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A CLASS OF POLYNOMIAL VOLUMETRIC BARRIER

DECOMPOSITION ALGORITHMS FOR STOCHASTIC

SEMIDEFINITE PROGRAMMING

K. A. ARIYAWANSA AND YUNTAO ZHU

Abstract. Ariyawansa and Zhu have recently proposed a new class of opti-
mization problems termed stochastic semidefinite programs (SSDPs). SSDPs
may be viewed as an extension of two-stage stochastic (linear) programs with
recourse (SLPs). Zhao has derived a decomposition algorithm for SLPs based
on a logarithmic barrier and proved its polynomial complexity. Mehrotra and
Özevin have extended the work of Zhao to the case of SSDPs to derive a
polynomial logarithmic barrier decomposition algorithm for SSDPs. An alter-
native to the logarithmic barrier is the volumetric barrier of Vaidya. There is
no work based on the volumetric barrier analogous to that of Zhao for SLPs
or to the work of Mehrotra and Özevin for SSDPs. The purpose of this paper
is to derive a class of volumetric barrier decomposition algorithms for SSDPs,
and to prove polynomial complexity of certain members of the class.

1. Introduction

Ariyawansa and Zhu [5] have recently proposed a new class of optimization prob-
lems termed stochastic semidefinite programs (SSDPs). SSDPs may be viewed
as an extension of two-stage stochastic (linear) programs with recourse (SLPs)
[7, 8, 9, 17, 20]. Alternatively, SSDPs may be viewed as an extension of (deter-
ministic) semidefinite programs (SDPs) [1, 23, 24, 25]. See [5] for details on these
relations and an application of SSDPs. Zhao [26] has derived a decomposition
algorithm for SLPs based on a logarithmic barrier and proved its polynomial com-
plexity. Mehrotra and Özevin [18] have extended the work of Zhao [26] to the case
of SSDPs to derive a polynomial logarithmic barrier decomposition algorithm for
SSDPs. The work of Mehrotra and Özevin [18] takes the viewpoint that SSDPs are
extensions of SLPs and utilizes the work of Zhao [26].

An alternative to the logarithmic barrier is the volumetric barrier of Vaidya [21]
(see also [2, 3, 4]). It has been observed [10] that certain cutting plane algorithms
[16] for SLPs based on the volumetric barrier perform better in practice than those
based on the logarithmic barrier. The authors know of no work based on volumetric
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barriers analogous to that of Zhao [26] for SLPs or to the work of Mehrotra and

Özevin [18] for SSDPs.
The purpose of this paper is to derive a class of decomposition algorithms for

SSDPs based on a volumetric barrier, and to prove polynomial complexity of short
step [3, 13] and long step [3, 13] members of the class.

While there is no work based on volumetric barriers for SLPs analogous to the
work of Zhao [26], Anstreicher [4] has proved important results on volumetric bar-
riers for SDPs. The present paper utilizes the work of Zhao [26] for SLPs, the
work of Anstreicher [4] for SDPs, and the relationship of SSDPs to SLPs and SDPs
described in [5], to derive volumetric barrier decomposition algorithms for SSDPs.

We begin by introducing our notation and then defining a SSDP in primal and
dual standard forms. We let R+ denote the set of positive real numbers. All vectors
in this paper are column vectors. We use superscript “T” to denote transposition.
The ith unit vector is denoted by ei. Let R

m×n and R
n∨n denote the vector spaces of

realm×nmatrices and real symmetric n×nmatrices respectively. For U, V ∈ R
n∨n

we write U � 0 (U � 0) to mean that U is positive semidefinite (positive definite),
and we use U � V or V � U to mean that U − V � 0. For U, V ∈ R

m×n we write
U • V := trace (UTV ) to denote the Frobenius inner product between U and V .
For A ∈ R

m×n, we use ||A||2 to denote the spectral norm of A. We use det(A) to
denote the determinant of A ∈ R

n×n.
Following [5], we define a SSDP with recourse in primal standard form based on

deterministic data Ai ∈ R
n1∨n1 for i = 1, 2, . . . ,m1, b ∈ R

m1 and C ∈ R
n1∨n1 ; and

random data Tj ∈ R
n1∨n1 and Wj ∈ R

n2∨n2 for j = 1, 2, . . . ,m2, d ∈ R
m2 , and

D ∈ R
n2∨n2 that depend on an underlying outcome ω in an event space Ω with a

known probability function P . Given this data, a SSDP with recourse in primal
standard form is

(1)
minimize C •X + E [Q (X,ω)]
subject to Ai •X = bi, i = 1, 2, . . . ,m1,

X � 0,

where X ∈ R
n1∨n1 is the first-stage decision variable, Q (X,ω) is the minimum of

the problem

(2)
minimize D(ω) • Y
subject to Tj(ω) •X + Wj(ω) • Y = dj(ω), j = 1, 2, . . . ,m2,

Y � 0,

where Y ∈ R
n2∨n2 is the second-stage variable, and

(3) E [Q (X,ω)] =

∫
Ω

Q (X,ω)P (dω).

Also following [5], we define a SSDP with recourse in dual standard form based
on deterministic data Ai ∈ R

n1∨n1 for i = 1, 2, . . . ,m1, b ∈ R
m1 and C ∈ R

n1∨n1 ;
and random data d ∈ R

m2 , Wi ∈ R
n2∨n2 for i = 1, 2, . . . ,m1, Ti ∈ R

n2∨n2 for
i = 1, 2, . . . ,m2, and D ∈ R

n2∨n2 that depend on an underlying outcome ω in an
event space Ω with a known probability function P . Given this data, a SSDP with
recourse in dual standard form is

(4)

maximize bTy + E [Q (y, ω)]

subject to

m1∑
i=1

yiAi � C,
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where y ∈ R
m1 is the first-stage variable, Q (y, ω) is the maximum of the problem

(5)

maximize d(ω)Tx

subject to

m1∑
i=1

yiWi(ω) +

m2∑
i=1

xiTi(ω) � D(ω),

where x ∈ R
m2 is the second-stage variable, and

(6) E [Q (y, ω)] =

∫
Ω

Q (y, ω)P (dω).

See [5] for a justification for referring to problems (1)–(3) and (4)–(6) as primal and
dual problems respectively.

We now examine the SSDP (4)–(6) when the event space Ω is finite. Let

{(d(k), (W (k)
i : i = 1, 2, . . . ,m1), (T

(k)
i : i = 1, 2, . . . ,m2), D

(k)) : k = 1, 2, . . . ,K} be
the possible values of the random variables

(
d(ω), (Wi(ω) : i = 1, 2, . . . ,m1), (Ti(ω) :

i = 1, 2, . . . ,m2), D(ω)
)
and let pk := P

(
( d(ω), (Wi(ω) : i = 1, 2, . . . ,m1), (Ti(ω) :

i = 1, 2, . . . ,m2), D(ω) ) = ( d(k), (W
(k)
i : i = 1, 2, . . . ,m1), (T

(k)
i : i = 1, 2, . . . ,m2),

D(k) )
)
be the associated probability for k = 1, 2, . . . ,K. Then problem (4)–(6)

becomes

(7)

maximize bTy +
K∑

k=1

pkQ
(k)(y)

subject to

m1∑
i=1

yiAi � C,

where y ∈ R
m1 is the first-stage variable, Q(k)(y) is the maximum of the problem

(8)

maximize (d(k))Tx(k)

subject to

m1∑
i=1

yiW
(k)
i +

m2∑
i=1

x
(k)
i T

(k)
i � D(k),

where x(k) ∈ R
m2 is the second-stage variable, for k = 1, 2, . . . ,K.

We notice that the constraints in (7) and (8) are negative semidefinite while the
common practice in the SDP literature is to use positive semidefinite constraints. So
for convenience we redefine d(k) := pkd

(k) for k = 1, 2, . . . ,K, and rewrite problem
(7)–(8) as follows:

(9)

minimize bTy +
K∑

k=1

Q(k)(y)

subject to

m1∑
i=1

yiAi − C � 0,
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where for k = 1, 2, . . . ,K, Q(k)(y) is the minimum of

(10)

minimize (d(k))Tx(k)

subject to

m1∑
i=1

yiW
(k)
i +

m2∑
i=1

x
(k)
i T

(k)
i −D(k) � 0.

In the rest of this paper our attention will be on problem (9)–(10), and from now
on when we use the term stochastic semidefinite program (SSDP) in this paper we
mean problem (9)–(10).

The paper is organized as follows. In the next section we state some mathemat-
ical preliminaries. In §3 we introduce a volumetric barrier for the SSDP (9)–(10).
In §4 we show that the set of barrier functions for positive values of the barrier
parameter comprises a self-concordant family [19]. Based on this property a class
of volumetric barrier decomposition algorithms is presented in §5. A convergence
and complexity analysis of this class of algorithms is presented in §6. And the last
section contains some concluding remarks.

2. Preliminaries

In this section we introduce some further notation, and in order to make this
paper self-contained, state some results from linear algebra and matrix calculus
which we borrow from [4] (see also [12, 14, 15]).

Proposition 1. Let A,B ∈ R
n×n. Then

(1) trace(AB) = trace(BA);
(2) if A is symmetric, then trace(AB) = trace(ABT);
(3) if A and B are positive semidefinite, then A •B ≥ 0, and A •B = 0 if and

only if AB = 0;
(4) if A � 0 and B � C, then A •B � A • C.

Let A ∈ R
m×n and B ∈ R

k×l, respectively. Then we define the Kronecker
product A ⊗ B ∈ R

mk×nl of A and B as the matrix whose (i, j) block is aijB for
i = 1, 2, . . . ,m, j = 1, 2, . . . , n. We also define

A⊗s B :=
1

2
(A⊗B +B ⊗A).

For a matrix A ∈ R
m×n, we use vec(A) ∈ R

mn to denote the vector formed by
“stacking” the columns of A one atop another in the natural order. We have

Proposition 2. Let A,B,C,D ∈ R
n×n. Then

(1) (A⊗B)(C ⊗D) = AC ⊗BD;

(2) (A⊗s B)(C ⊗s D) =
1

2
(AC ⊗s BD +AD ⊗s BC);

(3) (A⊗B)T = AT ⊗BT;
(4) if A and B are nonsingular, then A⊗ B is nonsingular, and (A⊗ B)−1 =

A−1 ⊗B−1;
(5) vec(ABC) = (CT ⊗A)vec(B);
(6) if A and B are positive semidefinite, then A⊗B is positive semidefinite.

We end this section by stating the following matrix calculus results.
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Proposition 3. Let X ∈ R
n×n be nonsingular, and det(X) be positive. Then

∂

∂xij
ln det(X) = [X−1]ji

and
∂

∂xij
X−1 = −X−1eie

T
j X

−1,

for i, j = 1, 2, . . . , n.

3. A volumetric barrier for SSDPs

In this section we formulate a volumetric barrier for SSDPs and obtain expres-
sions for the derivatives required in the rest of the paper.

3.1. Formulation. In order to define the volumetric barrier problem for the SSDP
(9)–(10), we are going to make some assumptions. First we define

F1 :=
{
y ∈ R

m1 : S1(y) :=

m1∑
i=1

yiAi − C � 0
}
;

F (k)(y) :=
{
x(k)∈R

m2 : S
(k)
2 (y, x(k)) :=

m1∑
i=1

yiW
(k)
i +

m2∑
i=1

x
(k)
i T

(k)
i −D(k)�0

}
;

F2 :=
{
y ∈ R

m1 : F (k)(y) �= ∅, k = 1, 2, . . . ,K
}
;

F0 := F1

⋂
F2.

Then we make

Assumption 1. The set F0 is nonempty.

The set F1 is nonempty under Assumption 1. The logarithmic barrier [19] for F1

is the function f1 : F1 → R defined by

f1(y) := − ln det(S1(y)), ∀ y ∈ F1,

and the volumetric barrier [19, 21] for F1 is the function V1 : F1 → R defined by

V1(y) :=
1

2
ln det(∇2f1(y)), ∀ y ∈ F1.

Also under Assumption 1, F2 is nonempty and for y ∈ F2, F (k)(y) is nonempty

for k = 1, 2, . . . ,K. The logarithmic barrier [19] for F (k)(y) is the function f
(k)
2 :

F (k)(y) → R defined by

f
(k)
2 (y, x(k)) := −ln det(S

(k)
2 (y, x(k))), ∀x(k) ∈ F (k)(y), y ∈ F2,

and the volumetric barrier [19, 21] for F (k)(y) is the function V
(k)
2 : F (k)(y) → R

defined by

V
(k)
2 (y, x(k)) :=

1

2
ln det(∇2

x(k)x(k)f
(k)
2 (y, x(k))), ∀x(k) ∈ F (k)(y), y ∈ F2.

Next we make

Assumption 2. For each y ∈ F0 and for k = 1, 2, . . . ,K, problem (10) has a
nonempty isolated compact set of minimizers.
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We now define the volumetric barrier problem for the SSDP (9)–(10) as

(11) minimize η(μ, y) : = bTy +
K∑

k=1

ρk(μ, y) + μc1V1(y),

where for k = 1, 2, . . . ,K and y ∈ F0, ρk(μ, y) is the minimum of

(12) minimize (d(k))Tx(k) + μc2V
(k)
2 (y, x(k)).

Here c1 := 225
√
n1 and c2 := 450n3

2 are constants, and μ > 0 is the barrier
parameter.

We will now show that (12) has a unique minimizer for each y ∈ F0 and for
k = 1, 2, . . . ,K by utilizing:

Theorem 1 (Fiacco and McCormick [11, Theorem 8]). Consider the inequality
constrained problem

(13)
minimize f(x)
subject to gi(x) ≥ 0, i = 1, 2, . . . ,m,

where the functions f, g1, . . . , gm : Rn → R are continuous. Let I be a scalar-valued
function of x with the following two properties: I(x) is continuous in the region
R0 := {x : gi(x) > 0, i = 1, 2, . . . ,m}, which is assumed to be nonempty; if {xk}
is any infinite sequence of points in R0 converging to xB such that gi(xB) = 0 for
at least one i, then limk→∞ I(xk) = +∞. Let s be a scalar-valued function of the
single variable r with the following two properties: if r1 > r2 > 0, then s(r1) >
s(r2) > 0; if {rk} is an infinite sequence of points such that limk→∞ rk = 0, then
limk→∞ s(rk) = 0. Let U : R0×R

+ → R be defined by U(x, r) := f(x)+s(r)I(x). If
(13) has a nonempty, isolated compact set of local minimizers and {rk} is a strictly
decreasing infinite sequence, then the unconstrained local minimizers of U(·, rk)
exist for rk small.

Lemma 1. If Assumptions 1 and 2 hold, then for each y ∈ F0 and k = 1, 2, . . . ,K,
the Problem (12) has a unique minimizer for μ small.

Proof. For any given y ∈ F0, V
(k)
2 (y, x(k)) is defined on the nonempty set F (k)(y).

The positive definite matrix S
(k)
2 (y, x(k)) can be factored into the product of three

matrices: a unit lower triangular matrix L, a positive definite diagonal matrix M ,

and the transpose of L, such that S
(k)
2 (y, x(k)) = LMLT. Let mj denote the j-th

diagonal element of M viewed as a function of x(k) ∈ F (k)(y), for j = 1, 2, . . . , n2.

Thenmj is continuous for j = 1, 2, . . . , n2 [22]. Then the constraint S
(k)
2 (y, x(k)) � 0

can be replaced by the constraints: mj(x
(k)) > 0, j = 1, 2, . . . , n2 [22]. So (10)

can be rewritten in the form of (13). Therefore, by Theorem 1, local minimizers of
(12) exist for each y ∈ F0 and k = 1, 2, . . . ,K for μ small. The uniqueness of the

minimizer follows from the fact that V
(k)
2 is strictly convex. �

By Lemma 1, problem (11) is well defined, and its feasible set is F0.

3.2. Expressions for partial derivatives of η with respect to y. In order to
compute the derivatives of η we need the derivatives of ρk, k = 1, 2, . . . ,K, which

in turn require the derivatives of V
(k)
2 and f

(k)
2 for each k = 1, 2, . . . ,K. Some of

these computations are lengthy and it is convenient to drop the superscript (k).
We do so when it does not lead to confusion.
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Also, we make

Assumption 3. Matrices T
(k)
i , i = 1, 2, . . . ,m2 are linear independent for k =

1, 2, . . . ,K.

Let T ∈ R
n2
2×m2 be the matrix whose ith column is vec(Ti) ∈ R

n2
2 for i =

1, 2, . . . ,m2. Then the Hessian matrix H := ∇2
xxf2(y, x) can be represented in the

form (See also [1].)

H := ∇2
xxf2(y, x) = T T[S−1

2 ⊗ S−1
2 ]T .

Note that by Proposition 2 and Assumption 3, H is positive definite. We have (See
also [4].):

∂V2(y, x)

∂xi
= −(T H−1T T) • (S−1

2 TiS
−1
2 ⊗s S

−1
2 )

= −P • (S−1/2
2 TiS

−1/2
2 ⊗s I),

for i = 1, 2, . . . ,m2, and

(14)

∂V2(y, x)

∂yi
= −(T H−1T T) • (S−1

2 WiS
−1
2 ⊗s S

−1
2 )

= −P • (S−1/2
2 WiS

−1/2
2 ⊗s I),

for i = 1, 2, . . . ,m1, where

P = P (S2) = (S
−1/2
2 ⊗ S

−1/2
2 )T (T T(S−1

2 ⊗ S−1
2 )T )−1T T(S

−1/2
2 ⊗ S

−1/2
2 )

is the orthogonal projection onto the range of (S
−1/2
2 ⊗ S

−1/2
2 )T ;

∇2
xyV2(y, x) =

∂2

∂y∂x
V2(y, x) = 2Qxy +Rxy − 2T xy,

where

Qxy
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 WjS

−1
2 ⊗s S

−1
2 ),

Rxy
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 ⊗s S

−1
2 WjS

−1
2 ),

T xy
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 ⊗s S

−1
2 )T H−1T T(S−1

2 WjS
−1
2 ⊗s S

−1
2 );

∇2
yxV2(y, x) =

∂2

∂x∂y
V2(y, x) = 2Qyx +Ryx − 2T yx,

where

Qyx
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 TjS

−1
2 ⊗s S

−1
2 ),

Ryx
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 ⊗s S

−1
2 TjS

−1
2 ),

T yx
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 ⊗s S

−1
2 )T H−1T T(S−1

2 TjS
−1
2 ⊗s S

−1
2 );

∇2
xxV2(y, x) =

∂2

∂x∂x
V2(y, x) = 2Qxx +Rxx − 2T xx,

where

Qxx
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 TjS

−1
2 ⊗s S

−1
2 ),

Rxx
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 ⊗s S

−1
2 TjS

−1
2 ),

T xx
i,j = (T H−1T T) • (S−1

2 TiS
−1
2 ⊗s S

−1
2 )T H−1T T(S−1

2 TjS
−1
2 ⊗s S

−1
2 );

and

(15) ∇2
yyV2(y, x) =

∂2

∂y∂y
V2(y, x) = 2Qyy +Ryy − 2T yy,
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where

Qyy
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 WjS

−1
2 ⊗s S

−1
2 ),

Ryy
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 ⊗s S

−1
2 WjS

−1
2 ),

T yy
i,j = (T H−1T T) • (S−1

2 WiS
−1
2 ⊗s S

−1
2 )T H−1T T(S−1

2 WjS
−1
2 ⊗s S

−1
2 ).

Now we define ϕk : R+ ×F0 ×F (k)(y) → R by

ϕk(μ, y, x) := dTx+ μc2V2(y, x).

Then by (12) we have

ρk(μ, y) = min
x∈F(k)(y)

ϕk(μ, y, x)

and

ρk(μ, y) = ϕk(μ, y, x)|x=x̄ = ϕk(μ, y, x̄),

where x̄ is the minimizer of (12). We notice that x̄ is a function of y and is defined
by

(16)
∂

∂x
ϕk(μ, y, x)|x=x̄ = 0.

Now we are ready to calculate the first and second order derivatives of ρk with
respect to y. We have

∇yρk(μ, y) =
( ∂

∂y
ϕk(μ, y, x) +

∂

∂x
ϕk(μ, y, x) ·

∂x

∂y

)
|x=x̄

=
∂

∂y
ϕk(μ, y, x)|x=x̄ +

∂

∂x
ϕk(μ, y, x)|x=x̄ · ∂x

∂y
|x=x̄

=
∂

∂y
ϕk(μ, y, x)|x=x̄

= μc2∇yV2(y, x)|x=x̄

= μc2∇yV2(y, x̄)

and

∇2
yyρk(μ, y) = ∇y

(
∇yρk(μ, y)

)
= ∇y

(
μc2∇yV2(y, x̄)

)
= μc2∇2

yyV2(y, x̄) + μc2∇x̄∇yV2(y, x̄) ·
∂x̄

∂y

= μc2∇2
yyV2(y, x̄) + μc2∇y∇x̄V2(y, x̄) ·

∂x̄

∂y
= μc2∇2

yyV2(y, x̄).

Note that we use the fact that ∇x̄V2(y, x̄) = ∇xV2(y, x)|x=x̄ = − 1

μc2
d by (16),

which implies ∇y∇x̄V2(y, x̄) = 0. Similarly, we have ∇2
yy∇x̄V2(y, x̄) = 0, which

gives us

∇3
yyyρk(μ, y) = ∇y

(
∇2

yyρk(μ, y)
)

= ∇y

(
μc2∇2

yyV2(y, x̄)
)

= μc2∇3
yyyV2(y, x̄) + μc2∇2

yy∇x̄V2(y, x̄) ·
∂x̄

∂y
= μc2∇3

yyyV2(y, x̄).
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In summary we have

(17)

∇yρk(μ, y) = μc2∇yV
(k)
2 (y, x̄(k)),

∇2
yyρk(μ, y) = μc2∇2

yyV
(k)
2 (y, x̄(k)),

∇3
yyyρk(μ, y) = μc2∇3

yyyV
(k)
2 (y, x̄(k)),

and

(18)

∇yη(μ, y) = b+ μc1∇yV1(y) +
K∑

k=1

μc2∇yV
(k)
2 (y, x̄(k)),

∇2
yyη(μ, y) = μc1∇2

yyV1(y) +
K∑

k=1

μc2∇2
yyV

(k)
2 (y, x̄(k)),

where ∇yV
(k)
2 (y, x̄(k)), ∇2

yyV
(k)
2 (y, x̄(k)), and ∇3

yyyV
(k)
2 (y, x̄(k)) are calculated in

(14), (15) and (22), respectively.

4. Characteristics of η: a self-concordant family

4.1. Self-concordance of η(μ, ·).

Definition 1 (Nesterov and Nemirovskii [19, Definition 2.1.1]). Let G be an open
nonempty convex subset of Rn, and let F be a C3, convex mapping from G to R.
Then F is called α-self-concordant on G with the parameter α > 0 if for every
x ∈ G and ξ ∈ R

n, the following inequality holds:

|D3F (x)[ξ, ξ, ξ]| ≤ 2α−1/2(D2F (x)[ξ, ξ])3/2 .

An α-self-concordant function F on G is called strongly α-self-concordant if F tends
to infinity for any sequence approaching a boundary point of G.

We note that in the definition above the set G is assumed to be open. However,
relatively openness would be sufficient to apply the definition. See also [19, Item A,
Page 57]. We now show that ρk(μ, ·) is μ-self-concordant on F0, for k = 1, 2, . . . ,K.
It is clear that F0 is open.

Theorem 2. For any fixed μ > 0, ρk(μ, ·) is μ-self-concordant on F0, for k =
1, 2, . . . ,K.

In order to prove Theorem 2 we need some intermediate results which we now
obtain.

Proposition 4. Let (y, x) be such that S2(y, x) � 0. Then we have

(19) 0 � Qyy � ∇2
yyV2(y, x).

Proof. (See also [4].) Let ξ ∈ R
m1 , ξ �= 0. We have

ξTQyyξ =
∑
i,j

Qyy
ij ξiξj = T H−1T • (S−1

2 BS−1
2 BS−1

2 ⊗s S
−1
2 ) = P • (B̄2 ⊗s I),

where B := B(ξ) :=
∑m1

i=1 ξiWi and B̄ := S
−1/2
2 BS

−1/2
2 . Similarly, we have

ξTRyyξ = T H−1T • (S−1
2 BS−1

2 ⊗s S
−1
2 BS−1

2 ) = P • (B̄ ⊗ B̄)
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and

ξTT yyξ = T H−1T • (S−1
2 BS−1

2 ⊗s S
−1
2 )T H−1T (S−1

2 BS−1
2 ⊗s S

−1
2 )

= P • (B̄ ⊗s I)P (B̄ ⊗s I).

Since I, P and B̄2 are all positive semidefinite, we immediately have Qyy � 0
from Proposition 1 and Proposition 2. In addition, P is a projection implies that

(20) (B̄ ⊗s I)P (B̄ ⊗s I) � (B̄ ⊗s I)(B̄ ⊗s I) =
1

2
[(B̄2 ⊗s I) + (B̄ ⊗ B̄)].

We conclude that

P • (B̄ ⊗s I)P (B̄ ⊗s I) ≤
1

2
P • [(B̄2 ⊗s I) + (B̄ ⊗ B̄)],

which is exactly ξTT yyξ ≤ 1

2
ξT(Qyy + Ryy)ξ. Since ξ is arbitrary, we have shown

that T yy � 1

2
(Qyy +Ryy), which together with Qyy � 0 implies

0 � Qyy � ∇2
yyV2(y, x). �

Proposition 5. For any ξ ∈ R
m1 , let B̄ := S

−1/2
2 (

∑m1

i=1 ξiWi)S
−1/2
2 . Let (y, x) be

such that S2(y, x) � 0. Then

(21)

ξTQyyξ ≥ 1

2n3
2

||B̄||22,

i.e., ||B̄||2 ≤
√
2n

3/2
2 (ξTQyyξ)1/2.

Proof. Let λ1, λ2, . . . , λn2
be the eigenvalues of B̄ with corresponding orthonormal

eigenvectors v1, v2, . . . , vn2
. Without loss of generality (scaling ξ as needed, and

reordering indices), we may assume that 1 = |λ1| ≥ |λ2| ≥ · · · ≥ λn2
. Then B̄2⊗s I

has a full set of orthonormal eigenvectors vi ⊗ vj with corresponding eigenvalues
(1/2)(λ2

i + λ2
j ), for i, j = 1, 2, . . . , n2 (See also [15, Theorem 4.4.5]). We have

ξTQyyξ = P · 1
2

n2∑
i,j=1

(λ2
i + λ2

j)(vi ⊗ vj)(vi ⊗ vj)
T

=
1

2

∑
i,j

(λ2
i + λ2

j)(vi ⊗ vj)
TP (vi ⊗ vj).

Since P is a projection onto an m2-dimensional space, we have

P =

m2∑
l=1

ulu
T
l ,

where u1, u2, . . . , um2
are the orthonormal eigenvectors of P corresponding to the

nonzero eigenvalues of P . Consider uk for some k, we have

uk =

n2∑
i,j=1

cij(vi ⊗ vj),
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for some constants cij , for i, j = 1, 2, . . . , n2, and

1 = ‖uk‖2 = ‖
n2∑

i,j=1

cij(vi ⊗ vj)‖2

≤
n2∑

i,j=1

‖cij(vi ⊗ vj)‖2

=

n2∑
i,j=1

|cij |.

Thus there exist ik, jk such that

|cikjk | ≥
1

n2
2

.

Hence,

ξTQyyξ =
1

2

∑
i,j

(λ2
i + λ2

j )(vi ⊗ vj)
T(

m2∑
l=1

ulu
T
l )(vi ⊗ vj)

=
1

2

∑
i,j

(λ2
i + λ2

j )

m2∑
l=1

(vi ⊗ vj)
Tulu

T
l (vi ⊗ vj)

=
1

2

∑
i,j

(λ2
i + λ2

j )

m2∑
l=1

||uT
l (vi ⊗ vj)||22

≥ 1

2

∑
i,j

(λ2
i + λ2

j )||uT
k (vik ⊗ vjk)||22

=
1

2

∑
i,j

(λ2
i + λ2

j )|cikjk |2

≥ 1

2

∑
i,j

(λ2
i + λ2

j )
1

n4
2

≥ 1

2n4
2

∑
j

(λ2
1 + λ2

j)

≥ 1

2n4
2

∑
j

λ2
1

=
1

2n4
2

∑
j

||B̄||22

=
1

2n3
2

||B̄||22. �

Let (y, x) be such that S2(y, x) � 0, and ξ ∈ R
m1 . We immediately obtain

∂

∂yi
ξTQyyξ = 2T H−1T T(S−1

2 WiS
−1
2 ⊗s S

−1
2 )T H−1T T

·(S−1
2 BS−1

2 BS−1
2 ⊗s S

−1
2 )

+T H−1T · ∂

∂yi
(S−1

2 BS−1
2 BS−1

2 ⊗s S
−1
2 ),
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where B := B(ξ) :=
∑m1

i=1 ξiWi, and

∂

∂yi
(S−1

2 BS−1
2 BS−1

2 ⊗s S
−1
2 )

= −(S−1
2 WiS

−1
2 BS−1

2 BS−1
2 + S−1

2 BS−1
2 WiS

−1
2 BS−1

2 + S−1
2 BS−1

2 BS−1
2 WiS

−1
2 )

⊗s S
−1
2 − S−1

2 BS−1
2 BS−1

2 ⊗s S
−1
2 WiS

−1
2 .

We conclude that the first directional derivative of ξTQyyξ with respect to y, in
the direction ξ, is given by

∇yξ
TQyyξ [ξ] =

m1∑
i=1

ξi
∂

∂yi
ξTQyyξ

= 2P · (B̄ ⊗s I)P (B̄2 ⊗s I)− 3P · (B̄3 ⊗s I)− P · (B̄2 ⊗s B̄),

where B̄ := S−1/2BS−1/2, and P is defined as before. Similarly, we obtain

∇yξ
TRyyξ [ξ] = 2P · (B̄ ⊗s I)P (B̄ ⊗s B̄)− 4P · (B̄2 ⊗s B̄),

∇yξ
TT yyξ [ξ] = 4P · (B̄ ⊗s I)P (B̄ ⊗s I)P (B̄ ⊗s I)− 4P · (B̄ ⊗s I)P (B̄2 ⊗s I)

−2P · (B̄ ⊗s I)P (B̄ ⊗ B̄).

Combining the previous results, we obtain the third-order directional derivative
of V2(y, x) with respect to y as:

(22)

∇3
yyyV2(y, x) [ξ, ξ, ξ] = 12P · (B̄ ⊗s I)P (B̄2 ⊗s I)

−6P · (B̄3 ⊗s I)− 6P · (B̄2 ⊗s B̄)
+6P · (B̄ ⊗s I)P (B̄ ⊗ B̄)
−8P · (B̄ ⊗s I)P (B̄ ⊗s I)P (B̄ ⊗s I).

In the proof of Theorem 2 we need to bound ∇3
yyyV2(y, x) [ξ, ξ, ξ]. We now obtain

such a bound.

Proposition 6. For any ξ ∈ R
m1 , let B̄ := S

−1/2
2 (

∑m1

i=1 ξiWi)S
−1/2
2 . Let (y, x) be

such that S2(y, x) � 0. Then

(23) |∇3
yyyV2(y, x) [ξ, ξ, ξ] | ≤ 30||B̄||2ξTQyyξ.

Proof. (See also [4].) Using the fact that

(B̄2 ⊗s I)(B̄ ⊗s I) =
1

2
[(B̄3 ⊗s I) + (B̄2 ⊗s B̄)],

we can rewrite (22) as

(24)
∇3

yyyV2(y, x) [ξ, ξ, ξ] = P (B̄ ⊗s I)P · [12(B̄2 ⊗s I)
+6(B̄ ⊗s B̄)− 8(B̄ ⊗s I)P (B̄ ⊗ I)]
−12P · (B̄2 ⊗s I)(B̄ ⊗s I).

From (20) we have

12(B̄2 ⊗s I) + 6(B̄ ⊗s B̄)− 8(B̄ ⊗s I)P (B̄ ⊗ I) � 8(B̄2 ⊗s I) + 2(B̄ ⊗s B̄).

Using the facts that (B̄2 ⊗s I) � (B̄ ⊗ B̄) and (B̄ ⊗ B̄) � (−B̄2 ⊗s I), we obtain

(25)
6(B̄2 ⊗s I) � 12(B̄2 ⊗s I) + 6(B̄ ⊗s B̄)− 8(B̄ ⊗s I)P (B̄ ⊗ I)

� 18(B̄2 ⊗s I).

Let λ1, λ2, . . . , λn2
be the eigenvalues of B̄. Then for i, j = 1, 2, . . . , n2, the eigen-

values of (B̄⊗s I) are of the form (1/2)(λi+λj) (See also [15, Theorem 4.4.5].) We
have

−||B̄||2I � (B̄ ⊗s I) � ||B̄||2I
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and

(26) −||B̄||2P � P (B̄ ⊗s I)P � ||B̄||2P.

Using (25), (26), and the face that (B̄2 ⊗s I) � 0, we obtain

(27)
|P (B̄ ⊗s I) · [12(B̄2 ⊗s I) + 6(B̄ ⊗ B̄)− 8(B̄ ⊗s I)P (B̄ ⊗s I)]|

≤ 18||B̄||2P · (B̄2 ⊗s I).

In addition, the fact that (B̄2⊗s I) and (B̄⊗s I) have the same eigenvectors implies
that

−||B̄||2(B̄2 ⊗s I) � (B̄2 ⊗s I)(B̄ ⊗s I) � ||B̄||2(B̄2 ⊗s I).

Therefore we have

(28) |P · (B̄2 ⊗s I)(B̄ ⊗s I)| ≤ ||B̄||2P · (B̄2 ⊗s I).

The conclusion follows from (24), (27) and (28). �

We can now state the proof of Theorem 2.

Proof of Theorem 2. Combining the results of (19), (21) and (23), we obtain

|∇3
yyyV2(y, x̄) [ξ, ξ, ξ] | ≤ 30

√
2n

3/2
2 (ξT∇2

yyV2(y, x̄)ξ)
3/2,

which combined with (17) gives us

|∇3
yyyρk(y) [ξ, ξ, ξ] | ≤ 30

√
2μc2n

3/2
2 (∇2

yyV2(y, x̄) [ξ, ξ])
3/2

= 2μ−1/2(c2μ∇2
yyV2(y, x) [ξ, ξ])

3/2

= 2μ−1/2(∇2
yyρk(y) [ξ, ξ])

3/2. �

Corollary 1. For any fixed μ > 0, η(μ, ·) is a μ-self-concordant function on F0.

Proof. It is easy to verify that μc1V1 is μ-self-concordant on F1. The corollary
follows from [19, Proposition 2.1.1]. �

4.2. Parameters of the self-concordant family η(μ, ·).

Definition 2 (Nesterov and Nemirovskii [19, Definition 3.1.1]). Let R+ be the set
of all positive real numbers. Let G be an open nonempty convex subset of Rn. Let
μ ∈ R

+ and let Fμ : R+×G → R be a family of functions indexed by μ. Let α1(μ),
α2(μ), α3(μ), α4(μ) and α5(μ) : R

+ → R
+ be continuously differentiable functions

on μ. Then the family of functions {Fμ}μ∈R+ is called strongly self-concordant with
the parameters α1, α2, α3, α4, α5, if the following conditions hold:

(i) Fμ is continuous on R
+ × G, and for fixed μ ∈ R

+, Fμ is convex on G.
Fμ has three partial derivatives on G, which are continuous on R

+ × G and
continuously differentiable with respect to μ on R

+.
(ii) For any μ ∈ R

+, the function Fμ is strongly α1(μ)-self-concordant.
(iii) For any (μ, x) ∈ R

+ ×G and any ξ ∈ R
n,

|{∇xFμ(μ, x)[ξ]}′ − {lnα3(μ)}′∇xFμ(μ, x)[ξ]| ≤ α4(μ)α1(μ)
1
2

(
∇2

xxFμ(μ, x)[ξ, ξ]
) 1

2 ,

|{∇2
xxFμ(μ, x)[ξ, ξ]}′ − {lnα2(μ)}′∇2

xxFμ(μ, x)[ξ, ξ]| ≤ 2α5(μ)∇2
xxFμ(μ, x)[ξ, ξ].
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Theorem 3. The parametric function η(μ, ·) is a strongly self-concordant family
with the following parameters:

α1(μ) = μ, α2(μ) = α3(μ) = 1, α4(μ) = μ−1[(m1c1+m2c2)(1+K)]1/2, α5(μ) =
1

μ
.

By Corollary 1, in order to prove Theorem 3, we only need to show that the two
inequalities in Definition 2 (iii) are satisfied by η(μ, ·). We first show the validity of
the second inequality in Definition 2 (iii).

Lemma 2. For any μ > 0 and y ∈ F0, the following inequality holds:

|∇2
yyη

′(μ, y)[ξ, ξ]| ≤ 1

μ
∇2

yyη(μ, y)[ξ, ξ], ∀ ξ ∈ R
m1 .

Proof. Differentiating (18) with respect to μ, we obtain

∇2
yyη

′(μ, y) = c1∇2
yV1(y) +

K∑
k=1

c2(∇2
yyV

(k)
2 (y, x̄(k)) + μ∇3

yyx̄V
(k)
2 (y, x̄(k)) · (x̄(k))′)

= c1∇2
yyV1(y) +

K∑
k=1

c2∇2
yyV

(k)
2 (y, x̄(k)),

which is exactly
1

μ
∇2

yyη(μ, y). The conclusion follows since ∇2
yyη(μ, y) is positive

semidefinite. �

For fixed (y, x̄) with S2(y, x̄) � 0, let T̄i = S
−1/2
2 TiS

−1/2
2 , i = 1, 2, . . . ,m2 and

W̄j = S
−1/2
2 WjS

−1/2
2 , j = 1, 2, . . . ,m1. We apply a Gram-Schmidt procedure to

{T̄i} to obtain {Ui} with ‖Ui‖ = 1 for all i and Ui · Uj = 0, i �= j. Then the linear
span of {Ui, i = 1, 2, . . . ,m2} is equal to the span of {T̄i, i = 1, 2, . . . ,m2}. Let U
be the n2

2 × m2 matrix whose ith column is vec(Ui) and let Σ =
∑m2

k=1 U
2
k . Then

P = P (S2) = UUT. We have

(29)

∂V2(y, x̄)

∂yi
= −P · (W̄i ⊗s I) = −UUT · (W̄i ⊗s I)

= trace(UT(W̄i ⊗s I)U)

= −1

2

m2∑
k=1

vec(Uk)
T[(W̄i ⊗ I) + (I ⊗ W̄i)]vec(Uk)

= −1

2

m2∑
k=1

vec(Uk)
Tvec(UkW̄i + W̄iUk)

= −1

2

m2∑
k=1

Uk · (UkW̄i + W̄iUk) = −W̄i · (
m2∑
k=1

U2
k ) = −W̄i · Σ.



VOLUMETRIC CENTER DECOMPOSITION ALGORITHMS 1653

Similarly, we have

(30)

Qyy
i,j = P · (W̄iW̄j ⊗s I) = trace(UT(W̄iW̄j ⊗s I)U)

=

m2∑
k=1

vec(Uk)
T(W̄iW̄j ⊗s I)vec(Uk)

=
1

2

m2∑
k=1

vec(Uk)
Tvec(UkW̄iW̄j + W̄iW̄jUk)

=
1

2

m2∑
k=1

Uk · (UkW̄iW̄j + W̄iW̄jUk)

=
1

2

m2∑
k=1

trace(Uk(UkW̄jW̄i + W̄jW̄iUk))

=

m2∑
k=1

trace(W̄iU
2
kW̄j) = trace(W̄iΣW̄j).

Proposition 7. Let (y, x̄) be such that S2(y, x̄) � 0. Then

(31) ∇yV2(y, x̄)
T(∇2

yyV2(y, x̄))
−1∇yV2(y, x̄) ≤ m2.

Proof. (See also [4].) Let W be the n2
2 ×m1 matrix whose ith column is vec(W̄i).

Then from (30) we have

Qyy
i,j = trace(W̄iΣW̄j) = vec(W̄i)

Tvec(ΣW̄j) = vec(W̄i)
T(I ⊗ Σ)vec(W̄j).

We can then writeQyy=WT(I⊗Σ)W. Also, it follows from (29) that∇yV2(y, x̄)
T =

−WTvec(Σ). Hence,

∇yV2(y, x̄)
T[Qyy]−1∇yV2(y, x̄) = vec(Σ)TW(WT(I ⊗ Σ)W)−1

W
Tvec(Σ)

= vec(Σ1/2)T(I ⊗ Σ1/2)W(WT(I ⊗ Σ)W)−1
W

T

(I ⊗ Σ1/2)vec(Σ1/2)

≤ vec(Σ1/2)Tvec(Σ1/2) = trace(Σ) = m2,

since Σ =
∑m2

k=1 U
2
k , and trace(U2

k ) = Uk · Uk = 1 for each k. In addition, Qyy �
∇2

yV2(y, x̄) implies (∇2
yV2(y, x̄))

−1 � (Qyy)−1. So the result follows. �
It can be easily verified that (31) is equivalent to the following inequality:

(32) |∇yV2(y, x̄)[ξ]| ≤
√
m2∇2

yyV2(y, x̄)[ξ, ξ], ∀ ξ ∈ R
m1 .

Now we show the validity of the first inequality in Definition 2 (iii).

Lemma 3. For any μ > 0 and y ∈ F0, we have

|∇yη
′(μ, y)T[ξ]| ≤

√
(m1c1 +m2c2)(1 +K)

μ
∇2

yyη(μ, y)[ξ, ξ], ∀ ξ ∈ R
m1 .

Proof. We have

∇yη
′(μ, y) = c1∇yV1(y) +

K∑
k=1

c2(∇yV
(k)
2 (y, x̄(k)) + μ∇2

yx̄V
(k)
2 (y, x̄(k)) · (x̄(k))′)

= c1∇yV1(y) +

K∑
k=1

c2∇yV
(k)
2 (y, x̄(k)) .
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Anstreicher [4, Theorem 4.4] has shown that

∇yV1(y)
T(∇2

yyV1(y))
−1∇yV1(y) ≤ m1,

which is equivalent to

(33) |∇yV1(y)[ξ]| ≤
√
m1∇2

yyV1(y)[ξ, ξ], ∀ ξ ∈ R
m1 .

Then we have that for all ξ ∈ R
m1 ,

|∇yη
′(μ, y)T[ξ]|

= |
(
c1∇yV1(y) +

K∑
k=1

c2∇yV
(k)
2 (y, x̄(k))

)T
[ξ]|

≤ |c1∇yV1(y)
T[ξ]|+

K∑
k=1

|c2∇yV
(k)
2 (y, x̄(k))T[ξ]|

≤
√
m1c21∇2

yyV1(y)[ξ, ξ] +

K∑
k=1

√
m2c22∇2

yyV
(k)
2 (y, x̄(k))[ξ, ξ]

=
√
(m1c1)c1∇2

yyV1(y)[ξ, ξ] +

K∑
k=1

√
(m2c2)c2∇2

yyV
(k)
2 (y, x̄(k))[ξ, ξ]

≤

√√√√(m1c1 +m2c2)(1 +K)(c1∇2
yyV1(y)[ξ, ξ] +

K∑
k=1

c2∇2
yyV

(k)
2 (y, x̄(k))[ξ, ξ])

=

√
(m1c1 +m2c2)(1 +K)

μ
∇2

yyη(μ, y)[ξ, ξ]. �

With Lemma 2 and Lemma 3 established, we have that Theorem 3 is true.

5. A class of volumetric barrier algorithms for solving SSDPs

In §4 we have established that the parametric function η(μ, ·) is a strongly self-
concordant family. In this section we introduce a class of volumetric barrier algo-
rithms for solving (9) and (10). This class, indexed by a parameter γ ∈ (0, 1), is
stated formally in Algorithm 1.

Our algorithm is initialized with a starting point y0 ∈ F0 and a starting value
μ0 > 0 for the barrier parameter μ. We use δ as a measure of the proximity of the
current point y to the central path, and β as a threshold for that measure. If the
current y is too far away from the central path in the sense that δ > β, we apply
Newton’s method to find a point close to the central path. Then we reduce the
value of μ by a factor γ and repeat the whole process until the value of μ is within
the tolerance ε.

6. Complexity analysis

For fixed μ > 0, the function η(μ, ·) possesses many nice properties. The fol-
lowing proposition follows directly from the definition of self-concordance and [19,
Theorem 2.1.1].

Proposition 8. For any μ > 0, y ∈ F0 and Δy, we denote

δ :=

√
1

μ
ΔyT∇2

yyη(μ, y)Δy. Then for δ < 1, τ ∈ [0, 1] and any ξ ∈ R
m2 we have

ξT∇2
yyη(μ, y + τΔy)ξ ≤ (1− τδ)−2ξT∇2

yyη(μ, y)ξ.
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Algorithm 1. Volumetric Barrier Algorithm for Solving SSDP (9)–(10)

Require: ε > 0, γ ∈ (0, 1), θ > 0, β > 0, y0 ∈ F0 and μ0 > 0.
y := y0, μ := μ0

while μ ≥ ε do
for k = 1, 2, . . . ,K do
solve (12) to obtain x̄(k)

end for
compute Δy := −[∇2

yyη(μ, y)]
−1∇yη(μ, y) using (18)

compute δ(μ, y) :=

√
1

μ
ΔyT∇2

yyη(μ, y)Δy using (18)

while δ > β do
y := y + θΔy
for k = 1, 2, . . . ,K do
solve (12) to obtain x̄(k)

end for
compute Δy := −[∇2

yyη(μ, y)]
−1∇yη(μ, y) using (18)

compute δ(μ, y) :=

√
1

μ
ΔyT∇2

yyη(μ, y)Δy using (18)

end while
μ := γμ

end while

We also have the following lemma that describes the behavior of the Newton
method as applied to η(μ, ·). This lemma is essentially a restatement of [19, Theo-
rem 2.2.3] for the setting of the present paper.

Lemma 4. For any μ > 0 and y ∈ F0, let Δy be the Newton direction defined by
Δy := −[∇2

yyη(μ, y)]
−1∇yη(μ, y). We denote

δ := δ(μ, y) =

√
1

μ
ΔyT∇2

yyη(μ, y)Δy.

Then the following relations hold:

(i) If δ < 2−
√
3, then

δ(μ, y +Δy) ≤
(

δ

1− δ

)2

≤ δ

2
.

(ii) If δ ≥ 2−
√
3, then

η(μ, y)− η(μ, y + θ̄Δy) ≥ μ[δ − ln(1 + δ)],

where θ̄ = (1 + δ)−1.

Depending on the manner in which γ in Algorithm 1 is chosen, we have two
classes of algorithms: short-step algorithms and long-step algorithms. In the next
two subsections we present the complexity analysis for these two classes of algo-
rithms.

6.1. Complexity of short step algorithms. The ith iteration of the short-step
algorithms is performed as follows: at the beginning of the iteration, we have μ(i−1)

and y(i−1) on hand and y(i−1) is close to the center path, i.e., δ(μ(i−1), y(i−1)) ≤
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β. After we reduce the parameter μ from μ(i−1) to μi := γμ(i−1), we have that
δ(μi, y(i−1)) ≤ 2β. Then a full Newton step is taken to find a new point yi with
δ(μi, yi) ≤ β. We will show that in each iteration after we reduce the parameter
μ, one Newton step is sufficient to restore the proximity to the central path. We
assume that we can solve all the subproblems exactly and we fix the value of
γ := 1− 0.1/

√
(m1c1 +m2c2)(1 +K). We have the following lemma and the proof

of the lemma follows from [19, Theorem 3.1.1].

Lemma 5. Let γ := 1 − 0.1/
√
(m1c1 +m2c2)(1 +K) and β := (2 −

√
3)/2. If

δ(μ, y) ≤ β, then δ(γμ, y) ≤ 2β.

Proof. In order to apply [19, Theorem 3.1.1], we first write the metric defined by
(3.1.4) in [19] for our problem as follows: For any 0 < μ+ < μ,

χκ(η;μ, μ
+) :=

(
1 +

√
(m1c1 +m2c2)(1 +K)

κ

)
ln

(
μ

μ+

)
.

Let κ := 2β := 2−
√
3. Since δ(μ, y) ≤ κ/2, one can verify that μ+ := γμ satisfies

χκ(η;μ, μ
+) ≤ 1

2
≤ 1− δ(μ, y)

κ
.

So by virtue of [19, Theorem 3.1.1], we have δ(μ+, y) ≤ κ. �

By inequality in Lemma 4(i) and Lemma 5 we have that in Algorithm 1, we can

reduce the parameter μ by the factor γ := 1−0.1/
√

(m1c1 +m2c2)(1 +K) at each
iteration, and use only one Newton step for recentering if necessary. So we have
the following complexity result for short-step algorithms.

Theorem 4. Let β := (2 −
√
3)/2 and γ := 1 − 0.1/

√
(m1c1 +m2c2)(1 +K) in

Algorithm 1. If δ(μ0, y0) ≤ β, then short-step algorithms terminate with at most

O(
√
(m1c1 +m2c2)(1 +K)ln(μ0/ε)) iterations.

6.2. Complexity of the long step algorithms. In the long-step version of the
algorithm, the factor γ ∈ (0, 1) is arbitrarily chosen. It has potential for a larger
decrease on the objective function value; however, several damped Newton steps
might be needed for recentering.

Suppose at the beginning of the ith iteration of the algorithm we have a point
y(i−1), which is sufficiently close to y(μ(i−1)), where μ(i−1) is the current value for
the barrier parameter μ and y(μ(i−1)) is the solution to (11) for μ := μ(i−1). We
reduce the barrier parameter from μ(i−1) to μi := γμ(i−1), where γ ∈ (0, 1), and we
search for a point yi that is sufficiently close to y(μi). We want to determine an
upper bound on the number of Newton iterations that are needed to find the point
yi.

We begin by defining φ(μ) := η(μ, y) − η(μ, y(μ)), ∀μ > 0. The function φ
stands for the difference between the objective value η(μi, y(i−1)) at the beginning
of ith iteration and the minimum objective value η(μi, y(μi)) at the end of ith

iteration. Then our task is to find an upper bound on φ(μ).
The next lemma gives us upper bounds on φ(μ) and φ′(μ), respectively.

Lemma 6. let μ > 0 and y ∈ F0, we denote Δ̃y := y − y(μ) and define

δ̃ :=

√
1

μ
Δ̃yT∇2

yyη(μ, y)Δ̃y.
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If δ̃ < 1, then the following inequalities hold:

φ(μ) ≤
[

δ̃

1− δ̃
+ ln(1− δ̃)

]
μ,(34)

|φ′(μ)| ≤ −ln(1− δ̃)
√
(m1c1 +m2c2)(1 +K).(35)

Proof.

φ(μ) := η(μ, y)− η(μ, y(μ)) :=

∫ 1

0

∇yη(μ, y(μ) + (1− τ )Δ̃y)TΔ̃ydτ.

Since y(μ) is the optimal solution, we have

(36) ∇yη(μ, y(μ)) = 0.

Hence,

φ(μ) =

∫ 1

0

∫ 1

0

Δ̃yT∇2
yyη(μ, y(μ) + (1− α)Δ̃y)Δ̃ydαdτ

≤
∫ 1

0

∫ 1

0

μδ̃2

(1− δ̃ + αδ̃)2
dαdτ (by Proposition 8)

=

[
δ̃

1− δ̃
+ ln(1− δ̃)

]
μ.

This proves (34).
For any μ > 0,

(37)
φ′(μ) = η′(μ, y)− η′(μ, y(μ))−∇η(μ, y(μ))Ty′(μ)

= η′(μ, y)− η′(μ, y(μ)).

From Lemma 3 we have that for any μ > 0 and y ∈ F0,

(38) ∇η′(μ, y)T[∇2
yyη(μ, y)]

−1∇η′(μ, y) ≤ 1

μ
(m1c1 +m2c2)(1 +K).

Applying the Mean-Value Theorem we obtain

|φ′(μ)| = |
∫ 1

0

∇η′(μ, y(μ) + τΔ̃y)TΔ̃ydτ |

≤
∫ 1

0

√
Δ̃yT∇2

yyη(μ, y(μ) + τΔ̃y)Δ̃y·

√
∇η′(μ, y(μ)+τΔ̃y)T[∇2

yyη(μ, y(μ)+τΔ̃y]−1∇η′(μ, y(μ)+τΔ̃y)dτ.

Using (38) and Proposition 8, and noting that y(μ) + τΔ̃y = y − (1 − τ )Δ̃y, we
have

|φ′(μ)| ≤
∫ 1

0

δ̃
√
μ

1− δ̃ + τ δ̃

√
(m1c1 +m2c2)(1 +K)

μ
dτ

= −ln(1− δ̃)
√
(m1c1 +m2c2)(1 +K).

This proves (35). �
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Lemma 7. Let μ > 0 and y ∈ F0 be such that δ̃ < 1, where δ̃ is as defined in
Lemma 6. Let μ+ := γμ with γ ∈ (0, 1). Then

η(μ+, y)− η(μ+, y(μ+)) ≤ O(1)[(m1c1 +m2c2)(1 +K)]μ+.

Proof. We have

φ′′(μ, y) = η′′(μ, y)− η′′(μ, y(μ))−∇η′(μ, y(μ))Ty′(μ).

Since η(·, y) is strictly concave in μ, the first term η′′(μ, y) is negative. We only
need to estimate the other two terms.

First we differentiate (36) with respect to μ to obtain

y′(μ) = −[∇2
yyη(μ, y(μ))]

−1∇η′(μ, y(μ)).

Hence, from Lemma 3 we have the following estimation:

(39)
−∇η′(μ, y(μ))Ty′(μ) = ∇η′(μ, y(μ))T[∇2

yyη(μ, y(μ))]
−1∇η′(μ, y(μ))

≤ 1

μ
(m1c1 +m2c2)(1 +K).

Now we want to estimate η′′(μ, y) for any μ > 0 and y ∈ F0. First we observe

that η′′ =
∑K

k=1 ρ
′′
k(μ, y). Differentiating ρk(μ, y) with respect to μ we obtain

ρ′k(μ, y) = c2V2(y, x̄). Differentiating again we obtain ρ′′k(μ, y) = c2∇x̄V2(y, x̄)
Tx̄′.

We differentiate (16) to obtain

x̄′ = − 1

μ
[∇2

x̄V2(y, x̄)]
−1∇x̄V2(y, x̄).

Hence, we have

ρ′′k(μ, y) = − 1

μ
c2∇x̄V2(y, x̄)

T[∇2
x̄V2(y, x̄)]

−1∇x̄V2(y, x̄).

By [4, Theorem 4.4] we have −ρ′′k(μ, y) ≤
1

μ
c2m2. Therefore,

(40) −η′′(μ, y(μ)) = −
K∑

k=1

ρ′′k(μ, y) ≤
K∑

k=1

1

μ
c2m2 =

1

μ
m2c2K.

Combining (39) and (40), we have

(41) φ′′(μ) ≤ 1

μ
(m1c1 + 2m2c2)(1 +K).
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Using Lemma 6 and (41), we have

φ(μ+) = φ(μ) + (μ+ − μ)φ′(μ) +

∫ μ

μ+

∫ μ

τ

φ′′(μ)dμdτ

≤
[

δ̃

1− δ̃
+ ln(1− δ̃)

]
μ− ln(1− δ̃)

√
(m1c1 +m2c2)(1 +K)(μ+ − μ)

+(m1c1 + 2m2c2)(1 +K)

∫ μ

μ+

∫ μ

τ

μ−1dμdτ

≤
[

δ̃

1− δ̃
+ ln(1− δ̃)

]
μ− ln(1− δ̃)

√
(m1c1 +m2c2)(1 +K)(μ+ − μ)

+(m1c1 + 2m2c2)(1 +K)lnγ−1(μ− μ+).

This proves the lemma since δ̃ and γ are constants. �

In the previous lemmas we require δ̃ < 1. However, δ̃ cannot be evaluated
explicitly. In the next lemma we will see that δ̃ is actually proportional to δ, which
can be evaluated.

Lemma 8. For any μ > 0 and y ∈ F0, let Δy := −[∇2
yyη(μ, y)]

−1∇yη(μ, y) and

let Δ̃y := (y − y(μ)). We denote

δ :=

√
1

μ
ΔyT∇2

yyη(μ, y)Δy, δ̃ :=

√
1

μ
Δ̃yT∇2

yyη(μ, y)Δ̃y.

If δ < 1/6, then
2

3
δ ≤ δ̃ ≤ 2δ.

Proof. See the proof of Lemma 9 in [4]. �

Combining Lemmas 4, 7, and 8, we have the following theorem.

Theorem 5. Let β :=1/6 and γ∈(0, 1) be arbitrary in Algorithm 1. If δ(μ0, y0)≤β,
then long-step algorithms terminate with at most O

(
(m1c1+m2c2)(1+K)ln(μ0/ε)

)
iterations.

7. Concluding remarks

In this paper we have presented a class of volumetric barrier decomposition al-
gorithms for (two-stage) stochastic semidefinite programs (SSDPs) (with recourse).
We have also shown that certain short-step and long-step members of the class
have polynomial complexity in terms of the number of iterations with the com-
plexity bounds depending on

√
K and K, respectively, where K is the number of

realizations. This is important given the fact K can be large in applications.
The complexity of our algorithms and of those in [18] are similar. Both are

O(
√
K) for short-step algorithms and O(K) for long-step algorithms.

SSDPs generalize (two-stage) stochastic linear programs (SLPs) (with recourse).
Therefore, it is possible to specialize the class of algorithms presented in this paper
to SLPs. The specialization is a new class of algorithms for SLPs. Indeed, in
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[6] we show that we can go further by showing how appropriate modification of
the techniques utilized in the present paper leads to a class of new volumetric
barrier decomposition algorithms for stochastic quadratic programs with quadratic
recourse.

It would be interesting to assess the computational performance of the algorithms
developed in the present paper. A forthcoming paper will report details of an
implementation and results of computational experiments performed with it.
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