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PRECISE AND FAST COMPUTATION OF THE GENERAL

COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

TOSHIO FUKUSHIMA

Abstract. We developed an efficient procedure to evaluate two auxiliary com-
plete elliptic integrals of the second kind B(m) and D(m) by using their Taylor
series expansions, the definition of Jacobi’s nome, and Legendre’s relation. The
developed procedure is more precise than the existing ones in the sense that
the maximum relative errors are 1-3 machine epsilons, and it runs drastically
faster; around 5 times faster than Bulirsch’s cel2 and 16 times faster than
Carlson’s RF and RD.

1. Introduction

1.1. Complete elliptic integrals of first and second kind. The complete el-
liptic integrals of the first and the second kind K(m) and E(m) appear in various
fields of mathematical physics and engineering [1, 6]. Consult with the references of
our recent work [17] for practical examples in astrophysics and celestial mechanics
such as the expression of gravitational potential and the acceleration vector caused
by a uniform ring. The integrals are defined as

(1.1) K(m) ≡
∫ π/2

0

dθ√
1−m sin2 θ

, E(m) ≡
∫ π/2

0

(√
1−m sin2 θ

)
dθ.

They are the special value of the incomplete elliptic integrals of the first and the
second kind, F (ϕ|m) and E(ϕ|m) as

(1.2) K(m) = F
(π

2

∣∣∣m)
, E(m) = E

(π

2

∣∣∣m)
,

where the incomplete integrals are defined as

(1.3) F (ϕ|m) ≡
∫ ϕ

0

dθ√
1−m sin2 θ

, E(ϕ|m) ≡
∫ ϕ

0

(√
1−m sin2 θ

)
dθ.

Refer to the formulas 110.02, 110.03, 110.06, and 110.07 of [6]. We frequently cite
the formulas of this handbook throughout the present article. Then we abbreviate
the references to its formulas as BF110.02 hereafter. The complete integrals are
real-valued when m ≤ 1. Their special values are

(1.4) K(0) = E(0) =
π

2
, K(1) = +∞, E(1) = 1.
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The values for negative parameters are reduced to those for positive ones as

(1.5) K(m) =
K (mr)√

mc
, E(m) =

√
mc E (mr) , (m < 0)

where

(1.6) mc ≡ 1−m, mr ≡ −m

1−m
,

are the complementary and the reduced parameters, respectively. The latter sat-
isfies the condition 0 < mr < 1 when m < 0. These transformation formulas are
obtained as the special cases of the imaginary modulus transformation formulas of
the incomplete integrals. Refer to the first and second forms of BF160.02. These
features enable us to consider only the cases when 0 < m < 1.

1.2. Auxiliary complete elliptic integrals. Rather important are not the pair
of K(m) and E(m) but a pair of auxiliary complete elliptic integrals of the second
kind [2]:

(1.7) B(m) ≡
∫ π/2

0

cos2 θdθ√
1−m sin2 θ

, D(m) ≡
∫ π/2

0

sin2 θdθ√
1−m sin2 θ

.

They are linearly related with K(m) and E(m) as

(1.8) K(m) = B(m) +D(m), E(m) = B(m) +mcD(m).

The special values are computed as

(1.9) B(0) = D(0) =
π

4
, B(1) = 1, D(1) = +∞.

The values for negative parameters are alternatively reduced to those for positive
ones as

(1.10) B(m) =
D (mr)√

mc
, D(m) =

B (mr)√
mc

(m < 0).

These are derived from equations (1.5) and (1.8). Therefore we can restrict ourselves
to the case 0 < m < 1. The auxiliary integrals are needed in computing the
derivatives of K(m) and E(m) without cancellation as

(1.11)
dK(m)

dm
=

B(m)

2mc
,

dE(m)

dm
=

−D(m)

2
.

These are derived from BF710.00 and BF710.02. Also, B(m) or D(m) is required
in the evaluation of the corresponding incomplete integrals:

(1.12) B(ϕ|m) ≡
∫ ϕ

0

cos2 θdθ√
1−m sin2 θ

, D(ϕ|m) ≡
∫ ϕ

0

sin2 θdθ√
1−m sin2 θ

.

This is because their computations for arbitrary value of ϕ are transformed to those
for the case 0 < ϕ < π/2 by the amplitude reduction formulas

(1.13) B(ϕ± jπ|m) = B(ϕ|m)± 2jB(m), D(ϕ± jπ|m) = D(ϕ|m)± 2jD(m).

These are derived from those of F (ϕ|m) and E(ϕ|m) given in BF113.02.
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1.3. Auxiliary incomplete elliptic integrals. The auxiliary incomplete elliptic
integrals are required in computing the partial derivatives of F (ϕ|m) and E(ϕ|m)
with respect to the parameter m without cancellation as(

∂F (ϕ|m)

∂m

)
ϕ

=
1

2mc

[
B(ϕ|m)−

(
sinϕ cosϕ√
1−m sin2 ϕ

)]
,(1.14)

(
∂E(ϕ|m)

∂m

)
ϕ

=
−D(ϕ|m)

2
.(1.15)

Refer to BF710.07 and BF710.09. The former derivative is related with the partial
derivatives of Jacobian elliptic functions with respect to m as(

∂sn(u|m)

∂m

)
u

= cn(u|m)dn(u|m)

(
∂F (ϕ|m)

∂m

)
ϕ

,(1.16)

(
∂cn(u|m)

∂m

)
u

= −sn(u|m)dn(u|m)

(
∂F (ϕ|m)

∂m

)
ϕ

,(1.17)

(
∂dn(u|m)

∂m

)
u

= −msn(u|m)cn(u|m)

(
∂F (ϕ|m)

∂m

)
ϕ

,(1.18)

(
∂am(u|m)

∂m

)
u

= dn(u|m)

(
∂F (ϕ|m)

∂m

)
ϕ

.(1.19)

Refer to BF710.50 through BF710.53. These derivatives are necessary in applying
the method of variation of constant to the perturbed rotational motion of a rigid
body [14, 15].

1.4. Cancellation problem. One may claim that the combination of K(m) and
E(m) is sufficient for the purposes discussed in the previous subsection. Either
B(m) or D(m) is computable from the pair of K(m) and E(m) as

(1.20) B(m) =
E(m)−mcK(m)

m
, D(m) =

K(m)− E(m)

m
.

These are obtained by solving equation (1.8) with respect to B(m) and D(m).
Nevertheless, these expressions face a severe loss of information in numerical com-
putation. This is true especially whenm is small. Such a situation frequently occurs
when we discuss the rotational motions of rigid bodies under weak torques. Good
examples are those of solid planets, satellites, and asteroids in the solar system.
The typical values of m is of the order of 10−7 in these cases [13]. Figure 1 shows
the parameter dependence of the logarithms of relative errors of B(m) computed
by two methods: equation (1.20) using the given values of K(m) and E(m) and
Bulirsch’s cel2 [2]. Here the function cel2 is defined as

(1.21) cel2 (kc, a, b) ≡
∫ ∞

0

(
a+ bξ2

(1 + ξ2)
√
(1 + ξ2) (1 + k2cξ

2)

)
dξ.

It can directly evaluate B(m) and D(m) as

(1.22) B(m) = cel2 (kc, 1, 0) , D(m) = cel2 (kc, 0, 1) ,

where

(1.23) kc ≡
√
mc,
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Figure 1. Loss of Information in Computation of B(m). Shown
are the relative errors of two methods to compute B(m) in the dou-
ble precision environment; the defining formula given in equation
(1.20) and Bulirsch’s cel2.

is the complementary modulus. The errors shown in the figure are measured as
the differences from the quadruple precision computations prepared by qcel2. It is
the quadruple precision extension of cel2. The accuracy of the quadruple precision
computation is confirmed at the level of 10−33. This was done by random compar-
ison with the extremely high precision computation in 40 digits by Mathematica
[22]. We computed the values of K(m) and E(m) by Cody’s Chebyshev approxi-
mate formulas of Hastings type [20, 10, 11, 12] in preparing the graph of the former
method. We confirm that the manner of round-off error increase is independent on
the procedure to compute K(m) and E(m). A similar result as shown in Figure
1 is obtained for D(m). The reason of the significant increase of round-off errors
in case of the defining formulas is clear. This is because equation (1.20) is of the
form of the difference of two positive quantities of similar magnitude when m ∼ 0.
Figure 2 illustrates the parameter dependence of K(m), E(m), B(m), and D(m).
It is obvious that mc ∼ 1 when m is small. Then E(m) and mcK(m) become of a
similar magnitude. This produces round-off errors in evaluating B(m). Similarly,
K(m) and E(m) are roughly the same whenm ∼ 0. This is the cause of information
loss in computing D(m).
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Figure 2. Parameter Dependence of Complete Elliptic Integrals.

1.5. Comparison of existing methods. We need specific procedures in order
to compute B(m) and/or D(m) with ignorable round-off errors. There exist two
methods: Bulirsch’s cel2 described already and Carlson’s RF and RD [7, 8]. The
latter functions are defined as

RF (x, y, z) ≡
1

2

∫ ∞

0

dt√
(t+ x)(t+ y)(t+ z)

,(1.24)

RD(x, y, z) ≡ 3

2

∫ ∞

0

dt√
(t+ x)3(t+ y)(t+ z)

,(1.25)

and related with F (ϕ|m) and D(ϕ|m) as

F (ϕ|m) = sinϕRF

(
cos2 ϕ, 1−m sin2 ϕ, 1

)
,(1.26)

D(ϕ|m) =

(
sin3 ϕ

3

)
RD

(
cos2 ϕ, 1−m sin2 ϕ, 1

)
.(1.27)

Therefore, we can use them in computing B(m) and D(m) as

(1.28) B(m) = K(m)−D(m), K(m) = RF (0,mc, 1) , D(m) =
RD (0,mc, 1)

3
.

Numerical comparison with the higher precision computations revealed that both
of these methods are almost always precise. The exception is the case of B(m)
computed by Carlson’s functions if m ∼ 1. Figures 3 and 4 depict the parameter
dependence of the relative errors of the two methods to compute B(m) and D(m)
in the double precision environment. The precision loss of B(m) in Carlson’s case
when m ∼ 1 is due to its expression shown in the above. There B(m) is expressed
as the difference of two positive quantities K(m) and D(m). Both K(m) and D(m)
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Figure 3. Parameter Dependence of Relative Errors of B(m).
Shown are the relative errors of three methods to compute B(m) in
the double precision environment; Carlson’s RF and RD, Bulirsch’s
cel2, and the new method presented in §2.

go to infinity logarithmically whenm → 1. See Figure 2 again. Then the magnitude
of K(m) and D(m) become similar. Thus Carlson’s form faces a cancellation. This
means that cel2 is more appropriate than RF and RD in the sense of computational
precision. Table 1 lists the averaged CPU time of these methods. We measured the
CPU times as simple means of the results for 224 − 1 equally spaced grid points in
the standard domain of the parameter 0 < m < 1 and scaled by that to compute the
sine function in the double precision environment. All the computation codes were
written in Fortran 77/90, compiled by the Intel Visual Fortran 8.0, and executed at
a PC with Intel Core Duo processor under Windows XP. The table clearly shows
that cel2 runs 2.9-3.5 times faster than the combination of RF and RD. This
mainly owes to the difference in the speed of convergence of the main algorithm.
Bulirsch’s cel2 is based on the Landen transformation in combination with the
arithmetic-geometric mean [2, 3, 4, 5]. It is of quadratic convergence. Namely
the number of significant digits is doubled by each iteration. Meanwhile Carlson’s
functions rely on the duplication theorem [7, 8]. It is of linear convergence. Then
the number of significant digits increases by a same amount in each application.
Thus the higher the desired relative precision is, the faster cel2 becomes than
RF and RD. This is observed from the ratios of their CPU times in the single
and double precision environments. Therefore, cel2 is more preferable than the
combination of RF and RC also in terms of the computational speed. Actually,
cel2 runs around three times faster than the pair of RF and RC already in the
single precision environment. Nevertheless, it is also true that even cel2 requires
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Figure 4. Parameter Dependence of Relative Errors of D(m).
Same as Figure 3 but for D(m).

Table 1. Averaged CPU Times to Compute B(m) and D(m) Si-
multaneously. The unit of CPU time is that to compute the double
precision sine function.

Method Procedures Single Double

Carlson RF & RD 18.0 53.5
Bulirsch cel2 6.2 15.5
New elbd 1.1 3.2

a significant amount of computational time, say 6-16 times more than that of the
sine function. This is still a large computational labor as we consider the frequent
needs to evaluate the integrals in practical applications.

1.6. Introduction of new method. Recently we developed a new method to
compute K(m) and/or E(m) in [17]. Hereafter, we cite it as Paper I. The key
techniques used there are the utilization of Taylor series expansion and the combi-
nation of the defining relation of Jacobi’s nome and Legendre’s relation. This is a
continuation of our trials to accelerate the procedures to compute the complete and
incomplete elliptic integrals and the Jacobian elliptic functions [19, 16, 17, 18]. The
new method is sufficiently precise and significantly faster than the existing proce-
dures to compute K(m) and/or E(m) including Cody’s method as well as Innes’
classic formulation [21]. None of the procedures discussed in Paper I including ours
is not suitable to compute B(m) and/or D(m) as we saw in Figure 1. Then we
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Table 2. Necessary Minimum Order of Taylor Expansion Poly-
nomials of B(m) and D(m)

Single Double
m JB JD JB JD

(0.0, 0.1] 5 5 11 11
(0.1, 0.2] 5 5 11 11
(0.2, 0.3] 6 6 12 12
(0.3, 0.4] 6 6 12 13
(0.4, 0.5] 6 7 12 15
(0.5, 0.6] 6 8 13 16
(0.6, 0.7] 7 8 15 17
(0.7, 0.8] 9 10 18 20
(0.8, 0.85] 7 8 14 17
(0.85, 0.9] 9 10 18 20

adapt our approach in Paper I to the computation of B(m) and D(m). The result-
ing method is significantly more precise than the existing procedures. See Figures
3 and 4 again. The errors of the new method are 1-3 machine epsilons at most.
Meanwhile, the new method runs much faster than cel2. See Table 1 again. In
this short article, we will present the detail of the new method to compute B(m)
and D(m) simultaneously.

2. New method

Let us consider computing the auxiliary complete elliptic integrals B(m) and
D(m). Refer to Paper I for the basic background of the present approach. Once
the auxiliary integrals are computed, we can calculate K(m) and E(m) from them
without cancellation by using equation (1.8).

2.1. Case of small parameter. When 0 < m ≤ 0.9, we evaluate B(m) and
D(m) by their piecewise approximate polynomials derived from their Taylor series
expansions. In constructing the piecewise polynomials, we divide the given do-
main (0.0, 0.9] into 10 subdomains; (0.0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5],
(0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.85], and (0.85, 0.9]. In each subdomain, the ap-
proximate polynomials are written as

(2.1) B(m) ≈
JB∑
j=0

Bj (m−m0)
j , D(m) ≈

JD∑
j=0

Dj (m−m0)
j .

The necessary minimum order of the polynomials JB and JD are listed in Table 2
for the single and double precision environment. We obtained them by numerical
comparison with the quadruple precision computations. We set the reference value
of m in each subdomain m0 as the center values of the corresponding subdomains.
Namely, they are 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.825, and 0.875.
Meanwhile, the coefficients Bj and Dj themselves are explicitly given in Tables 3
through 12. We obtained them by Mathematica [22] with a command like

Series[(EllipticE[m] − (1− m)EllipticK[m])/m, {m, 0.05, 12}]]
This gives the coefficients Bj in Table 3.
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Table 3. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.0 < m ≤ 0.1. The coefficients are expressed with a
few more digits than necessary in order to avoid round-off errors
in the implementation.

j Bj Dj

0 0.790401413584395132 0.800602040206397048
1 0.102006266220019155 0.313994477771767757
2 0.039878395558551461 0.205913118705551955
3 0.021737136375982167 0.157744346538923994
4 0.013960979767622058 0.130595077319933092
5 0.009892518822669142 0.113308474489758567
6 0.007484612400663336 0.101454199173630195
7 0.005934625664295474 0.092918784207297437
8 0.004874249053581664 0.086565380148168087
9 0.004114606930310886 0.081727984665103014
10 0.003550452989196177 0.077990665729107038
11 0.003119229959988475 0.075080426851268007

Table 4. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.1 < m ≤ 0.2

j Bj Dj

0 0.801024064452844894 0.834232667811735098
1 0.110695344529634015 0.360495281619098276
2 0.047348746716993718 0.262379664114505869
3 0.028484367255041423 0.223723944518094276
4 0.020277811444003597 0.206447811775681053
5 0.015965005853099119 0.199809440876486856
6 0.013441320273553635 0.199667451603795275
7 0.011871565736951440 0.204157558868236842
8 0.010868363672485521 0.212387467960572375
9 0.010231587232710565 0.223948914061499360
10 0.009849585546666211 0.238708097425597860
11 0.009656606347153765 0.256707203545463756
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Table 5. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.2 < m ≤ 0.3

j Bj Dj

0 0.812597772919920493 0.873152581892675550
1 0.121109617945510113 0.420622230667770216
2 0.057293376831239877 0.344231061559450379
3 0.038509451602167328 0.331133021818721762
4 0.030783430301775233 0.345277285052808412
5 0.027290564934732527 0.377945322150393392
6 0.025916369289445199 0.427378012464553881
7 0.025847203343361799 0.494671744307822406
8 0.026740923539348855 0.582685115665646201
9 0.028464314554825705 0.695799207728083165
10 0.030995446237278954 0.840018401472533403
11 0.034384369179940976 1.023268503573606061
12 0.038738002072493936 1.255859085136282496

Table 6. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.3 < m ≤ 0.4

j Bj Dj

0 0.825323557983515895 0.919027039242097348
1 0.133862116083687790 0.501002159288247514
2 0.071011293597988675 0.468831270566456863
3 0.054178477417387376 0.517714227776400015
4 0.049451744948102993 0.620843391317303107
5 0.050222196224107476 0.782364393786869723
6 0.054742913171830353 1.019114535076102913
7 0.062746257927001699 1.359345202748496052
8 0.074669881043476886 1.845717302358827942
9 0.091480845177733472 2.541071703153920729
10 0.114705092110997824 3.537404655208041337
11 0.146571132581439876 4.969296002977425930
12 0.190257137333846284 7.033822870030031126
13 10.02004322503447140
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Table 7. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.4 < m ≤ 0.5

j Bj Dj

0 0.839479570270612971 0.974404366546369673
1 0.149916440306396336 0.613246805394160910
2 0.090831935819428835 0.671096669502166996
3 0.080347033483341786 0.870727620185086140
4 0.085638440500470454 1.229542231202690761
5 0.101954725932990372 1.826605967544420569
6 0.130574811533616015 2.806934530997762740
7 0.176105076358849928 4.418789329084028134
8 0.246835164402955447 7.083236057478765325
9 0.356424476867718855 11.51508812055758294
10 0.527002562230102743 18.93151118599927464
11 0.794389634259304750 31.41199693820496388
12 1.216762532429718021 52.52072945457582854
13 88.38485473506529806
14 149.5663744939804784
15 254.3179084310411743

Table 8. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.5 < m ≤ 0.6

j Bj Dj

0 0.855469615156419991 1.043455295115133534
1 0.170896072689739584 0.779625721928504850
2 0.121335229026948226 1.029742360932067582
3 0.128201883574947410 1.622037223411353130
4 0.164687281451527560 2.787989531185347620
5 0.237418908749381742 5.048381487372069147
6 0.369208104716495452 9.463277611943484295
7 0.605658733847927717 18.18148994942766790
8 1.033705561557812744 35.58098059117916870
9 1.818988489363267885 70.63393546191445013
10 3.279377651273850938 141.8285800834330593
11 6.029888380717536331 287.4487512501321663
12 11.26979685557794172 587.1153846499230762
13 21.35457785038283450 1207.065435225480616
14 2495.588727248664223
15 5184.692429394806441
16 10817.21333690413275
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Table 9. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.6 < m ≤ 0.7

j Bj Dj

0 0.873920061848643136 1.133678336575733166
1 0.199814057482376946 1.048643173729970391
2 0.172769615878015213 1.753465041198464516
3 0.228106913284202167 3.523182726803385513
4 0.370468141118071220 7.749476413813974582
5 0.679271252884820555 17.98645005585073306
6 1.348008496681757302 43.25591634623261333
7 2.827670976853820704 106.6815344540960170
8 6.179468250123914084 268.0984865731174340
9 13.93568601034281150 683.6241148502898048

10 32.21892928105972203 1763.497085219187407
11 76.00696295922610103 4592.374753831163809
12 182.3214490877540696 12053.44101904888928
13 443.5150764411264816 31846.66302074208170
14 1091.854722902838829 84621.22135905680802
15 2715.765866403819588 225956.4231829078900
16 605941.5172817588600
17 1631082.599539268321

Table 10. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.7 < m ≤ 0.8

j Bj Dj

0 0.895902820924731621 1.260612826574911614
1 0.243140003766786662 1.548665638082676581
2 0.273081875594105532 3.553669411871607615
3 0.486280007533573324 9.900444676104398756
4 1.082747437228230918 30.32056661745247199
5 2.743445290986452500 98.18025865888308915
6 7.555817828670234627 329.7710104345570550
7 22.05194082493752427 1136.655989742890393
8 67.15640644740229408 3993.834335746229798
9 211.2722537881770962 14242.72958655527085

10 681.9037843053270682 51394.75729168872096
11 2246.956231592536517 187246.7029146231521
12 7531.483865999711792 687653.0923753899027
13 25608.51260130241579 2542385.535653982270
14 88140.74740089604971 9453781.219347490272
15 306564.4242098446591 35328363.01797091708
16 1076036.077811072194 132593262.3833930149
17 3807218.502573632648 499544968.1840548215
18 13566382.24422139551 1888409347.294438724
19 7160267534.478937192
20 27223307946.96339622
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Table 11. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.8 < m ≤ 0.85

j Bj Dj

0 0.915922052601931494 1.402200569110579095
1 0.294714252429483394 2.322205897861749447
2 0.435776709264636140 7.462158366466719683
3 1.067328246493644239 29.43506890797307903
4 3.327844118563268085 128.1590924337895775
5 11.90406004445092906 591.0807036911982326
6 46.47838820224626394 2830.546229607726377
7 192.7556002578809477 13917.76431889392230
8 835.3356299261900064 69786.10525163921228
9 3743.124548343029103 355234.1420341879635

10 17219.07731004063094 1830019.186413931054
11 80904.60401669850158 9519610.812032515607
12 386808.3292751742460 49920868.75574849454
13 1876487.670110449342 263567700.9826023474
14 9216559.908641567755 1399645765.120061119
15 7469935792.837635005
16 40041555958.35610574
17 215463066814.4966654

Table 12. Coefficients of Taylor Expansion Polynomials of B(m)
and D(m): 0.85 < m ≤ 0.9

j Bj Dj

0 0.931906061029524828 1.541690112721819084
1 0.348448029538453861 3.379176214579645449
2 0.666809178846938248 14.94058385670236672
3 2.210769135708128663 81.91773929235074881
4 9.491765048913406881 497.4900546551479866
5 47.09304791027740853 3205.184010234846235
6 255.9200460211233087 21457.32237355321926
7 1480.029532675805408 147557.0156564174712
8 8954.040904734313578 1035045.290185256525
9 56052.48220982686950 7371922.334832212125

10 360395.7241626000917 53143443.95142401142
11 2367539.415273216078 386882347.5795976313
12 15829949.57277684102 2839458401.528033778
13 107415809.3278511100 20982661229.43898942
14 738058546.0239595692 155961775401.7662418
15 5126022002.555101497 1165096220419.884791
16 35935340655.02416589 8742012983013.913805
17 253988125761.2812212 65847254626723.66919
18 1808180007145.359570 497679873706243.4393
19 3773018634056605.405
20 28682631948378196.60



1738 TOSHIO FUKUSHIMA

Table 13. Polynomial Coefficients of Maclaurin Series Expansion
of B∗. The terms up to j = 5 and j = 13 are enough for the single
and double precision computations, respectively.

j B∗
X B∗

0

0 0 +1
1 −1/4 −1/4
2 −1/32 +3/64
3 −3/256 +3/128
4 −25/4096 +665/49152
5 −245/65536 +3437/393216
6 −1323/524288 +15981/2621440
7 −7623/4194304 +188287/41943040
8 −184041/134217728 +129334777/37580963840
9 −4601025/4294967296 +327273375/120259084288
10 −29548805/34359738368 +19096474969/8658654068736
11 −193947611/274877906944 +631505527133/346346162749440
12 −2591845347/4398046511104 +2224154230753/1451355348664320
13 −35156056117/70368744177664 +181962561086453/139330113471774720

Table 14. Polynomial Coefficients of Maclaurin Series Expansion
of D∗. The terms up to j = 5 and j = 12 are enough for the single
and double precision computations, respectively.

j D∗
X D∗

0

0 +1/2 −1
1 −1/8 0
2 −3/128 +5/128
3 −5/512 +31/1536
4 −175/32768 +2365/196608
5 −441/131072 +10409/1310720
6 −4851/2097152 +117929/20971520
7 −14157/8388608 +2458621/587202560
8 −2760615/2147483648 +194646309/60129542144
9 −8690825/8589934592 +5577961675/2164663517184
10 −112285459/137438953472 +363577654297/173173081374720
11 −370263621/549755813888 +632563423193/362838837166080
12 −19870814327/35184372088832 +102453646108723/69665056735887360
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2.2. Case of large parameter. If 0.9 < m < 1, we first evaluate two modifications
of the integrals:

(2.2) B∗(m) ≡ mB(m), D∗(m) ≡ mD(m),

by using the definition of Jacobi’s nome and Legendre’s relation. Then we compute
B(m) and D(m) as

(2.3) B(m) =
B∗(m)

m
, D(m) =

D∗(m)

m
.

Let us explain the details to compute B∗(m) and D∗(m). We begin with Jacobi’s
nome q(m). It is defined as a function of m by way of K(m) as

(2.4) q(m) ≡ exp

(
−πK(1−m)

K(m)

)
.

Refer to BF1050.01. By solving this definition with respect to K(1 − m) and
changing the variable from m to mc = 1−m, we obtain an expression of K(m) in
terms of q(mc) and K(mc) as

(2.5) K(m) =

(
K (mc)

π

)
[− log q (mc)] .

The Maclaurin series expansion of q(m) is given as

(2.6) q(m) =
m

16

(
1 +

m

2
+ · · ·

)
.

Refer to BF901.00. Then we split the right-hand side of equation (2.5) into the
sum of regular and logarithmically singular parts as

(2.7) K(m) = K0 +KXX,

where

(2.8) K0 ≡ K (mc)

π

[
− log

(
16q (mc)

mc

)]
, KX ≡ K (mc)

π
, X ≡ − log

(mc

16

)
.

Both K0 and KX are regular around mc = 0 as

(2.9) K0 ≈ −
(
mc

4
+

21m2
c

128

)
, KX ≈ 1

2
+

mc

8
.

Meanwhile Legendre’s relation is a formula on K(m), K (mc), E(m), and E (mc).
It is expressed as

(2.10) E(m)K (mc) +K(m)E (mc)−K(m)K (mc) =
π

2
.

Refer to BF110.10. We obtain an expression of E(m) from this as

(2.11) E(m) =

[
1−

(
E (mc)

K (mc)

)]
K(m) +

π

2K (mc)
.

Substitute the expression of K(m) provided in equation (2.7) into this. Then we
obtain a similar expression of E(m) in terms of X as

(2.12) E(m) = E0 + EXX,

where

(2.13) E0 ≡ π

2K (mc)
+

[
1−

(
E (mc)

K (mc)

)]
K0, EX ≡

[
1−

(
E (mc)

K (mc)

)]
KX .
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Again, both E0 and EX are regular around mc = 0 as

(2.14) E0 ≈ 1− mc

4
, EX ≈ mc

4
+

3m2
c

32
.

The expressions of the complete integrals using the logarithm when m ∼ 1 have
been well known from early days. Refer to Article 78 of [9], though the way of
derivation is quite different. Later Hastings adopted them as a base to obtain the
efficient approximations of K(m) and E(m) in the early days of modern computers
[20]. He used Y ≡ − logmc as the singular variable as

(2.15) K(m) = K1 +KXY, E(m) = E1 + EXY.

Then he derived the Chebyshev polynomial approximation of KX , EX , and the
new coefficients

(2.16) K1 ≡ K0 +KX log 16, E1 ≡ E0 + EX log 16,

in the domain 0 ≤ mc < 1. This is in order to construct a uniformly approximating
formulation in low precision purposes [1]. This pioneer work was extended by Cody
to the case of higher precisions [10, 11, 12]. Let us go further. We obtain similar
expressions of B∗(m) and D∗(m) from equations (2.2), (2.7), and (2.12) as

(2.17) B∗(m) = B∗
0 +B∗

XX, D∗(m) = D∗
0 +D∗

XX,

where B∗
0 , B

∗
X , D∗

0 , and D∗
X are defined in terms of K0, KX , E0, and EX as

(2.18) B∗
0 ≡ E0−mcK0, B∗

X ≡ EX −mcKX , D∗
0 ≡ K0−E0, D∗

X ≡ KX −EX .

They are all regular around mc = 0 as

B∗
0 ≈ 1− mc

4
, B∗

X ≈ −
(
mc

4
+

m2
c

32

)
,(2.19)

D∗
0 ≈ −

(
1− 51m2

c

128

)
, D∗

X ≈ 1

2
− mc

8
.(2.20)

Some low order coefficients of these approximate polynomials are listed in Tables
13 and 14. They are directly obtained by using Mathematica [22] with a command
such as

Series[(EllipticE[x] − x EllipticK[x])/Pi, {x, 0, 20}]
This gives the coefficients of B∗

X in Table 13. Numerical comparison with the
original definitions reveal that the necessary minimum order of the polynomials is
5 and 13 or 12 in the single and the double precision environments, respectively.
Let us summarize the procedure when 0.9 < m < 1. We first compute B∗

0 , B
∗
X ,

D∗
0 , and D∗

X by their approximate polynomials in terms of mc, next evaluate X
by calling a logarithm function once, then calculate B∗(m) and D∗(m), and finally
obtain B(m) and D(m) by a simple division by m.

2.3. Cost and performance. We will compare the computational cost and per-
formance of the new method with the existing ones. Let us examine the computing
precision first. Figures 3 and 4 already illustrate the comparison of relative errors of
B(m) and D(m), respectively. Obviously, the new method is the most precise. We
prepared Figure 5 in order to see the error distribution of the new method integral
by integral. The figure shows that the relative errors of all four complete elliptic
integrals are less than the machine epsilon in the single precision environment. A
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Figure 5. Relative Errors of Four Complete Elliptic Integrals
Computed by New Procedure in Single Precision.

similar plot confirms that the maximum relative errors in the double precision envi-
ronment are around 3 machine epsilons in the region 0.9 < m < 1. The comparison
in computational speed is already given in Table 1. The new method calculates two
polynomials of the orders 5 to 10 and 11 to 20 in the single and double precision
environment, respectively. When m > 0.9, it calls one logarithm and one division
in addition. Thus the computational labor is much smaller than those of cel2, RF ,
or RD. This was easily seen in Table 1.

3. Conclusion

By adopting the same approach when we developed a fast method to compute
K(m) and/or E(m) in Paper I [17], we created a new method to calculate the
auxiliary complete elliptic integrals B(m) and D(m). The core technique is the
combination of the Taylor series expansions of the integrals, the definition of Ja-
cobi’s nome, and Legendre’s relation. The new method is significantly more precise
than Bulirsch’s cel2 and Carlson’s RF and RD in the sense that the magnitude of
relative errors is less than 1-3 machine epsilons. This is mainly due to the simplicity
of the algorithm and the small number of arithmetic operations required. The new
method needs the evaluation of one or two polynomials of the order 5-20 by Horner’s
method and a call of the logarithm function provided by a standard mathematical
library when m > 0.9. Thanks to the effectiveness of the policy of divide-and-rule,
the new procedure is drastically faster than the existing procedures. It runs 4.8
times faster than cel2 and 16.8 times faster than the pair of RF and RD in the dou-
ble precision computation. These acceleration factors change as 5.6 and 16.4 in the
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single precision environment. The obtained procedure will be useful in developing
an efficient method to compute the auxiliary incomplete elliptic integrals B(ϕ|m)
and D(ϕ|m). Finally, we caution the readers that the new method is tailor-made
and not scalable. All its parameters including the choice of subdomains, the orders
of truncated polynomials, and the Taylor series coefficients have to be adapted for
specific numeric processors with a higher precision as the extended precision ex-
pressed as real*10 in terms of Fortran or for higher precision environments as that
of quadruple (real*16) precision. Here we presented the results only for the single
(real*4) and the double (real*8) precision environments. Also, the new proce-
dure assumes the availability of a mathematical library of the logarithmic function.
Meanwhile Bulirsch’s cel2 is scalable. One has only to prepare an approximation
of π constant. Also, it requires only the square root function apart from standard
arithmetics operations. The Fortran routine of the new procedure elbd is available
from the author upon request.
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