However, smoothness of the interface was generally
considered to be a serious flaw in the method.

A breakthrough occurred in the late 1980s with the appearance of the symmetric
coupling techniques in [9] and [I9]. This was the starting point of an expansion of
coupling techniques of BEM with other FEM schemes: Raviart-Thomas elements
in [25], more general mixed FEM in [6], Crouzeix-Raviart elements in [7], discontin-
uous Galerkin methods [I6] [15], etc. A general frame where most of these methods
fit is given in [8]. Symmetric coupling (or, in the terminology of [13], two-equation
coupling) has been considered the standard solution to avoid smooth interfaces;
although, it must be said, no practical problems of the original Johnson-Nédélec
type schemes have been reported to the best of the authors’ knowledge.

The proof in [27] of the validity of the Johnson—Nédélec approach for any Lips-
chitz coupling interface marks a new inflection point in this direction. The paper
[27] follows an idea originally designed in [22] to deal with simultaneous discrete
analysis of symmetric BEM-FEM schemes for the operator equation —Au+s%u = f
for all s € C with Res > 0. In [22], the need to work in the entire resolvent set
for the Laplace operator precluded the use of discrete Fredholm theorems and they
were obliged to rethink what it means to discretize a boundary integral equation,
understanding this process as an equivalent problem in free space with somewhat
exotic transmission conditions across the boundary. The results in [27] have been
expanded in [I4] to extend the stability results of the quasi-symmetric coupling of
Bielak and MacCamy [2] to any Lipschitz interface.

In this paper we propose to create and analyze a simple nonsymmetric one-
equation coupling of mixed FEM with BEM. We will restrict our attention to the
three-dimensional Laplace equation but we will work in great generality with the
discrete spaces proving essentially that any choice works, as long as the mixed FEM
pair of spaces provide a stable method.

Some words on how symmetric and nonsymmetric couplings of BEM and FEM
compare seem pertinent at this point. The analysis of symmetric coupling schemes
for BEM and FEM is always based upon an ellipticity principle. For the coupled
equations to become symmetric, it is compulsory to change the sign of one or more
of the rows of the system of operator equations. This change makes the system
strongly indefinite. Symmetric methods benefit from the wider availability of lin-
ear solvers for symmetric systems. This advantage is lost when what is symmetric
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is the principal part of the operator, as when we apply these ideas to the Helmholtz
equation. Another drawback of symmetric couplings is the need to use (and dis-
cretize) all integral operators of the Calderén projector. Furthermore, symmetric
couplings follow from the clever artifice of using all the Calderén identities whereas
nonsymmetric couplings are natural applications of one of the variants of Green’s
Third Identity. This additional simplicity of the formulation makes nonsymmetric
couplings preferred in many practical situations. Finally, from the point of view of
storage, if the full matrices are never assembled (but only its relevant blocks are
built and stored), the number of submatrices to keep in nonsymmetric formulations
is equal to or smaller than in symmetric formulations. This is due to the fact that
less integral operators are employed in the nonsymmetric case.

The paper is structured as follows. In Section[Zlwe explain two formulations (with
direct and indirect boundary integral equations) for the transmission problem in
free space, and we give hypotheses for their Galerkin discretization. In this section
we state the main well posedness and stability results of this paper. In Sections
Bl and @ we give the proof of these theorems. In particular, the discrete results
will be proved in more generality than initially needed, with no additional effort.
This increased generality is made the most of when we notice that imposition
of Neumann boundary conditions on an interior boundary (Section [ is just a
particular case of what has been done in free space. The case of Dirichlet conditions
deserves special attention (Section[fl) and the result is slightly different, although its
quality (asymptotic stability for general methods with any interface) is essentially
the same. In Section [l we report some numerical experiments with a particular
choice of spaces.

Throughout this paper we will be loosely using elementary results on the Sobolev
spaces H'(Q), H*'/2(T") and H(div, Q), results that can be considered as part of the
folklore shared by numerical analysts of partial differential equations. A common
reference for Sobolev spaces theory is [I]. For H(div,Q) type spaces, [17] is the
usual choice. Some very basic weighted Sobolev spaces (identifiable with Beppo—
Levi spaces) will also be used. An easy to find reference for the most elementary
properties of these is [26]. The theory of boundary integral operators for the Laplace
equation on a Lipschitz domain appears in [I0], and can be found extended in great
generality in [23], which is also an excellent reference for Sobolev spaces on domains
with Lipschitz boundaries and on these boundaries.

2. MAIN RESULTS

The aim of this paper is the solution of the Laplace equation in free space with
compactly supported source terms and discontinuous transmission data across an
interface that surrounds the sources. Modifications for the case when we impose
boundary conditions on an interior boundary will be dealt with in Sections [Bl and
In this section we will only state results. Proofs are postponed to Sections [Bland
zh

We consider a bounded domain € C R3, with Lipschitz boundary I' and con-
nected exterior Q¢ := R?\ Q. The normal vector on T is pointed outwards. Traces
and normal derivatives on I' of functions defined on Q2 will be denoted with the
symbols v and 0, respectively. When the function is defined in the exterior do-
main ¢, the superscript e will be added to the symbols v¢ and 95. We will use
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the jump operators for functions defined in Q U Q°:
[vu] == ~yu — yu, [Ovu] := Opu — O u.

Boldface symbols will be used for vector fields. The normal component of p : 2 —
R3 on T is denoted

WP =PV
The transmission problem we will be dealing with is
p—Vu=0 inQ, —divp=f in Q,
[yu] = Bo, TP = Oju+ B,

1
o —Au=0 1in Q°,

u=0(x|71) as |x| — oo.
Apart from the usual H*(2) Sobolev spaces, we will use the weighted space
WHQ) :={u:Q° =R : puec L*(Q°), Vue (L*(Q9))*},

where p(x) := 1/4/1 + |x|2. For basic properties of this space, see [26], Section 2.5].
It
fel?(9Q), Bo € H'A(T), By € H-VA(T),

then () admits a unique solution u € H(Q) x W1(Q°) = W1(QuU Q¢). (We will
adopt the convention of identifying a function defined on QU with a pair of func-
tions defined on the respective regions.) A proof of this existence and uniqueness
result derives from the treatment of this problem in its primal form (p is absent
from the formulation) in [27], Section 4].

Let ®(r) := 1/(4nr) be the fundamental solution of the three-dimensional
Laplace operator. With it we construct the single and double layer potentials:

SA = /cb(\ - =y|) My) dl'(y),

T
Dy := F<9.J<y)<I>(| - =y]) p(y) dl(y).

The integral expressions of these potentials can be extended in the following way:
given A € H-Y2(T") and ¢ € H'2('), S\ and Dy define functions in H'(Q) x
W1(Q¢) that solve Laplace’s equation in QU Q¢. A rigorous introduction of these
layer potentials with Lipschitz regularity of the boundaries was carried out in [10]
and can be found extended in great generality to other elliptic systems in [23].
For any forthcoming result on layer potentials and boundary integral operators,
the reader is referred to [10] and [23]. Note that neither of these references use
the weighted Sobolev space, remaining with local H' behavior instead. However,
since potentials define smooth functions away from the boundary I', and the weight
affects only integrability properties at infinity, the correct integral behavior is easily
proved. Green’s Third Identity can be stated as follows: if u € H'(2) x W1(Q°)
satisfies Au = 0 in Q U Q°, then

(2) u = S[0pu] — D]vyul.
Note that, in particular,

—1, in Q,
(3) D1 =
0, in Q€.
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TABLE 1. The jump relations of potentials: the upper row are
the operators of restriction to the boundary, which applied to the
potentials S and D give the boundary operators in the table.

Y ve Oy oy, Y1 0]
S \Y Vo | 3I+K | —iI4+K| 0 | I
D|| -iI+K |iI+K| —-W -W -1 0

We will make repeated use of the following integral operators, defining functions
on I' for a given density ¢:

(1) Ko = [ 2@ =y e()dry)

(5) Wy = —&/F@u(y)@(l - =) e(y) dl'(y).

The operator K : H'/2(I") — H'/?(T) is bounded and we will denote its transpose
Kt : H-'/2(I') - H~Y/%(T"). The so-called hypersingular operator W : H'/2(I") —
H~Y2(T') is also bounded. With these operators, the limiting values of the layer
potentials and their jumps across I can be described. This is done in Table [] for
ease of reference. There is an additional operator in this table, namely V, which
is defined with the same integral expression as the potential S, restricted to points
on the boundary.

2.1. Coupling with a direct boundary integral method. The first proposal
for a coupled formulation uses Green’s Third Identity in the exterior domain. We
will take
¥ =7 ue HY/*(T)
as unknown. We can then write for the solution of (),
(6) u=D~%u — SO u =Dy — S(yp — B1), in Q°.
This is just (@) taking v = 0 in the interior domain. Using the jump relations
(Table [l) we have the following identity:
31+ K)%p+Wo = (31 +K)'B1.
A coupled formulation of (] is obtained when we propose a standard mixed for-
mulation of the interior problem and use the fact that yu = v + £y. The natural
space for p is
H(div, Q) := {p € (L*(Q))* : divp € L*(Q)}.

For properties of this space we refer to [I7]. The weak formulation leads to the
following problem: find (p,u, 1) € H(div, Q) x L?(Q) x H'/?(T") such that

(P, @)o + (v, diva)e — (vwa, ¥) = (rq, Bo), Vq € H(div, 2),
(1) (divp,v)a = —(f,v)q; Yo € L2(Q),

(GI+K)'%p, ¢) + (W, 0) = (G1+K)'Bi, ), Ve e HV(T).
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In (7)) we have used the notation

(P, a)o ::/Qp~q, (u, v)g ::/Quu

and the angled brackets to denote the duality product of H~/2(T) with H/?(T).
As the following result states, this formulation leads to a solvable problem, with a
one-dimensional kernel. We will show later how to modify this problem to obtain a
well-posed system and how to choose the right solution from the system (note that
([ is uniquely solvable even when () is not).

Theorem 1. Equations (@) are solvable in H(div, Q) x L*(Q) x HY2(T') for the
given right-hand side. Its solution is (p,u+ ¢,v°u + ¢) where (u,p) is the solution
of @) and ¢ is an arbitrary constant.

2.2. Coupling with an indirect boundary integral method. An alternative
method consists of using a double layer potential to represent the exterior com-
ponent of u. However, this potential ‘ansatz’ imposes a restriction on the data,
because of the following fact: if u € W1(Q¢) satisfies Au = 0 in ¢, then

u = D¢ with € € HY/2(T) = (0%u, 1) = 0.
Therefore, if we are going to use this type of formulation, we need

(B1,1) = (wp, 1) = (divp, 1)o = —(f, 1)q,
that is,

(8) (f; Do+ (B, 1) = 0.
Note that D1 = 0in Q¢ (see ([B])) and therefore we cannot expect a uniquely solvable
system with £ as an unknown.

Using the jump relations (Table[I]) we can translate the transmission conditions
to these two simple equations:

yu= A1+ K)E+Bo, P+ WE =5

The second of these conditions will remain as one of the equations of the coupled
system, whereas the first one will be incorporated as a natural condition in the
mixed formulation for the interior domain. In a first approach, we arrive at the
variational problem: find (p,u, &) € H(div, Q) x L?(2) x HY/?(T) such that

(P.q)o + (u,divg)e — (19, (31 + K)¢) = (voq, Bo), Vq € H(div, ),
9)  (divp,v)a = —(f,v)a, Yo € L2(Q),
(P, ) + (WE, @) = (B1,9), Vo € HY2(I).

Theorem 2. Equations (@) are solvable in H(div, Q) x L*(Q) x HY?(T') for the
given right-hand side if and only if @) holds. Its solution is (p,u,& + ¢) where
(u,p) is the solution of (), ¢ is an arbitrary constant and u = D(§ + ¢) is the
exterior component of the solution.

Let us briefly compare problems (@) and ([@). Up to a change of sign of the
third row and column, both systems are mutually transposed. This is often the
case in problems that involve boundary integral equations: one operator equation
corresponds to the direct approach and the transpose to the indirect approach.
The right-hand side of the indirect approach (@) is simpler and data do not appear
under the action of integral operators. Moreover, the integral representation of the
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exterior problem is just a potential, much simpler than the representation (@) for the
exterior problem. On the other hand, the direct approach always gives a solvable
system (there is no compatibility condition (8) on the data) and the unknown on
the boundary is part of the solution, whereas £ in (@) is just a density with no
further meaning. The lack of uniqueness is going to be simpler to deal with in the
indirect case, which shows another advantage of this formulation. However, it has
to be recognized that the engineering community favors direct formulations, which
gives these a leading role in practical applications.

The lack of uniqueness in the density can be easily mended by looking for the
third component in

Hy*(1) = {€ e HV(T) : (1,€) =0}.

The reduced formulation consists of looking for the solution of (@) in H(div, ) x

L?(Q) x Hé / ?(T") and testing these equations only in the same space. This is stated
in the following result.

Theorem 3. Let (; € H(div,Q)', £y € L*(Q) and t5 € HY*(T). The following
problem is well posed: find (p,u,€) € H(div,Q) x L*(Q) x Hé/2(I’) such that

(pa q)Q + (ua div q)Q - <7Uqa (%I + K)£> = El(q)v vq € H(le, Q)v
(10) (divp,v)q = £2(v), Yo € L2(9),

(P, ©) + (WE, ) = (), Vo € Hy/*(D).

If the right-hand side is the same as [@l), we obtain one of the solutions of @) and,
through it, the solution of the transmission problem ().

When condition (8] is not satisfied, we can rewrite the problem in the unknowns

ey (fsDa + (81, 1) s1, q = V.

(1,1)
This change of unknowns affects only 51 (f and /3y are not modified) and the new
data comply with (g)).

2.3. A reduced coupling with the direct method. We can try to select one of
the solutions of (@) using the same technique as in Theorem[3l The main difference
is going to be the fact that this simple choice yields one of the solutions of (@) that
might not be the solution to (Il) and we need some small postprocessing step to
modify a constant value in the interior. The average operator on the boundary

(1) soim ) =t [ ary)

will be used in the sequel.

Theorem 4. Let 31 € H(div,Q)’, 52 € L?(Q) and 73 € Hé/2(F)’. The following
problem is well posed: find (po,uo, o) € H(div, Q) x L3(Q) x Hé/2(F) such that

(Po, ) + (uo,diva)a — (voq, ¥o) = 71(a), Vq € H(div,Q),
(12) (div po, v)a = 52(v), Yo e L2(9),
(14 K)"po, @) + (Weo, ) = 33(9), Ve € Hy*(D),
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If the right-hand side is the same as (), we obtain one of the solutions of [d). The
solution of () can be recovered by:

wo + I (31 + K)o = Viwpo = A1) ), in &,
Do — S(vwpo — B1), in Q.

Note that the constant that corrects the interior solution in ([I3) can also be
written as

(13) P = Po: u =

(14) <(%I+K)t1’¢0> - <7up0_61aV1>.
meas T’

Therefore, the integral operator V is only applied to the constant function and does
not need to be discretized.

2.4. Galerkin discretization. We finally address the problem of the numerical
approximation of the two well-posed problems above, i.e., (I0) and ([I2). Since
apart from some row changes, these problems are mutually transposed, we only
need to study the discretization of one of them. For simplicity of the analysis, we
choose to deal with (I0]). Take three finite dimensional spaces

(15) H, C H(div,Q), L, C L*(Q), X, c HY*T).

We want to compare the exact solution of ([I0) with its Galerkin discretization: find
(ph,uh,ﬁh) € Hj;, x Ly x X}, such that

(Pr-dn)a + (un, divan)e — (wan, 31+ K)&) = bi(an), Va, € Hy,
(16)  (divpn,vn)a = La(vn), Yoy € Ly,

(VPrs @) + (W, on) = €3(¢n), Vion € Xh.
The main result of this paper is the following stability result for the Galerkin
method ([I8)). Stability will be stated in the norms of H(div, Q), L?(Q2) and H'/?(T"),
respectively, denoted

|- Mlaives - lles - [y

Theorem 5. Assume that
(17) divqy € Ly, Yaq, € Hy,
and that there exists Cy > 0 such that

di
(18) sup (divan,vr)a = Collvnlle, Vo, € Lp,.

0#qr€H, ”qthiV,Q
Then the Galerkin equations ([I8) are uniquely solvable. Moreover, there exists
C > 0 which depends on the discrete spaces only through the constant Cy such

that if (p,u, &) is the solution of ([[0), then the following quasi-optimality estimate
holds:

P = Pallaiv.e + [[u—unllo + (| = &nllij2r

SC( inf |p—anllaive + inf Jlu—wvpllo+ in Hﬁ—sohHl/z,r)-
v €LY ©h

f
qr€Hy W EX 1
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3. ANALYSIS OF THE CONTINUOUS PROBLEMS

This section includes the detailed proof of Theorems [1 2 Bl and @ Although
stated separately, these four results are very intimately connected and their proofs
will follow as the consequence of a series of short propositions that will prove pieces
of each until the moment when we can collect all of them.

Proposition 6. The set of solutions of ([{l) with a homogeneous right-hand side is
the span of (0,1,1).

Proof. First, note that

(19) ker W =ker (A1 +K) = {¢ € H/*() : DE=0 in Q°} = Py.

Then the triple (0,1, 1) solves () with homogeneous right-hand side. Reciprocally,
elementary arguments show that a homogeneous solution of this problem satisfies

(20) Vu=p in Q, Au=0 1in Q, yu = .

Then (¢, v, p) are the Cauchy data of an interior solution of the Laplace equation
in Q. Extending u by zero in the exterior domain and using (Z)), we prove that

Svp — Dy =0, in Q€.
Taking the exterior normal derivative, it follows that
(—31+K)'p + W = 0.

This function is equal to —v,p by the third equation of (l) with zero on the right-
hand side. Hence —Au = 0 in Q and d,u = v,p = 0. Therefore, u = ¢ for some
¢ € Py. By (20), it follows that p =0 and ¢ = c. O

Proposition 7. The set of solutions of (@) with a homogeneous right-hand side is
the span of (0,0,1).

Proof. Property (I9) proves that (0,0,1) is a homogeneous solution of ([@). If, on
the other hand, we have a solution (p,u,&) of (@) with a homogeneous right-hand
side, then

(21) Vu=p inQ, Au=0 in ), yu = (31 + K)¢.
Now extend u by u := D¢ in Q°. Then
~ou = (%I + K)¢ = vu, Opu=—-WE =~,p = dyu.

Therefore, (p,u) is a solution of the transmission problem (Il with homogeneous
data. Uniqueness of the solution of (1)) implies that v = 0 (in QU Q) and p = 0.
Since D€ = 0 in Q¢, by (I9) we prove that & € Py. O

Proposition 8. The operator associated to problem (@) is Fredholm of index zero.

Proof. Take ® := exp(—r)/(4nr), which is the fundamental solution of the elliptic

operator u — —Au + u. Then define K and W with this new fundamental solution
using (@) and (B). We now consider the problem: find (p,&,u) € H(div,) x
HY?(T) x L*(2) such that

(P, @) — (1wq, AT+ K)E) + (u,diva)g = £1(q),  Vq € H(div,Q),

(22)  (np, @) + (WE ) = (), Vo € HYX(T),
(divp,v)a = £5(v), Yo € L2(Q),
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for an arbitrary right-hand side in the dual space. Because W — W and K — K
are compact, once we have proved that the operator associated to problem ([22)) is
invertible, we will obtain as a consequence that the operator associated to (@) is
Fredholm of index zero.

To prove that problem ([22) is well posed we will use the general theory of
mixed problems [3, Chapter II]. First, div : H(div,Q) — L%() is surjective so
we only have to concentrate on proving well posedness of the following problems:
find (p, &) € V x HY/?(T) such that

(P, @e — (wa, A1+ K)E) = 5(q), YqeV,

(23) N
(P, ) + (WE, @) = (1, ©), Vo € HY2(I),

where
(24)  V:={qeH(div,Q) : divg=0} = {q € (L*(?))? : divg =0}

and (5, p1) € V/ x H-Y2(T) is an arbitrary right-hand side. The solution of this
problem is given by £ = W=1(1 — v,p) and p € V satisfying

(25) (p,@)o — (a, (I +K)Wy,p) = 5(q) — (na, QI+ K)W™ly), VYqe V.

The operator —(%I + IN{)W_l is an integral representation of the Neumann—to—
Dirichlet operator for the equation —Au+wu = 0 in ¢, which is elliptic. Therefore,
the bilinear form —(v,q, (31 + K)W~14,p) is nonnegative and problem (ZF) is
elliptic. This proves the result. O

Proposition 9. Equations () are solvable for the given right-hand side.

Proof. By a transposition argument, Proposition [§] also proves that the operator
associated to () is Fredholm of index zero. Therefore, the problem is solvable if
and only if the right-hand side vanishes when applied to any element of the kernel
of the transposed problem which is span{(0,0,1)} (see Proposition [7). However,
by ([9)

(GI+K)'B1,1) = (A1, (31 + K)1) =0,
and then the condition is satisfied. (]

Proposition 10. Equations [@) are solvable for the given right-hand side if and
only if @) holds.

Proof. The operator in (@) is Fredholm of index zero and the kernel of its transpose
is span{(0,1,—1)}. This is proved in Proposition [6l above, up to a change of sign
needed to identify the transpose of (@) with (). Condition (8 is just the solvability
condition for this problem applied to the particular right-hand side of (). O

Proposition 11. Problem (I0) is well posed.

Proof. Note that we will give an alternative proof of this result as a byproduct of
Section [ (Proposition [[7). Let us consider problem (@) with the following right-
hand side:

nl@):=b(a), 2@ :==6w), 1) ="Lle—IT)+Ipl(l).
This right-hand side satisfies the solvability condition for problem (@) which is
72(1) — 73(1) = 0. Solutions of (@) are defined modulo an additive constant in the
third component. Therefore, only one of them solves ([I0). O
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Proposition 12. Problem ([[2) is well posed.

Proof. This follows from a simple transposition argument from Proposition[T1l [

Remark. Theorems [Il @] and [3] are proven by Propositions [6] to [l

Proof of Theorem M. Tt remains to show how to obtain a solution of the transmis-
sion problem () from the unique solution of (I2) with the right-hand side of (7).
By (I9), the solution of (I2) solves (@) too. Therefore,

Vug =pg in{}, —Aug = f in Q, yug = g + Bo.

We extend ug to
Ug = D’lﬁo — S(@l,uo — 51), in Q¢€.

Using the third equation of () and the jump relations, it follows that dSuy =
Opug — B1. Therefore, we can compare the exterior definition of ug with the integral
representation given by Green’s Third Identity

D’Q/J() — Saf,uo = D’}/E’U,() — S@,‘iuo.

Therefore, by ([I)), there exists ¢ such that ¢y + ¢ = y°ug and this constant can be
computed comparing the averages of both sides of this last equality

(26) c=Jyug = JVv (Do — S(vwPo — B1)).

It is clear that adding this constant to the interior value of ug and to ¥y we obtain
the solution of (I). The jump relations show that the constant (28] is just the
correction given in (I3). O

4. ANALYSIS OF THE DISCRETE PROBLEMS

The aim of this section is to prove Theorem[Bl Actually, we will prove a more gen-
eral result (Proposition[I7]), from which Theorem[Blwill be a consequence. Through-
out this section we are given three closed spaces (IH) satisfying (I7) and (I8]). We
will not need them to be finite dimensional. In particular, they can be taken to be
the full spaces. Note that (7)) implies that

(27) Vi = {an € Hy : (divgp,vn)o =0, VYo, € Ly}
= {thHh : divthO}CV,

where V is given by ([24). We will use a general result on the invertibility of
problems with mixed form to work out an analysis eliminating u; as an unknown.

Let us first concentrate our efforts in the following reduced problem. We are
given closed subspaces Vj, C V and X, C Hé / 2(F) and linear functionals ¢; , € V7,
Uy, € X},. We then consider the problem: find (ps, &) € Vi, x X, such that

(Pryan)e — (wan, (31 +K)én) = Lin(an), Van € Vi,
(YwPh, @) + (W&, on) = Lo n(on), Von € Xh.

Note that ([28) can be considered as a Galerkin discretization of the coupling of a
dual and a boundary integral formulations for problem (). This auxiliary problem
is defined for analytical reasons, although it is an object of its own interest as a
different coupling of BEM with divergence-free finite elements.

(28)
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Proposition 13. Let (pn, &) be a solution of 28) and let u* := DE,. Then
(Pn,u*) is a solution of the following: find (pp,u*) € Vi, x WHQUQ®) such that

—Au* =0 m QU QS

[yu'] € Xh,

(29) [Ou”] =
(Pr,dn)a <%Qhﬁ u*) =Lin(an), Yan € Vi,
(wPh — Opu*, pn) = L2.n(on), Von € Xp.

Reciprocally, given a solution of [29), then (pp, —[yu*]) is a solution of ([28]).

Proof. 1t is a direct consequence of the jump conditions of potentials and of Green’s
Third Identity (). O

Consider now the space
W= {u* e WHQUQ) : [yu'] € Hy/*(I)}
and its subspace
Wy, = {u* e WHQUQ®) : [yu*] € X4}

An argument in [27, Section 4] shows that the seminorm ||Vu*||quge is a norm in
W equivalent to the usual one.

Proposition 14. Problem 29) is equivalent to: find (pp,u*) € Vi, x Wy, such that
(P> an)o = (wan, Yu*) = tin(an), Vau € Vi,
<’7llph7 [/YU*D - (VU*u V’U*)nge = g2,h([7v*])> Yo* € Wh~

Proof. Let (pp,u*) be a solution of [B0). Testing the second equation with a general
C* function, compactly supported in 2 U Q¢ we prove that Au* = 0 in Q U Q°.
The second equation of [B0) can then be rewritten as

B (wpn, [y07]) = (Quu”, ") + (Gpu”, v 0%) = Lap(yv7]), Vo' € Wi
Given ¢ € HY?(I') we can construct v* € H'(R%) ¢ WY(R?) ¢ W}, with yv* =
~vev* = . Testing [BI) with this v* we prove that

([0uu'],0) =0, Vo e HYVD),
that is, [Opu*] = 0. Plugging this new condition into (BI]) we obtain
(32) (VP — Opu”, [Y0*]) = la n([Y07]), Yo* € Wy,

Finally, given ¢, € X}, we can construct v* € H'(Q) such that yv* = ¢, and
extend it by zero to Q¢. This function is in W} and shows that ([B2) is equivalent
to the last equation of (29]).

Reciprocally, if we have a solution of ([29)), then (B2]) is satisfied. Therefore, so
is (3I)) because [0, u*] = 0. Finally, BI) and Au* = 0 in Q U Q¢ imply the second
equation of (B0). O

(30)

Proposition 15. The following bilinear form in 'V x W is continuous and elliptic:

a((p,u*),(q,v")) = (p,@)a — (wa, Yu*) — (P, [10*]) + (Vu*, Vo*)aua-.
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Proof. Continuity of the bilinear form is straightforward. Recalling that elements
of V are divergence free, it follows that
a((p,u), (p,u*)) = (P,P)a— (Wwp,yu") + (Vu*, Vu*)auge
= (p,p)a — (P, Vu')a + (Vu*, Vu")auae
slPlE + 31 Vu [foge-
Since the Sobolev seminorm is equivalent to the usual norm in W and the L? norm
is equivalent to the H(div, Q) norm in V, the result is proven. O

\%

Proposition 16. Problem [28) has a unique solution. Moreover, there exists a
positive constant C independent of the particular choice of the spaces Vi, and Xp,
such that

IPallaiv + Il /2.0 < € (llernllvy, + lezallx; )-

Proof. Existence and uniqueness of the solution of (28] follows from Propositions
@3] @4 and The ellipticity of the bilinear form (Proposition [[H) allows us to
bound the H(div, Q) x W(QUQ®) norm of (pp,u*) uniformly in terms of the norm
of the right-hand side of [28]). Finally, &, = [yu*], which permits us to bound the
H'/?(T") norm of this unknown of the system. O

Proposition 17. Let Hy,, Ly, and X}, be closed subspaces [[B)) satisfying () and
@8). Then for all b1, € Hj,, by, € X}, £3), € L}, the following problem admits a
unique solution: find (pp,&n, un) € Hy X Xp, X Ly, such that

(Pr-an)o — (wan, (GBI +K)&,) + (un, divan)o = lip(an), Vau € Hy,
(33)  (wPn @) + (W&, on) = L2 n(n), Von € X,
(div ph,vn)a = l3.n(vn), Yoy, € Ly,.

Moreover, there exists C > 0 which depends only on Cy in ([A8) and is otherwise
independent of the choice of the spaces, such that

(34)  Ipallawe + Inllayor + lunlle < C(Ienley, + 1nllx; + I6s.llz; ).

Proof. The result follows from a straightforward application of general results on
problems with mixed form. Note that we have reordered equations and unknowns
to emphasize the mixed structure of the problem, with H;, x X, as a space for
primal unknowns and Lj, as a space for ‘Lagrange multipliers’.

Because of (7)), the discrete kernel Vi, x X}, is a subspace of V x Hé/z (T) (see
@7)) and then existence and uniqueness of the solution are equivalent to: (a) an
inf-sup condition ([I8); (b) an invertibility property for variational problems set in
V), x X;, (Proposition [[6). The norm of the operator that assigns solutions of
(B3) to right-hand sides depends on the (inverse of the) constant Cj in the inf-
sup condition (I§) and on the norm of the inversion operator for equations (28]).
As proven in Proposition [I6], this last constant does not depend on the particular
choice of spaces. O

Proof of Theorem Bl For Galerkin approximation of well-posed problems, the quasi-
optimality or Céa estimate is equivalent to stability. This means that the estimate
in the statement of Theorem [l is a consequence of the uniform invertibility esti-
mate ([34) for problem ([B3]). The proportionality constant between the Céa estimate
and the uniform bound of the inverse depends only on the norm of the operator
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and therefore both are independent of the choice of discrete spaces (apart from
dependence through Cj in the inf-sup condition). O

5. NEUMANN BOUNDARY CONDITIONS

In this section we change the transmission problem to one that takes place in
the exterior of a bounded domain ), with Lipschitz boundary . Surrounding
this domain there is another O. The union of both and their common interface
corresponds to our original domain 2. The exterior domain will still be referred
to as Q° and I" will be the interface separating €2 from Q°. A sketch of this new
geometric setting is given in Figure [l The superscript ¥ will be used for traces
and normal derivatives on X.

Qe

obs

FIGURE 1. Geometric setting for Sections [5] and

We consider the new transmission problem

rYEp = BNeua

p—Vu=0 in O, —divp=f inO,
(35) [,-Yu] = 607 TP = 85’“ + Bla

—Au=0 1in Q°,

u=0(x|7!) as |x| — oo,

with Byew € H™Y/2(X). We will start with the indirect formulation, trying to
write v = D¢ in Q°. Following the argument given in Section 2] we show that a
necessary condition for this is

(36) (fv 1)0 + <517 1> + <ﬂNeu7 1>E = Oa

where (-, - )y is the duality product between H~/2(¥) and H'/?(X). We will need
the following space:

Hy(div,0) := {q € H(div,0) : v)q=0}.
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The first coupled formulation is: find (p,u, &) € H(div,0) x L?(0) x H/?(T") such
that 72p = fBNen and

(p.@)o + (u,diva)o—{na, (31 +K)§) = (na. fo), Yq € Hy(div,0),
(37)  (divp,v)o = —(f,v)o, Yo € L?(0),

(P, @) + (W€, 0) = (B1,9), Vo € HY2(D).

We will call reduced formulation to the modification of ([B7) by looking for £ in

Hé/ 2(1") and testing the third variational equation in this same space. A Galerkin
method for the reduced formulation uses three spaces,

HY c H(div,0), LY c L*(0), X, c HY*(),
a suitable approximation of the essential boundary condition
BNew X Blen € 7 HY,
and the space Hgyg = HY N Hx(div,0). The Galerkin equations are: find
(Ph,un, &) € HY x LY x X, such that v py, = BL,, and

(Ph,an)o + (un, divan)o— (wan, (31 + K)&)

= <7tha50>a VQh S ngjv
(div pn, vn)o = —(f,vn)o, Yoy, € LY,
(YoPn, on) + (W&, on) = (B1, on), Von € Xp.

Theorem 18. Problem [B1) is solvable, up to an additive constant in & if and only
if Ba) holds. Its reduced formulation is well posed. The Galerkin equations (BS)
are uniquely solvable if the following discrete conditions are met:

divap, vn)o
(divanvo 5 ¢ilo, Vo € L9,

(38)

div Hg,z C Ly, sup
ozaren?y  lanllaiv.o

Finally, the following quasi-optimality estimate holds:
P — Prllaiv.o + [[u —unllo + [|€ = &nllij2r
(39) < O(lnf {”p - qthiv,O He S Hga Tvan = 5I]$Ieu}

+ inf [ju—wv + inf — )
thLg H hHO Yn€Xn H§ Lthl/QI

The constant C > 0 depends on Cy but is otherwise independent of the choice of

spaces.

Proof. One of the interesting byproducts of the way we have developed the analysis
in Section M is the fact that most results in this section are just a particular case of
the ones of the problem set in free space.

Problem (1) can be rewritten in the variable pg := p — pxen € Hx(div, O),
where 72 PNeu = BNew- The right-hand side is given by

ti(a) == (na,Bo) = (PNew, o,
EZ(U) = _(fa U)O - (dinNeuav)Oa
63(()0) = <61 — YvPNeu; <P>

The theory for problem (@) (that is, Theorem [ can be repeated for this new
problem. The kernel of the associated operator is the span of (0,0, 1) and solvability
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is subject to cancelation of the right-hand side when applied to (0,1, —1), which
spans the kernel of the transpose. This compatibility condition reads

(fv 1)0 + (le PNeu, 1)0 + <51, ]-> - <’7uchu, ]-> =0,

which is easily shown to be equivalent to ([B6]) thanks to the condition 7> pNen =
BNeu-

Let us now consider the reduced problem and its Galerkin discretization. Note
first that

(40) Hy(div,0) = Hy := {q € H(div,Q) : =0 in Qo) C H(div,Q)
and
(41) L*(0) 2 Lo:={veL*(Q) : v=0 in Qopbs}.

The reduced formulation can then be written as a particular case of problem (33)
with H;, = Hy, L, = Lo, X}, = Hé/2(I’). A direct application of Proposition
then gives the well posedness of the reduced problem.

After having chosen pl,, € HY such that vZpl,, = B&., and subtracted it

from pp, we can write the Galerkin equations as an equivalent problem in
HYy x LY x Xj, 2 Hy, x Ly, x X, € H(div, Q) x L2(Q) x Hy/*(D).

The isomorphism is just the extension by zero to the interior of the obstacle Qqps;
cf. @0) and @ I). Proposition [[6l can now be used to show stability of the prob-
lem with homogeneous boundary conditions and a standard argument for Galerkin
methods with nonhomogeneous side conditions proves the estimate [B9) from the
stability estimate (34)). O

The Céa estimate ([BI) can be somewhat simplified by assuming the following
hypothesis: there exists a right inverse (a lifting operator) of 77 : HY — 7>HY,
which is bounded as an operator from H~'/2(X) to H(div,0), with bound inde-
pendent of h. If this happens, the term related to approximation of p in (89) can
be replaced by

[|BNen — Bieull—1/2,5 + qulg lp — arllaiv,o-

See [I1] for a proof of this result in a very general context. The constant C' in this
modified version of the Céa estimate then depends on Cjy and on the bound for the
right inverse of the discrete normal trace operator.

A coupling with a direct formulation can be approached in exactly the same
terms. There is no compatibility condition for the data of the transmission problem,
the solution is defined up to an element of (0, 1,1) € H(div, O) x L?(0) x H'/2(T),
uniqueness can be enforced by using a restricted formulation (essentially a trans-
pose of the restricted formulation for the indirect coupling) and the correct interior
solution is recovered with the same simple postprocessing step of Theorem [Hl



NONSYMMETRIC COUPLING OF BEM AND MIXED FEM 59

6. DIRICHLET BOUNDARY CONDITIONS

Let us consider again the geometric setting of Section Bl depicted in Figure [l
The transmission problem is now

,yEu = ﬂDira

p—Vu=0 inO, —divp=f in O,
(42) [yu] = Bo, Yp = dgu + f,

—Au=0 1in Q°,

u=0O(x|71) as |x| — oo,

for a given fp;, € H 1/ 2(E). Existence and uniqueness of the resulting transmission
problem can be deduced using a coupled formulation with the interior problem in
primal form and single layer potentials as in [27].

It is relatively simple to check that if we try the analysis of Section ] the proofs
break down when we arrive at Proposition [[3] because when divp = 0 in O,

(W, yu*) = (p, Vu*)o — (v, P, yu*)s.

The additional boundary term on ¥ disappears for Neumann boundary conditions
but has to be kept for Dirichlet boundary conditions, and ellipticity of the bilinear
form in Proposition [[3lis lost. In other words, the simple extension by zero to the
interior of the obstacle that worked for Neumann boundary conditions cannot be
used here. The result can be recovered by using a different exterior elliptic equation,
—Au+ c?u = 0, for some suitable value of c. From the point of view of the Laplace
equation we will see that the loss is minor: stability of Galerkin approximation will
be reached asymptotically, for A small enough, instead of being guaranteed from
the beginning.

6.1. Coupling with a direct method: formulation. In the case of problem
[@2), the data do not give information that allow us to decide whether we can
write v = D¢ in Q¢ and we have to abandon the idea of an indirect formulation.
Applying the ideas that lead to () (with ) = y°u) produces the following system:
find (p,u,) € H(div,0) x L?() x H'/2(T") such that

(p,q)o + (u,divg)o — (7.9, %) = ¢1(q), Vq € H(div,0),
(43) (divp,v)o = l2(v), Yu € L2(Q),
(B1+K)p, ) + (Wi, ) = l3(p), Vo € HY(D),

where

() = (1, Bo) + (o d, Boir)ss La(v) := —(f,v)0, L3(p) = ((31+K)'B1, ¢).

However, this system is no longer practical because it has introduced an undesirable
one-dimensional kernel that is not as simple as the one of the problem set in free
space. This kernel is easily described in terms of the function ux € W*(R?) which
satisfies

~Ausx =0 inR3\ X, Yuy = 1.

Then the function (—Vug,1 — ux,1 — yug) can be shown to span the kernel of
the operator associated to the equation ([3]), with a very similar proof to that
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of Proposition [6l This kernel function corresponds to a particular solution of the
transmission problem, namely, to the function

u=—D1—uy,
which satisfies
v u =0, [yu] =1, [O,u] = 0.

In order to eliminate this kernel function, we will impose the condition

(44) (1, [yu]) = (1, Bo)

as a side condition. Nevertheless, the current formulation does not give access to
yu (the mixed formulation takes v € L?(O), which does not allow us to take its
trace on I'). This imposes the first modification: the boundary unknown will now
be

P = yu.

In principle, this only changes the right-hand side of (43]) as well as the integral
representations in the exterior domain, which becomes

(45) u=D( — Bo) — S(nwp — 51) in Q¢.
Condition (@) can now be written in terms of data and unknowns of the system as

(VP — B1, o) + (¢1,% — Bo) =0

where
o:=V1, ¢ :=(AI-K)

(recall (I4)). This follows from applying the jump relations to the integral repre-
sentation ([{3]) and plugging the result into ([@4]). This finally leads to the coupled
formulation: find (p,u, ) € H(div,0) x L*(2) x H?(T) such that

(pa q)O + (U, div q)O - <’yvqa ¢> = gl (q)a vq S H(d1V7 0)7
( ) (lep, U)O = 62(1})5 Vv € LQ(Q)v
46
(FT+K) P, 9) + (W, 0) = l3(0), Vg € Hy*(T),
<7Vp7 ¢O> + <¢17 Qﬁ) =m,

where

6(q) = (vya, Bon)s,  L2(v) == —(f,v)o, L3(p) == ((A1+K)'B1,¢) + (W, Bo),
and

m = (b1, bo) + {(¢1, Bo)-

Note the additional asymmetry of (g]), stemming from the fact that we test the

continuity of flux only in Hé/z ("), whereas we look for % in the full H*/2(T). This
defect is compensated by the additional scalar condition at the end of (g).
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6.2. Some technical ingredients. We start this section with the technical result
on which everything else hinges. Note that the inherent change of operator from
the Laplacian to a Yukawa type operator u — —Au + c?u avoids the use of weights
for the Sobolev spaces.

In the following technical lemma, we will use the symbol || - ||c0,0 to denote the
norm of L>°(0) as well as that of (L>°(0))3.

Lemma 19. Let w € L>(0) be such that |[w|c,0 <1, Vw € (L*°(0))? and
(47) 2| Vw0 < c.
Then there exists C = C(||Vwl||so,0/¢) < 2 such that

1/2

(IV (o) 3 + Alwoll3)* < C(IVold +lol2) %, voe H'(0),

Proof. We denote momentarily by || - ||1,0, the weighted H'(O) norm that appears
in the statement of the lemma. Note that for any norm associated to an inner
product and for all n > 0,

lla + bl < (1 +m)llal® + (1 +n7")[b]>.

Therefore,
lwolfo. < ol + [v¥w +wTof
< loly+ 1+ n)IVulZ ollold + (1 + 1) Vel
< (14 (T=0) g ) e ol + (4 )9
< Clolio.
with

VW|oo,0)2
Cc? .= max{l + (w) (I+mn), 1+ 77_1}.
c
Condition [{T) is equivalent to the possibility of finding 7 such that
1 3c?
- <

N ————1
3 IVwllZ, o

)

which is equivalent to finding 7 > 0 such that C' < 2. If we take

)
T\ VelE, T8
and define C' accordingly, we have the result. O
Proposition 20. Let V := {q € H(div,0) : divgq=0 in O}. Then, the bilinear
form
(P, a)o — (wd, Y*u*) — (wp, [0*]) + (Vu*, Vo*)auae + ¢ (u*, v")auae
is elliptic in V x HY(Q U Q) for ¢ large enough.

Proof. Take w € L°(0) such that 0 < w < 1, Vw € (L*(0))3, and such that
w = 1 in a neighborhood of T and w = 0 in a neighborhood of ¥. From Lemma [I9]
it follows that for ¢ > 0 large enough, there exists 0 < C' < 2 such that

(48) IVwu)o < C(IVulld +Eul3)?,  vue H'(O).
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If we now take q = p and v* = «* in the bilinear form, we obtain
IPlIE = (p,yu*) + [V [Guge + llu’[Gu
= pld — (P Y(wu*)) + [V [[duge + ¢ [lu* (o
= [pld — (P, V(wu))o + [ Vu*[[uge + [lu*l|Euqe
> (1= §) (Il + Ve e + e ).

where we have used ({8)) in the last inequality. Since (1 — C/2) > 0, we have
ellipticity of the bilinear form. O

Let K. and W, be the boundary integral operators that correspond to taking
®.(r) :=exp(—cr)/(4rr) as a fundamental solution. Let
(49) H), c H(div,0), L, c L*0), X, c HY*(I)
be arbitrary closed subspaces satisfying
di
(50) divH, C Ly, sup M > Oy H’Uh||o, Yup € Ly,.
o£aneH,  [9nllaiv.0

As a consequence of Proposition we have a very general invertibility result, in
parallel to Proposition [I7

Proposition 21. Let ¢ > 0 be such that Proposition holds. Let Hy,, L and Xy,
be closed subspaces @) satisfying (B0). Then for all t1, € Hy, by € X;, l3p €
Lj,, the following problem admits a unique solution: find (pn,&n, un) € Hpx Xy x Ly,
such that

(Pr-an)o — (wan, (314 Ke)én)+ (un, divan)o = lin(an), Van € Hy,
(51) (P, ) + (Webh, on) = lon(en), Von € Xa,
(div ph,vn)o = €3,n(vn), Yoy, € Ly,

Moreover, there exists C > 0 which depends only on Cy in (BU) (and on c) and is
otherwise independent of the choice of the spaces, such that

(52)  lInlaiv.o + Ienllayor + lunlo < € (e nlle, + Nanllx; +iesally )

Proof. Thanks to the conditions of (B0 we can limit our study to working on the
kernel of the last equation. We define
V= {thHh : ddihZO inO}CV

(see the definition of V in the statement of Proposition 20). For any 71 5 € V), and
J2,n € X}, the problem: find (ps, &) € Vi, x X3, such that

(Pr-an)o — (wan, (31+Ke)én) = sin(an), VYan € Vi,

(YwPh, ©) + (Weln, on) = g2, (0n), Von € Xp,
is equivalent to: find (pp,u*) € Vi, x W), such that

(53)

(Pr,an)o — (Voqn, Yu*) = 51,n(an), Van € Vi,
(Yo Ph, [0*]) = (Vu*, Vo) quae —(u*, v*)auae = J2.n([yv*]), Yo* € Wy,

where W, := {u* € HY(QUQ°) : [yu*] € X,}. The equivalence of these two
problems is shown by following step by step the proofs of Propositions [I3] and 14l
The relation between the unknowns is simple: &, = [yu*] and u* = D&, (D, is the

(54)
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double layer potential associated to the fundamental solution ®..) This equivalence
holds true for all values of ¢ > 0. Moreover, problem (B4 is elliptic (Proposition
20)), which gives uniform invertibility of (B3)). Finally, (52)) follows from this last
property and (B0), using the standard theory of mixed problems once more. (I

6.3. Continuous and discrete analysis.
Theorem 22. Problem (@) is well posed.

Proof. 1t is very simple to prove that the well posedness of ([40) is equivalent to the
well posedness of: find (p,u,1,n) € H(div,0) x L*(0) x H'/2(I') x R such that

(P.q)o + (u,diva)o — (v, ¥) = t1(q), Yq € H(div, 0),
(divp,v)o = £2(v), Yo € L2(0),
<(%I +K) vp, @) + (Wi, o) + nJp = l3(p), Vo€ H1/2(F),
<’7Vp7 ¢O> + <¢1,¢> =m.

Note that if ¢5(1) = 0, then the solution of (GOl satisfies n = 0 and solves (6.
Now take ¢ > 0 as in Proposition and consider the integral operators K. and
W, associated to the fundamental solution ®.. Then the following problem: find
(p,u,¥,n) € H(div, 0) x L?(0) x H'/?(T') x R such that

(p,9)o + (u,divg)o — (1wq,¥) = 41(q), Vq € H(div,0),

(55)

(56) (divp,v)o = f2(v), Vv € L?(0),
<(%I + Kc)t’Ypr SD> + <ch, S0> = KS(QD% VSD c 1{1/2(:[1)7

3

is a compact perturbation of (BHl): the differences K — K, and W — W, are compact
and all other operators we have changed are of finite rank.

We now take Hj, = H(div,O), L;, = L?(0) and X}, = H'/?(T") in Proposition
2T and note that conditions (B0) are satisfied by these spaces. Transposing and
changing signs of the third row and columns, we obtain well posedness of the set
of the first three equations of (Bf). Therefore, (B8] is well posed and the operator
associated to (BA)) is Fredholm of index zero.

We finally want to prove that the kernel of the operator associated to equations
8 is trivial. If (po, uo, o, no) satisfies these equations with zero right-hand side,
it follows readily that ng = 0 (test with ¢ = 1). Taking ug := Dty — Sy, po in Q°
we easily prove that

Vug =pp in O, —Aug=0 in OUQ®,
as well as
Y up =0, Yuo = o, YvPo = Opup.
Using Green’s Third Identity we can identify Dy — SOSug = ug = Dy®ug — SO5uo

and by (I9), there exists ¢ € R such that g = vug + ¢. However, the last equation
of the set (8) (with m = 0) is

0= (1, (31— K)tho + Vyupo) = (1,90 — ¥ uo),

from where [yug] = 0. The pair (ug, po) then solves the homogeneous transmission
problem and therefore uy = 0, pp = 0 and ¥y = 0. (|
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Discretization of equations (B is achieved with the three sequences of finite
dimensional subspaces

(57) H), c H(div,0), L, C L*(0), Pyc X, c HY*(I).

We assume conditions (B0) for Hy, and Lj,, with Cy independent of k. The assump-
tion Py C X}, allows us to separate

Xp=Pya X2,  X"cHY*ID).
The proposed discretization of ({6 is: find (pp, up,¥r) € Hy X Ly x X}, such that
(Ph-4An)o + (un,divan)o — (vudn, ¥n) = €i(an), Van € Hy,

(53) (divpp,vn)o = L2(vn), Yo, € L2,
<(%I + K)t’YVphv <Ph> + <W¢h7 @h> = é3(¢h)a v@h S X}?,
(YoPh, G0) + (P1,%n) = m.
Let
en(p,u, ) = q:g{lh Ip —anllaiv.o + oinf |u—vnllo + ng(h % — @nll1j2,r-

We also assume that

(59) Jim en(p,u,¥) =0, V(p,u, ) € H(div,0) x L*(0) x H'*(T).

Theorem 23. If the discrete spaces ([B1) satisfy (BQ) and the approximation prop-
erty (B9), then problem ([B8) has a unique solution for h small enough. Moreover,
there exist hg and C > 0 such that for h < hg,

(60) 1P = Prllaiv.o + l[u—unllo + [ = ¥nll1j2r < Cen(p, u, ).

The constant C' depends only on Cy > 0 (and on the continuous problem) but hg
depends on the sequence of discrete spaces.

Proof. Unique solvability and stability of the discrete operator associated to the
equations (B8] is equivalent to the same properties for a Galerkin discretization of
B) with Hy, x L, x X x R as a discrete space.

Proposition [21] proves that any Galerkin discretization of (b)) is stable as long
as the discrete spaces satisfy (B0) and that the only dependence of the stability on
the discrete spaces is through Cp on (B0)). Galerkin stability and the approximation
property (B9) imply convergence of the method, a property that is transferred
to invertible compact perturbations of the operator equations (see for instance
[21, Chapter 13]). The stability estimate for the compact perturbation (which is
equivalent to the Céa estimate (60)) uses a constant that is proportional to that of
the unperturbed discrete problem: the proportionality factor depends only on the
operator and not on the discrete spaces. O

7. NUMERICAL EXPERIMENTS

In all of our examples we will be using tetrahedral meshes for the interior do-
main and the inherited triangular meshes for the boundary element discretization.
The discrete spaces will be the first order Raviart—Thomas finite element (see [3])
to approximate the flux variable p, piecewise constant functions for the discrete
version of u and the standard first order Lagrange finite element method for the
boundary unknown ¢. It is well known that conditions (I7]) and (8] are satisfied
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for these choices of Hy, and Lj. The boundary integrals are approximated using
the techniques of [12].

In the sequel, N stands for the number of degrees of freedom defining the finite
element spaces Hj,, X, and M} and the individual relative errors are given by

_ P =pallaiv.e _ u—wunllog
= M olave " Talloa
and
N L o et
lello/? 11
Also, we let r(p), r(u) and 7(¢)) be the experimental rates of convergence given by
) DR/ s/ w) | Tos(e(w)/¢ ()

log(h/h') log(h/h') log(h/h')

where h and &' denote two consecutive meshsizes with corresponding errors ¢ and
/
e.
We first present an example illustrating the performance of the nonsymmetric
mixed FEM and BEM method applied to the direct formulation ([I2]) of problem ()
on a set of irregular shape-uniform tetrahedral meshes of the cube Q := (—1,1)3.

The function v : QU Q¢ — R given by
cos(mz) cos(maa) cos(mers) in Q;
1/(4]x]) in Q°,

is a solution of our model problem if suitable nonhomogeneous transmission condi-
tions are considered on I'.

(61) u(x) :=

TABLE 2. Degrees of freedom, relative errors and rates of conver-
gence (EXAMPLE 1)

N || ep) | r@) || e | r@) || e() | r¥)
8593 || 0.278273 — 0.279434 — 0.066873 —

11578 || 0.250620 | 1.0531 || 0.251197 | 1.0719 || 0.058907 | 1.2762
18838 || 0.210811 | 1.0661 || 0.210816 | 1.0801 || 0.046163 | 1.5024
30698 || 0.179779 | 0.9783 || 0.179627 | 0.9836 || 0.039395 | 0.9739
40339 || 0.164711 | 0.9615 || 0.164499 | 0.9664 || 0.035875 | 1.0283
81854 || 0.127082 | 1.0996 || 0.126785 | 1.1040 || 0.029287 | 0.8602

In Table 2] we summarize the convergence history for a sequence of uniform
meshes of the computational domain Q. The results show clearly that the linear
convergence provided by the Céa estimate in Theorem [B] (which is also valid for the
direct scheme) and standard interpolation error estimates (see [3]) is attained for
all unknowns.

In the second example we need to test the performance of scheme ([B8). The
computational domain is now € := (-1,1)%\ [-1,1]® and Neumann boundary
conditions are imposed on the internal boundary . We still consider the same
exact solution (BIl) and the same discretisation spaces (after incorporating the new
boundary condition on ¥ to the first order Raviart-Thomas space). We recall that
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we are using here an indirect formulation, consequently, in TableBlwe do not present
numerical results for the boundary unknown since the corresponding exact solution
is not known. The rate of convergence in the flux variable p and the Lagrange
multiplier u behave as predicted by Theorem [[8 and well-known interpolation error
estimates.

TABLE 3. Degrees of freedom, relative errors and rates of conver-
gence (EXAMPLE 2)

N | e [ rp) | etw | r)
3004 || 0.407653 - 0.483004 -

8554 || 0.280336 | 1.0734 || 0.303482 | 1.3322
15042 || 0.227212 | 1.1167 || 0.258337 | 0.8560
25911 || 0.195052 | 0.8419 || 0.230108 | 0.6384
42297 || 0.167489 | 0.9327 || 0.203752 | 0.7447
52944 || 0.152555 | 1.2279 || 0.182612 | 0.9742

In the third and last example we study the performance of the numerical scheme
([E]) corresponding to a direct formulation of an exterior Dirichlet problem. Here
again we consider the same exact solution (GI) on @ := (=1,1)%\ [-1,3]%. It is
clear from Table [l that, as expected, we have a linear asymptotic convergence for

all variables.

TABLE 4. Degrees of freedom, relative errors and rates of conver-
gence (EXAMPLE 3)

N || ep) | r@) || e | r@) || e() | r(¥)
3094 || 0.407993 - 0.417140 — 0.326680 -

8750 || 0.280279 | 1.0835 || 0.282473 | 1.1250 || 0.204786 | 1.3467
15392 || 0.227090 | 1.1178 || 0.227860 | 1.1412 || 0.161304 | 1.2678
26523 || 0.194875 | 0.8434 || 0.194781 | 0.8648 || 0.116847 | 1.7775
43185 || 0.167274 | 0.9399 || 0.167093 | 0.9436 || 0.098330 | 1.0618
60434 || 0.145909 | 1.2199 || 0.145527 | 1.2336 || 0.088739 | 0.9162
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