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A GENERALIZATION OF THE WIENER RATIONAL

BASIS FUNCTIONS ON INFINITE INTERVALS:

PART I–DERIVATION AND PROPERTIES

AKIL C. NARAYAN AND JAN S. HESTHAVEN

Abstract. We formulate and derive a generalization of an orthogonal rational-
function basis for spectral expansions over the infinite or semi-infinite interval.
The original functions, first presented by Wiener, are a mapping and weighting
of the Fourier basis to the infinite interval. By identifying the Fourier series
as a biorthogonal composition of Jacobi polynomials/functions, we are able
to define generalized Fourier series which, when appropriately mapped to the
whole real line and weighted, generalize Wiener’s basis functions. It is known
that the original Wiener rational functions inherit sparse Galerkin matrices
for differentiation, and can utilize the fast Fourier transform (FFT) for com-
putation of the expansion coefficients. We show that the generalized basis sets
also have a sparse differentiation matrix and we discuss connection problems,
which are necessary theoretical developments for application of the FFT.

1. Introduction

The approximation of a function by a finite sum of basis functions has long been
a hallmark tool in numerical analysis. Over the finite interval much is known about
expansion properties, and periodic Fourier expansions or polynomial expansions are
well-studied. On infinite intervals there are complications due to the unbounded
domain on which approximation is necessary. Nevertheless, many basis sets have
been successfully investigated in this case; the Hermite functions provide a suit-
able method for approximation when it can be assumed that the function decays
exponentially; for functions that do not decay exponentially, the so-called mapped
Chebyshev rational functions fill the void and open up the possibility for utilizing
the fast Fourier transform (FFT); additionally, a Fourier basis mapped to the real
line has been explored and provides an additional method for function approxima-
tion over the infinite interval. This last basis set serves as an inspiration for the
family of basis sets proposed in this paper.

Despite the use of available methods for function approximation over the infinite
interval, there are known shortcomings. The Hermite functions/polynomials do not
admit an FFT exploitation and have problems approximating functions that do not
decay exponentially (which is to say, most functions). However, the solutions to
differential equations by Hermite approximations have been relatively successful
and in some cases yield superior results when compared to a Chebyshev (mapped
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or truncated) approximation [5]. The Whittaker cardinal interpolant functions [26],
or Sinc functions, provide a remarkably simple method to approximate a function
with known equispaced evaluations. The drawback is a relatively small class of
functions for which such an expansion is complete. However, the ease of applying
Sinc methods has led to a great number of applications [17]. The Chebyshev rational
functions [4], [8] are robust with respect to the deficiencies of the Hermite and Sinc
bases, but they have some disadvantages compared with the generalized Wiener
basis that we will derive.

On the semi-infinite interval Laguerre polynomial/function expansions are the
classical approximation technique [1], but these techniques suffer from the same
problems as Hermite expansions. An alternative technique involves mapping Ja-
cobi polynomials to the infinite interval [6]. This mapping technique makes it
possible to accurately approximate algebraically-decaying functions on the semi-
infinite interval, but introduces additional computational issues for the solution to
differential equations. The generalized Wiener basis can be employed on the semi-
infinite interval; this results in a basis set that is also a mapped Jacobi polynomial
method. However, the Wiener mapping is very different from that presented in the
literature, and is an alternative to these existing techniques.

Our generalized basis is inspired by a collection of orthogonal and complete
functions originally proposed by Wiener [27]. He introduces the functions

(1.1) φn(x) =
(1− ix)n√
π(1 + ix)n+1

, n ∈ N0 = N ∪ {0}

as Fourier transforms of the Laguerre functions, and he furthermore shows that
these functions are orthogonal under the L2 conjugate inner product. Higgins
[15] expands this result by presenting the functions φn along with their complex
conjugates as a complete system in L2. Following this, others have used these
functions by applying them to the solution of differential equations [11], [10]. We
note that the functions φn(x) presented above have magnitude that decays like 1

x

as |x| → ∞. We will generalize the above functions so that they have decay 1
xs for

any s > 1
2 . The ability to choose the rate of decay of the basis set is an advantage

if such information is present about the nature of the function to be approximated
(e.g. [16], [18]). Furthermore, we will show that this basis admits sparse Galerkin
matrices and that the FFT can be used in certain cases to evaluate and manipulate
the series.

This paper is concerned with the derivation and theoretical properties of the
generalized Wiener rational function basis. Computational considerations, numeri-
cal examples, and comparisons with alternative basis sets are presented in a second
part. The outline of this paper is as follows. In Section 2 we formulate and de-
rive the basis, which stems from a generalized Fourier series. Section 3 lists the
properties of the basis functions. In Section 4 we discuss how the Wiener basis
set may be used to approximate functions on the semi-infinite interval. Finally, we
briefly discuss the connections between the Wiener rational functions and alterna-
tive methods in Section 5 and summarize and present an outlook in Section 6 for
Part II, dealing with numerical issues.
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Table 1. Isomorphic transforms between different domains.

x z θ r

x x ∈ [0,∞] z = −x−i
x+i

θ = 2arctan(x) r = 1−x2

1+x2

z x = i 1−z
1+z

z ∈ T
+ θ = arg z r = 1

2
(z + z̄)

θ x = tan
(
θ
2

)
z = eiθ θ ∈ [0, π] r = cos θ

r x =
√

1−r
1+r

z = ei arccos r θ = arccos r r ∈ [−1, 1]

2. Derivation of the basis

We seek L2-orthogonal and complete basis functions whose domain is the entire
real line. In addition, we desire the ability to specify a parameter s > 1

2 that will
denote the polynomial decay at ±∞ of each of the basis functions. Let us call these

functions φ
(s)
k (x) for x ∈ R and k ∈ Z such that

{
φ
(s)
k

}
k∈Z

is a complete, orthogonal

system for any valid s. Our method relies on the observation that the functions
(1.1) are weighted maps of the canonical Fourier basis eikθ for θ ∈ [−π, π] (see e.g.
[8], [25]). We first generalize the Fourier basis on [−π, π] to have the properties we
desire on the finite interval; we will then map the generalized Fourier basis to the
real line and weight it accordingly to achieve the desired rate of decay.

2.1. Notation and setup. We reserve the variables x, z, θ, and r as independent
variables on certain domains and list the domains and transformations in Table 1.
The domain T

+ is the upper-half of the unit circle in the complex plane. We will
occasionally use the notation e.g. r(θ), and the relationship between these variables
will then be dictated by Table 1. The domains of definition for θ, z, and x will be
extended to [−π, π], T, and R, respectively.

Let us denote L2
(
A,B;w) = L2

w (A,B) the space of square integrable functions

f : A → B under the weight w. We endow L2
w (A,B) with the conjugate bilinear

inner product; the notation for this inner product is 〈·, ·〉w. The omission of w
indicates the unit weight measure. The norm on this space will be denoted ‖·‖w.
The following weight functions will be used:

w(α,β)
r (r) = (1− r)α(1 + r)β,

w
(γ,δ)
θ (θ) = w(δ,γ)

r (r(θ)) = (1 + cos θ)γ(1− cos θ)δ,

w(s,t)
x (x) = w

(s,t)
θ (θ(x)) =

2s+t

(1 + x2)s

(
x2t

(1 + x2)t

)
.

In addition, we will make use of phase-shifted square roots of w
(s,t)
x and w

(γ,δ)
θ ,

which we define as:

(2.1)
∗
√
w

(s,t)
x (x) :=

√
w

(s,t)
x exp

[
i(s+ t)

2
(π − θ(x))

]
=

2(
s+t
2 )xt

(x− i)s+t
,
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∗
√
w

(γ,δ)
θ (θ) =

∗
√
w

(γ,δ)
x (x(θ))

= 2(
γ+δ
2 ) sinδ

(
θ

2

)
cosγ
(
θ

2

)
exp

[
i(γ + δ)

2
(π − θ)

]
.

(2.2)

2.2. Jacobi polynomials. The classical Jacobi polynomials P
(α,β)
n are a family of

orthogonal polynomials [24] that have been used extensively in many applications.
They are defined through the Jacobi differential equation

(2.3) (1− r2)ρ′′ + [β − α− (α+ β + 2)r] ρ′ +n(n+α+β+1)ρ = 0, r ∈ (−1, 1).

For α, β > −1, n ∈ N0 the only polynomial solution ρ = P
(α,β)
n (r) is a polynomial

of degree n. The restriction α, β > −1 is necessary to ensure integrability of the
weight and existence of an L2-constant function solution. The family of polynomials{
P

(α,β)
n (x)

}∞
n=0

is complete and orthogonal in L2
(
(−1, 1),R;w

(α,β)
r

)
. We denote

the normalized polynomials as

P̃ (α,β)
n (r) =

P
(α,β)
n (r)∥∥∥P (α,β)

n

∥∥∥
w(α,β)

.

We require a minor generalization of Jacobi polynomials: performing a change of
the dependent variable in (2.3), we obtain:

Lemma 2.1 (Jacobi Functions). The Jacobi functions defined as

P (α,β,a,b)
n (r) = (1− r)a(1 + r)bP (α,β)

n (r)

satisfy the following properties:

(1)
{
P

(α,β,a,b)
n (r)

}
n∈N0

are orthogonal and complete in

L2
(
(−1, 1),R;w(α−2a,β−2b)

r

)
.

(2) The P
(α,β,a,b)
n (r) are eigenfunctions ρn(r) of the Sturm-Liouville problem

− d

dr
[p(r)ρ′(r)] + q(r)ρ(r)− λnw(r)ρ(r) = 0,

with eigenvalues

λn = n(n+ α+ β + 1)− 2ab+ a(β + 1) + b(α+ 1).

As with the polynomials, we denote P̃
(α,β,a,b)
n as L2

w-normalized versions of the
Jacobi functions. We shall only require the result of Lemma 2.1 for a = b = 1

2 .
Many of the results in this paper require the use of numerous well-known recurrence
relations involving Jacobi polynomials; for a survey of these we refer to [1].

Finally, we present two classical notational conventions that we will use in the
next section. The classical Jacobi polynomials for the cases α = β = − 1

2 and α =

β = + 1
2 are the Chebyshev polynomials of the first and second kinds, respectively.

Recalling the relation r = cos θ, these polynomials are denoted Tn(r) and Un(r)
and they have the following concise representation as trigonometric polynomials:√

π
2 P̃

(−1/2,−1/2)
n (r) = Tn(r) = cos (nθ) = cos [n arccos(r)] ,√

π
2 P̃

(1/2,1/2)
n (r) = Un(r) = sin[(n+1)θ]

sin θ = sin[(n+1) arccos(r)]
sin[arccos(r)] .
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2.3. Generalizing the Fourier basis. In this section we will generalize the canon-
ical Fourier basis given by

Ψk(θ) = eikθ.

Our methodology is based upon the following dissection of the Fourier basis for
k 
= 0:

eikθ = cos (kθ) + i sin (kθ)
= cos (|k|θ) + i sgn(k) sin (|k|θ)
= T|k| (cos θ) + i sgn(k) sin(θ)U|k|−1 (cos θ)

=
√

π
2

[
P̃

(−1/2,−1/2)
|k| (cos θ)︸ ︷︷ ︸

(a)

+ i sgn(k) sin(θ)P̃
(1/2,1/2)
|k|−1 (cos θ)︸ ︷︷ ︸

(b)

]
.

This breakdown suggests that we can construct more general Fourier-type functions
by augmenting the type of polynomials employed.

The separation into terms (a) and (b) above elucidates the biorthogonal decom-
position of the Fourier basis. In this case, the biorthogonality is manifested as an
even-odd separation. Suppose we wish to generate a basis set orthogonal under the
weight 1 + cos θ = 1 + r. Naturally, we can do this for basis (a) by changing the
second Jacobi class parameter from β = − 1

2 to β = + 1
2 . In order to do this for

basis (b), we use Lemma 2.1.

Both basis sets P̃
(α,β)
n and P̃

(α+1,β+1,1/2,1/2)
n are orthogonal under the weight

w
(α,β)
r . For example, if we set α = β = − 1

2 and add these two basis sets together
with the appropriate scaling factors, then we exactly recover the Fourier basis by
reversing the dissection steps above. This technique has already been used by Szegö
[24] to determine orthogonal polynomials on the unit circle. Because the statement
in [24] is merely a passing comment and is a markedly different result than what
we desire, we present the following theorem:

Theorem 2.2 (cf. Szegö [24], equation (11.5.4)). For any γ > − 1
2 , the functions

Ψ
(γ)
k (θ)

=

⎧⎪⎨⎪⎩
1√
2
P̃

(−1/2,γ−1/2)
0 (cos θ), k = 0,

1
2

[
P̃

(−1/2,γ−1/2)
|k| (cos θ) + i sgn(k) sin(θ)P̃

(1/2,γ+1/2)
|k|−1 (cos θ)

]
, k 
= 0

(2.4)

are complete and orthonormal in L2
(
(−π, π),C;w

(γ,0)
θ

)
.

Proof. For orthonormality, it suffices to show:

(1)
〈
P̃

(−1/2,γ−1/2)
|k| (cos θ) , P̃

(−1/2,γ−1/2)
|l| (cos θ)

〉
w

(γ,0)
θ

= 2δ|k|,|l|.

(2)
〈
sin θP̃

(1/2,γ+1/2)
|k|−1 (cos θ) , sin θP̃

(1/2,γ+1/2)
|l|−1 (cos θ)

〉
w

(γ,0)
θ

= 2δ|k|,|l|, for

k, l 
= 0.

(3)
〈
P̃

(−1/2,γ−1/2)
|k| (cos θ) , sin θP̃

(1/2,γ+1/2)
|l|−1 (cos θ)

〉
w

(γ,0)
θ

= 0, for l 
= 0.

These three properties follow from using the orthogonality relations of Jacobi
polynomials and Lemma 2.1.

For completeness we note that any function f ∈ L2 can be decomposed into an
even fe and an odd fo part. That fe is representable is clear from the fact that
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P̃
(−1/2,γ−1/2)
n (cos θ) is complete over even functions on θ ∈ [−π, π]. Similarly, the

collection of functions sin θP̃
(−1/2,γ−1/2)
n is complete over all L2-odd functions fo.

Linearity and orthogonality of the even and odd parts yield the result. �

Remark 2.3. Szegö [24] gives a more general result that involves orthogonality

over the weight w
(γ,δ)
θ for δ 
= 0. We do not require this level of generality. It

is possible to generalize Szegö’s result: he derived polynomials on the unit circle

orthogonal with respect to w
(γ,δ)
θ . By using Lemma 2.1 with a, b different from 1

2 ,
we can derive non-polynomial basis sets that are orthogonal under a great variety
of weights. These functions naturally may not be smooth on θ ∈ [−π, π] if the
quantity (1− r)a(1 + r)b cannot be smoothly extended in periodic θ-space.

We will refer to the functions (2.4) as either the generalized Fourier series, or
the Szegö-Fourier functions. We can also distribute the weight function onto the
basis functions, which yields orthogonality in the unweighted L2-norm:

Corollary 2.4. For any γ > − 1
2 , the functions

ψ
(γ)
k (θ) =⎧⎪⎨⎪⎩

∗
√

w
(γ,0)
θ√
2

P̃
(−1/2,γ−1/2)
0 (cos θ), k = 0,

∗
√

w
(γ,0)
θ

2

[
P̃

(−1/2,γ−1/2)
|k| (cos θ) + i sgn(k) sin(θ)P̃

(1/2,γ+1/2)
|k|−1 (cos θ)

]
, k 
= 0

are complete and orthonormal in L2 ((−π, π),C).

Due to the properties of
∗
√
w

(γ,0)
θ given in (2.2), the functions ψ

(γ)
k (θ) decay

like
(
cos θ

2

)γ
at θ = ±π. This is exemplified in Figure 1 where we plot the real

and imaginary parts of the functions for γ = 2. The even/odd behavior in θ for
real/imaginary components depicted in Figure 1 depends on the even/odd parity
of γ. (There is no such characterization possible when γ 
∈ N0.) Clearly for γ = 0

we have Ψ
(0)
k = ψ

(0)
k = 1√

2π
eikθ, the canonical Fourier basis.

2.4. Mapping to the real line. Having developed the necessary preliminaries
on the finite interval, we now jump to the infinite line x ∈ R using the mappings

introduced in Table 1. We rewrite and relabel the functions Ψ
(γ)
k (θ):

Φ
(s)
k (x) := Ψ

(s−1)
k (θ(x))

=

⎧⎨⎩
1√
2
P̃

(−1/2,s−3/2)
0

(
1−x2

1+x2

)
, k = 0,

1
2

[
P̃

(−1/2,s−3/2)
|k|

(
1−x2

1+x2

)
+ 2ix sgn(k)

x2+1 P̃
(1/2,s−1/2)
|k|−1

(
1−x2

1+x2

)]
, k 
= 0.

The above definition is valid for any s > 1
2 . s = 1 corresponds to a mapping of the

canonical Fourier basis (i.e., s
.
= γ + 1). These functions are orthogonal over the

weight w
(s,0)
x . Remark 2.3 applies here as well: it is possible to generate functions

orthogonal with weight function w
(s,t)
x for t > − 1

2 , if desired.
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Figure 1. Plots of the weighted Szegö-Fourier functions ψ
(2)
k (θ)

for k = 0, 1, 2, 3,and 4. Real part (top) and imaginary part (bot-
tom).

By following the route from Corollary 2.4 we can distribute the weight over the
basis functions, and we choose the phase-shifted square root given in (2.1):

φ
(s)
k :=

∗
√
w

(s,0)
x Φ

(s)
k (x)

(2.5)

=

⎧⎪⎨⎪⎩
2(

s−1
2 )

(x−i)s P̃
(−1/2,s−3/2)
0

(
1−x2

1+x2

)
, k = 0,

2(
s
2
−1)

(x−i)s

[
P̃

(−1/2,s−3/2)
|k|

(
1−x2

1+x2

)
+ 2ix sgn(k)

x2+1 P̃
(1/2,s−1/2)
|k|−1

(
1−x2

1+x2

)]
, k 
= 0.

The functions (2.5) are what we refer to as the generalized Wiener rational func-

tions. At present our choice of weight function
∗
√
w

(s,0)
x instead of the usual square

root

√
w

(s,0)
x to distribute the weight is mysterious. However, the corollary follow-

ing the coming proposition provides part of the motivation.

Proposition 2.5. For any s > 1
2 , the functions Φ

(s)
k (x) are complete and orthonor-

mal in L2
(
R,C;w

(s,0)
x

)
. The functions φ

(s)
k (x) are complete and orthonormal in

L2 (R,C). Furthermore, the decay rate of these functions can be characterized as

lim
|x|→∞

∣∣∣xtφ
(s)
k (x)

∣∣∣ < ∞, t ≤ s.

Corollary 2.6. Recalling the definition of Wiener’s original basis functions φn(x)
in (1.1), the following relation holds:

φ
(1)
−n(x) ≡ iφn(x), n ∈ N0.
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Figure 2. Plots of the functions φ
(4)
k (x) for k = 0, 1, 2, 3, 4.

We show plots of the functions φ
(4)
k in Figure 2. The corollary is proven using

the identity√
π

2
P̃ (−1/2,−1/2)
n (r(θ)) + i sin θ

√
π

2
P̃

(1/2,1/2)
n−1 (r(θ)) = einθ =

(
i− x

i+ x

)n

, n > 0.

We have thus shown that the orthogonal functions φ
(s)
k over the real line are indeed

a generalization of Wiener’s original basis set (modulo re-indexing). Furthermore,

φ
(s)
k decays like x−s while retaining orthogonality under the unit weight measure.

When s is an integer, the functions are also purely rational: they are the division
of one complex-valued polynomial in x by another.

A more functional reason (compared to Corollary 2.6) to use the phase-shifted
square root is that it can be written in the following convenient form:

(2.6)
∗
√
w

(s,0)
x =

[
i√
2

(
1 + e−iθ(x)

)]s
.

The utility of this expression will become clear when we consider the connection
problems in Section 3.

We have accomplished our goal of deriving basis functions satisfying tunable
decay rate while maintaining L2-orthogonality. However, it is not clear that these
are useful functions. We will now present some properties of the basis and make
the argument that these basis functions indeed are very useful for solving a variety
of problems in scientific computing.

3. Basis properties

The generalized Wiener functions are composed of Jacobi polynomials, and so
it is reasonable to expect that we can use the properties of the Jacobi polynomials
to perform certain tasks using the Wiener basis. Indeed, we can form recurrence
relations, connection coefficients, a Gauss-like quadrature, and obtain a sparsity
result for the Galerkin stiffness matrix.
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3.1. Recurrence relations. Due to the strong dependence of the Szegö-Fourier
functions on the Jacobi polynomials, they inherit five-term recurrence relations
from the three-term recurrences for classical orthogonal polynomials [24]:

D
(γ)
n Ψ

(γ)
n+1 =

[
A

(γ)
n eiθ −B

(γ)
n

]
Ψ

(γ)
n +

[
A

(γ)
−ne

−iθ −B
(γ)
−n

]
Ψ

(γ)
−n

+C
(γ)
n Ψ

(γ)
n−1 + C

(γ)
−nΨ

(γ)
−(n−1),

We give formulae for all the real-valued constants A,B,C,D in Appendix A. Note

that since the Ψ
(γ)
k are not polynomials in z = eiθ, there is not a three-term re-

currence as there would normally be for orthogonal polynomials on the unit disk
(unless of course γ = 0). Although the above formulae are complex-valued five-
term recurrence relations, they are no more difficult computationally than the pair

of three-term recurrences necessary to generate P̃
(α,β)
n and P̃

(α+1,β+1)
n because Ψ

(γ)
n

is the complex conjugate of Ψ
(γ)
−n and therefore does not need to be generated inde-

pendently. In other words, direct use of any of the above five-term recurrences for

generating the Ψ
(γ)
k is just as expensive as forming Ψ

(γ)
k by the even/odd synthesis

of P̃
(α,β)
n and P̃

(α+1,β+1)
n in Theorem 2.2.

Naturally, a recurrence relation for the unweighted Ψ
(γ)
k (θ) translates directly

into one for the unweighted Wiener rational functions Φ
(s)
k (x). The weighted func-

tions ψ
(γ)
k (θ) and φ

(s)
k (x) can be generated by first generating the unweighted func-

tions and then multiplying by the phase-shifted square root ∗
√
w.

3.2. Connection problems. One advantage in using the generalized Wiener ra-
tional function basis is the ability to choose the parameter s, which reflects the rate
of decay. In many applications, it may be useful to augment the basis functions
mid-computation to suit the dynamics occurring at a particular time. In this case,
one would like to be able to transfer from one basis to another while keeping the
(finite-term) function expansion identical. We will see in Part II that this prob-
lem also appears in an algorithm utilizing the FFT to evaluate the expansion. In
classical orthogonal polynomial theory, the problem of equating one expansion to
another is known as the connection problem.

There are two main tasks on the infinite interval that require connections of some
form:

(1) Usage of the fast Fourier transform – transforming N nodal evaluations
into N modal coefficients (or vice-versa) for an expansion in φ(s).

(2) For a given expansion in φ(s) (i.e. a set of modal coefficients), translating
this into a modal coefficient expansion in φ(S) for some s 
= S.

In Part II where we outline computational considerations, we will address the above
tasks in more detail. However, for now it suffices to note that these two tasks can
be reduced to the following three connection problems in θ-space:

(1) The Ψ(γ)-Ψ(Γ) connection (a necessary ingredient for all connection-like
tasks).

(2) The Ψ(γ)-ψ(γ) connection (a generalization of the FFT task).
(3) The ψ(γ)-ψ(Γ) connection (identical to modification of s).

Modification of any of the following finite-interval algorithms for the infinite interval

is trivial: the relations Ψ
(γ)
k (θ) ≡ Φ

(s)
k (x), ψ

(γ)
k (θ) ≡ φ

(s)
k (x), and γ := s − 1 allow
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for us to easily employ the same operations, whether we want to do it in θ-space
or x-space.

3.2.1. The Ψ-Ψ connection problem. Suppose we have a function

f ∈ L2
(
(−π, π),C;w

(γ,0)
θ

)⋂
L2
(
(−π, π),C;w

(Γ,0)
θ

)
with a Fourier expansion for some γ > − 1

2 :

f(x) =
∑
k∈Z

f̂
(γ)
k Ψ

(γ)
k =

∑
k∈Z

f̂
(Γ)
k Ψ

(Γ)
k .

We assume that the γ coefficients are known and we seek the Γ coefficients. The
shift Γ − γ can take values in the interval

(
− 1

2 − γ,∞
)
. Define the connection

coefficients as

λΨ
k,l =

〈
Ψ

(γ)
l ,Ψ

(Γ)
k

〉
w

(Γ,0)
θ

,

where we have suppressed the dependence of λ on γ and Γ. The connection problem
is solved via the relation

(3.1) f̂
(Γ)
k =

∑
l ∈ Z,

|l| ≥ |k|

f̂
(γ)
l λΨ

k,l.

We will show that, for integer values of the shift Γ−γ, the connection problem can
be solved inexpensively. To be precise, we will show that for G ∈ N, (3.1) reduces
to

(3.2) f̂
(γ+G)
k =

∑
k+G≥|l|≥|k|

f̂
(γ)
l λΨ

k,l.

That is, only 2(G+ 1) operations per coefficient are necessary to solve the connec-
tion problem (independent of k, and of any truncation size N). We refer to the
above collapse of the infinite connection problem (3.1) into the finiteN -independent
problem (3.2) as a sparse connection.

In order to relate one Fourier function to another, we first recall a result from
[21] using Jacobi polynomial recurrences that state that the connection coefficients
binding one Jacobi polynomial class to another are sparse in certain circumstances.

Lemma 3.1. For any α, β > −1 and any A,B,∈ N0, the connection problem

f(r) =

∞∑
n=0

f̂ (α,β)
n P̃ (α,β)

n (r) −→ f(r) =

∞∑
n=0

f̂ (α+A,β+B)
n P̃ (α+A,β+B)

n (r),

can be solved exactly via the relation

(3.3) f̂ (α+A,β+B)
n =

A+B∑
m=0

λP
n,n+mf̂

(α,β)
n+m .

In the above we have suppressed the dependence of λP on α, β,A,and B, but in

the sequel we shall occasionally refer to the above coefficients as λ
P ;(α,β,A,B)
n,m .

To obtain the Jacobi-Jacobi connection coefficients λP , one may use explicit
formulae given in [19] or [2], or one may utilize the algorithm given in [21].

The above result can be expanded to apply to the Szegö-Fourier functions Ψ
(γ)
k (θ)

and the corresponding mapped functions Φ
(s)
k (x).
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Proposition 3.2. For any γ > − 1
2 and any G ∈ N, the connection problem

f(θ) =

∞∑
k=−∞

f̂
(γ)
k Ψ

(γ)
k (θ) −→ f(θ) =

∞∑
k=−∞

f̂
(γ+G)
k Ψ

(γ+G)
k (θ),

can be solved exactly via the relation

(3.4) f̂
(γ+G)
k =

|k|+G∑
l=|k|

λΨ
k,lf̂

(γ)
l +

−|k|∑
l=−|k|−G

λΨ
k,lf̂

(γ)
l .

Note that (3.4) is exactly of the form (3.2). By making the connection s−1 ←→
γ, we recover λΦ

k,l ≡ λΨ
k.l, where Φ

(s)
k (x) are the maps of the Szegö-Fourier functions

Ψ
(γ)
k . This also yields the functional connection

(3.5) Ψ
(γ)
m (θ) =

{ ∑
|k|≤m λΨ

k,mΨ
(γ+G)
k (θ), |m| ≤ G,∑

m−G≤|k|≤m λΨ
k,mΨ

(γ+G)
k (θ), |m| > G,

i.e., Ψ
(γ)
m is a linear combination of at most 2G+ 1 functions Ψ

(γ+G)
k . The Fourier

recurrence relation (3.5) mirrors (3.4) in a way similar to the parallels between
known Jacobi polynomial recurrences.

We now illustrate how to calculate the Szegö-Fourier connection coefficients λΨ

in Proposition 3.2 from the Jacobi coefficients λP . In the following, we make use
of the notation:

n := |k| − 1, α = − 1
2 , β = γ − 1

2 .

From the definition of Ψ
(γ)
k in (2.4) we have

P̃
(α,β)
n+1 = Ψ

(γ)
k +Ψ

(γ)
−k

P̃
(α+1,β+1)
n = Ψ

(γ)
|k| −Ψ

(γ)
−|k|

}
n ≥ 0,

P̃
(α,β)
0 =

√
2Ψ

(γ)
0 .

Therefore, from the modes f̂
(γ)
k we can derive two sets of Jacobi modes:

ê
(α,β)
n = f̂

(γ)
n + f̂

(γ)
−n , n ≥ 1,

ô
(α+1,β+1)
n = f̂

(γ)
n+1 − f̂

(γ)
−n−1, n ≥ 0,

ê
(α,β)
0 =

√
2f̂

(γ)
0 .

The Jacobi modes ên are modes in an expansion in polynomials P̃
(α,β)
n and the

modes ôn are for an expansion in P̃
(α+1,β+1)
n . With these modes in hand, we can

use the Jacobi connection coefficients to promote the coefficients using Lemma 3.1
when n ≥ 0:

ê
(α,β+G)
n =

∑G
m=0 λ

P
n,n+mê

(α,β)
n+m , where λP = λP (α,β,0,G),

ô
(α+1,β+G+1)
n =

∑G
m=0 λ

P
n,n+mô

(α+1,β+1)
n+m , where λP = λP (α+1,β+1,0,G).

Finally, we redistribute the modes back into Szegö-Fourier form to obtain:

f̂
(γ+G)
n = 1

2

[
ê
(α,β+G)
n + ô

(α+1,β+1+G)
n−1

]
, n ≥ 1,

f̂
(γ+G)
−n = 1

2

[
ê
(α,β+G)
n − ô

(α+1,β+1+G)
n−1

]
, n ≥ 1,

f̂
(γ+G)
0 =

ê
(α,β+G)
0 √

2
.



1568 A. C. NARAYAN AND J. S. HESTHAVEN

f̂
Ψ,(γ)
k

ê
(α,β)
n

ô
(α+1,β+1)
n

ê
(α,β+G)
n

ô
(α+1,β+G+1)
n

f̂
Ψ,(γ+G)
k

f̂ Ψ
n + f̂ Ψ

−n

f̂ Ψ
n − f̂ Ψ

−n

Jacobi Connection

β += G

Jacobi Connection

(β + 1) += G

ê|k|+ sgn(k)ô |k|−1

Figure 3. Illustration of steps taken to perform Ψ-Ψ connections.
The operator += is the addition-assignment operator.

The whole procedure is illustrated graphically in Figure 3. The Szegö-Fourier con-
nection coefficients in (3.2) are given explicitly as
(3.6)

λΨ
k,±(|k|+m) =

⎧⎨⎩ 1
2

[
λ
P ;(α,β,0,G)
|k|,|k|+m ± sgn(k)λ

P ;(α+1,β+1,0,G)
|k|,|k|+m

]
, |k| ≥ 1,

1√
2
λ
P ;(α,β,0,G)
0,m , k = 0.

The above equation is restricted to 0 ≤ m ≤ G. This completes the Ψ-Ψ connection

problem. The reverse connection problem (converting f̂
Ψ,(γ+G)
k modes to f̂

Ψ,(γ)
k

modes) is solved by reversing the above procedure (all steps are invertible) and using
the fact that the forward Jacobi connection problem with integer-valued parameter
separation is banded upper-triangular and thus the backward connection is O(N)
calculable sequentially via back-substitution. See [21].

We have determined how to quickly and exactly accomplish the connection prob-
lems for the unweighted functions∑

k f̂
Ψ,(γ)
k Ψ

(γ)
k (θ) ←→

∑
k f̂

Ψ,(γ+G)
k Ψ

(γ+G)
k (θ),

in O(N) time where N is the total number of modes when G ∈ Z. These con-
nections can be performed by utilizing the connection coefficients in (3.6) along
with the sparse connection result of Proposition 3.2. For G 
∈ Z, there is no sparse
connection result for the modes, and so while the connection coefficients λΨ

k,l can
still be calculated based on known connection coefficients for Jacobi polynomials,
the coefficients do not terminate finitely.

3.2.2. The Ψ-ψ connection problem. Consider the following problem: let

f ∈ L2 ((−π, π),C) .

We assume γ ≥ 0 and consider two expansions:

f(θ) =
∑

k∈Z
f̂Ψ
k Ψ

(γ)
k (θ) =

∑
k∈Z

f̂ψ
k ψ

(γ)
k (θ).

The modal coefficients are defined in the following way:

f̂
Ψ,(γ)
k =

〈
f,Ψ

(γ)
k

〉
w

(γ)
θ

, f̂
ψ,(γ)
k =

〈
f, ψ

(γ)
k

〉
.
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We assume that the modal coefficients for the uppercase (unweighted function)

expansion are known and that we wish to determine the lowercase modes f̂ψ. From
the definitions of the modal coefficients, we can rewrite the lowercase modes as

f̂
ψ,(γ)
k =

〈
f, ψ

(γ)
k

〉
=

〈
f

[
∗
√
w

(γ)
θ

]−γ

,Ψ
(γ)
k

〉
w

(γ)
θ

.

Now recall (2.6) and define

(3.7) g(θ) := f

[
∗
√
w

(γ)
θ

]−1

= f ×
[ √

2

i (1 + e−iθ)

]γ
.

Suppose that γ = G ∈ N0 and that we can somehow find the modal coefficients

ĝ
Ψ,(0)
k =

〈
g,Ψ

(0)
k

〉
.

Then we can use the Ψ-Ψ connection problem outlined in Section 3.2.1 to determine

the modal coefficients ĝ
Ψ,(G)
k due to the sparse connection. To find the modal

coefficients ĝ
Ψ,(0)
k , assume that we have the modal coefficients f̂

Ψ,(0)
k . Then (3.7)

implies that

(3.8)
G∑

m=0

(
G
m

)
ĝ
Ψ,(0)
k+m = f̂

Ψ,(0)
k

(√
2

i

)G

.

If we assume a finite expansion so that ĝk = 0 for |k| > 2N + 1, then we can solve
(3.8) via back-substitution. Note that determining each coefficient costs O(G) op-
erations, independent of N ; this is a similar operation count to the Ψ-Ψ connection
cost.

Finally, we must obtain f̂
Ψ,(0)
k from the given input f̂

Ψ,(G)
k . However, this is

another Ψ-Ψ connection (albeit in reverse). Therefore, the three steps to take us

from f̂
Ψ,(G)
k modes to f̂

ψ,(G)
k modes are

(1) Compute f̂
Ψ,(0)
k from f̂

Ψ,(G)
k , as a (backward) Ψ-Ψ connection.

(2) Compute ĝ
Ψ,(0)
k from f̂

Ψ,(0)
k using (3.8).

(3) Compute f̂
ψ,(G)
k ≡ ĝ

Ψ,(G)
k from ĝ

Ψ,(0)
k , a (forward) Ψ-Ψ connection.

This is illustrated in Figure 4. For an expansion with N modes, all three steps
have O(NG) cost asymptotically. The backward connection problem (determining

f̂Ψ,(G) from f̂ψ,(G)) is also computable in O (NG) operations, and is accomplished
by reversing the above operations.

Note that if γ 
∈ N0, then all of these steps break down: the Ψ-Ψ connection is
not sparse, and (3.8) is not valid since γ is not an integer in (3.7).

This particular connection problem is not necessarily useful explicitly since in

many of our applications we will have direct access to f̂Ψ,(0), but each of the pieces
necessary for this computation are used extensively both in modification of the
decay parameter s and application of the FFT.

3.2.3. Modification of s: The ψ-ψ connection. We have now developed the neces-
sary tools for the modification of s, i.e., the ψ-ψ connection problem. We assume
that G,F ∈ N and that we know connection coefficients of some function f ∈ L2

for an expansion in ψ(F ), and wish to obtain the coefficients for a ψ(G) expansion.
The whole procedure can be accomplished in three steps:
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f̂
Ψ,(G)
k

Ψ - Ψ connection
Figure 3 f̂

Ψ,(0)
k

Ψ(0) modes of
∗√
w(1)

−1

× f

Ψ(0) modes of
∗√
w(G−1)

−1

× f

g
Ψ,(0)
k

Ψ - Ψ connection
Figure 3 g

Ψ,(G)
k ≡ f

ψ,(G)
k

fk -= fk+1

fk -= fk+1fk -= fk+1

G− 1 stages, equivalent to (3.8)

fk -= fk+1

Figure 4. Flowchart representation of a Ψ-ψ connection. The
operator -= is the subtraction-assignment operator.

(1) Obtain expansion coefficients for f ×
[

∗
√
w

(F )
θ

]−1

in Ψ(0)

(Ψ-ψ connection).

(2) Obtain expansion coefficients for f ×
[

∗
√
w

(G)
θ

]−1

in Ψ(0)

(Fourier connection).
(3) Obtain the sought expansion coefficients of f in ψ(G)

(Ψ-ψ connection).

Step 2 is easily performed using a version of (3.8) by noting the relation between

f ×
[

∗
√
w

(G)
θ

]−1

and f ×
[

∗
√

w
(F )
θ

]−1

with knowledge of the canonical Fourier

expansion coefficients (Ψ(0)(θ)). This is shown in Figure 5 for the special case
F = 3, G = 5.

Note that this particular connection problem is very amenable to an
FFT+collocation approach whereas the algorithm we have laid out is a ‘Galerkin’
approach. The problem with the collocation approach is that it requiresO (N logN)
operations with two FFTs, whereas the above algorithm requires only O (NG)
steps.

3.3. Quadrature. We now turn to quadrature rules that will be used to compute
integrals over the real line. We adopt the following notation: the pair{
r
(α,β)
n , ω

(α,β)
n

}N
n=1

denotes the N -point Gauss quadrature for the Jacobi poly-

nomials of class (α, β). We suppress the dependence of r
(α,β)
n and ω

(α,β)
n on N , and
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g
.
= f × ∗√

w(3)
−1

h
.
= f × ∗√

w(5)
−1

f
ψ,(3)
k ≡ g

Ψ,(3)
k

Ψ - Ψ connection
Figure 3 g

Ψ,(0)
k

Ψ(0) modes of
∗√
w(4)

−1

× f

h
Ψ,(0)
k

Ψ - Ψ connection
Figure 3 h

Ψ,(5)
k ≡ f

ψ,(5)
k

gk -= gk+1

gk -= gk+1

Figure 5. Flowchart of operations for modification of s. The
operator -= is the subtraction-assignment operator.

denote
{
r
(α,β);GR
n , ω

(α,β);GR
n

}N
n=1

as the N -point Gauss-Radau quadrature with the

fixed node r
(α,β);GR
N ≡ 1. We assume for clarity of presentation that the nodes are

ordered by n, e.g., r
(α,β)
n−1 < r

(α,β)
n .

To construct an N -point quadrature rule associated with the functions Ψ
(γ)
k (θ)

when N is even, define

(3.9) θ(γ)n =

{
− arccos

(
r
(−1/2,γ−1/2)
n

)
, 1 ≤ n ≤ N

2 ,

−θ
(γ)
N+1−n,

N
2 + 1 ≤ n ≤ N,

where r
(α,β)
n comes from an N

2 -point quadrature rule, and

Ω(γ)
n =

{
ω
(−1/2,γ−1/2)
n , 1 ≤ n ≤ N

2 ,

Ω
(γ)
N+1−n,

N
2 + 1 ≤ n ≤ N,

where ω
(α,β)
n comes from an N

2 -point quadrature rule.
If N is odd, define

(3.10) θ(γ)n =

{
− arccos

(
r
(−1/2,γ−1/2);GR
n

)
, 1 ≤ n ≤ N+1

2 ,

θ
(γ)
N+1−n,

N+3
2 ≤ n ≤ N,
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N even

Jacobi-Gauss Quadrature

−1 r = 1 −1r = 1

πθ = −π

N odd

Jacobi-Gauss-Radau Quadrature

−1 r = 1 −1r = 1

πθ = −π

Figure 6. Construction of Gauss-type quadrature for generalized
Fourier functions. The new quadrature rules are symmetric combi-
nations of Jacobi-Gauss-type quadrature rules. The constructions
shown are accurate node locations for γ = 5.

where r
(α,β);GR
n comes from an N+1

2 -point quadrature rule, and

Ω(γ)
n =

⎧⎪⎨⎪⎩
ω
(−1/2,γ−1/2);GR
n , 1 ≤ n ≤ N−1

2 ,

2ω
(−1/2,γ−1/2);GR
n , n = N+1

2 ,

Ω
(γ)
N+1−n,

N+3
2 ≤ n ≤ N.

For graphical descriptions of the above formulae, see Figure 6. By construction,

when N is odd, θ
(γ)
N+1

2

= 0. The quadrature rules have no nodes at θ = ±π and are

symmetric rules for any γ. Thus they are always exact for any odd function. The
following result holds:

Proposition 3.3. For N even, the N-point quadrature rule
{
θ
(γ)
n ,Ω

(γ)
n

}N
n=1

satis-

fies ∫ π

−π

eikθw
(γ,0)
θ dθ =

N∑
n=1

eikθ
(γ)
n Ω(γ)

n , |k| ≤ N − 2.

When N is odd, the quadrature rule satisfies∫ π

−π

eikθw
(γ,0)
θ dθ =

N∑
n=1

eikθ
(γ)
n Ω(γ)

n , |k| ≤ N − 1.

The degeneracy in the quadrature rule for N even is of the same nature as
the degeneracy in the canonical equispaced Fourier quadrature rule for an even

number of grid points [14]. If γ = 0, the rule
{
θ
(0)
n ,Ω

(0)
n

}N
n=1

is identical to the

equispaced Fourier quadrature rule, symmetric about θ = 0. The quadrature rule{
θ
(0)
n ,Ω

(0)
n

}N
n=1

can be used to integrate against the weight function w
(γ,0)
θ when

γ ∈ N since in this case the weight is itself a trigonometric polynomial.
In order to determine a quadrature rule to integrate the weighted functions

ψ
(γ)
k (θ), we can augment the weights Ω

(γ)
n to contain information about the weight

function. This can be summed up in the following result:
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Corollary 3.4. The even N-point quadrature rule
{
θ
(γ)
n , ω

(γ)
n

}N
n=1

, where ω
(γ)
n :=

w
(−γ,0)
θ

(
θ
(γ)
n

)
Ω

(γ)
n satisfies

∫ π

−π

ψ
(γ)
k ψ

(γ)
l dθ =

N∑
n=1

ψ
(γ)
k

(
θ(γ)n

)
ψ
(γ)
l

(
θ(γ)n

)
ω(γ)
n , |k|+ |l| ≤ N − 1.

Multiplying Ω
(γ)
n by the inverse of the weight w

(−γ,0)
θ is mathematically not a

problem since none of the θ
(γ)
n are equal to ±π, where the weight w

(−γ,0)
θ is singular.

Note that since the functions Φ
(s)
k (x) are just a mapping of the functions Ψ

(γ)
k (θ),

the quadrature rule
{
x
(
θ
(s−1)
n

)
,Ω

(s−1)
n

}N
n=1

, which has nodal values over R, can

be used to integrate the functions Φ
(s)
k (x) over the real line. Similarly, the rule{

x
(
θ
(s−1)
n

)
, ω

(s−1)
n

}N
n=1

can be used to integrate inner products of the generalized

Wiener functions φ
(s)
k (x) over the real line.

For various γ/s we graphically depict the location of the quadrature nodes for
N = 21 in Figure 7 on the unit circle z ∈ T and on the real line. As we increase γ
the quadrature nodes become more and more concentrated towards z = 1 (θ = 0).
On the real line, this manifests itself as higher concentration near x = 0 which,
although rectifiable via an affine mapping, is suboptimal if one wishes to capture
structure away from x = 0. The tendency of Jacobi-Gauss nodes to become more
equidistant on [−1, 1] as β (i.e. γ or s) is increased [14] also suggests that these
generalized quadrature rules for large γ or s will not be as accurate as the ones for
smaller γ or s. In addition, when γ = 0, we can use these (θ-equidistant) quadrature
nodes to employ the FFT for modal-nodal transformations.

3.4. The stiffness matrix. In many applications to differential equations it is
necessary to express the derivative of a basis function as a linear combination of
basis functions. Such an operation can be implemented via the stiffness matrix,
with entries defined as:

Sφ
k,l =

〈
φ
(s)
k ,

d

dx
φ
(s)
l

〉
.

For the generalized Wiener rational functions, the following result holds:

Theorem 3.5. Let Sφ denote the N×N stiffness matrix for the generalized Wiener

rational functions φ
(s)
k . Sφ satisfies the following properties for any s > 1

2 :

(1) Sφ is skew-Hermitian, i.e., Sφ
k,l = −Sφ

l,k

(2) Sφ is sparse with entries only on the super-, sub-, and main sinister and
dexter diagonals: define

k∨ := k − sgn(k), k∧ := k + sgn(k).

Then

dφ
(s)
k (x)

dx
=

∑
l∈{±k∨,±k,±k∧}

τ
(s)
k,l φ

(s)
l (x),

for some purely imaginary constants τ
(s)
k,l .
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γ = 0 γ = 2 γ = 4 γ = 6 γ = 8

s = 1

s = 3

s = 5

s = 7

s = 9

s
.
= γ + 1

Figure 7. (Top) Plots of the Fourier quadrature nodes on the
unit circle generated with (3.10), N = 21. (Bottom) The resulting
quadrature nodes on the real line. The scale on the real line is
|x| ≤ 15.

(3) The spectral radius of Sφ satisfies

ρ(Sφ) ≤ N + 5s.

The proof of Theorem 3.5 is quite tedious, so we only sketch the main points.
Additional details are given in Appendix B.

Proof. Property 1 can easily be deduced by using integration by parts and noting

that φ
(s)
k (x) decay to zero as |x| → ∞.

Property 2 is provable using several properties of Jacobi polynomials. We refer
the reader to [20]. The main difficulties are overcomed with the following fortuitous

relations: first, that dx(θ)
dθ (θ) = (1 + cos θ)−1, i.e., that the map we have chosen to

take θ → x has a Jacobian with a particular form; second, that

d

dθ

[
(sin θ) P̃ (α+1,β+1)

n (cos θ)
]

is a sparse combination of P̃
(α,β+1)
n (cos θ).

Property 3 can be derived from the second property. The key ingredient is Ger-

schgorin’s Theorem and the explicit entries for the constants τ
(s)
k,l given in Theorem

B.3 of Appendix B. �

Remark 3.6. While the O(N) maximum eigenvalue does depend on s, the propor-
tionality factor is empirically around 2, not 5 as given in the theorem. See Table 2.
It is also worth mentioning that when N is even, the stiffness matrix is invertible.

The sparsity pattern of the stiffness matrix associated with these functions (prop-
erty 2 of the above theorem) is illustrated in Figure 8. Note that the unweighted
functions Φ(s)(x) have a similar sparsity result; see Lemma B.2. However, the
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Figure 8. Sparsity plots for stiffness matrices of the weighted

Wiener rational functions φ
(s)
k . The sparsity patterns are represen-

tative of property 2 in Theorem 3.5 for s = 1 (left) and all s 
= 1
(right). The s = 1 sparsity pattern has been derived previously
[11].

Table 2. Maximum eigenvalue of the N ×N stiffness matrix Sφ

for the Wiener rational functions φ
(s)
k . The results adhere to the

asymptotic bound given in property 3 of Theorem 3.5.

s\N 11 50 101 250 501

0.6 7.31 43.76 91.50 237.60 483.75

1.0 7.99 44.51 92.28 238.39 484.54

6.0 15.96 53.75 101.81 248.14 494.40

π2 ≈ 9.87 21.72 60.67 109.05 255.63 501.99

15.5 29.73 70.45 119.40 266.44 512.99

Fourier functions Ψ(γ)(θ) and ψ(γ)(θ) do not have sparse stiffness matrices (unless
γ = 0). In addition, numerical values for the maximum eigenvalues of the stiffness
matrix (property 3) are given in Table 2.

4. The semi-infinite interval

The generalized Wiener basis functions can be used for function expansions on
the infinite line. For expansions on semi-infinite intervals, we can instead use either
the even or odd Jacobi polynomial basis sets that make up the Fourier functions
constructed in Section 2.3. We obain the collection of functions

(4.1)
ρ
(s)
n =

√
w

(s,0)
x Φ

(s)
n (x)

=
(

2
x2+1

)s/2
P̃

(−1/2,s−3/2)
n

(
1−x2

1+x2

)
, n ∈ N0.

These functions are a direct mapping and weighting of the Jacobi polynomials.
Because of this, they are orthonormal and complete in L2 ((0,∞),R). Mapping
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techniques for classical functions are not novel and we briefly discuss existing meth-
ods in Section 5; in particular, the popular mapping r = 1−x

1+x is addressed in Section
5.2.

We make use of the regular square root function

√
w

(s,0)
x in (4.1) instead of

the phase-shifted version
∗
√
w

(s,0)
x because there is no need to have complex-valued

functions.
The caveat in using these functions for expansions on the semi-infinite interval

is the fact that they all have zero-valued odd derivatives at x = 0. This parallels
the property at θ = 0 for a cosine series on θ ∈ [0, π].

The restriction of the Wiener functions to the semi-infinite interval as defined in
(4.1) comes both with advantages and sacrifices. A numerical comparison between
those mapping techniques, the functions (4.1), and the Laguerre functions will be
made in Part II.

5. Connection to alternative methods

Finally, we briefly discuss existing methods in the literature and their relation
to the Wiener rational basis. Numerical studies comparing these methods are pre-
sented in Part II.

5.1. The infinite interval. The Wiener basis functions are the result of mapping
a classical basis set to fit a non-classical interval [13]. One of the more popular map-
pings that has gained momentum in the literature results in the so-called ‘mapped
Chebyshev’ functions/polynomials.

In order to further generalize the mapped Chebyshev functions, we will briefly

restate their derivation. From the Jacobi polynomials P
(α,β)
n (r(θ)) defined on θ ∈

[0, π], we ‘stretch’ the domain to Θ ∈ [−π, π] via the affine mapping Θ = 2θ − π.
Finally, we utilize the linear fractional map z = i−x

i+x to yield functions on the real

line x ∈ R. For all s, t > 1
2 , this results in the functions PB(s,t)

n (x), defined as

PB(s,t)
n (x) = P̃ ((2s−3)/2,(2t−3)/2)

n

(
x√

1 + x2

)
,

orthonormal on the real line under the weight

w
(s,t)
PB =

[
1− x√

1 + x2

](2s−3)/2 [
1 +

x√
1 + x2

](2t−3)/2

,

and the orthonormal weighted functions

pb(s,t)n :=

√
w

(s,t)
PB PB(s,t)

n ,

When s = t = 1, the functions PB(s,t)
n coincide with the mapped Chebyshev poly-

nomials TBn(x) introduced in [4] and subsequently developed in [7] and [9]. The

mapped Jacobi functions pb(s,t)n decay like 1
|x|s for x → −∞ and 1

|x|t for x → +∞.

The advantage of these functions is that the decay can be different as x → ±∞;
they enjoy established convergence theory in function spaces [3] and applications
to differential equations [28] for the Chebyshev case s = t = 1. In Part II we will

consider the basis set pb(s,t)n with s = t = 1, i.e., the Chebyshev case.
Note that because all of these mapped polynomials and the generalized Wiener

basis both ultimately stem from Jacobi polynomials and mappings of a similar
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Table 3. Relationship between orthogonal functions in previous
work and the current bases presented.

Previous function Name/classification Interval Reference Relation

TBn Cheyshev rational functions (1st) R [8], [4], [8] PB
(1,1)
n

SBn/UBn Chebyshev rational functions (2nd) R [8], [8], [9] PB
(2,2)
n

Cn/CCn Christov functions (even) R, [0,∞) [11], [8] Im
{
φ
(1)
n

}

Sn/SCn Christov functions (odd) R, [0,∞) [11], [8] Re
{
φ
(1)
n

}

CHn Higgins functions (even) R, [0,∞) [8] Re
{
Φ

(1)
n

}

SHn Higgins functions (odd) R, [0,∞) [8] Im
{
Φ

(1)
n

}

ρk (Complex) Higgins functions R [15], [11] Φ
(1)
k

σk (Complex) Wiener rational functions R [27], [11] φ
(1)
k

TLn Semi-infinte Chebyshev rational functions [0,∞) [6] PL
(1/2)
n

character, these basis sets can be expected to be related in some fashion. For
example, to relate the mapped Jacobi functions to the generalized Wiener rational
functions, we have

PB(s,s)
n (x) ∝ Re

{
Φ(s)

n

(
x+

√
x2 + 1− 1

x−
√
x2 + 1 + 1

)}
.

In Table 3 we relate the unweighted functions to the generalized Wiener rational
basis, modulo multiplicative constants. In this article we make no observations
about how mapped Jacobi polynomials compare to the Wiener basis set as a prac-
tical tool for function expansions. However, such a comparison will be a central
theme in Part II.

5.2. The semi-infinite interval. The mapping technique for the semi-infinite
interval is analogous to the infinite interval case. We use the popular mapping

x = 1−r
1+r , r = 1−x

1+x ,(5.1)

which again is a Möbius map. If necessary, one can specify the relationship to θ
and the cosine series on [0, π]. For details, see [6]. Our definition of the trans-
formation differs only in orientiation from that presented in [6]. Approximation
theory for this mapping is given in [22]. We have chosen this orientation so that
the Jacobi parameter β is assigned to the location x = ∞ in order to mimic the
same assignment for the Wiener functions on infinite intervals.

In the literature the maps of the Chebyshev polynomials under the transforma-
tion (5.1) are labeled TLn(x). Adopting similar notation, we define

PL(s)
n (x) = P̃ (−1/2,2s−3/2)

n

(
1− x

1 + x

)
, x ∈ [0,∞],



1578 A. C. NARAYAN AND J. S. HESTHAVEN

which are L2-complete and orthonormal under the weight function

w
(s)
PL(x) =

1

2
√
x

(
2

1 + x

)(2s)

.

It is then possible to define the weighted functions

pl(s)n (x) =

(
2

1 + x

)s

PL(s)
n (x)

=

(
2

1 + x

)s

P̃ (−1/2,2s−2)
n

(
1− x

1 + x

)
,

(5.2)

which are L2-complete and orthonormal under the weighted L2 inner product

〈f, g〉
w

(0)
PL

=

∫ ∞

0

f g
1

2
√
x
dx,

for any s > 1
2 . The pl(s)n are defined for x ∈ [0,∞] and decay like xs as x → ∞.

We use the weighted inner product above in order to ensure that integer values of s
are amenable to the FFT. These functions inherit the O(N2) time-step restriction
for explicit nodal time-integration methods for time-dependent PDEs. The same
observation can be made about the functions defined in [6].

6. Conclusion

We have presented a collection of generalized Fourier series which, when mapped
and weighted appropriately, generates a basis set on the infinite interval with a
tunable rate of decay. For each rate of decay s satisfying s > 1

2 the resulting basis

set φ
(s)
k :

• is orthonormal and complete in L2 (R,C),
• is characterized by x−s decay for |x| → ∞,
• can be generated via Jacobi polynomial recurrence relations,
• has sparse connection properties that can be efficiently exploited via com-
binations of sparse Fourier and Jacobi connections,

• has an N×N Galerkin stiffness/differentiation matrix that has at most 6N
non-zero entries with O(N) spectral radius,

• is characterized by a ‘Gauss-like’ quadrature rule.

When s ∈ N, the basis set is a rational function; we will show in Part II that in
this case we can use the FFT for modal-nodal transformations. The case s = 1
corresponds to a mapping and weighting of the canonical Fourier series, as discussed
by others previously. Due to the original presentation of the s = 1 basis by Wiener

[27], we choose to call the functions φ
(s)
k the generalized Wiener rational basis

functions.
These basis functions have a similar flavor to directly mapped and weighted

Jacobi polynomials (called pb(s,t)n here). In Part II we will compare these basis sets
and discuss advantages and disadvantages of each. In addition, we will also employ
the Sinc and Hermite functions in test cases in an attempt to investigate a relatively
broad class of spectral approximation methods. In contrast to [23] which reviews
much of the theory present for expansions on the infinite interval, we concentrate on
numerical issues, including application of the FFT. We will extend our investigation
to the semi-infinite interval to compare the Laguerre polynomials/functions, the
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mapped Jacobi functions (denoted pl(s)n here), and the restriction of the Wiener
functions to the semi-infinite interval as given in Section 4.

Appendix A. Recurrence coefficients

In this appendix we compile recurrence relations for the Jacobi/Szegö-Fourier/
Wiener functions. We state the recurrences in terms of the Szegö-Fourier functions

Ψ
(γ)
k , but note that they all apply equally well to the unweighted Wiener rational

functions. We only list recurrences for k ≥ 0; for k < 0, we may use complex

conjugation to obtain Ψ
(γ)
−|k| at no additional cost. We first require a tour of some

Jacobi polynomial recurrences:√
b
(α,β)
n+1 P̃

(α,β)
n+1 =

[
r − a(α,β)n

]
P̃ (α,β)
n −

√
b
(α,β)
n P̃

(α,β)
n−1 ,(A.1)

(1− r2)P̃ (α,β)
n =

2∑
i=0

ε
(α,β)
n,i P̃

(α−1,β−1)
n+i ,(A.2)

P̃ (α,β)
n =

2∑
i=0

η
(α,β)
n,−i P̃

(α+1,β+1)
n−i .(A.3)

The three-term recurrence coefficients in (A.1) are found, e.g., in [12]. The recur-
rence coefficients in (A.2) can be obtained by determining the analogous relations
for the monic orthogonal polynomials ([1], [24]) and then employing the appropriate
normalizations:

ε
(α,β)
n,0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
√

αβ
(α+β)(α+β+1) , n = 0,

2
(α+β+2)

√
(α+1)(β+1)(α+β)

(α+β+3) , n = 1,

2
(2n+α+β)

√
(n+α)(n+β)(n+α+β−1)(n+α+β)

(2n+α+β−1)(2n+α+β+1) , n > 1.

ε
(α,β)
n,1 =

⎧⎨⎩
2(α−β)

(α+β+2)
√
α+β

n = 0,

2(α−β)
√

(n+1)(n+α+β)

(2n+α+β)(2n+α+β+2) , n > 0.

ε
(α,β)
n,2 =

⎧⎨⎩
2

α+β+2

√
2(α+1)(β+1)

(α+β+1)(α+β+3) , n = 0,

2
2n+α+β+2

√
(n+1)(n+2)(n+α+1)(n+β+1)
(2n+α+β+1)(2n+α+β+3) , n > 0.

Using the orthogonal polynomial three-term recurrence relation (A.1) we can show

the following recurrence relation for the Szegö-Fourier functions Ψ
(γ)
n (θ):

(A.4)
Ψ

(γ)
n+1 =

[
U

(γ)
n cos θ − V

(γ)
n

]
Ψ

(γ)
n +

[
U

(γ)
−n cos θ − V

(γ)
−n

]
Ψ

(γ)
−n

−W
(γ)
n Ψ

(γ)
n−1 −W

(γ)
−nΨ

(γ)
−(n−1).

Given γ > − 1
2 we assign the values α = − 1

2 and β = γ − 1
2 . Using the three-term

recurrences (A.2)-(A.3) we have:

(A.5)
Ψ

(γ)
n+1 =

[
Ũ

(γ)
n i sin θ − Ṽ

(γ)
n

]
Ψ

(γ)
n +

[
Ũ

(γ)
−n i sin θ − Ṽ

(γ)
−n

]
Ψ

(γ)
−n

−W̃
(γ)
n Ψ

(γ)
n−1 − W̃

(γ)
−nΨ

(γ)
−(n−1),
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Putting these last two recurrences together yields

D
(γ)
n Ψ

(γ)
n+1 =

[
A

(γ)
n eiθ −B

(γ)
n

]
Ψ

(γ)
n +

[
A

(γ)
−ne

−iθ −B
(γ)
−n

]
Ψ

(γ)
−n

+C
(γ)
n Ψ

(γ)
n−1 + C

(γ)
−nΨ

(γ)
−(n−1),

with the following values for the recurrence coefficients:

D
(γ)
n =

{
4ε

(α,β)
0,2

√
γ, n = 0,

2ε
(α,β)
n,2 [

√
n+ γ +

√
n] , n > 0,

A
(γ)
±n =

{ √
2
[√

γ + 1± 1
]
, n = 0,√

n+ γ + 1±
√
n+ 1, n > 0,

B
(γ)
±n =

⎧⎨⎩
2γ

√
2√

γ+1
, n = 0,

−ε
(α,β)
n,1

2
√

(n+1)(n+γ−1)

(
γA

(γ)
±n +

[
2
√
n(n+ γ)− 1

]
A

(γ)
∓n

)
, n > 0,

C
(γ)
±n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, n = 0,

1

A
(γ)
0 (γ+1)

√
(2γ+1)γ

γ+2 , n = 1,

γε
(α,β)
n,0√

(n+γ−2)(n+γ−1)A
(γ)
n−1

[√
(n+ γ)2 − 1−

√
n2 − 1

]
, n > 1.

Appendix B. The stiffness matrix

We assume the decay parameter s > 1
2 is given and we derive α and β from the

value γ := s − 1 as in Appendix A. Also, we define increments and decrements of
the integer index k ∈ Z:

k∨ = sgn(k) (|k| − 1) , k∧ = sgn(k) (|k|+ 1) , n := |k| − 1.

We begin by noting the sparse representation of the product of φ
(s)
k and 1

(x−i) :

Lemma B.1. We have the representation:

−s
(x−i)φ

(s)
k =

∑
l∈{±k∨,±k,±k∧} χ

(s)
k,lφ

(s)
l ,

for some constants χ
(s)
k,l .

Proof. We first note that

−s

x− i
= −s

2
[sin θ(x) + i(1 + cos θ(x))] ,

after making the transformation to θ(x). Then making the identification Φ
(s)
k =

Ψ
(s−1)
k , we may use recurrence relations (A.4)-(A.5) to obtain the result. �
A second more potent result is the sparsity result for the unweighted Wiener

rational functions Φ
(s)
k (x):

Lemma B.2. We have

dΦ
(s)
k (x)

dx =
∑

l∈{±k∨,±k,±k∧} σ
(s)
k,lΦ

(s)
l ,

where the σ
(s)
k,l are constants.
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Proof. This result can be obtained by brute-force calculation of the derivative along
with some Jacobi polynomial relations. Two critical steps are necessary: a collaps-
ing of a special arithmetic combination involving various constants in several Jacobi
polynomial relations, and the form of the θ → x Jacobian for the mapping. Thus,
the particular form of the mapping is critical in proving this result. �

Putting the two lemmas together, we have the desired sparsity result for the

φ
(s)
k (x) stiffness matrix:

Theorem B.3. The following equality holds for any s > 1
2 :

dφ
(s)
k

dx
=

∑
l∈{±k∨,±k,±k∧}

τ
(s)
k,l φ

(s)
l ,

where the constants τ
(s)
k,l are equal to

τk,±k∨ = i
4

√
1− s(s−2)

(2n+s−1)(2n+s+1)

×
{
sgn(k)

(√
(n+ s− 1)(n+ s)±

√
n(n+ 1)

)
+ −s

(2n+s)

(√
(n+ 1)(n+ s− 1)±

√
n(n+ s)

)}
,

τk,k = i sgn(k)
√
(n+ 1)(n+ s)− is(s−1)2

2(2n+s)(2n+s+2) −
is
2 ,

τk,−k = is(s−1)
2(2n+s)(2n+s+2) ,

τk,±k∧ = i
4

√
1− s(s−2)

(2n+s+1)(2n+s+3)

×
{
− s

2n+s+2

[√
(n+ 2)(n+ s)±

√
(n+ 1)(n+ s+ 1)

]
+ sgn(k)

[√
(n+ 1)(n+ 2)±

√
(n+ s)(n+ s+ 1)

]}
.

Clearly for |k| = 1 we have τk,±k∨ = τk,0. Taking into account the different nor-

malization constant in the definition of φ
(s)
k for |k| = 1 we have:

τk,0 =
i

2

√
2s− 1

2s+ 2

{
sgn(k)

√
s− 1

}
, |k| = 1.

For k = 0:

dφ
(s)
0

dx
= −

i
√
s− 1

2

2

[
1 +

√
s√

1 + s
φ
(s)
−1 + 2

√
s− 1

2
φ
(s)
0 +

1−√
s√

1 + s
φ
(s)
1

]
.

Proof. The result of this theorem follows from a simple application of the product
rule of differentiation to

d

dx

[
2s/2

(x− i)s
Φ

(s)
k

]
,

with the appropriate use of Lemmas B.1 and B.2. �
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With explicit entries for the stiffness matrix derived, we are now ready to give
the proof of the third property of Theorem 3.5, the spectral radius of the stiffness
matrix.

Proof. We can crudely bound the entries of the stiffness matrix for n := |k|−1 > 1:

|τk,k∨ | ≤ n
2 + s, |τk,−k∨ | ≤ s

2 ,
|τk,k| ≤ n+ 2s, |τk,−k| ≤ 1,
|τk,k∧ | ≤ n

2 + s+ 1
2 , |τk,−k∧ | ≤ s

4 .

Thus we have:

|τ−k|+ |τk∨ |+ |τ−k∨ |+ |τk∧ |+ |τ−k∧ | ≤ 1 + n
2 + s+ s

2 + n
2 + s+ 1

2 + s
4

< n+ 3s+ 2.

An application of Gerschgorin’s Theorem proves the result. �
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