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UPPER BOUNDS FOR RESIDUES OF DEDEKIND
ZETA FUNCTIONS AND CLASS NUMBERS
OF CUBIC AND QUARTIC NUMBER FIELDS

STEPHANE R. LOUBOUTIN

ABSTRACT. Let K be an algebraic number field. Assume that Cx(s)/¢(s)
is entire. We give an explicit upper bound for the residue at s = 1 of the
Dedekind zeta function (i (s) of K. We deduce explicit upper bounds on class
numbers of cubic and quartic number fields.

1. INTRODUCTION

Let K be an algebraic number field of degree m = r1 + 2ry > 1, where r1 is the
number of real places of K and 79 is the number of complex places of K. Let kg
be the residue at s = 1 of the Dedekind zeta function function (x(s) of K. Let dg
be the absolute value of the discriminant of K. Let hg be its class number. Then
(see [Lan, Chapter XIII, Section 3, Theorem 2]):

WKV d[(

1 hi =
(1) K= 5n 2m)rRegy

K

where wx > 2 is the number of complex roots of unity in K and Regj is the
regulator of K. To get upper bounds on hx we need lower bounds on Regy (e.g.,
see [Sil]) and upper bounds on kg (e.g., see [Lou00]). If K is a real quadratic
number field, then

(2) hix < %@

([Le] and [Raml|, Corollary 2]); if K is a real cyclic cubic number field, then

3) hie < 2\

(see [MP], and use [Lou93] instead of [MP| Lemme 3.2] to obtain that this bound
is valid for real cyclic cubic number fields of not necessarily prime discriminants).
With e = exp(1), it is known that

2(m—1
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([Lou00, Theorem 1] and [Lou0ll Theorem 1]). If K is abelian, we have a better
bound:

8 o < ([ )

2(m—1)

where A\g = 0 if K is real and A\x = 5/2 — log6 if K is imaginary (use [Raml
Corollary 1] and notice that if K is imaginary, then m/2 of the m characters in
the group of primitive Dirichlet characters associated with K are odd). For some
totally real number fields, an improvement on () is known (see [Lou01l, Theorem
2]): if K ranges over a family of totally real number fields of a given degree m > 1
for which (x(s)/((s) is entire, there exists C,, (computable) such that dx > Cy,
implies

log™ ' d 1 ( elogdy )’"‘1
6 rr < <
(6) K =9m=T(m -1)! = fn(m - 1) \2(m — 1)

It is known that Cx(s)/((s) is entire if K is normal (see [MM| Chapter 2, Theorem
3]), or if the Galois group of its normal closure is solvable (see [Uch|, [vdW] and
[MM| Chapter 2, Corollary 4.2]), e.g., for any cubic or quartic number field. This
paper generalizes (@) to not necessarily totally real number fields:

Theorem 1. Letr andry be given, with ri+2ry > 3. There exists d,., ,, effectively
computable such that for any number field K of degree m = ry + 2ro with r1 real
places and ro complex places, we have

logm_l dK
< _ o TR
@ K= 2m=1(m — 1)V

provided that (1) dg > dy, », and (i) that Cx(s)/C(s) is entire.

For given r; and r, we will explain how to use any mathematical software,
we use Maple, to compute such a d,, ,,. It appears that for the small values of
r1 + 2ro = m, say for 3 < m < 6, this bound (7)) holds true with no restriction on
the size of dk (in fact, we have an even better bound, see Theorem []), the reason
being that these computed d,, ,,’s are less than or equal to the least discriminants
of number fields of degree m = r; + 2ry < 6 with r; real places and ro complex
places. However, even in the simplest situation where we assume that K is totally
real, we could not in [Lou05] obtain beforehand a C' > 0 such that () holds true

for K’s of root-discriminants px = d%m greater than C.
Set

m—r 00

m
1
~= lim (Z - logm) — 057721 -
k=1
(Euler’s constant) and
Arg.m = 2+ r2logd — (m — 1)(log(4m) — 7).

Since Ay, < 0 for m > 3, Theorem [ follows from the bound

(logdx + )\,«z,m)mi1

9m—1(m — 1)]

(8) KK < + Oy (log™ ™ dic),
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where the implied constants are effective and depend on 7 and m only. To prove
@), we generalize the method introduced in [Lou96]. Set

m

(1) = lim (3 loik = %logQ m) = —0.07281 -

m—r 00

and
Porgm = 3+ rom? /12 — (m — 1)(7?/8 — 42 — 27(1)).

The error term in (§) is less than or equal to zero if p,, ,, > 0 and dg is large
enough. Now, i, ,» > 0 if and only if we are in one of the following cases:

TABLE 1

m T2 Argm ry,m dx >
2 0 2+~ —log(4n) = 0.04619- - 1.95384 -

2 1 2+4~—logm=1.43248.-. 2.77631 - - -

3 0 2+2y—2log(4r) = —1.90761---  0.90769 - - - 146
3 1 242y—2log(2r) =—0.52132---  1.73015--- 4
4 1 243y—1log(16m%) = —2.47513--- 0.68400- - - 75100
4 2 243y—log(4n®) = —1.08883---  1.50647--- 35
5 2 2+44y—4log(2w) = —3.04264---  0.46031--- 21-10'°
6 3 2+5y—log(167°) = —3.61015---  0.23662--- 21-10%

It will follow that we have a pleasingly explicit bound:

Theorem 2. Assume that we are in one of the eight cases of Table 0. Then,

(log dic + Arym)™

om—1(m — 1)l

RK >

provided that dy is large enough, as given in the last column of Table [II

The results in [Lou93] and [Lou96] are the case m = 2 of Theorem [2 above.
(However, in the quadratic case we have an even better bound (see [Ram]).) Finally,
by taking constants slightly less than these A,,.,,, we have a the fully explicit
following result where we do not have any restriction on dx (compare with Theorem

):

Theorem 3. Let K be a number field of degree m € {2,3,4,5,6} for which
Cr(8)/C(s) is entire. Then,

(logdg + A)™~!

K= Tom ;1)1

where X is as in Table
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TABLE 2

ro =0 ro =1 ro = 2 ro =3
0.04620 1.43249
—1.74865 —0.52132
—2.94863 —2.07896 —1.08883
—4.21779 —3.29415 —2.41877
—5.49315 —4.55901 —3.64104 —2.76490

OJU!»&OS[\.‘JS

Corollary 4. If K is a totally real cubic number field, then

1 —
If K is a totally real quartic number field which contains no quadratic subfield, then
5v10
(10) hK < —;:\/ dK.

We refer to [Dai] for examples of number fields with very large class numbers.

2. PROOF OF THE BOUND (]

We adapt [Lou00, Proof of Theorem 7]. Let K be a number field of degree
m =11+ 2ry > 1. Assume that (x(s)/((s) is entire. Set Ax/q = \/dx /4™2m™ 1,

27"2(5—1)
Lrq(s) =T (s/2)[72(s) =

(notice that r1 + 79 — 1 > 0 and ro > 0) and

Fr/q(s) = Ak /Qlr/a(s)(Ck (5)/¢(s))-
Then, Fk/q(s) is entire and Fg/q(s) = Fr/q(l —s). Let

D=l (s/2)T72 (s + 1) /2)

71—7‘2/2

1 c+ioco

(11) Sk/q(x) : Frq(s)z™°ds (c>1and z > 0)

2mi c—1i00

denote the inverse Mellin transform of F,q(s). Then,

(12) Sic/al+) = > Sx/al>)

x
(notice that Fx/q(s) is entire, shift the vertical line of integration R(s) = ¢ > 1
in (1) leftwards to the vertical line of integration R(s) = 1 — ¢ < 0, then use the
functional equation Fi q(1 — s) = Fg/q(s) to come back to the vertical line of
integration R(s) = ¢ > 1). For R(s) > 1,

° Jdz
Fija(s) = | Siralo)e T
0 .’I/‘
is the Mellin transform of Sk, q(z). Using (I2)), we obtain

(13) Frq(s) = /100 Skjq(@)(z® + xlfs)dx—m
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—S8

on the whole complex plane. Now, write (x(s)/C(s) = >_,5; arx/q(n)n™° and
¢ml(s) = > > am—1(n)n=% (R(s) > 1). Then, |agx,;q(n)| < am—1(n) (see [Loulll
(55)]) and
Skyq(e) = ax/q(n)Hijq(nz/Ak/q),
n>1

where
ct+ioo

1 —s
Hijq@) = 5 | Tralsheds

—100

Since Hg/q(x) > 0 for z > 0 (see [Lou0l, Theorem 20]) ), we have

Sk/Q(@)] <Y am—1(n)Hijq(nz/Ak/q).

n>1

Plugging this into ([I3)), we obtain

< S o / HK/Q<m/AK/Q><1+1/x>

n>1
ct+ioo )
= Zam 1 2m/ (/ (na;/AK/Q)S(l—i—l/ac)dac) I'k/q(s)ds
n>1 c—100 1
1 c+ioo 1 1 .
= Zam 1 —_— S—1+g FK/Q(S)(TL/AK/Q) ds

n>1

2
c+ioco
B 27” c—1i00 (

Therefore, we have

) Li/q(s)C™(s) Ak jqds.

1 ct+100
(14) ki < Ik(s) = fr(s)ds (c>1),

2mi c—100

where

s—1
A(s) = n=%/21'(s/2)((s) and T'(s) = I((s+1)/2)/(I'(s/2)/T(1/2)). Recall that A(s)
has only two poles, both simple, at s = 1 and s = 0, and satisfies the functional
equation A(s) = A(1 — s). Moreover, 1/T'(s/2) is entire whereas I'((s + 1) /2) has a
simple pole at each odd negative integer. It follows that fx(s) has a pole of order
m >1at s =1, a pole of order m —ry =71 + 15 > 1 at s = 0, and a pole of order
r9 > 0 at each negative odd integer. Now, as in [Lou0ll Page 1207], in the range
01 < 0 < oy and [t| > 1, we have T'(0 + it) = O(y/]t|) and there exists M > 0
such that A(o +it) = O(|t|Me~"!/4). Hence, we are allowed to shift in (I4) the

fr(s) —fTQ(s)Aml(s)( 1 )d(e /2,

INotice the misprints in [Lou00, page 273, line 1] and [LouQ1, Theorem 20] where one should

read
dt
(M1 * M2)( / Miy(z/t) M2()
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vertical line of integration R(s) = ¢ > 1 leftwards to the vertical line of integration
R(s) = 1/2. We pick up one residue and obtain:

(15) ki < Rese1(fx(s)) + Ix(1/2) = Rese1 (fx(5)) + Oryom (d’ ™).

The bound (§]) now follows from Lemma [5] below.

3. COMPUTATION OF SOME RESIDUES

To prove Theorems [ and Bl we need a better approximation to Ix(s). By
shifting in (I4)) the vertical line of integration R(s) = ¢ > 1 leftwards to the vertical
line of integration R(s) = —2, we pick up three residues and we obtain:

(16)  rx < Resym1(fr(s)) + Ress—o(fx (5)) + Ress——1(fx (s)) + I (=2),

where Ress—1(fx(s)) is a polynomial of degree m — 1 in logdy with real coeffi-
cients, vdxRess—o(fx(s)) is a polynomial of degree r1 + ro — 1 in log dfr with real
coefficients, and dgRess—_1(fx(s)) is a polynomial of degree 7 — 1 in log dx with
real coefficients. This section is devoted to computing these residues.

Lemma 5. Set

faz(s)—f’“(sml@( : +1) S-DX.

s—1 s

Then, Ress=1(fx,1(s)) is a polynomial of degree I in X with real coefficients and

A
Resy—1(fri(s)) = w (1=1),
A, ) -2
Reso—1(fr(5)) = & +l! ) Cri (EX— 2)! (1=2)
and
X+ Apy) Xi-2
Res=1(fru(s)) = w ~ Oy +O0(X'7%) (12 3),
where
Apy = (2+ klog4 — l(log(4m) — 7)) /2
and

Cry= (3+kn?/12 —1(n*/8 — v* — 27(1))) /2.

Proof. We have T'(s) = 1 +a(s — 1) + b(s — 1)2 + O((s — 1)?), with a = log2 and
b= (log?2 — 72/12)/2, and (s — 1)A(s) = 14 ¢(s — 1) + d(s — 1)2 + O((s — 1)3),
with

_ A2 2 Ra2
17 = _log(472T) 7V and d = 2Uog(dm) — ) +lg 87" —16v(1)

For k£ > 0 and [ > 0, it holds that

(14 az+ b2 + 0(23))k(1 +cz +d2* + O(z?’))l (142-2*40(")
=1+ AkJZ =+ Bk,lZQ =+ 0(23)7

where Ag; = ka+lc+1 and By, = klac—|—k(b—|— %QQ) —|—l(d—|— Z*Tlcz) +ka+lc—1.
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Hence, the desired results hold true with
Cry = AR 1/2 = Biy = (k(a® — 2b) + 1(c® — 2d) + 3) /2.
We have a? — 2b = 72/12 and ¢? — 2d = % + 2y(1) — %/8. O
Lemma 6. Set r =1—k, let fr1(s) and Ay, be as in Lemma [, and set
Cru= (3—kn?/12 = U(n*/8 — 7* — 2¢(1))) /2.
If r=0orr=1, then
(X — Akvl)re—x.

r!

Reso—o(fri(s)) = (=1)'(w/2)"
If r =2, then

Ress=0(fk7l($)) _ (—l)l(ﬂ'/Q)k (M — C/ i Xr72 ) eix.

r! k, (r—2)!
If r > 3, then
X _ A r r—2
Res—o(fia(s)) = (1) (x/2)" <( ) gy, —

Proof. Here, I'(s) = T5(1 — as + bs®> + O(s?)), with a = log2 and b = (log?2 +
72/12)/2, and sA(s) = —(1 — cs + ds? + O(s?)), with ¢ and d as in (7). O

+ OkJ (XT3)> e X,

Lemma 7. Let fi(s) be as in Lemma Bl We have

Ress=—1(f1,(s)) = = (—)le*QX.

Lemma 8. It holds that

5 T(ro/2+1) ([ 14 \™ 45
k(=2) < 15— . di'”.

Proof. Using

1+42 2 2
and
. ) ¢(3) . ¢(3) 1+¢2 1 _
A=2+4t)] = A3 —dt)| < 2=£IT((3 —it)/2)| = < Ze—TIt/7
A2 +i8)] = A = )] € SIS - i)/2)) = G2 | s < 5o
we obtain:
&I (-2)] < —/ —2 4 it)|"2|A(=2 + it)|™ " de
< r2/2—m(m=1)t/7
< 27r3m/ (27t) dt,

and the desired bound. O
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TABLE 3. Minimal discriminants

7‘220 7”2:1 7‘2:2 7”2:3
5 3
49 23

725 275 117
14641 4511 1609
300125 92779 28037 9747

S Ot s W N 3

4. PROOF OF THEOREMS [2] AND 3] AND CONTENTS OF TABLES 1 AND 2

We use (I6), the previous lemmas and Table B above (see [Od]]).
1. If K is a real quadratic field, then

logdx +2+ v —log(4dr) logdix — (2+ v — log(4m)) 35
ki < — +
2 2Vdx 1872d3/°

is less than or equal to (log dg +2+~— 10g(47r))/2 for dg > 3.
2. If K is an imaginary quadratic field, then

<1ogdK—|—2—|—'y—1ogﬂ' s n 0 n 35/ 14w
& _
w= 2 2Vdx  Adx - 36m2d3/

is less than or equal to (log dx + 24+~ —log 7T)/2 for dg > 3.
3. If K is a totally real cubic number field, then

- (logdg +2+ 2y — 210g(47r))2

i < < = (3/249% +29(1) - 7%/8)
. (logdrc — (2+2y = 2log(47)))”  3/2+ 7% + 2¢(1) — 72/8 L
8vidk Vdk 10872d%/

is less than or equal to (logdx +2+ 2y —2 log(47r))2/8 for dg > 146, and less than
or equal to (logdx — 1.74865)?/8 for dx > 49.
4. If K is a not totally real cubic number field, then

2
log dgc + 2+ 27 — 2log(2
(log die 87 0g(27)) —(3/2+72 + 29(1) — 72/12)

s 72 35V Tm
logdr —2—2 21og(2
Vo (log dre v+ 2log(2m)) + oad 6w

KK =

+

is less than or equal to (logdx + 2+ 2y — 2 log(27r))2/8 for dx > 4.
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5. The other cases are easily dealt with by using any software for symbolic com-
putation, e.g., Maple, to compute the residues which appear in (I6l).

5. PROOF OF COROLLARY [

1. Let K be a totally real cubic field. Then, Reg, > %logz(d;(/él) (see [Cus,
Theorem 1] or [Nakl Section 2.3]). Hence,

Vv 1 —1.74865)% —
_ ﬂ/@[{ < (OgdK . 7 865) dK <
4Reg[( 210g (dK/4)

V.

2. Let K be a totally real quartic number field which contains no real quadratic

subfield. Then, Reg; > 80\1/5 log® d (see [Cus, Theorem 2]). By (@) (see also

[Lou01), Theorem 2, point 3]), we have kg < ﬁ log® dg . Hence, by (), we obtain

1
hi 3

Vdi 5v10
hp = < Vdg.
K= SRegy K= "214 VK
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