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DILATIONAL INTERPOLATORY INEQUALITIES

MARKUS HEGLAND AND ROBERT S. ANDERSSEN

ABSTRACT. Operationally, index functions of variable Hilbert scales can be
viewed as generators for families of spaces and norms and, thereby, associ-
ated scales of interpolatory inequalities. Using one-parameter families of in-
dex functions based on the dilations of given index functions, new classes of
interpolatory inequalities, dilational interpolatory inequalities (DII), are con-
structed. They have ordinary Hilbert scales (OHS) interpolatory inequalities
as special cases. They represent a precise and concise subset of variable Hilbert
scales interpolatory inequalities appropriate for deriving error estimates for
peak sharpening deconvolution. Only for Gaussian and Lorentzian deconvo-
lution do the DIIs take the standard form of OHS interpolatory inequalities.
For other types of deconvolution, such as a Voigt, which is the convolution
of a Gaussian with a Lorentzian, the DIIs yield a new class of interpolatory
inequality. An analysis of deconvolution peak sharpening is used to illustrate
the role of DIIs in deriving appropriate error estimates.

1. INTRODUCTION

In the analysis of the numerical performance of traditional regularization meth-
ods (Engl et al. [5]), interpolatory inequalities between the norms |lull,, @ € R4,
generated by an appropriate scale (family) of Hilbert spaces H, = Domain (T“/ 2),
play the central role. In terms of the original concept of a Hilbert scale, as intro-
duced by Krein and Petunin [12] and generated by a densely-defined, unbounded,
self-adjoint and strictly positive operator T', such inequalities take the form

(1) lullorti—gys < lull lulli™®  r<s, 0<6<1,

where ||ul = ||T%/?u||. Through the appropriate choice of T and the values for r
and s, the corresponding inequality (dI) can be used to derive estimates for the error
e of the regularized solution of improperly posed operator equations that simulta-
neously take account of both the compact and smoothing nature of the operator
(Groetsch [7], Natterer [I7], Schroter and Tautenhahn [21], Tautenhahn [22]). Typ-
ically, such inequalities lead to bounds for the error e of the form |le]| < C3?, where
6 is a measure of the error in the data.

When utilizing such inequalities to derive error estimates for linear improperly
posed problems, it was observed by various authors that realistic error estimates
could only be derived for a subset of linear improperly posed operator equations.
This led to the need to construct more general counterparts of the inequality ().
Hegland [8], [9], by exploiting the spectral decomposition of an appropriately chosen
operator T, first introduced the concept of a variable Hilbert scale (VHS) for a quite
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general index function ¢. Then, by invoking appropriate regularity about the choice
of the index function, Hegland established how more general counterparts of the
interpolatory inequality () could be constructed.

The utility of this basic concept of VHS, in deriving more representative in-
terpolatory inequalities, error estimates and convergence rates for the regular-
ized solution of improperly posed operator equations, has been subsequently ex-
ploited and/or modified by various authors including Nair et al. [I6], Mathé and
Pereverzev [13], [14], Mathé and Tautenhahn [I5] and Bégout and Soria [3].

VHS interpolatory inequalities not only overcome the mentioned shortcoming
of interpolatory inequalities of the form (), but also allow a greater variety of
interpolatory inequalities to be constructed. It is this aspect that is pursued in this
paper. A recent example can be found in Nair et al. [I6]. In our paper, the VHS
framework and associated index functions are introduced using the spectral theorem
for positive definite self-adjoint operators. The special subclass of dilational Hilbert
scales (DHS) is then defined, and new families of interpolatory inequalities are
derived and applied.

The motivation is the analysis of deconvolution peak sharpening (Hegland and
Anderssen [I1]). For a given peak function b(t) € La(R), its corresponding dilations
will be denoted by

1
bww:;mwm 0 <7y < oo,

and the associated convolution operators by

oo

(2) B,f =byxf:= / by(z —y)f(y)dy.

—0o0
In the sequel, the scaling v is chosen so that v = 1 defines the observational process
that is performed in applications, such as various forms of spectroscopy (as discussed
in Section 3). Consequently, B models, via the equations

(3) u = Bf, B = By,

the convolutional broadening that the measurement process has imposed on the
exact spectrum f to give the observed signal u.
When b(t) is the Gaussian peak

g(t) = exp(~t?/2),

the convolutional relationship

g=ga*gs, l=0o+p%
can be used to factor
u=gxf=Gf

in the following manner
u=G.Gaf =Gqyz, z=Ggf

with a determining the proportion of the full broadening to be deconvolved and
the maximum extent of the broadening that the resulting solutions will have. From
an interpolatory inequality perspective, [ represents the characterization of the
source condition. In this way, o and § perform a trade-off between the amount of
deconvolution to be performed and the achievable rates of convergence, as outlined
in Section 3.
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Though, in general, such an explicit decomposition does not hold for non-
Gaussian and non-Lorentzian peak broadening, it can be adapted for dilational
models, with peak functions b(¢). An important example is the Voigt peak [I§],
which is formed by convolving a Gaussian peak with a Lorentzian. The adaptation
is achieved by performing the decomposition

(4) uw=Bf=BB;'Bsf =Bsz, Bs=BB;', z=Bsf, 0<pB<1,

where the operator Bg is well defined on the Hs := Range(Bg). Thus, B and
Bgz = u correspond, respectively, to the “sharpening operator” and “sharpening
equation”, while any regularization method used to solve it will be referred to as
a “sharpening procedure”. Since the exact solution z € Hg, this can be viewed as
the source condition which controls the achievable rates for a given regularization
methodology. A discussion about how z = Bgf provides an appropriate source
condition is given in Section 3. For example, for spectral sharpening with known
peak function b(t), interpolation inequalities of the following form are required:

[ Bgvll < F(||lvf], |Bv]), v e La(R)
where the structure of the function F' highlights the trade-off between |v| and
| Bull.
It is shown in the sequel that, in particular, one has, in many situations, rela-
tionships of the form

[[o]]
a (Ba=1(|[v]|?/]| Bv]?)"?

where a(t) = 1/[b(t)|?, and b denotes the Fourier transform of b. In fact, this
inequality recovers the standard interpolation inequalities for both Gaussian and
Lorentzian peaks.

An application of this inequality arises when b(t) is the convolution of a Gaussian
with a Lorentzian peak, the Voigt peak (with b(t) = exp(—t2/2) exp(—put/2)), which
is common in applications [I8], yields

1Bgoll < | Bol ) flof*~<t)

[Bgol| <

where

2 p(l—p)B
((v) = 5"+ (1+ /(2 Tog(e)]))’

for some ||Bvl|/[jv]| < e < 1.
For the exponential peak with b(v) = exp(—|v|), we derive the new interpolation
inequality

[ Bull o]
(B2[lvll + (1 = B2)||Bl))”
By deriving various lower bounds for the denominator in this last equation, the
following upper bounds can be determined, which hold for all 3,

(a) B72||Bull,

(5) [1Bgoll <

1Bsell < o
®) Bl ol
These bounds illustrate some interesting features about exponential peak decon-

volution. The first bound (a) illustrates that exponential peak deconvolution is
properly posed as the norm of the reconstruction error ||Bgv|| is proportional to
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the norm of the observational error ||Bv||. In a way, it is a reflection of the cusp
in the exponential peak at the origin. It is a useful fact when 8 ~ 1, as little
deconvolution is being performed. On the other hand, as § — 0, the deconvolution
becomes strongly ill-conditioned. Now, the bound (b) gives the more appropriate
assessment of the situation.

The paper has been organized in the following manner. A very general Hilbert
scale (VHS) inequality is proved in Section 2 along with a general Holder inequal-
ity. The Hilbert scales based on dilations of index functions are then introduced.
Their interpolation inequalities (DIIs) are then derived from the general VHS inter-
polation inequality. Both cases of increasing index functions (leading to “positive
norms”) and decreasing index functions (leading to “negative norms”) are consid-
ered. In Section 3, the DIIs are applied to derive error bounds for peak sharpening
procedures. Initially, various bounds and results for general peaks are derived. The
error bounds for the sharpening of Gaussian, Lorentzian, Voigt and exponential
peaks are then given. The bounds for the Gaussian and Lorentzian peaks can also
be obtained from the classical Hilbert scale theory and are confirmed by the DII
theory. The error bounds for Voigt and exponential peaks, however, cannot be
obtained using the classical theory. Consequently, a new framework and theory
is required. It turns out that the best error bounds are derived when using the
negative norms and by interpreting the sharpening procedure as a mollification
process. Conclusions are given in Section 4 along with a brief overview of some
open problems.

2. VARIABLE AND DILATIONAL HILBERT SCALES

The spectral theorem for a positive definite selfadjoint operator 7' on a Hilbert
space H (see, e.g., [20]) induces (for each T') a family E()) of orthogonal projections
such that Ef 4(\) := (E(X)f, g) defines a Stieltjes measure on (0, c0) and

w9~ [ T NE;, (V)

for all g € H and f € D(T) (the domain of T'). One can see that (E(X)f, g) is right
semi-continuous. In applications, the operator T is often a differential operator
like the Laplacian. Intuitively, this representation generalizes the concept of an
eigenvalue decomposition of a real symmetric matrix.

Following the definition in [9], let any continuous function ¢ : (0,00) — (0, 00)
be called an index function. Then

(o= | T OB (Y. 1712 = (£, o

is a densely defined bilinear form on H with scalar product (-,-)s. Let the closure
of the domain of this bilinear form be denoted Hy. Note that H, then becomes
a Hilbert space with scalar product (-,-)s and we call the set of all possible Hy a
variable Hilbert scale.

In [3], Bégout and Soria introduce a generalization of the Holder inequality for LP
spaces. It turns out that this inequality is closely connected to the “variable Hilbert
scale” inequality introduced by Hegland in [9]. There are two main differences
between the two results: First, the variable Hilbert scale inequality uses the spectral
measure to define the underlying norms, while the Holder inequalities are based on
the Lebesgue measure; second, the two inequalities are slightly different in their
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conditions and bounds. In the next theorem, we give both results together with
a proof which is an adaptation of the proof in [3]. While the first result could
be obtained by replacing the f of [3] by 1 and setting du in Theorem 2.1 in [3]
to be dEy s, for a generic f, it is simpler to give the adapted proof. The second
inequality given in the next theorem is a generalization of the result in [9], with
a simpler proof given below. In the following, it will be assumed that products of
index functions are defined pointwise; i.e.,

(90)(A) = ¢(A)I(A).
Theorem 1. Let ¢, and 6 be three index functions and ® and ¥ concave functions
(0,00) = (0, 00).
o (Generalized Hélder Inequality) If
(6) 1< @(¢(N) ¥((N)  a.e.,
then
(7) 1< @([L£ 136/ 1F115) ©CULF 10/ 11F117)

fOT’ all f S H(¢+w+1)9.
e (Variable Hilbert Scale Inequality) If

(8) oA S U([P(N)  ae,
then

(9) 1136/ 1F11E < ©CfI156/11F15)
fOT’ all f € H(¢+w+1)9.

Proof. In the following, let the measure v be defined by dv(\) = | f||, 20(N)dEy s (\)
for f € H(g1y41)9- By definition, because 6 is positive and the integral of dv equals
1, v is a probability measure.

From the inequality (Gl), one obtains

_ > y > 1/2 1/2 »
1= / dv()) < / BY2($(N) T2(5(N)) du(N).

After taking the square of the right-hand side, an application of the Cauchy-Schwarz
inequality yields

1< [T aemnan [ vwonw.

Since both ® and ¥ are concave, one uses the (inverse) Jensen inequality to obtain

o[ coman) o ([

The required inequality () is then obtained by replacing dv(\) by its definition.
From the inequality (8]) one obtains

[ omam < [Tewonam <o ([Tomam)

using again the inverse Jensen inequality. The required inequality (@) is then ob-
tained by replacing dv(A) by its definition. O
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On choosing ¢(A) = A7, () = X and §(\) = 1 and &(\) = U(N\) = A in
the generalized Holder inequality, a special case of a generalized Holder inequality
which holds for Sobolev spaces (see [T, p. 50]) is recovered; namely,

I < LAl = 1l

where || fll—m = [|fll¢ and [[fllm = [[f]l4-
The (original) interpolation inequality for variable Hilbert scales (see Theorem

2.2 in [9]) can now be obtained from Theorem ] by choosing ¥ = ¢! o 1).

Corollary 1 (Interpolation inequality [9]). Let ¢, and 6 be index functions.
o Ifporp~" is concave, then

(10)  fUZe < IFIE 0w (If56/IF1IE) f € Hiprprrye, f#0.

o If ¢ and 1 are strictly increasing and ¢ o ™" is concave, then

(12 [ f13e
(11) ¢ W <y W . fE€Hgrprne [#0.

Proof. Choosing W(\) = ¢ o1p~1(N), it follows that ¢p(A) = ¥(16(\)). Furthermore,
¥ is concave. The following inequality then follows from Theorem [T}

Wlleo < gp1(1£12/1710))

Ll —
which can be rearranged to give the first inequality. The second inequality follows
from the monotonicity of ¢—1. O

We now recover the (ordinary) Hilbert scale inequalities from both inequalities
of Theorem [l First choose O(A) = 1, ¢(\) = A", (\) = A%, ®(\) = A%/ (+7) and
TU(N) = N/ (5+7) for some s,7 > 0. Consequently, ® and ¥ are both concave and,
furthermore,

D(B(N)) W(H(N)) = A7/t xor/ () 1,
Hence, the conditions for the generalised Holder inequality are fulfilled and one gets
from Theorem [ the inequality

|f||2r>s/“”’ (nfni)”(””
b= ( HE 172

where || - |- = || -||¢ and || - ||s = || - ||- From this, one obtains the classical bound

(12) A< AN s s+,

which is a special case of the standard interpolatory inequality (). In order to
get this bound one needed to “solve” the inequality for ||f||, which is possible for
this special case but not in general. This is one motivation for the variable Hilbert
scale inequality. In order to recover the classical inequality from inequality (@), one
chooses () = A77, ¢(\) = A", (A) = X317 and U(A) = ¢(xp~1(N) = A/(5H7),
Then inequality (@) becomes

17112 (||f||§>”"/‘s+”
1717, = 712,

and a simple multiplication of both sides with || f||2,. gives the classical bound ([Z).
The variable Hilbert scales are used to derive error bounds for the regularization
techniques for Af = u given us for which |Jus —u|| < 4. These error bounds rely on
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source conditions f € R(B) for some operator B. For the OHS, one requires that
B commutes with A*A, i.e., B =9 (A*A). In the classical theory, one requires that
the source condition holds for some B = (A*A)°.

2.1. Scales of dilational interpolatory inequalities (DII). Two different
classes of dilational interpolatory inequalities are introduced, as they lead to differ-
ent types of error analysis for deconvolutional peak sharpening.

2.1.1. Positive index dilational interpolatory inequalities (PIDII). A new special
family of variable Hilbert scales can be generated for a monotonically increasing
index function ¢ : [0,00) — [0, 00) with ¢(0) = 0, when the index functions are all
of the form ¢(\) = 1+ cq(sA), with s > 0 and ¢ > 0. The corresponding norms are
defined to be -
1 = 101F +e | alsdizg ().

The Hilbert space with norm || - || will be denoted by H,. As the index functions
are obtained from dilations of the original function g(\), we will refer to this family
of variable Hilbert scales as dilational Hilbert scales (DHS). Because the generating
index function ¢ is monotonically increasing, it follows that, for s <t and f € Hy,
I7lls < |Ifll+, which implies the existence of a continuous embedding Hs; — H;.
Since ¢(0) = 0, it follows that ||f|lo = || f]| and Hy = H.

While there is no a(-) such that the DHS generated by a(-) and T are equal to
the OHS generated by T', the OHS can still be generated as a DHS.

Proposition 1. If A is a positive definite operator and T = e, then the OHS
generated by T is equal to the DHS generated by A with a(\) = e*.

Proof. The proof shows that the norms || - ||s are the same in both cases. In the
first case, the norm is

wm:A XedEy 5 (V)

where dE; §(\) is the spectral measure of T'. The DHS generated by A with a(\) =
e* has the norm

nmfzé e dfy £ (1)

where dEf, #(p) is the spectral measure generated by A. A consequence of the
spectral theorem for selfadjoint operators is Ey ;(u) = Ey s(e*). Consequently, the
two Hilbert scales are the same. (]

It follows that the dilational Hilbert scale, generated by the positive definite
operator A with a()\) = exp()), consists of spaces Hy, = R(e~*4), where R(e~*4)
is the range of the elements e %4 of the semigroup generated by —A. In the case of
A = —d?/dt?, this is just the set of solutions of the heat equation at times t. For
the dilational Hilbert scale, this recovers the classical error bounds for the solution
of the (time) inverse heat equation.

For the construction of ¢, choose any non-decreasing integrable function

n:[0,00) = R,
for which n(v)/v is integrable, and let

(13) «M:Alm([mm%)m
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Lemma 1. For n : [0,00) — R with n(v)/v integrable, the function q(\) of
equation ([I3) is
(1) monotonically increasing and differentiable with an absolutely continuous
derivative, and

(2) if ¢ € C?[0,00), then
G\ _ n(N)
VOV

Proof. The integrability condition guarantees that fo v)/vdv is finite. The dif-
ferentiability of ¢ is an immediate consequence of its definition in equation (I3).
Differentiation of (3] yields

A
G(\) = exp (/1 @dy>

which is absolutely continuous. With ¢ € C?[0, 00), a second differentiation of (3]

yields
A
0 [ 1)

Combining these last two equations gives the result in ([2)) of Lemma /[Tl ([

The next theorem identifies an important subclass of DHS which generate a quite
special and useful set of interpolation inequalities.
Theorem 2 (Positive Index Dilational Interpolatory Inequality). Let

(1) n:[1,00) = Ry be increasing, continuous and such that n(v)/v is inte-
grable,

= Jo exp ([T n(v) %) dr

(3) the function a(\) be defined by
<14> a() = 1+ gV,
Hf||2 Jo~ a(sN)dEgs(N),
(5) €(0,1).

Then, the function ¥(\) = a(ca™'(N\)) is concave and Hs := {f| || f|ls < oo} defines
a Hilbert scale with the dilational interpolation inequalities (PIDII)

(15) A2 < If1Patea™ (ILFIR/I1LF1))-
Proof. Let ¢, 1) and 6 be such that
o(N) =aloA), PA)=a(N), 0O\ =1, for A € (0,00).

Then ¢, ¢ and 6 : (0,00) — (0,00). By Lemma[ll ¢ and v are continuous and,
hence, are index functions. Hence, {H;} defines a Hilbert scale. In addition,
because, by Lemma [I ¢ is monotonically increasing, it is invertible. Thus, x :=
o ¢! is well defined. The chain rule gives
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which, also on the basis of Lemma [T is well defined because ¢ = ¢¢(\) > 0 and

¢ =cog(oA) > 0. A second application of the chain rule gives
:d@—ﬁéqu{é_é}

X(o(A — = :
X(o(N) 33

¢ ¢?

Returning again to Lemma [] gives

v_d_
vooq A
and )
6 _iloN) _ o))
b q(oN) A
which implies that
o) = 35 {1,

Because x(\) > 0, n(A) is increasing and A > 0, it follows that ¥(¢(A)) > 0. Thus,
X(A) is convex and ¥ = ¢otp~! = x 7! is concave. It now follows from Corollary 1,

on taking account of item (4) in the theorem and using the fact that || f]|Z = || f||?
and |[f[I}, = [If]7, that

A2 = 1713 < IF1P@ o= FIT/IA),
which yields the interpolatory inequality (IH]). O

The proof shows, in particular, that the concavity of ¥ (which is the key con-
dition in Theorem [l for the application of Jensen’s inequality) is a consequence of
equations (I3)) and (I4).

The simplest example arises on choosing n(r) = v and ¢ = e, which corresponds
to taking g(A) = (exp(A) — 1)/e and, hence, a(A\) = exp(A). Another example,
which is the limiting example for the convexity condition, arises when 7n(v) is the
constant (y — 1) and ¢ = «, which corresponds to taking g(A) = A7 and, hence,
a(\) = 1+ X\7. Even though this generates a one-parameter family of scales like
the OHS family, it is a different family because its index function takes the form
a(sA) =1+ s7A7 where s is the parameter indexing the Hilbert spaces H.

2.1.2. Negative index dilational interpolatory inequalities (NIDII). For the analysis
of peak sharpening, it turns out that the Hilbert scales based on index functions of

the form .
P(A) = a(sn)

(where a is the same as in Theorem [2)) are more useful. One first defines the norms

|mﬁp=4 Ers N - p e ).

a(s\)
In this way, the Hilbert scale {H} is extended by adding {H_,}, where each H_;
(for s > 0) is defined to be the topological closure of Ls(R) with respect to || - ||—s.

It can then be shown, using the Cauchy-Schwarz inequality, that
1A < WFlls (1f1l=s:  f € Hsys >0,
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and, hence, that H_; corresponds to the dual space of H, and that (H_, La(R), Hy)
forms a Gelfand triple. Most importantly for peak sharpening, the following dila-
tional interpolation inequality is obtained.

Proposition 2 (Negative Index Dilational Interpolatory Inequalities). Let a be as
in Theorem 2, o € (0,1) and furthermore, let

A

IARCTRIEY)

be concave. Then, for the norm

(o)
1
2
= ——dErs(N), >0, f e Ly(R),
2= [ 2os5dBash). s >0, f € La(®)
the following dilational interpolation inequality (NIDII) holds:

£
(ea= (LF112/11£1121))°

Proof. Let ¢, 1 and 6 be such that
() = a(N/aleN), BN =a(A), 6(A) = 1/a(A), for A € (0, 0).

It then follows from Lemma [l that ¢, ¢ and 6 are continuous, and, hence, are index
functions. By construction % is invertible and, furthermore,

P(A) = ¥ ((A)).
As we assume that ¥ is concave, we can invoke the interpolation inequality of
Theorem [I] which is
A2, 12/

1121~ aloa (I£IP/11£121))
The required DII is then obtained by multiplication by || f]|%;. O

(16) 112, < - f € La(®).

Unlike in Theorem [2] the concise characterization of all the 7, for which ¥ turns
out to be concave, is still an open question. However, for the Gaussian, Lorentzian,
Voigt and exponential peaks, this will be verified for each, separately. As the
concavity of ¥ is essential, it is assumed to hold in Proposition 2l By definition, ¥
maps (0,00) into (0,00) and one consequence of the assumed concavity is that ¥
cannot be decreasing.

By way of contrast, conditions for the concavity of ®(\) = a(ca™'(\)) have been
established in Theorem [2] A natural question to ask is: when does the concavity of
® imply the concavity of ¥(A) = A/®(A\)? While again we do not know the answer
to this question, one observes that in the OHS case, where one has ®(\) = A7 for
some o € (0,1), it follows that ¥ is concave. This is the most prominent case of an
operator concave function ® [4]. Tt would appear appropriate to investigate which
properties of 1 result in operator concave ® which imply concavity of U.

A larger class of applications is obtained when ¥ is chosen to be concave with
d(A) < U(y(N)); in particular, when one chooses the smallest such U; i.e., the
concave magjorant of ¢ o 1p~'. For such a concave majorant to exist, one only
requires asymptotic concavity of ¥(\). In the current context, because (A) = a(A)
is monotonically increasing, this will hold if ¥ (¢())) = $(X)/9h()) is asymptotically
decreasing.
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3. APPLICATION—DECONVOLUTION BY SHARPENING

The theory discussed above provides a natural framework in which to analyze the
sharpening (narrowing) of broadened and possibly overlapping spectroscopic peaks
by deconvolution. Because, as shown in the introduction, the convolution of two
Gaussian peaks is a Gaussian peak, an OHS analysis can be applied successfully
when the peak and its broadening are both modeled as Gaussians. In the DHS
framework, general dilational-parameterized peaks can be analyzed with similar
facility. The VHS framework could be applied, but additional assumptions would
have to be invoked, like the ones given above in Theorem [2] for DHS, before error
estimates as sharp and useful as those given below could be derived. In essence,
Theorem ] generates a framework which allows the VHS methodology to be applied
directly to deconvolution by sharpening (narrowing).

Spectroscopy reveals information about the chemical composition of samples
and is an important tool in chemistry, physics, biology, astronomy and related
industrial applications. The data consists of a superposition of “peaks”. In the
case of overlapping peaks, their separation and identification poses a substantial
challenge. Methods for performing such tasks are discussed in [II]. They have
wide applicability and can also be used for deblurring in image processing.

The widening of the peaks in a spectrum results from a “diffusion” of information
into neighboring frequencies. If this “diffusion” is independent of location, it can
be modeled as a convolution. In an Ly(R) Hilbert space context, the theoretical
model takes the form given in equations [2)) and ().

Rather than attempting to accurately perform the full deconvolution, it is more
sensible to “sharpen” the spectrum so that a better identifiability of the locations
and number of peaks is achieved compared with that available from a visual in-
spection of the available data u® [2, [0]. As explained in the Introduction, this
corresponds to finding the solution z of the sharpening equation

B,g *Z=U
for the data u® where the regularity of z is determined by the source condition

z=Bgxf, fe€LR).

In order to utilize the DHS interpolation inequality framework developed above,
it is necessary to introduce a DHS which guarantees that z is in Hs. A general
framework for doing this is given by

Theorem 3. Let the operator T' that generates the dilational Hilbert scale {Hs} be
—d?/dz?, and define the Fourier transform to take the form

[= /Rexp(iwt)f(t)dt.

If s = B2, if the absolute value of the Fourier transform of the given peak function
b is symmetric with

(17) [b(w)] = [b(—w))|
and if the generating function a of {Hs} satisfies

1

18 a(\) = ——,
1) VA
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then
(19) bg * flls = I fIl, f € La2(R).

Proof. Using the Fourier transform f , one obtains
- 1 20 70, N2 L[ o (152 ; 2
| 2B = 52 [ iR ar= o [T e (1F@F + 17 =)F)

with A = w? and dEf;(\) = 5= (|f(w)|2 + \f(—w)|2) dw. The resulting DHS norm
is given by

1912 = 55 [ atsa?) (1F@F +1F-)P) da

A straightforward application of the definition of bg(t) and the Fourier transform

proves that bg(w) = b(fw). With this and the assumed symmetry of equation (),
one then obtains for the left-hand side of condition (9,

@) s = [ a0 P (@) + 1)) do

On recalling that s = 32 and condition ([I8), the right-hand side of the last equation

becomes
o [ (@R + 17 )P) do = 1717,

2m Jo
which proves the theorem. ([

Together, Theorems ] and [] yield a procedure for determining whether, for a
given peak function b(t), the DII of equation () can be applied. First one uses
condition (I8) to determine a(\) and then checks that it is a valid generating
function for the DII of Theorem [2I This is done by showing that there exists an
n(A) such that a(A) has the structure given in equations () and (I3). For this,
one uses, from Lemma [[] and the form of a()\) just derived, the relationships

A a(N)
to determine the corresponding n(\) and the constant ¢ in equation (I4). The
process is validated and finalized on showing that, with respect to the assumptions
of Lemma [ the resulting n(\) is non-decreasing.

3.1. Error analysis for peak sharpening. Depending on the type of DII uti-
lized, the error analysis of peak sharpening can take two quite different forms. Here,
let r denote the residual associated with the error e = (z— 2J) with 23 denoting the
regularized solution of Bﬁz = u® by a regularization method with regularization
parameter «.

3.1.1. Error analysis using positive index dilational interpolatory inequalities. The
first step is the identification of conditions which guarantees that
(21) lell <lrlle, o<1,

since the DII of equation ([[H) then yields an upper bound for the right-hand side
of 1), and, hence, for ||e||. Here, by utilizing the results of Theorem [B] a Fourier
transform constraint is derived that guarantees ([ZI)). From equation (@), it follows
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that there exists a v such that r = Bﬂe with e = Bgv. Consequently, r = Bv and
the last inequality becomes

I1Bgoll = llell < lI7lle = [ Bvllo,

or, equivalently,
1bg *v|| < ||b*v]s, for all v € H.

As the norm is a continuous function, it suffices to show that this bound holds for
a dense subset in Ly(R). Using equation (20), this last inequality can be rewritten
as

1 (7 ~

o= | BB = alowt) o@)?] (8(@) + [o(-w)?) dw <0, ace.

0

This relationship holds for all choices of v in a dense subset of Ls(R). On taking
account of the connection (Id) between a()\) and b(v/)), it follows that

|b(Bw)|? < _b@)l® weR, ae.,

b(v/ow)[?
or, equivalently,

(22) a(\) < a(oN)a(B2N).

This is the “peak-constraint” that must be satisfied in order to guarantee the validity
of the error estimate (2I). Consequently, the form taken by the PIDII for the
Gaussian, Lorentzian, Voigt and exponential peaks, depends on the value of o that
results in guaranteeing the validity of this peak-constraint.

A bound on this error is given in the following corollary of Theorem 2

Corollary 2. Let v = f. — f, r = Bv and e = Bgv. Let a(\) = 1/|b(v/A)|? satisfy
the conditions of Theorem B, and let b satisfy the peak constraint

b(Bw)| - [b(v/ow)] < [b(w)]

for some o € (0,1). Then,

(23) lell < [Ir[l v/a(oa=t([[v]2/]Ir]2)-

Proof. Since ||v|| = ||r|]1 and, by the peak constraint, |le|| < ||7||s, the bound follows
directly from the PIDII of Theorem O

3.1.2. Error analysis using negative index dilational interpolatory inequalities. Con-
sider the original reconstruction problem of finding the solution of the convolution
equation Bf = u from data u® where ||u® — u|| < §. Many regularization meth-
ods, (including Morozov’s discrepancy principle [5]), construct a regularized solu-
tion fs which is consistent, in that it has a residual r = B(fs — f) that satisfied
lr|l < C16, and is stable with the error v = fs — f bounded, i.e., ||v]| < Cy. Un-
fortunately, without a source condition (e.g., f € Range(1)(B*B)) for some index
function 1), one cannot apply the interpolation inequalities to get an error bound
of the type ||v]] < o(e). However, one can get a bound for the mollified solution
zgs = Bgfs [10]. This mollified solution is an approximation of the sharpened
spectrum Bgf and its error is e = Bg(fs — f). A bound on this error is given in
the following corollary of Proposition
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Corollary 3. Let v = fe — f, r = Bv and e = Bgv. Let a(\) = 1/|b(V)|? satisfy
the conditions of Theorem [, and o = 2. Then,

[[o]]
(24) lell € ————____.
Valoa  ([o]?/[r]%))
Proof. Since ||r|| = ||Bv|| = ||v||-1 and |le|| = ||Bsv|| = ||v||-s, the bound follows
directly from the NIDII of Proposition 3l O

3.2. The corresponding properties for the Gaussian, Lorentzian, Voigt
and exponential peaks. We now have the tools to examine and compare, using
the DII given in equations ([5]) and (), the sharpening (narrowing) resulting from
deconvolution with the Gaussian, Lorentzian, Voigt and exponential peaks.

For the proof of the concavity of poip~! for the PIDII, it follows from Theorem
that it is only necessary to show that n(\) is non-decreasing. For the NIDII, once
it is established that a()) is monotonically increasing, it is only necessary to show
that ¢(\)/1(\) is decreasing, where ¢(A) = a(X)/a(o)) and $h(X) = a(N).

3.2.1. The Gaussian peak. For bg(t) = \/%—ﬂ exp(—t2/2), following the above proto-

cols, one first obtains
bo(t) = exp(—w?/2), ag(N) =exp(A), na(\) =, ca =e.
Here, aal(() = In . The non-decreasing of g () is immediately apparent. Equal-

ity holds for the peak-constraint [22)) if o + 3% = 1. Concavity for the NIDII follows
on noting that ¢(A\)/¥(A) = (1 —o0) exp(—oA). Both the PIDII and the NIDII yield

lell < o=, o =1-5%

3.2.2. The Lorentzian peak. For b (t) = %ﬁ, following the above protocols, one
first obtains

A 1

br(t) = exp(—|w|), ar(A) =exp(2VN), nL(\) = VA — 3 L= e2.
Here, ag'(¢) = (In(¢)/2)%. The non-decreasing of 1z (\) is immediately apparent.
The peak-constraint is satisfied if o + 532 = 1. Concavity for the NIDII follows on
noting that ¢(A)/¥(A) = (1 — /&) exp(—2v o). Both the PIDII and the NIDII
yield

lell < flol Y2 lrYe,  o=1-45%

They have the same form as for the Gaussian except that the o of the Gaussian
has become /o

3.2.3. The Voigt peak. For by (t) = [*_ba(t — 7)br(u7)dr, following the above
protocols, one first obtains

by (t) = exp(—(w? + plwl)),  av(A) = exp(A+ 2uv/A),

() = (A + uv/A) - %ﬁ ev = (1+ ) exp(1 + 24).

Proposition 3. Let r,v,e be as in Corollary Bl and let a(\) = exp(\ + uv/\) for
some p € [0,2]. Furthermore, let ||r||/||v]] <e <1 and

u(l—o)yo

b= T @ log())
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for some o € (0,1). Then
lell < floll*=°1l]|°.
Remark. As illustrated in the proof, the negative norm results of Proposition

play the key role. It represents a result that cannot be obtained using the positive
norms.

Proof. We directly apply Theorem [Il as in Proposition 2l In particular, we choose
U(A) = A~% We then have to show that ¥ is concave and that

T(\) = Ma(oa™ (X))

for large enough .
Clearly, ¥ is concave if and only if 6 € [0,1]. As o € (0,1), it follows that § > 0.
Then, because p < 2, one has

0 <o+p(l-o)o
<o+2(1—-+o)o
=1-(1-Vo)?<1.

So concavity is established and the remainder of the proof establishes that U(\) >
MNa(oa='(N)) for A > 1/¢2. On observing that a()\) = exp(a(v/A)) for a(n) =
n* + un, it follows that a=1(n) = a~!(log(n))? and, hence,

a(oa™! (X)) = exp(a(voa™ (log(A))))-
It is clear that, on using a consistency argument,

a () = —g + %—l—f.

As £ =log(A) > 2|log(e)], it follows that

(VT a1 () = o + (1 = Voo (VE+ 12— p/2)
=& (o +n(1 = Voo (VI+ /R - u/(26)))
c <o+ p(1=\o)V7 )
VI (1/(26) + p/(26)
5( p(l— ﬁ)ﬁ)

o+
T

>5<g+m>_w

L+ arogar

v

Consequently, one has a(ca™!()\)) = exp(a(v/oa"t(log(N)))) > A and so

A

— L for A€ 0
aoa1(n) rre

TN =10 >
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3.2.4. The exponential peak. For bg(t) = exp(—|t|)/2, following the above proto-
cols, one first obtains

- 1

2\
el =10

EETDY

Here, a;'(¢) = ¢*/? — 1. As X increases, ng()) increases. The peak-constraint is
satisfied if o + 82 = 1. Consequently, the PIDII becomes

ap(\) = (1+XN2 ng(\) cp = 4.

el < @ =)ol +ollrl, o=1-p%
Concavity for the NIDII follows on noting that ¢(\)/1)(\) = ﬁ Consequently,
the NIDII becomes
ol {I7]] 1 2
llell < = , o=1-p%
ol + X =o)Irl o 4 G=c)

This gives a clear illustration that there exist situations where the structure of the
NIDII will be quite different from that of the PIDII. The importance of this NIDII
in characterizing the special behavior of the exponential peak has already been
explained, in terms of the structure of equation (@) in the Introduction.

4. CONCLUSIONS

We have shown how a new class of Hilbert scales based on dilations leads to error
bounds for numerical peak sharpening procedures. Specifically, these bounds are
derived from a new interpolation inequality of these Hilbert scales. Specific bounds
were found for Gaussian, Lorentz, Voigt and exponential peaks. In the case of the
Gaussian and Lorentz peaks, the same bounds can also be obtained from classical
interpolation inequalities. The bounds for Voigt and exponential peaks, however,
require the new theory.

These error bounds quantify the fundamental trade-off of peak sharpening: Nar-
rower peaks, i.e., finer resolution, come at a cost of larger errors. The noise in
the data thus limits fundamentally the resolution achievable by computational nar-
rowing procedures. Low data errors can now be achieved in modern spectroscopic
measurements (see, for example, the NIR spectra in [23]). This then leads to higher
resolution and the improvement in resolution, achieved from the better data, can
be analyzed using our new error bounds.

While we have provided a general theory, the analysis of specific narrowing pro-
cedures, based, e.g., on mollification or Tikhonov regularization, has not been done
in detail here. Furthermore, there is an open question regarding the characteriza-
tion in Proposition 2 of the asymptotic concavity of ¥()\) = \/a(ca=1(\)) in terms
of the function n(v) of equation ([I3]).

A basic assumption made in all of the discussion here is that the shape of the
peaks does not depend on the frequency. In some applications, however, this does
not hold. In this case, a different framework, than the one used here which is based
on convolutions, is required.

While we have considered the four most important peaks, it would be of some
interest to obtain bounds for other peaks as well, including peaks like the sinc
function b(t) = sin(¢)/t. A challenge here is that one looses the monotonicity.
Other peaks of interest could include derivatives of the four classical peaks discussed
above.



DILATIONAL INTERPOLATORY INEQUALITIES 1035

Interestingly, the DII for the Gauss, Lorentz and Voigt peaks, all have the same

basic form,
lell < Jlo =217 )1°,

as the classical DII of equation (). Consequently, the DII of equation () has been
extended to a wider class of situations for a larger class of source conditions. This
leaves open the question about the form that the source conditions must take to
guarantee that the upper bound takes the form O(4%).

Finally, possibly the most exciting open question is how to analyze peak narrow-
ing procedures based on non-linear regularization procedures like the ones studied
in [19] [6].
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