
MATHEMATICS OF COMPUTATION
Volume 80, Number 274, April 2011, Pages 995–1009
S 0025-5718(2010)02426-3
Article electronically published on September 24, 2010

HIGH PRECISION COMPUTATION OF RIEMANN’S ZETA

FUNCTION BY THE RIEMANN-SIEGEL FORMULA, I

J. ARIAS DE REYNA

Abstract. We present rigorous and sharp bounds for the terms and remainder
in the Riemann-Siegel formula (for a general argument, not necessarily on
the critical line). This allows for the computation of ζ(s) and Z(t) to high
precision. We also derive the Riemann-Siegel formula in a new and more
direct way.

1. Introduction

Riemann only published one paper [7] about Number Theory. However, in the
second edition of Riemann’s Collected Works [8], published in 1892, the editor
H. Weber included an excerpt of a draft of a letter from Riemann to Weierstrass,
where Riemann speaks about a new expansion of the function Ξ(t), not contained
in [7]. Some decades later Distel (the librarian of the Göttinger University) found
in Riemann’s Nachlass some sheets containing this expansion. In spite of this, it
was not before 1932 that Siegel [9] published his paper about Riemann’s results
concerning the zeta function contained in Riemann’s Nachlass.

Most probably, this expansion was used by Riemann to locate the first few non-
trivial zeros of the zeta function. Starting with Titchmarsh and Comrie [11] and
ending with Gourdon [6] this expansion has made it possible to show that the first
1013 non-trivial zeros of the zeta function are simple and are situated on the critical
line.

Siegel also rescued an integral expression for the zeta function given by Riemann
and found by Bessel-Hagen in Riemann’s Nachlass:

(1.1) ζ(s) = R(s) + χ(s)R(1− s) with χ(s) = πs−1/2Γ
(
1−s
2

)

Γ
(
s
2

) ,

where

(1.2) R(s) :=

∫

0↙1

x−seπix
2

eπix − e−πix
dx and R(s) := R(s).

Gabcke [4], in 1979, used this integral expression to derive in a new way the
asymptotic expansion of the zeta function given by Riemann (now known as the
Riemann-Siegel (RS) formula). He also gave exact bounds of the first ten remainder
terms for the critical line (σ = 1

2 ) allowing for precise computations and numerical
verification of the Riemann Hypothesis (RH).
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Berry [2], in 1995, also gave precise bounds for the terms and remainder of the
RS formula, but his arguments are not quite rigorous and are restricted to the
critical line.

From (1.1) it is easily seen that

(1.3) Z(t) = 2Re
{
eiϑ(t) R( 12 + it)

}
(t ∈ R),

where ϑ(t) is the phase of the zeta function ζ( 12 + it) = Z(t)e−iϑ(t) with ϑ(0) = 0.
So, it is clear that in order to compute ζ(s) or Z(t) it is sufficient to compute R(s).
We may also restrict the computation of R(s) to t = Im s > 0. Our main goal will
be to obtain an asymptotic expansion of R(s) for t → ∞. (The behavior of R(s) for
t < 0 is very different from that for t > 0.) The idea of deriving the Riemann-Siegel
expansion from the integral for R(s) goes back to Gabcke.

We will obtain the expansion in a new way and also give new formulas of the
terms of the expansion. In spite of the fact that Gabcke obtains the expansion for
Z(t) and we for R(s) our deduction is different although similar to that of Gabcke.

We will also present sharp and rigorous bounds of the terms and the remainder
of the expansion. These results have allowed us to compose an algorithm to com-
pute ζ(s) and Z(t) to high precision for t not too small. This algorithm has been
implemented in Python using the Mpmath library for multiprecision floating-point
arithmetic. The cpu time of this program is comparable to that of the proprietary
software Mathematica. The Python program is explained in [1].

The computation of R(s) has also been treated in Galway [5] by applying quad-
rature techniques to the integral in (3.2), but precise error bounds for his scheme
were not given.

In [1], we will present a complete analysis of the error committed when applying
the Riemann-Siegel formula (for t not too small).

2. Summary of the main results

For s = σ + it with t > 0, and an integer K ≥ 0 we have

(2.1) R(s) =

N∑

n=1

1

ns
+ (−1)N−1Ua−σ

{ K∑

k=0

Ck(p)

ak
+RSK

}
,

where

U := exp
{
−i

( t

2
log

t

2π
− t

2
− π

8

)}
(2.2)

and

a :=

√
t

2π
, N := �a�, p := 1− 2(a−N)(2.3)

(for RSK , see (3.8) and (3.10)).
The coefficients are given by

(2.4) Ck(p) =
1

π2k

�3k/2�∑

j=0

( π

2i

)j

d
(k)
j F (3k−2j)(p),

where F is the entire function

(2.5) F (z) =
eπi

(
z2

2 + 3
8

)
− i

√
2 cos π

2 z

2 cosπz
=

∞∑

n=0

c2nz
2n,
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where (the En being the usual Euler numbers: E0 = 1, E2 = −1, E4 = 5, E6 = −61,
. . . )

(2.6) c2n = − i√
2

(π

2

)2n n∑

k=0

(−1)k

(2k)!
22n−2k (−1)n−kE2n−2k

(2n− 2k)!

+ e3πi/8
n∑

j=0

(−1)j
E2j

(2j)!

in−jπn+j

(n− j)!2n−j+1
.

The coefficients d
(k)
j appearing in (2.4) only depend on σ and not on t and can be

computed by means of the following recurrences:

d
(0)
0 = 1, d

(0)
j = 0 for j 	= 0,(2.7)

d
(k)
j = 0 for j < 0 and for j > 3k/2,(2.8)

(6k − 4j)d
(k)
j = 1

2 d
(k−1)
j + (1− 2σ)d

(k−1)
j−1 − 2(3k − 2j)(3k − 2j + 1)d

(k−1)
j−2 ,(2.9)

d
(k)
3k/2 = −

3k/2−1∑

j=0

(−1)3k/2−jd
(k)
j

(3k − 2j)!

(3k/2− j)!
, 3k ≡ 0 (mod 2).(2.10)

In Theorems 4.1 and 4.2 we give bounds for the terms and the remainder of
the expansion (2.1). We will also derive some other bounds that are necessary for
proving in [1] that our (Python) program computes R(s) with an error less than
(almost) any prescribed positive quantity.

3. Riemann-Siegel formula

We assume that s = σ + it with σ and t real and t > 0, and put, as usual,

(3.1) a =

√
t

2π
, N = �a�.

By Cauchy’s Theorem we have

(3.2) R(s) =

N∑

n=1

1

ns
+

∫

N↙N+1

x−seπix
2

eπix − e−πix
dx,

where N ↙ N +1 denotes the straight line having direction e−3πi/4 and containing
the point a (if a = N is an integer we modify the path by means of a small semicircle
with center at a, and intersecting the real axis between N and N + 1).

Now we modify the integrand as follows:

x−seπix
2

= exp
{
πi(x− a+ a)2 − (σ + it) log(x− a+ a)

}

= exp
{
−(σ + it) log a+ πia2

}

× exp

{
πi(x− a)2 + 2πia(x− a)− (σ + it) log

(
1 +

x− a

a

)}
.
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Hence

R(s) =
N∑

n=1

1

ns

+
( t

2π

)−σ/2

exp
{
−i

( t

2
log

t

2π
− t

2

)}∫

N↙N+1

e2πi(x−a)2

eπix − e−πix
g̃(a, x− a) dx,

where

g̃(a, z) = exp
{
−(σ + it) log

(
1 +

z

a

)
+ 2πiaz − πiz2

}
.

Therefore

R(s) =

N∑

n=1

1

ns
+ (−1)N−1

( t

2π

)−σ/2

U · S,

where

U = exp
{
−i

( t

2
log

t

2π
− t

2
− π

8

)}
,

S =
(−1)N−1

2i
e−iπ/8

∫

N↙N+1

e2πi(x−a)2

sin πx
g̃(a, x− a) dx.

(3.3)

We change variables in the integral, taking x = iv
2 +N + 1

2 , and define

(3.4) τ =
1

2
√
2t

and p = 1− 2(a−N).

Then we get

(3.5) t =
1

8τ2
, a =

1

4
√
πτ

, N +
1

2
− a =

p

2

and, since v = 2i(N + 1
2 − x), the integration path N ↙ N + 1 is converted into

↖ ip. This is a line having direction e3πi/4 and containing the point ip. The point
ip is always on the segment joining the points i and −i. (When ip = i the path
is modified by means of a small semicircle with center at ip and intersecting the
imaginary axis between i and −i.)

Since

x− a = i
v

2
+N +

1

2
− a = i

v − ip

2
,

2πi(x− a)2 = −πi

2
(v − ip)2 = −πi

2
v2 − πpv +

πi

2
p2

and sin πx = cosπ
(
i
v

2
+N

)
= (−1)N cosh

π

2
v

we get, changing a sign for the sense of the path of integration,

S =
e−iπ/8

4

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

g̃
( 1

4
√
πτ

, i
v − ip

2

)
dv.

To simplify the notation we put

g(τ, z) = g̃
( 1

4
√
πτ

, i
z

2
√
π

)

so that

S =
e−πi/8

4

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

g(τ,
√
π(v − ip)) dv
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with

(3.6) g(τ, z) = exp
{
−

(
σ +

i

8τ2

)
log(1 + 2iτz)− z

4τ
+ i

z2

4

}
.

From the expansion

(3.7) g(τ, z) =

∞∑

k=0

Pk(z)τ
k =

K∑

k=0

Pk(z)τ
k +RgK(τ, z) (2τ |z| < 1),

it follows that the Pk(z) are polynomials in z and σ.
For every K ≥ 0 we can now write

S =
K∑

k=0

e−πi/8

4
τk

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

Pk(
√
π(v − ip)) dv

+
e−πi/8

4

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

RgK(τ,
√
π(v − ip)) dv.

Since τ = 1/(4
√
πa) we get

(3.8) S =

K∑

k=0

Ck(p)

ak
+RSK ,

where, by definition,

Ck(p) :=
1

4

( 1

4
√
π

)k

e−πi/8

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

Pk(
√
π(v − ip)) dv,(3.9)

RSK :=
e−πi/8

4

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

RgK(τ,
√
π(v − ip)) dv.(3.10)

Now we can state

Theorem 3.1 (Lehmer’s form of the Riemann-Siegel formula). Given s = σ + it
with t > 0, and an integer K ≥ 0 we have

(3.11) R(s) =

N∑

n=1

1

ns
+ (−1)N−1Ua−σ

{ K∑

k=0

Ck(p)

ak
+RSK

}
,

where a and N are defined by (3.1), U by (3.3), p by (3.4), Ck(p) and RSK by
(3.9) and (3.10).

4. A sharp bound for the error in the RS formula

Theorem 4.1. Given s = σ+ it with t > 0, the coefficients Ck(p) in the Riemann-
Siegel formula (3.11) satisfy the following inequality:

(4.1)
|Ck(p)|

ak
≤ c

Γ(k/2)

(b a)k
(k ≥ 1),

where the coefficients c = c(σ) and b = b(σ) are defined by

(4.2) c(σ) :=

{
9σ /(

√
2π) if σ > 0,

2−σ/(
√
2π) if σ ≤ 0,

b(σ) :=

{
2 if σ > 0,√
(3− 2 log 2)π if σ ≤ 0.
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That is,

(4.3) |Ck(p)| ≤
2

1
2−σΓ(k/2)

2π(hπ)k/2
if σ ≤ 0 and |Ck(p)| ≤

√
2

2π

9σΓ(k/2)

2k
if σ > 0,

where h = 3− 2 log 2 ≈ 1.61371.

Proof. The function g(τ, z) is an analytic function of τ on a neighborhood of τ = 0.
(The logarithm in the definition of g(τ, z) is the principal logarithm.) By Cauchy’s
Theorem the polynomials Pk(z) in (3.7) are given by

Pk(z) =
1

2πi

∫

C

g(ζ, z)

ζk+1
dζ,

where C is a small circle with center at ζ = 0. We apply a change of variable in
this integral by putting iζ/(2z) instead of ζ:

(4.4) Pk(z) =
(−2iz)k

2πi

∫

C

(1− ζ)−σ

ζk
e−iz2f(ζ)/2 dζ

ζ
,

where

(4.5) f(ζ) = − log(1− ζ)

ζ2
− 1

ζ
− 1

2
.

Substituting this in the definition of Ck(p) and applying Fubini’s Theorem (that
this is allowed will be clear after we will have bounded the integrals) we get

Ck(p)

=
e−πi/8

8πi(2i)k

∫

C

(1− ζ)−σ

ζk

{∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

(v − ip)ke−
πi
2 (v−ip)2f(ζ) dv

}dζ

ζ
,

where C is a circle with center ζ = 0 and radius r < 1.
First we bound the absolute value of the integral with respect to v. We put

v = ip+ εx, where ε = e−πi/4, so that ε2 = −i, and

−πi

2
(v − ip)2 = −πx2

2
.

Writing V (ζ) := Re f(ζ), we have

| exp{−πi

2
(v − ip)2f(ζ)}| = exp(−π

2
x2V (ζ))

so that for the inner integral,

∣
∣
∣
∫

↘ip

· · ·
∣
∣
∣ ≤

∫ +∞

−∞

e−πx2/2

| cosh π
2 (ip+ εx)| |x|

ke−
π
2 x2V (ζ) dx.

Since for x, y ∈ R we have | cosh(x+ iy)|2 = sinh2 x+ cos2 y it is easy to see that
∣
∣
∣

x

cosh π
2 (ip+ εx)

∣
∣
∣ ≤

|x|
sinh π

√
2

4 |x|
≤ 4

π
√
2
.

V (ζ) is harmonic on the unit disc, and it can be shown (see footnote on page 1006)
that V (eiθ) ≥ V (−1) = 1

2 − log 2 ≈ −0.193147.
Hence, for k ≥ 1,

(4.6)
∣∣
∣
∫

↘ip

· · ·
∣∣
∣ ≤

4

π
√
2

∫ +∞

−∞
e−{1+V (ζ)}πx2

2 |x|k−1 dx =
2
√
2

π

(2/π)k/2Γ(k/2)

(1 + V (ζ))k/2
,
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and it follows that

|Ck(p)| ≤
√
2

4π2

Γ(k/2)

(2π)k/2

∫

C

1

rk+1
|1− ζ|−σ(1 + V (ζ))−k/2 |dζ|

=

√
2

4π2

Γ(k/2)

(2π)k/2

∫

C

|1− ζ|−σ |dζ|
r(r2(1 + V (ζ)))k/2

.

Consider first the case σ ≤ 0. The radius of the circle C can be any number in
(0, 1). A good choice is to take the limit value r → 1. For this choice 1 + V (eiθ) ≥
h/2, where h = 2(1 + V (−1)) = 3 − 2 log 2 ≈ 1.61371. Therefore, for k ≥ 1 and
σ ≤ 0 we get

|Ck(p)| ≤
2

1
2−σΓ(k/2)

2π(hπ)k/2
.

If σ > 0 we cannot take r = 1. Taking for example r = 8/9 (see footnote on
page 1006) we find that r2(1 + V (reiθ)) ≥ 0.647961, |1− reiθ| ≥ 1/9 and

|Ck(p)| ≤
√
2

2π

9σΓ(k/2)

2k
.

It is easy to get various upper estimates of the same type: CvσΓ(k/2)b−k. Taking
v larger we can also take b larger. �

Theorem 4.2. Let s = σ + it with t > 0. Assume that σ ≥ 0 or K + σ ≥ 2. With
the same notation as in Theorem 3.1 we have in (3.11),

(4.7) |RSK | ≤ c1
Γ
(
(K + 1)/2

)

(b1a)K+1
(K ≥ 1),

where b1 = 10/11 = 1/1.1 and

(4.8) c1 :=

{
1
7 2

3σ/2 for σ ≥ 0,
1
2

(
9
10

)�−σ	
for σ < 0.

Proof. By (3.7) and Cauchy’s Theorem we have

RgK(τ, z) =
1

2πi

∫

C

g(ζ, z)

ζ − τ

(τ

ζ

)K+1

dζ,

where the path of integration C encircles the points 0 and τ . We change variables
by putting iζ/(2z) instead of ζ. In this way we can show that

RgK(τ, z) =
(−2izτ )K+1

2πi

∫

C

1

(ζ + 2izτ )ζK
(1− ζ)−σe−

iz2

2 f(ζ) dζ

ζ
,

where now C denotes a simple path that encircles the points 0 and −2izτ and is
contained in the region obtained from C by making a cut along the real axis from
1 to +∞. We will apply this for each point z = v− ip. So, this path cannot be the
same for all values of z. Since −2izτ , for z = v − ip = εx, is on the line through 0
with direction iε = eπi/4 we can always take as the path of integration the line L
through 1/2 with direction eπi/4. For all z = v− ip we have by Cauchy’s Theorem,

RgK(τ, z) =
(−2izτ )K+1

2πi

∫

L

1

(ζ + 2izτ )ζK
(1− ζ)−σe−

iz2

2 f(ζ) dζ

ζ
.
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We substitute this formula in (3.10) and apply Fubini’s theorem to get

RSK(τ ) =
(−2iτ

√
π)K+1

8πi
e−πi/8

×
∫

L

(1− ζ)−σ dζ

ζK+1

∫

↘ip

e−
πi
2 (v−ip)2

cosh π
2 v

(v − ip)K+1e−
πi
2 (v−ip)2f(ζ)

(ζ + 2i
√
π(v − ip)τ )

dv.

If ζ is on L and v = ip+ εx, then 2i
√
π(v− ip)τ = 2i

√
πεxτ is on a line parallel to

L so that

|ζ + 2i
√
π(v − ip)τ | ≥ 1

2
√
2
.

Then the interior integral can be bounded similarly as in (4.6), and we get

(4.9)

|RSK(τ )| ≤ (2τ
√
π)K+1

8π
2
√
2

∫

L

|1− ζ|−σ

|ζ|K+1

2
√
2

π

(2/π)(K+1)/2Γ((K + 1)/2)

(1 + V (ζ))(K+1)/2
|dζ|

≤ (8τ2)(K+1)/2

π2
Γ
(K + 1

2

) ∫

L

|1− ζ|−σ|dζ|
{
|ζ|2(1 + V (ζ))

}(K+1)/2
.

The line L is given by the equation ζ = 1
2 +

y
2 (1+ i) and, since V (ζ) = Re f(ζ), we

arrive after some computation at

1 + V (ζ) =
1

2
− 2(1 + y)

(1 + y)2 + y2
− 8(y + y2)

{(1 + y)2 + y2}2
(
arctan(1− 2y)− π

4

)

− 2(1 + 2y)

{(1 + y)2 + y2}2 log
(1− y)2 + y2

4
.

This is always positive, has the limit 1/2 when y → ∞, and has an absolute
maximum of 1.39959 at y = 0.396765 and an absolute minimum 0.43068 at y =
6.32884. So the integral in (4.9) converges for K + σ > 0.

Assume first that σ ≥ 0. Since |1− ζ| ≥ 1/(2
√
2) we have

|RSK(τ )| ≤ (8τ2)(K+1)/2Γ((K + 1)/2)

π2
(2
√
2)σ

∫

L

|dζ|
{
(1 + V (ζ))|ζ|2

}(K+1)/2
.

We now use the inequality ‖f‖pp ≤ ‖f‖1‖f‖p−1
∞ . In this case,

∫

L

|dζ|
{
(1 + V (ζ))|ζ|2

} ≈ 9.577048 and max
1

{
(1 + V (ζ))|ζ|2

} ≈ 7.489341

so that

|RSK(τ )| ≤ (8τ2)(K+1)/2Γ((K + 1)/2)

π2
(2
√
2)σ9.577048(7.49)(K−1)/2.

Observing that

4τ =

√
2√
t
=

√
2√
2π

√
2π√
t

=
1√
π

1

a
,

we find that

|RSK(τ )| ≤ 9.578

7.49π2
23σ/2Γ((K + 1)/2)

(√
7.49√
2π a

)K+1

≤ 1

7
23σ/2 Γ((K + 1)/2)

(1.1

a

)K+1

.
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Now, for σ < 0 let m = �−σ� so that −m ≤ σ < 1 − m. Since we assume
K + σ ≥ 2 we have K > m+ 1 and again by (4.9),

|RSK(τ )| ≤ (8τ2)(K+1)/2

π2
Γ
(K + 1

2

)

×
∫

L

( |1− ζ|2
{
|ζ|2(1 + V (ζ))

}
)m/2 |1− ζ|−σ−m|dζ|

{
|ζ|2(1 + V (ζ))

}(K−m+1)/2
.

It can be shown that

|1− ζ|2
{
|ζ|2(1 + V (ζ))

} ≤ 5.78453 (ζ ∈ L),

the left-hand side being maximal for ζ ≈ 0.121696−i 0.378304. Since 0 ≤ σ+m < 1
we have |1 − ζ|−σ−m ≤ 2

√
2. Since K −m > 1 the integral can be bounded as in

the case σ > 0, so that

|RSK(τ )| ≤ 2
√
2

π2

( 1√
2π a

)K+1

(5.79)m/2Γ
(K + 1

2

)
· 9.577048(7.49)(K−m−1)/2

≤ 9.577048 · 2
√
2

7.49 π2

(5.79

7.49

)m/2(
√
7.49√
2π a

)K+1

Γ
(K + 1

2

)

≤ 1

2
(9/10)m

(1.1

a

)K+1

Γ
(K + 1

2

)
,

finishing the proof of (4.7). �

5. Formulas for the terms

Recall the formula for the coefficients in (3.9):

(5.1) Ck(p) =
e−πi/8

4(4
√
π)k

∫

↘ip

e−
πi
2 (w−ip)2

cosh π
2w

Pk(
√
π(w − ip)) dw

with P0(x) = 1 so that for k = 0 we get

(5.2) C0(p) =
e−πi/8

4

∫

↘ip

e−
πi
2 (w−ip)2

cosh π
2w

dw =
eπi

(
p2

2 + 3
8

)
− i

√
2 cos π

2 p

2 cosπp
=: F (p).

The evaluation of this integral is classic and can be found in Chandrasekharan [3,
p. 35].

That the function F (p) is entire follows easily from the integral expression or by
noticing that the zeros of cosπp are also zeros of the numerator.

The Hermite polynomials may be defined by the formula

Dk(e−x2

) = (−1)ke−x2

Hk(x).

From this it is clear that

Dk
(
e−

πi
2 (w−ip)2

)
= e−

πi
2 (w−ip)2

(e3πi/4
√
π√

2

)k

Hk

(eπi/4
√
π√

2
(w − ip)

)
.

The path of integration in (5.2) depends on p. But an easy application of
Cauchy’s Theorem (recall that −1 < p ≤ 1, and that we modified the path in
case p = 1 as explained in the paragraph following formula (3.5)) allows one to
substitute this path for the straight line through 0 with direction e−πi/4. Then it is
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easy to justify differentiation (with respect to p) under the integral sign and restore
the old path afterwards. In this way we get

(5.3) F (k)(p) =
e−πi/8

4

(e3πi/4
√
π√

2

)k
∫

↘ip

e−
πi
2 (w−ip)2

cosh π
2w

Hk

(eπi/4
√
π√

2
(w − ip)

)
dw.

From (3.6) and (3.7) it is not difficult to see that the degree of the polynomial
Pk(z) is 3k. Also, Pk(z) is even for k even and odd for k odd. Since the Hermite
polynomials are a basis of the space of all polynomials and the parity of Hk(x) is

that of k we can get coefficients d
(k)
j such that

(5.4)
π2kPk(

√
π(w − ip))

(4
√
π)k

=

�3k/2�∑

j=0

( π

2i

)j

d
(k)
j

(e3πi/4
√
π√

2

)3k−2j

H3k−2j

(eπi/4
√
π√

2
(w − ip)

)
.

This is equivalent to

(5.5) Uk(x) :=
(e3πi/4√

2

)k

Pk(x
√
2e−πi/4) =

�3k/2�∑

j=0

(−1)kd
(k)
j H3k−2j(x).

Combining (5.1), (5.3) and (5.4) we get

(5.6) Ck(p) =
1

π2k

�3k/2�∑

j=0

( π

2i

)j

d
(k)
j F (3k−2j)(p).

By (3.7) the polynomials Uk(x) satisfy the following relation:

(5.7)
∞∑

k=0

Uk(x)τ
k = g

(e3πi/4√
2

τ, x
√
2e−πi/4

)

= exp
{
−

(
σ − 1

4τ2

)
log(1− 2xτ ) +

x

2τ
+

x2

2

}
.

To determine the polynomials Uk(x) we differentiate (5.7) logarithmically with
respect to x and get

(5.8)

∞∑

k=0

U ′
k(x)τ

k =
2(σ − x2)τ

1− 2xτ

∞∑

k=0

Uk(x)τ
k,

from which we derive the relation

(5.9) U ′
k(x) = 2(σ − x2)Uk−1(x) + 2xU ′

k−1(x).

Extending the definition of d
(k)
j so that d

(k)
j = 0 for j < 0 and j > 3k/2, we will

have

(5.10)
∑

j

(−1)kd
(k)
j H ′

3k−2j(x) = 2(σ − x2)
∑

j

(−1)k−1d
(k−1)
j H3k−3−2j(x)

+ 2x
∑

j

(−1)k−1d
(k−1)
j H ′

3k−3−2j(x).
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It is well known that the Hermite polynomials satisfy

H ′
n(x) = 2nHn−1(x), xHn(x) =

1
2 Hn+1(x) + nHn−1(x)

so that

x2Hn(x) =
1
4 Hn+2(x) + (n+ 1

2 )Hn(x) + n(n− 1)Hn−2(x).

Therefore, the above relation (5.10) can be written as
∑

j

d
(k)
j (6k − 4j)H3k−2j−1

= 2
∑

j

d
(k−1)
j

{
1
4 H3k−1−2j + (3k − 3− 2j + 1

2 )H3k−3−2j

+ (3k − 3− 2j)(3k − 4− 2j)H3k−5−2j

}
− 2σ

∑

j

d
(k−1)
j H3k−3−2j

− 2
∑

j

d
(k−1)
j 2(3k − 3− 2j)

{
1
2 H3k−3−2j + (3k − 4− 2j)H3k−5−2j

}
.

Separating the coefficients of H3k−2j−1 and simplifying we arrive at the recurrence

(5.11) (6k − 4j)d
(k)
j = 1

2 d
(k−1)
j + (1− 2σ)d

(k−1)
j−1 − 2(3k − 2j)(3k − 2j + 1)d

(k−1)
j−2 .

Starting from d
(0)
0 = 1, d

(0)
j = 0 for j 	= 0, these equations determine the d

(k)
j except

those with 3k = 2j. To determine these for k > 0 we can use relation (5.5) for
x = 0 where Pk(0) = 0:

(5.12) d
(k)
3k/2 = −

3k/2−1∑

j=0

(−1)3k/2−jd
(k)
j

(3k − 2j)!

(3k/2− j)!
, 3k ≡ 0 (mod 2).

In order to apply (5.6) we also need to compute F (m)(p). We will use the Taylor
expansion of this function. We have

(5.13)
1

cosx
=

∞∑

n=0

(−1)n
E2n

(2n)!
x2n,

where, as before, the En are the Euler numbers.
From this we easily get

(5.14) F (z) =
eπi

(
z2

2 + 3
8

)
− i

√
2 cos π

2 z

2 cosπz
=

∞∑

n=0

c2nz
2n,

where

(5.15) c2n = − i√
2

(π

2

)2n n∑

k=0

(−1)k

(2k)!
22n−2k (−1)n−kE2n−2k

(2n− 2k)!

+ e3πi/8
n∑

j=0

(−1)j
E2j

(2j)!

in−jπn+j

(n− j)!2n−j+1
.

6. Some useful bounds

In this section we will obtain some bounds that will be needed if we want to
compute R(s) with an absolute error less than a given ε > 0 by means of (3.11).
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6.1. Bound for d
(k)
j .

Proposition 6.1. We have

(6.1) |d(k)j | ≤ D
(k)
j := A(σ)

2j

Bk
1

( Γ(k + 1
2 )

(3k − 2j)!

)1/2

,

where

(6.2) A(σ) :=

{
9σ for σ ≥ 0,

2−σ for σ < 0,
B1 :=

{
1 for σ ≥ 0,

2
√
1− log 2 for σ < 0.

Proof. From the orthogonality of the Hermite polynomials and (5.5) we get

(6.3)

∫ +∞

−∞
Uk(x)

2 e−x2

dx =
√
π

�3k/2�∑

j=0

23k−2j(3k − 2j)!(d
(k)
j )2.

Now we try to get an estimate of the first integral. By Cauchy’s Theorem and (5.7)
we have

Uk(x) =
1

2πi

∫

C

exp
{
−

(
σ − 1

4τ2

)
log(1− 2xτ ) +

x

2τ
+

x2

2

} dτ

τk+1
.

Changing variables τ = ζ/(2x) we get

(6.4) Uk(x) =
(2x)k

2πi

∫

C

(1− ζ)−σe−x2f(ζ) dζ

ζk+1
,

where C denotes a circle with center at ζ = 0 and radius 0 < r < 1, and f(ζ) is
given by (4.5).

Now observe that, for every fixed r in (0, 1], the function θ �→ −Re f(reiθ) as a
function of θ ∈ (0, 2π) is maximal for θ = π so that

−Re f(reiθ) ≤ 1

2
− 1

r
+

log(1 + r)

r2
=

r

3
− r2

4
+

r3

5
− · · · .

(However, actually we only need this inequality for r = 1, r = 8/9 and r = 0.883.1)
For σ < 0 we get

|Uk(x)| ≤
(2|x|)k
2π

(1 + r)−σe−x2f(−r) 2π

rk
.

The above inequality implies that
∫ +∞

−∞
Uk(x)

2e−x2

dx ≤
(2

r

)2k

(1 + r)−2σ Γ(1/2 + k)

(1 + 2f(−r))1/2+k
.

The function r2(1 + 2f(−r)) attains its maximum on the interval [0, 1] for r = 1.
So the best inequality we can get in this way is

(6.5)

∫ +∞

−∞
Uk(x)

2e−x2

dx ≤ 1.28 · 2−2σ
( 2

1− log 2

)k

Γ(1/2 + k), σ < 0.

1Each of these three cases may also be proved as follows: Defining u(θ) = Re f(−eiθ) −
Re f(−1), the inequality is equivalent to u(θ) > 0 for 0 < θ < π. It is fairly easy to determine
ε > 0 and δ > 0 such that u(θ) > 0 for 0 < θ < ε and π − δ < θ < π. It is also fairly easy to
determine an M such that |u′(θ)| ≤ M for all theta in [ε, π − δ]. By means of these ingredients,
using the Mean Value Theorem, our inequality (for ε ≤ θ ≤ π − δ) may be reduced to a finite set
of numerical inequalities (Maximal Slope Principle).
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When σ ≥ 0 we get instead
∫ +∞

−∞
Uk(x)

2e−x2

dx ≤
(2

r

)2k

(1− r)−2σ Γ(1/2 + k)

(1 + 2f(−r))1/2+k
.

We found that for r = 0.883 we have

r2(1 + 2f(−r)) ≥ 1/2, (1 + 2f(−r))−1/2 ≤ 1.25 and (1− r)−1 ≤ 8.55

so that

(6.6)

∫ +∞

−∞
Uk(x)

2e−x2

dx ≤ 1.25 · 92σ23kΓ(1/2 + k), σ ≥ 0.

From (6.3), (6.5) and (6.6) we easily get (6.1). �

6.2. Bounds for F (n)(p). We also need to compute F (n)(p) for −1 ≤ p ≤ 1, to
a given precision ε, say. The function F is given explicitly by (5.14), but this
expression is not suitable to compute F (n)(p). There are various possible practical
procedures: use of the Taylor expansion, use of an integral formula, or use of some
other expansion, Chebyshev polynomials, for example.

In all cases we will need to know the magnitude of F (n)(p).

Theorem 6.1. For n ≥ 0 and −1 ≤ p ≤ 1 we have

(6.7) |F (2n)(p)| ≤ (2n)!

2n+1n!
πn, |F (2n+1)(p)| ≤ 2nπnn!

so that |F (k)(p)| ≤ Fk, where Fk := (2π)
k−1
2 Γ

(k + 1

2

)
for all k ≥ 0.

In particular, the coefficients of the power series of F (z) satisfy

(6.8) |c(0)2k | ≤
πk

2k+1 k!
.

Proof. Gabcke [4, V, Theorem 3, formula (1), p. 109] proves the formula

cosπ
(

z2

2 + 3
8

)

cosπz
− i

sin π
(

z2

2 + 3
8

)
−

√
2 cos π

2 z

cosπz

=
√
2eπi/8

∫ ∞

0

e−πv2/2 cosh(πze
−πi/4v)

cosh(πe−πi/4v)
dv.

Assuming z real and taking the complex conjugate we get

(6.9) 2F (z) =
√
2e−πi/8

∫ ∞

0

e−πv2/2 cosh(πze
πi/4v)

cosh(πeπi/4v)
dv.

Since the two members are entire functions the above equality is true for all z ∈ C.
Differentiating we get

2F (2n)(z) =
√
2e−πi/8

∫ ∞

0

e−πv2/2(πeπi/4v)2n
cosh(πzeπi/4v)

cosh(πeπi/4v)
dv

and

2F (2n+1)(z) =
√
2e−πi/8

∫ ∞

0

e−πv2/2(πeπi/4v)2n+1 sinh(πze
πi/4v)

cosh(πeπi/4v)
dv.
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Now we can apply the bounds of Gabcke [V, §4, Theorem 1, p. 139] and get for
−1 < z < 1,

2|F (2n)(z)| ≤
√
2

∫ ∞

0

e−πv2/2(πv)2n dv =
(2π)n√

π
Γ
(
n+

1

2

)

and

2|F (2n+1)(z)| ≤
√
2

∫ ∞

0

e−πv2/2(πv)2n+1
√
2 dv = 2n+1πnΓ(n+ 1).

�

We can now obtain a bound for the coefficients Ck(p) in the Riemann-Siegel
formula (2.4).

Proposition 6.2. For 0 ≤ j ≤ 3k/2 we have

(6.10)
∣
∣∣
1

π2k

( π

2i

)j

d
(k)
j F (3k−2j)(p)

∣
∣∣ ≤ Tk := A(σ)

Γ(k + 1
2 )

1/2

Bk
2

with A(σ) defined by (6.2) and

(6.11) B2 :=

{√
π, σ ≥ 0,

2
√
π(1− log 2), σ < 0.

Proof. By Theorem 6.1 we have |F (m)(p)| ≤ (2π)(m−1)/2Γ
(
m+1
2

)
. Assuming that

σ ≥ 0 we get by (6.1),

T :=
∣
∣
∣
1

π2k

( π

2i

)j

d
(k)
j F (3k−2j)(p)

∣
∣
∣

≤ 1

π2k

πj

2j
9σ2j

( Γ(k + 1
2 )

(3k − 2j)!

)1/2

(2π)
3k−2j−1

2 Γ
(3k − 2j + 1

2

)
.

Simplifying, we obtain

T ≤ 9σ√
2π

1

2j

( 23/2

π1/2

)k( Γ(k + 1
2 )

(3k − 2j)!

)1/2

Γ
(3k − 2j + 1

2

)
.

If we call this bound Aj we get

Aj+1

Aj
=

( 3k − 2j

3k − 2j − 1

)1/2

> 1.

It follows that Aj ≤ A�3k/2�, so that

(6.12) T ≤ 9σ√
2π

23k/2

πk/2

1

2�3k/2�
Γ(k + 1

2 )
1/2

√
π ≤ 9σ

Γ(k + 1
2 )

1/2

πk/2
, σ ≥ 0.

For σ < 0 an analogous reasoning gives the bound

(6.13) T ≤ 2−σ Γ(k + 1
2 )

1/2

(2
√
1− log 2

√
π)k

, σ < 0.

�
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