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MULTIPLE ZEROS OF NONLINEAR SYSTEMS

BARRY H. DAYTON, TIEN-YIEN LI, AND ZHONGGANG ZENG

Abstract. As an attempt to bridge between numerical analysis and algebraic
geometry, this paper formulates the multiplicity for the general nonlinear sys-
tem at an isolated zero, presents an algorithm for computing the multiplicity
structure, proposes a depth-deflation method for accurate computation of mul-
tiple zeros, and introduces the basic algebraic theory of the multiplicity.

Furthermore, this paper elaborates and proves some fundamental prop-
erties of the multiplicity, including local finiteness, consistency, perturbation
invariance, and depth-deflatability.

As a justification of this formulation, the multiplicity is proved to be con-
sistent with the multiplicity defined in algebraic geometry for the special case

of polynomial systems.
The proposed algorithms can accurately compute the multiplicity and the

multiple zeros using floating point arithmetic even if the nonlinear system is
perturbed.

1. Introduction

Solving a system of nonlinear equations in the form f(x) = 0, or

(1) f1(x1, . . . , xs) = f2(x1, . . . , xs) = · · · = ft(x1, . . . , xs) = 0

with f = [f1, . . . , ft]
T and x = (x1, . . . , xs), is one of the most fundamental problems

in scientific computing, and one of the main topics in most numerical analysis
textbooks. In the literature outside of algebraic geometry, however, an important
question as well as its answer seem to be absent over the years: What is the
multiplicity of an isolated zero to the system and how do we identify it accurately?

For a single equation f(x) = 0, it is well known that the multiplicity of a zero
x∗ is m if

(2) f(x∗) = f ′(x∗) = · · · = f (m-1)(x∗) = 0 and f (m)(x∗) �= 0.

The multiplicity of a polynomial system at a zero has gone through rigorous formu-
lations since Newton’s era [8, pp. 127-129] as one of the oldest subjects of algebraic
geometry. Nonetheless, the standard multiplicity formulation and identification via
Gröbner bases for polynomial systems are somewhat limited to symbolic computa-
tion, and largely unknown to numerical analysts.

As an attempt to bridge between algebraic geometry and numerical analysis, we
propose a rigorous formulation for the multiplicity structure of a general nonlinear
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system at a zero. This multiplicity structure includes, rather than just a single inte-
ger for the multiplicity, several structural invariances that are essential in providing
characteristics of the system and accurate computation of the zero. For instance,
at the zero x∗ = (0, 0) of the nonlinear system

(3) sinx1 cosx1 − x1 = sin x2 sin
2 x1 + x4

2 = 0

we shall have:

• The multiplicity m = 12.
• Under a small perturbation to system (3), there is a cluster of exactly 12
zeros (counting multiplicities) in a neighborhood of x∗ = (0, 0).

• The Hilbert function {1, 2, 3, 2, 2, 1, 1, 0, 0, . . .} forms a partition of the mul-
tiplicity 12.

• There exist 12 linearly independent differential operators ∂00, ∂10, . . . , ∂05−
∂22, ∂06−∂23, grouped by the differential orders and counted by the Hilbert
function as shown in Figure 1 below. They induce 12 differential functionals
that span the dual space associated with system (3). These functionals
satisfy a closedness condition and vanish on the two functions in (3) at the
zero (0, 0). Here, the differential operator

(4) ∂j1···js ≡ ∂
x
j1
1 ···xjs

s
≡ 1

j1! · · · js!
∂j1+···+js

∂xj1
1 · · · ∂xjs

s

of order j1 + · · ·+ js naturally induces a linear functional

(5) ∂j1···js [x∗] : f −→ (∂j1···jsf)(x∗)

on functions f whose indicated partial derivative exists at the zero x∗.
• The breadth, or the nullity of the Jacobian at x∗, is 2.
• The depth, which is the highest differential order of the functionals at x∗,
is 6.

Figure 1. Illustration of the multiplicity structure including dual
basis, Hilbert function, breadth and depth of the system (3) at the
zero (0, 0)

Such a multiplicity structure at an isolated zero of a general nonlinear system
will be introduced in §2. We prove that the so-defined multiplicity agrees with the
intersection multiplicity of polynomial systems in algebraic geometry. It is finite
if and only if the zero is isolated, and more importantly, this finiteness ensures
termination of the multiplicity identification algorithm NonlinearSystemMul-

tiplicity given in §2.3, and it also provides a mechanism for determining whether
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a zero is isolated [2]. Furthermore, the multiplicity structure of the given nonlin-
ear system can be computed by constructing the Macaulay matrices [21] together
with the numerical rank revealing [20]. As a result, we developed numerical algo-
rithms that accurately calculate the multiplicity structure even if the system data
are inexact at a zero that is given approximately (cf. §2.3 and §3.3).

It is well documented that multiple zeros are difficult to compute accurately even
for a single equation. There is a perceived barrier of “attainable accuracy”: The
number of correct digits attainable for a multiple zero is bounded by the number
of digits in the hardware precision divided by the multiplicity. For instance, only
three correct digits can be expected in computing a five-fold zero using the double
precision (16 digits) floating point arithmetic. Such a barrier has been overcome for
univariate polynomial equations [34]. Based on the multiplicity theory established
in this article, we shall derive a depth-deflation algorithm in §3 for computing
multiple zeros of general nonlinear systems, which can accurately compute the
multiple zeros without extending the arithmetic precision even when the nonlinear
system is perturbed. The depth defined in the multiplicity structure actually bounds
the number of deflation steps. A related multiplicity-deflation method is used in
[17], in which the main goal is to speed up Newton’s iteration.

As mentioned above, the study of the multiplicity for a polynomial system at
an isolated zero can be traced back to Newton’s time [8, pp. 127-129]. Besides
polynomial systems, multiple zeros of a nonlinear system occur frequently in sci-
entific computing. For instance, when a system depends on certain parameters,
a multiple zero emerges when the parameters reach a bifurcation point [3, §1.1].
Accurate computation of the multiple zero and reliable identification of the mul-
tiplicity structure may have a profound ramification in scientific computing. This
paper furnishes the theoretical details of the preliminary results on polynomial sys-
tems announced in an abstract [5], and in addition, the scope of this work has been
substantially expanded to general nonlinear systems.

2. Formulation and computation of the multiplicity structure

2.1. The notion and fundamental theorems of the multiplicity. The general
nonlinear system (1) is represented by either the mapping f : �s −→ �

t or the
set F = {f1, . . . , ft} of functions in the variables x1, . . . , xs. We assume functions
f : �s −→ � in this paper have all the relevant partial derivatives arising in the
elaboration. The multiplicity which we shall formulate in this section will extend
both the multiplicity (2) of a single equation and the Macaulay-Gröbner duality
formulation of multiplicity for polynomial systems.

Denote N = {0,±1,±2, . . .}. For an integer array j = (j1, . . . , js) ∈ Ns, write
j ≥ 0 if ji ≥ 0 for all i ∈ {1, . . . , s}. For every j = (j1, · · · , js) ∈ Ns with j ≥ 0,

denote xj = xj1
1 · · ·xjs

s and (x−y)j = (x1−y1)
j1 · · · (xs−ys)

js , and the differential
functional monomial ∂j[x̂] at x̂ ∈ �s as in (5), with order |j| = j1 + · · · + js. For
simplicity, we adopt the convention

(6) ∂j[x̂](f) ≡ 0 for all f whenever j �≥ 0

throughout this paper. A linear combination c = cj1∂j1 [x̂]+· · ·+cjk∂jk [x̂] is called a
differential functional, which will produce a set of numbers c(F ) = {c(f1), . . . , c(ft)}
when applied to the system F = {f1, . . . , ft}. For differential functionals, the linear
anti-differentiation transformation φi is defined by φi

(∑
j cj∂j[x̂]

)
=

∑
j cjφi

(
∂j[x̂]

)
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with

(7) φi

(
∂j1...js [x̂]

)
= ∂j′1...j′s [x̂] where j′σ =

{
ji if σ �= i,

ji−1 if σ = i,

for i = 1, . . . , s. From (6), we have φi(∂j[x̂]) = 0 if ji = 0. With these differential
functionals and the linear transformations, we now formulate the multiplicity at a
zero x̂ of the nonlinear system (1) as follows.

Definition 1. Let F = {f1, . . . , ft} be a system of functions having derivatives of
order γ ≥ 1 at a zero x̂ ∈ �s. Let D0

x̂(F ) = span{∂0...0} and
(8)

Dα
x̂ (F ) =

{
c=

∑
j∈Ns, cj∈�, |j|≤α

cj∂j[x̂]
∣∣∣ c(F ) = {0}, φi(c) ∈ Dα-1

x̂ (F ), ∀i = 1, . . . , s
}

for α = 1, . . . , γ. We call such sets dual subspaces. If Dγ
x̂(F ) = Dγ-1

x̂ (F ), then the
vector space

(9) Dx̂(F ) = D0
x̂(F ) ∪ D1

x̂(F ) ∪ · · · ∪ Dγ−1
x̂ (F ) = Dγ

x̂(F )

is called the dual space of the system F at x̂. The dimension of Dx̂(F ), i.e.,
dim

(
Dx̂(F )

)
, is called the multiplicity of F at x̂.

Notice that dual subspaces Dα
x̂ (F ) strictly enlarge as the differential order α

increases until reaching certain α = δ at which Dδ
x̂(F ) = Dδ+1

x̂ (F ), and thus all

functionals in Dδ+1
x̂ (F ) are of differential orders up to δ. As a result, there are no

functionals in the subsequent dual subspaces with differential orders δ+2, δ+3, . . .

since φi

(
Dα

x̂ (F )
)
⊂ Dα+1

x̂ (F ) for i = 1, . . . , s. Thus

D0
x̂(F )�D1

x̂(F )� · · ·�Dδ
x̂(F ) = Dδ+1

x̂ (F ) = · · · = Dγ
x̂(F ) = Dx̂(F ).

The integer δ, called the depth which will be defined later, is the highest order of
differential functionals in the dual space.

We may also denote the dual space as Dx̂(f) when the nonlinear system is rep-
resented as a mapping f = [f1, . . . , ft]

�. It is important to note that vanishing at
the system c(F ) = {0} is insufficient for the functional c to be in the dual space
Dx̂(F ). This becomes more transparent in the single equation f(x) = 0 where the
multiplicity is not the number of vanishing derivatives f (k)(x) = 0 at a zero x∗.
For instance, an infinite number of functionals ∂0[0], ∂2[0], ∂4[0], . . . vanish at the

(1× 1)-system {sin x}, since derivatives sin(2k) 0 = 0 for all integers k ≥ 0. Among
these functionals, however, only ∂0[0] ∈ D0({sin x}) since

φ1(∂2k[0])(sinx) = ∂2k−1[0](sin x) =
(−1)k-1

(2k−1)! cos 0 �= 0,

namely ∂2k[0] �∈ D0({sinx}) for all k ≥ 1; therefore, the multiplicity of sin x is one
at x = 0. The crucial closedness condition

(10) φi(c) ∈ Dx̂(F ) for all c ∈ Dx̂(F ) and i = 1, . . . , s

in Definition 1 requires the dual space Dx̂(F ) to be invariant under the anti-
differentiation transformation φi’s. The following lemma is a direct consequence
of the closedness condition.

Lemma 1. A differential functional c is in the dual space Dx̂(F ) of the nonlinear
system F = {f1, . . . , ft} at the zero x̂ if and only if

(11) c
(
(x− x̂)jfi(x)

)
= 0 for any i ∈ {1, . . . , t} and j ∈ Ns with j ≥ 0.
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Proof. For any j = (j1, . . . , js), k = (k1, . . . , ks), and function f , the Leibniz rule
of derivatives yields

(12) ∂j[x̂]
(
(x− x̂)kf(x)

)
= ∂j-k[x̂](f) ≡

(
φk1
1 ◦ φk2

2 ◦ · · · ◦ φks
s

)
(∂j[x̂])(f).

The equation (11) holds because of the closedness condition (10) and the linearity
of c. �

The dual space Dx̂(F ) itself actually contains more structural invariants of the
multiple zero beyond the multiplicity for the system F . Via dual subspaces Dα

x̂ (F ),
a Hilbert function h : N → N can be defined as follows:
(13)
h(0) = dim

(
D0

x̂(F )
)
≡ 1, h(α) = dim

(
Dα

x̂ (F )
)
−dim

(
Dα−1

x̂ (F )
)

for α ∈ { 1, 2, . . . }.
This Hilbert function is often expressed as an infinite sequence {h(0), h(1), . . .},
with which we introduce the breadth and the depth of Dx̂(F ), denoted by βx̂(F )
and δx̂(F ), respectively, as

βx̂(F ) = h (1) and δx̂(F ) = max{α | h (α) > 0 }.
In other words, the breadth is the nullity of the Jacobian at x̂ for system (1) and
the depth is the highest differential order of functionals in Dx̂(F ). They are impor-
tant components of the multiplicity structure that dictate the deflation process for
accurate computation of the multiple zero (cf. §3).

In contrast to system (3), the system {x2
1 sin x1, x

2
2 − x2

2 cosx2} also has a zero
(0, 0) of multiplicity 12 but having a different Hilbert function {1, 2, 3, 3, 2, 1, 0, . . .}
and a different dual space

(14) span
{ 1︷︸︸︷

∂00 ,

2︷ ︸︸ ︷
∂10, ∂01,

3︷ ︸︸ ︷
∂20, ∂11, ∂02,

3︷ ︸︸ ︷
∂21, ∂12, ∂03,

2︷ ︸︸ ︷
∂13, ∂22,

1︷︸︸︷
∂23

}
.

The polynomial system {x3
2, x2−x2

3, x3−x2
1} at origin is again 12-fold with Hilbert

function {1, . . . , 1, 0, . . .} and a dual space basis
(15)

1︷︸︸︷
∂000,

1︷︸︸︷
∂100,

1︷ ︸︸ ︷
∂200 + ∂001, . . . ,

1︷ ︸︸ ︷
∂400 + ∂201 + ∂002 + ∂010,

. . . ,

1︷ ︸︸ ︷
∂800 + ∂601 + ∂402 + ∂203 + ∂410 + ∂004 + ∂211 + ∂012 + ∂020

. . . ,

1︷ ︸︸ ︷
∂11,00 + ∂901 + ∂702 + ∂710 + ∂503 + ∂511 + ∂304 + ∂312 + ∂105 + ∂320 + ∂113 + ∂121 .

The last example is of special interest because, as a breadth-one case, its dual space
can be computed via a simple recursive algorithm (cf. §2.3). The dual bases in (14)
and (15) are calculated by applying the algorithm NonlinearSystemMultiplic-

ity provided in §2.3 and implemented in ApaTools [35].
We now provide justifications for our multiplicity formulation in Definition 1

from its basic properties. First of all, the multiplicity is a direct generalization
of the multiplicity (2) of univariate functions, where the dual space at an m-
fold zero x∗ is Dx∗(f) = span{∂0[x∗], ∂1[x∗], . . . , ∂m-1[x∗]} with Hilbert function
{1, 1, . . . , 1, 0, . . .} as well as breadth one and depth m−1. Second, the multiplicity
is well defined for analytic systems as a finite positive integer at any isolated zero
x̂, as asserted by the Local Finiteness Theorem below. Thus, the process of calcu-
lating the multiplicity of an isolated zero will always terminate at certain γ when
Dγ

x̂(F ) = Dγ-1
x̂ (F ). The dual subspace dimensions dim

(
D0

x̂(F )
)
≤ dim

(
D1

x̂(F )
)
≤

dim
(
D2

x̂(F )
)

≤ · · · can be unbounded if the zero lies in a higher dimensional
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set of zeros. For example, the dual subspaces Dα
(0,0)({sin(x2), x cos(y)}) never

stop expanding since infinitely many linearly independent functionals ∂y[(0, 0)],
∂y2 [(0, 0)], ∂y3 [(0, 0)],. . . satisfy the closedness condition and vanish at the zero
(0, 0). Obviously, (0, 0) lies in the zero set {(0, y)}, the entire y-axis, of the system
{sin(x2), x cos y}.

Definition 2. A point x̂ is an isolated zero of a system F = {f1, . . . , ft} if there is
a neighborhood Δ of x̂ in �s such that x̂ is the only zero of F in Δ.

We now establish some fundamental properties of the multiplicity for systems
of analytic functions. An (multivariate) analytic function, also called holomorphic
function, in an open set Ω is commonly defined as a function f that possesses a
power series expansion converging to f at every point x ∈ Ω [30, p. 25].

Theorem 1 (Local Finiteness Theorem). For a system F of functions that are ana-
lytic in an open set Ω ⊂ �

s, a zero x̂ ∈ Ω is isolated if and only if
supα≥0

{
dim

(
Dα

x̂ (F )
)}

is finite.

This theorem ensures that the multiplicity is well defined at every isolated zero,
and the multiplicity computation at an isolated zero will terminate in finitely many
steps. It also provides a mechanism for identifying nonisolated zeros [2] for poly-
nomial systems solved by homotopy method where a multiplicity upper bound is
available. The method in [15] can be used to identify nonisolated zeros for general
nonlinear systems even though it is intended for polynomial systems.

When the nonlinear system P consists of polynomials p1, . . . , pt in the variables
x1, . . . , xs, the multiplicity theory, i.e., the intersection multiplicity at a zero of
such a special system, has been well studied in algebraic geometry. The following
theorem asserts that the multiplicity dim

(
Dx̂(P )

)
formulated in Definition 1 in this

special case is identical to the intersection multiplicity of polynomial systems in
algebraic geometry.

Theorem 2 (Multiplicity Consistency Theorem). For a system P of polynomials
with complex coefficients, the multiplicity dim

(
Dx̂(P )

)
is identical to the intersection

multiplicity of P at an isolated zero x̂.

The following Perturbation Invariance Theorem asserts that the multiplicity as
defined equals the number of zeros “multiplied” from a multiple zero when the
system is perturbed. As a result, Definition 1 is intuitively justified.

Theorem 3 (Perturbation Invariance Theorem). Let F = {f1, . . . , fs} be a system
of functions that are analytic in a neighborhood Ω of an m-fold zero x̂ ∈ �s and
F -1(0) ∩ Ω = {x̂}. Then, for any functions g1, . . . , gs that are analytic in Ω and
Fε = {f1 + εg1, . . . , fs + εgs}, there exists a θ > 0 such that, for all 0 < ε < θ,

m = dim
(
Dx̂(F )

)
=

∑
x̃∈F−1

ε (0)∩Ω

dim
(
Dx̃(Fε)

)
.

In other words, multiplicities of zeros are invariant under small perturbation to
the system of analytic functions. An m-fold zero becomes a cluster of exactly m
zeros counting multiplicities. The proof of Theorem 3 follows from [26, Lemma
6]. We may illustrate this theorem by a computing experiment on the following
example.
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Example 1. Consider the system F = {sinx cos y − x, sin y sin2 x − y2} having
multiplicity 6 at the zero (0, 0). In a small neighborhood of (0, 0), we compute the
zeros of the perturbed system

(16) Fε = {sin x cos y − x− ε, sin y sin2 x− y2 + ε}

for small values of ε. A cluster of exactly 6 zeros of Fε near (0, 0) are found by
Newton’s iteration using zeros of the truncated Taylor series of Fε as the initial
iterates, matching the multiplicity of the system F at (0, 0). Table 1 shows the
zeros of Fε for ε = 10-8 and 10-12. The cluster as shown shrinks to (0, 0) when the
perturbation decreases in magnitude.

Table 1. Zeros of the perturbed system Fε in (16) near (0, 0) for
ε = 10-8 and 10-12.

ε = 10−8

x1, x2 (−0.0039173928 ∓ 0.0000003908 i,−0.0000076728 ± 0.0000997037 i)

x3, x4 (0.0019584003 ± 0.0033883580 i, 0.0000035695 ± 0.0000935115 i)

x5, x6 (0.0019590795 ∓ 0.0033879671 i, 0.0000040733 ± 0.0001067848 i)

ε = 10−12

x1, x2 (−0.000181717560 ∓ 0.000000000182 i,−0.000000016511 ± 0.000000999864 i)

x3, x4 (0.000090858627 ± 0.000157362584 i, 0.000000008136 ± 0.000000985770 i)

x5, x6 (0.000090858942 ∓ 0.000157362403 i, 0.000000008372 ± 0.000001014366 i)

The proofs of the above three fundamental theorems on multiplicities will be
given in §2.4, in which the algebraic foundation of the multiplicity will be estab-
lished.

Remark on the history of multiplicity. A discussion on the history of the
multiplicity formulations for a polynomial system at a zero is given in [8, p. 127]
from algebraic geometry. As Fulton points out, there have been many differing
concepts about multiplicity. Mathematicians who have worked on this include
Newton, Leibniz, Euler, Cayley, Schubert, Salmon, Kronecker and Hilbert. The
dual space approach was first formulated by Macaulay [21] in 1916 for polynomial
ideals. Samuel developed this viewpoint with his Characteristic functions and poly-
nomials now called Hilbert functions and polynomials. More than the multiplicity
at a zero of a polynomial system he defines the multiplicity of an arbitrary local
ring [33, Ch. VIII, §10], which, in the case of a 0-dimensional local ring, is the
sum of the Hilbert function values as in Corollary 1. As we show in §2.4, this mul-
tiplicity is also the �-dimension of the local ring which is now generally accepted
as the standard definition of multiplicity in commutative algebra for isolated ze-
ros of systems of equations; see Chapter 4 of [4] for a discussion similar to that
of this paper. Symbolic computation of Gröbner duality on polynomial ideals was
initiated by Marinari, Mora and Möller [22], as well as Mourrain [24]. Stetter and
Thallinger introduced numerical computation of the dual basis for a polynomial
ideal in [28, 31] and in Stetter’s book [29]. Other computational algorithms on the
multiplicity problem have recently been proposed in [1], [13], [19], [32], and [36],
etc.
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2.2. The Macaulay matrices. Based on the multiplicity formulation, computing
the multiplicity structure can be converted to the rank/kernel problem of matrices.

Consider the dual subspace Dα
x̂ (F ) as defined in (8) for the nonlinear system

F = {f1, . . . , ft} in s ≤ t variables x = (x1, . . . , xs). Similar to Lemma 1, one can
show that a functional c =

∑
|j|≤α cj ∂j[x̂] is in the dual subspace Dα

x̂ (F ) if and

only if

(17) c
(
(x− x̂)kfi(x)

)
≡

∑
|j|≤α

cj · ∂j[x̂]
(
(x− x̂)kfi(x)

)
= 0

for all |k| ≤ α − 1 and i ∈ {1, . . . , s}. By a proper ordering of indices j and (k, i),
equation (17) can be written in the matrix form

(18) Sα c = 0

where c is the vector formed by ordering cj in (17) for j ∈ Ns, j ≥ 0 and |j| ≤ α. The
equation (18) determines the dual subspace Dα

x̂ (F ) that is naturally isomorphic to
the kernel K(Sα) of the matrix Sα, which we call the α-th order Macaulay matrix.

To construct the Macaulay matrices, we choose the negative degree lexicographical
ordering [12], denoted by ≺, on the index set Iα ≡

{
j ∈ Ns

∣∣ j ≥ 0, |j| ≤ α
}
:

i ≺ j if |i| < |j|, or,

(|i| = |j| and ∃1 ≤ σ ≤ s : i1 = j1, . . . , iσ-1 = jσ-1, iσ < jσ).

The Macaulay matrix Sα is of size mα × nα where

mα =

(
α− 1 + s
α− 1

)
and nα =

(
α+ s
α

)
.

We view the rows to be indexed by (x − x̂)k fi for (k, i) ∈ Iα−1 × {1, . . . , t} with
ordering (k, i) ≺ (k′, i′) if k ≺ k′ in Iα−1 or k = k′ but i < i′, and the columns
are indexed by the differential functionals ∂j for j ∈ Iα. The entry of Sα, at the
intersection of the row and column indexed by (x − x̂)k fi and ∂j, respectively,
is the value of ∂j[x̂]

(
(x− x̂)k fi

)
. With this arrangement, Sα is the upper-left

mα × nα submatrix of subsequent Macaulay matrices Sσ, for σ ≥ α, as illustrated
in Example 2. The following corollary is thus straightforward.

Corollary 1. Let F = {f1, . . . , ft} be a system of functions in variables x =
(x1, . . . , xs) with a zero x̂. Then for each α > 0, the dual subspace Dα

x̂ (F ) is
isomorphic to the kernel K(Sα) of the Macaulay matrix Sα. In particular, with
S0 ≡ [f1(x̂), . . . , ft(x̂)]

� = 0, the Hilbert function

(19) h(α) = nullity (Sα )− nullity (Sα-1 ) for α = 1, 2, . . . .

Notice that for an obvious ordering ≺ of I1 and f(x̂) = [f1(x̂), . . . , ft(x̂)]
�, we

can arrange

(20) S1 =
[
f(x̂)

∣∣J(x̂)] ≡
[
0
∣∣J(x̂)]

where J(x̂) is the Jacobian of the system {f1, . . . , ft} at x̂.

Example 2. Consider the system F = {x1 − x2 + x2
1, x1 − x2 + x2

2} at x̂ = (0, 0).
Figure 2 shows the expansion of the Macaulay matrices from S1 to S2, then S3. The
table beneath the Macaulay matrices in Figure 2 shows the bases for the kernels as
row vectors using the same column indices. It is instructive to compare this pair
of arrays to those in [21, §65] or the reconstruction of Macaulay’s arrays in [23,
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Macaulay
|j| = 0︷ ︸︸ ︷ |j| = 1︷ ︸︸ ︷ |j| = 2︷ ︸︸ ︷ |j| = 3︷ ︸︸ ︷

matrices ↘ ∂00 ∂10 ∂01 ∂20 ∂11 ∂02 ∂30 ∂21 ∂12 ∂03

︸︷︷︸
|k|

=
0

f1 0 1 −1 1 0 0 0 0 0 0
S0 f2 0 1 −1 0 0 1 0 0 0 0
S1 ︸

︷︷
︸

|k|
=

1

x1f1 0 0 0 1 −1 0 1 0 0 0

x1f2 0 0 0 1 −1 0 0 0 1 0
x2f1 0 0 0 0 1 −1 0 1 0 0

S2 x2f2 0 0 0 0 1 −1 0 0 0 1
x2
1f1 0 0 0 0 0 0 1 −1 0 0

︸
︷︷

︸
|k|

=
2

x2
1f2 0 0 0 0 0 0 1 −1 0 0

x1x2f1 0 0 0 0 0 0 0 1 −1 0
x1x2f2 0 0 0 0 0 0 0 1 −1 0

x2
2f1 0 0 0 0 0 0 0 0 1 −1

S3 x2
2f2 0 0 0 0 0 0 0 0 1 −1

bases for kernels (transposed as row vectors)

K(S0) 1 0 0 0 0 0 0 0 0 0
K(S1) 0 1 1 0 0 0 0 0 0 0

K(S2) 0 −1 0 1 1 1 0 0 0 0
K(S3)

Figure 2. Expansion of the Macaulay matrices for the polynomial
system in Example 2

Example 30.4.1]. For this example, the kernels can be converted to bases of dual
subspaces using the indices in the table:

D0
(0,0)(F ) = span{∂00}, D1

(0,0)(F ) = span{∂00, ∂10 + ∂01},
D2

(0,0)(F ) = span{∂00, ∂10 + ∂01,−∂10 + ∂20 + ∂11 + ∂02}.
Since nullity (S3 ) = nullity (S2 ) = 3, the Hilbert function h(N) = {1, 1, 1, 0, . . .}.
The multiplicity equals 3. The dual space D(0,0)(F ) = D2

(0,0)(F ) with breadth

β(0,0)(F ) = h(1) = 1 and depth δ(0,0)(F ) = max{α | h(α) > 0} = 2. The complete
multiplicity structure is in order. �

By identifying the multiplicity structure of a nonlinear system with the kernels
and nullities of Macaulay matrices, the multiplicity computation can be reliably
carried out by matrix rank-revealing, as we shall elaborate in §2.3.

2.3. Computing the multiplicity structure. The multiplicity as well as the
multiplicity structure can be computed using symbolic, symbolic-numeric or floating
point computation based on Corollary 1. The main algorithm can be outlined in
the following pseudo-code.

Algorithm: NonlinearSystemMultiplicity

Input: system F = {f1, . . . , ft} and isolated zero x̂ ∈ �s

-- initialize S0 = Ot×1, K(S0) = span{[1]}, h(0) = 1
-- for α = 1, 2, . . . do

∗ expand Sα-1 to Sα, and embed K(Sα-1) into K(Sα)
∗ find K(Sα) by expanding K(Sα-1)
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∗ if nullity (Sα ) = nullity (Sα-1 ) then

δ = α− 1, h(α) = 0, break the loop

otherwise, get h(α) by (19)

end if

end do

-- convert K(Sδ) to Dx̂(F )
Output: multiplicity m=

∑
α h(α), the Hilbert function h,Dx̂(F )

basis, depth δx̂(F ), and breadth βx̂(F ) = h(1)

This algorithm turns out to be essentially equivalent to Macaulay’s procedure of
1916 for finding inverse arrays of dialytic arrays [21, 23], except that Macaulay’s
algorithm requires construction of dialytic arrays with full row rank, which is
somewhat difficult and costly to implement with inexact systems or the approx-
imate zeros. Implementation of the algorithm NonlinearSystemMultiplicity

is straightforward for symbolic computation when the system and zero are exact
and properly represented. Applying this multiplicity-finding procedure on approxi-
mate zeros and/or inexact systems requires the notions and algorithms of numerical
rank-revealing at the step “find K(Sα)” in Algorithm NonlinearSystemMulti-

plicity.
The numerical rank of a matrix A is defined as the minimum rank of matrices

within a threshold θ [9, §2.5.5]: rank θ (A ) = min‖A−B‖2≤θ rank (B ). The numer-
ical kernel Kθ (A ) of A is the (exact) kernel K(B) of B that is nearest to A with
rank (B ) = rank θ (A ). With this reformulation, numerical rank/kernel computa-
tion becomes well posed. We refer to [20] for details.

Numerical rank-revealing applies the iteration [20]

(21)

⎧⎨
⎩

uk+1 = uk −
[

2‖A‖∞uk

A

]† [
‖A‖∞(uH

kuk − 1)
Auk

]
,

ςk+1 =
‖Auk+1‖2

‖uk+1‖2
, k = 0, 1, . . .

where (·)† denotes the Moore-Penrose inverse. From a randomly chosen u0, this
iteration virtually guarantees convergence to a numerical null vector u, and {ςk}
will converge to the distance ς between A and the nearest rank-deficient matrix.

With a numerical null vector u, applying (21) on Â =
[
‖A‖∞uH

A

]
yields another

sequence {ûk} that converges to a numerical null vector v of A orthogonal to u,
and the sequence {ς̂k} converges to the distance between A and the nearest matrix

with nullity 2. This process can be continued by stacking ‖A‖∞vH on top of Â and
applying (21) on the new stacked matrix.

We now describe the numerical procedure for the step of computing K(Sα) in
Algorithm NonlinearSystemMultiplicity. The kernel Kθ (S0 ) = span{[1]}.
Assume an orthonormal basis Y =

[
y1, . . . ,yμ

]
for Kθ (Sα-1 ) and the QR decom-

position
[
TY H

Sα-1

]
= Qα-1

[
Rα-1
O

]
are available, where Qα-1 is unitary, Rα-1 is square

upper-triangular and T is a diagonal scaling matrix.
Embedding yi’s into �nα by appending zeros at the bottom to form zi for

i = 1, . . . , μ, it is clear that the columns of Z =
[
z1, . . . , zμ

]
form a subset of an

orthonormal basis for Kθ (Sα ). Also, we have matrix partitions

Sα =

[
Sα-1 F
O G

]
,

[
TZH

Sα

]
=

⎡
⎣TY

H O
Sα-1 F
O G

⎤
⎦
⎡
⎢⎢⎣Qα-1

[
Rα-1 F1

O F2

]

[
O G

]

⎤
⎥⎥⎦
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where
[
F1

F2

]
= QH

α-1

[
O
F

]
. Let Q̂

[
R̂
O

]
=

[
F2

G

]
be a QR decomposition. Then

(22)

[
TZH

Sα

]
= Qα

⎡
⎣Rα-1 F1

O R̂
O O

⎤
⎦ = Qα

[
Rα

O

]

with a proper accumulation of Qα-1 and Q̂ into Qα. This implies

K(Rα) = K(Sα)
⋂

K(ZH) = K(Sα)
⋂

Kθ (Sα-1 )
⊥ .

Therefore, Kθ (Rα ) consists of numerical null vectors of Sα that are approximately
orthogonal to those of Sα-1. The procedure below produces the numerical kernel
Kθ (Rα ).

• let A = Rα

• for i = 1, 2, · · · do

-- apply iteration (21), stop at u and ς
with proper criteria

-- if ς > θ, exit, end if

-- get zμ+i = u, reset A with
[
‖A‖∞uH

A

]
-- update the QR decomposition A = QR

end for

Upon exit, vectors zμ+1, . . ., zμ+ν are the remaining basis vectors of Kθ (Sα )
aside from the previously obtained z1, . . ., zμ. Furthermore, the QR decomposition

of
[
T̂ ẐH

Sα

]
is a by-product from a proper accumulation of orthogonal transformations.

Here Ẑ =
[
z1, . . . , zμ+ν

]
with a column permutation and T̂ is again a scaling

matrix.
AlgorithmNonlinearSystemMultiplicity is implemented as a function mod-

ule in the software package ApaTools [35]. For an isolated zero of a given system
along with a rank threshold, the software produces the multiplicity, breadth, depth,
Hilbert function, and a basis for the dual space. The software performs symbolic
(exact) computation when the rank threshold is set to zero, and carries out numer-
ical computations otherwise. An example of computing the multiplicity structure
for an inexact system at an approximate zero will be shown as Example 3 in §3.1.

Remarks on computational issues. For an exact system, the accuracy of a zero
x̂ can be arbitrarily high using multiprecision or a deflation method described in
§3. As a result, numerical rank-revealing with sufficient low threshold will ensure
accurate multiplicity identification. For inexact systems, the approximate zeros
may carry substantial errors due to the inherent sensitivity. In this case, setting
a proper threshold θ for the numerical rank revealing may become difficult. The
depth-deflation method given in §3 is effective in calculating the zeros to the high-
est possible accuracy that may allow accurate identification of the multiplicity.
However, there will always be intractable cases. For those systems with obtain-
able multiplicity structure at an approximate solution, the rank threshold needs to
be set by users according to the magnitude of errors on the system and solution.
Generally, the threshold should be set higher than the size of error.

The size increase of Macaulay matrices may become an obstacle when the num-
ber of variables is large, compounding with high depth δx̂(F ). Most notably, when
the breadth βx̂(F ) = 1, the depth will reach the maximum: δx̂(F ) = m− 1. In this
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situation, high order α’s and large sizes of Sα are inevitable. A special case algo-
rithm BreadthOneMultiplicity in §3.3 is developed to deal with this difficulty.
A recently developed closedness subspace strategy [36] improves the efficiency of
multiplicity computation substantially by reducing the size of the matrices.

2.4. Proofs of Theorem 1 and Theorem 2. Theorem 1 and Theorem 2 are well
known for zero-dimensional polynomial systems. Since a zero-dimensional system
has only finitely many zeros, each zero must be isolated in the sense of Definition
2 so the content of these theorems is simply the classical result that dim

(
Dx̂(F )

)
is

identical to the intersection multiplicity (cf. [10, 16, 21]) along with more recent
expositions by Emsalem [7], Mourrain [24] and Stetter [29].

However, these results in the case of analytic systems and nonzero-dimensional
polynomial systems with isolated zeros are well known mainly in the folklore of the
theory of analytic functions of several complex variables. We are not aware of an
explicit reference in this generality. The results do follow easily, however, from the
considerations of the last two sections and accessible facts from the literature (e.g.
[30]). Therefore, this section is a short digression sketching our proof of Theorems
1 and 2 and stating a few useful corollaries of these theorems.

We will assume in this section that x̂ = 0 is the origin. The local ring of system
F = {f1, . . . , ft} of analytic functions at 0 is A = �{x1, . . . , xs}/F�{x1, . . . , xs}
where �{x1, . . . , xs} is the ring of all complex analytic functions in the variables
x1, . . . , xs which converge in some neighborhood of 0 (cf. [4, 30]). This last ring
has a unique maximal ideal M generated by {x1, . . . , xs}, the image of which in A
is the unique maximal ideal m of A.

We will need some notations and lemmas. For an analytic or polynomial function
define

(23) jet(f, k) = ∑
|j|≤kcjx

j

where cj x
j is the term involving xj in the Taylor series expansion of f at 0. We

say that a homogeneous polynomial h of total degree α is the initial form of order
α of analytic or polynomial function f if h = jet(f, α).

Lemma 2. Let R be the ring of analytic functions on open set U ⊆ �
s and

assume x̂ = 0 ∈ U . Let F = {f1, . . . , ft} ⊂ R be a system of analytic functions
with common zero x̂. Then the following are equivalent:

(i) The point x̂ = 0 ∈ U is an isolated zero of F .
(ii) The local ring A is a finite dimensional �-algebra.
(iii) There is a positive integer δ such that for all |j| > δ the monomial xj is the

initial form of order |j| of some element in F�[x1, . . . , xs].

Proof. To prove (i) implies (ii), use Rükert’s Nullstellensatz [30] to conclude that
a power of the maximal ideal M lies in F�{x1, . . . , xs}, i.e., mα = 0 for large α.

But in the filtration

(24) A = m
0 ⊇ m

1 ⊇ m
2 ⊇ . . .

each quotient mα/mα+1 is a � vector space of finite dimension. In this case the
filtration is finite, hence dim(A) is finite.

Assuming (ii), then (24) must terminate and, by Nakayama’s Lemma [30], some
mδ+1 = 0. Consequently, xj ∈ F�{x1, . . . , xs} for all |j| > δ. Then each such xj ∈
F�{x1, . . . , xs} satisfies xj = g1f1 + · · ·+ gtft for some g1, . . . , gt in �{x1, . . . , xs}.
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A straightfoward argument shows that xj is the initial form of jet(g1, α)f1 +
jet(g2, α)f2 + · · ·+ jet(gt, α)ft ∈ F�[x1, . . . , xs] where α = |j|, proving (iii).

Finally, an argument using Schwartz’s Lemma [30, Exercise 4, p. 35] gives (iii)
implies (i). �

Lemma 3. The Macaulay matrix Sα of the system F is row equivalent to a matrix
with linearly independent rows:

(25)

⎡
⎢⎢⎢⎢⎣

rowspace Sα−1 Bα

0 Cα

⎤
⎥⎥⎥⎥⎦.

Moreover, every row of the matrix block Cα can be associated with the intitial form
of a certain element of F�[x1, . . . , xs] by multiplying the entries by their column
index and adding, and these forms give a basis of the space of all initial forms of
order α on F�[x1, . . . , xs].

The proof follows from the construction of Sα. We can now prove Theorem 1
and Theorem 2.

Proof of Theorem 1. By Lemma 2, x̂ is an isolated zero if and only if there exists
δ with each monomial xj with |j| > δ being an initial form of some element of
F�[x1, . . . , xs]. Since the product of a monomial and an initial form is again an
initial form, it is necessary and sufficient that all monomials of specific degree
α = δ + 1 are initial forms of F�[x1, . . . , xs]. By Lemma 3 this will happen if
and only if Cα in (25) is of full column rank. This is equivalent to nullity (Sα ) =

nullity (Sα−1 ) which by Corollary 1 is equivalent to dim(Dα−1
x̂ (F )) = dim(Dα

x̂ (F )).

By the closedness condition this is equivalent to dim(Dα−1
x̂ (F )) = dim(Dβ

x̂(F )) for
all β ≥ α or supα≥0 dim(Dα

x̂ (F )) < ∞. �

Proof of Theorem 2. From (24), dim(A) =
∑∞

α=0 dim(mα/mα+1). On the other
hand, from Corollary 1 and Lemma 3, dim(Dα

x̂ (F )) is the sum of the dimensions of
the space of initial forms of order α, α = 0, 1, . . . . From the proof of [11, Prop.
5.5.12], it follows that mα/mα+1 is isomorphic to the space of initial forms of order
α and so dim(Dα

x̂ (F )) = dim(A) where A is the local ring of the system F at x̂ = 0.
This latter dimension is commonly known as the intersection multiplicity. �

Furthermore, the proof above leads to the following Depth Theorem for an iso-
lated zero.

Corollary 2 (Depth Theorem). Let F = {f1, . . . , ft} be a system of analytic func-
tions in an open set of �s at an isolated zero x̂ = 0. Then there is a number
δ = δx̂(F ) called the depth of the isolated zero x̂ satisfying the following equivalent
conditions:

(i) δ is the highest differential order of a functional in Dx̂(F ).
(ii) δ is the smallest integer so that the Macaulay matrix Sδ+1 is row equivalent

to a matrix
[
R B
0 C

]
where C is the n× n identity matrix, where n =

(
δ+s
s−1

)
.

(iii) δ is the smallest integer such that xj is the initial form of some element of
F�[x1, . . . , xs] for all |j| > δ.
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Remark. In commutative algebra the term regularity index, nil-index or just index
is used instead of our depth. In particular, the index of the ideal of the system F
is δx̂(F ) + 1.

Corollary 3. As in Definition 1, let F = {f1, . . . , ft} be a system of functions

having derivatives of order γ ≥ 1 at the zero x̂ ∈ �s. If Dγ
x̂(F ) = Dγ-1

x̂ (F ), then
the polynomial system jet(F, γ) has the same multiplicity structure, and hence the
same multiplicity at x̂ as F .

Proof. The system jet(F, γ) has the same Macaulay matrices up to γ = δx̂(jet(F, γ))
as the system F and hence Dα

x̂ (F ) = Dα
x̂ (jet(F, γ)) by Corollary 1. �

Note, in particular, that this corollary applies to any analytic system with an
isolated zero, so such a system is locally equivalent to a polynomial system.

3. Accurate computation of a multiple zero by deflating its depth

It is well known that multiple zeros are highly sensitive to perturbations and
are therefore difficult to compute accurately using floating point arithmetic. Even
for a single univariate equation f(x) = 0, as mentioned before, there is a perceived
barrier of “attainable accuracy”: The number of attainable digits at a multiple
zero is bounded by the hardware precision divided by the multiplicity. This accu-
racy barrier was largely erased recently in [34] for univariate polynomial equations.
For general nonlinear multivariate systems, we propose a general depth-deflation
method as well as its special case variation for breadth one systems in this section
for accurate computation of multiple zeros without extending hardware precision
even when the given system is perturbed.

3.1. The depth-deflation method. The hypersensitivity in calculating an ap-
proximation x̃∗ to an m-fold zero x∗ can be illustrated by solving f(x) = xm = 0.
When the function is perturbed slightly to fε(x) = xm − ε, the error becomes

|x̃∗ − x∗| = |f − fε|
1
m . The asymptotic condition number is supε>0

|x̃∗−x∗|
|f−fε| = ∞

when the multiplicitym > 1. Consequently, multiple zeros are referred to as “singu-
lar” or “infinitely sensitive” to perturbations in the literature. On the other hand,
a simple zero is considered “regular” with a finite condition number as stated in
the following lemma.

Lemma 4. Let f be a system of s-variate functions that are twice differentiable in
a neighborhood of x̂ ∈ �s. If the Jacobian J(x̂) of f(x) at x̂ is injective so that the
norm of its pseudo-inverse ‖J(x̂)+‖2 < ∞, then

(26)
∥∥x̃− x̂

∥∥
2
≤

∥∥J(x̂)+∥∥
2

∥∥f(x̃)− f(x̂)
∥∥
2
+O

(
‖f(x̃)− f(x̂)‖22

)
for x̃ sufficiently close to x̂.

Proof. The injectiveness of J(x̂) implies t ≥ s and rank (J(x̂)) = s. Without loss of
generality, we assume the submatrix of J(x̂) consists of its first s rows is invertible.
By the Inverse Function Theorem, the function [y1, . . . , ys]

T = [f1(x), . . . , fs(x)]
T

has a continuously differentiable inverse x = g(y1, . . . , ys) in a neighborhood of
[ŷ1, . . . , ŷs]

T = [f1(x̂), . . . , fs(x̂)]
T, permitting ‖x− x̂‖2 ≤ C‖f(x)− f(x̂)‖2 for x in

a neighborhood of x̂. Since

f(x)− f(x̂) = J(x̂)(x− x̂) + r(x) or x− x̂ = J(x̂)+
[
f(x)− f(x̂)− r(x)

]
where ‖r(x)‖2 = O

(
‖x− x̂‖22

)
= O

(
‖f(x)− f(x̂)‖22

)
, we thus have (26). �
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In light of Lemma 4, we may define the condition number of the system f at
a zero x̂:

(27) κf (x̂) =

{
‖J(x̂)+‖2 if J(x̂) is injective,

∞ otherwise.

This condition number serves as a sensitivity measurement in the error estimate

(28) ‖x̃− x̂‖2 ≈ κf (x̃) · ‖f(x̃)‖2
of the approximate zero x̃ using the residual ‖f(x̃)‖2.

Solving a nonlinear system for a multiple zero is an ill-posed problem in the sense
that its condition number is infinity [6, Definition 1.1, p. 17]. The straightforward
Newton’s iteration attains only a few correct digits of the zero besides losing its
quadratic convergence rate, if it converges at all. Similar to other ill-posed prob-
lems, accurate computation of a multiple zero needs a regularization procedure.
An effective regularization approach is deflation [17, 18, 25]. For instance, Leykin,
Verschelde and Zhao [17] propose a deflation method and a higher-order deflation
method [18] which successfully restore the quadratic convergence of Newton’s it-
eration. From our perspective, perhaps the most important feature of deflation
strategy should reside in transforming an ill-posed zero-finding into a well-posed
least squares problem. As a result, the multiple zero can be calculated to high
accuracy.

We hereby propose two new versions of the deflation method, both are refered
to as depth-deflation methods, with one for the general cases and the other for the
cases where the breadth of the system is one at the zero. We first derive our general
depth-deflation method here. The version for breadth-one systems follows in §3.3.

Let f : �s −→ �
t represent a nonlinear system f(x) = 0 where f(x) =

[f1(x), . . . , ft(x)]
�, x = (x1, . . . , xs) ∈ �s with t ≥ s, and x̂ be an isolated zero

of f(x). Denote J(x) as the Jacobian of f(x). If x̂ is a simple zero, then J(x̂) is
injective with pseudo-inverse J(x̂)+ = [J(x̂)HJ(x̂)]-1J(x̂)H, and the Gauss-Newton
iteration

(29) x(n+1) = x(n) − J(x(n))+ f(x(n)) for n = 0, 1, . . .

locally converges to x̂ at a quadratic rate. More importantly in this regular case,
solving f(x) = 0 for the solution x̂ is a well-posed problem and the condition
number ‖J(x̂)+‖ < ∞.

When x̂ is a multiple zero of the system f , however, the Jacobian J(x̂) is rank-
deficient. In this singular case, the zero x̂ is underdetermined by the system f(x) = 0
because it is also a solution to J(x)y = 0 for some y �= 0. In order to eliminate
the singularity and thus to curb the hypersensitivity, perhaps further constraints
should be imposed.

Let n1 = nullity (J(x̂) ) which is strictly positive at the multiple zero x̂. Denote
x1 = x and x̂1 = x̂. Then, for almost all choices of an n1 × s random matrix R1,

the matrix
[

J(x̂1)
R1

]
is of full (column) rank. It is easy to see that the linear system[

J(x̂1)
R1

]
x2 =

[
0
e1

]
has a unique solution x2 = x̂2 �= 0. Here e1 is the first canonical

vector [1, 0, . . . , 0]� of a proper dimension. As a result, (x̂1, x̂2) is an isolated zero
of a new (2t+ k)× (2s) system

(30) f1(x1,x2) ≡
⎡
⎣ f(x1)[

J(x1)
R1

]
x2 −

[
0
e1

] ⎤
⎦.
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If (x̂1, x̂2) is a simple zero of f1(x1,x2), then the singularity of f(x) at x̂ is
“deflated” by solving f1(x1,x2) = 0 for (x̂1, x̂2) as a well-posed problem using the
Gauss-Newton iteration (29) on f1. However, (x̂1, x̂2) may still be a multiple zero
of f1(x1,x2) and, in this case, we can repeat the depth-deflation method above on
f1. Generally, assume (x̂1, . . . , x̂2α) is an isolated multiple zero of fα(x0, . . . ,x2α)
after α steps of depth-deflation with a Jacobian Jα(x̂1, . . . , x̂2α) of nullity nα > 0.
The next depth-deflation step expands the system to

(31) fα+1(x1, . . . ,x2α+1) ≡

⎡
⎢⎢⎢⎢⎣

fα(x1, . . . ,x2α )

[
Jα(x1, . . . ,x2α )

Rα+1

]⎡
⎢⎢⎣

x2α+1

.

.

.
x
2α

+1

⎤
⎥⎥⎦ −

[
0
e1

]
⎤
⎥⎥⎥⎥⎦

where Rα+1 is a randomly selected matrix of nα+1 rows and the same number of
columns as Jα(x1, . . . ,x2α). The depth-deflation process continues by expanding
f(x1) to f1(x1,x2), f2(x1, . . . ,x4), . . . until reaching an expanded system
fσ(x1,x2, . . . ,x2σ ) with an isolated zero (x̂1, . . . , x̂2σ ) that is no longer singular.
The following Depth-Deflation Theorem ensures the deflation process will termi-
nate and the number of deflation steps is bounded by the depth δx̂(f).

Theorem 4 (Depth-Deflation Theorem). Let x̂ be an isolated zero of a system
f with depth δx̂(f). Then there is an integer σ ≤ δx̂(f) such that the depth-
deflation process terminates at the expanded system fσ(x1, . . . ,x2σ ) with a simple
zero (x̂1, . . . , x̂2σ ) where x̂1 = x̂. Furthermore, the depth-deflation method gener-
ates 2σ differential functionals in the dual space Dx̂(f).

We shall prove this Depth-Deflation Theorem via multiplicity analysis in §3.2.
For polynomial systems, Leykin, Verschelde and Zhao proved that each defla-

tion step of their method deflates intersection multiplicity by at least one [17,
Theorem 3.1]. Theorem 4 improves the deflation bound substantially since the
depth is much smaller than the multiplicity when the breadth is larger than one.
The computing cost increases exponentially as the depth-deflation continues since
each depth-deflation step doubles the number of variables. Fortunately, computing
experiments suggest that, for a multiple zero of breadth larger than one, very few
depth-deflation steps are required. At breadth-one zeros, we shall derive a spe-
cial case deflation method in §3.3. The high accuracy achieved by applying the
depth-deflation method can be illustrated in the following examples.

Example 3. Consider the system
(32)⎧⎨
⎩

(x− 1)3 + .416146836547142 (z − 3) sin y + .909297426825682 (z − 3) cos y = 0,
(y − 2)3 + .989992496600445 (x− 1) sin z + .141120008059867 (x− 1) cos z = 0,
(z − 3)3 − .540302305868140 (y − 2) sinx+ .841470984807897 (y − 2) cosx = 0,

which is a perturbation of magnitude 10-15 from an exact system {u3 + w sin v =
v3 + u sinw = w3 + v sin u = 0} with u = x − 1, v = y − 2 and w = z − 3. This
system has a zero (1, 2, 3) of multiplicity 11, depth 4 and breadth 3. Using 16-digit
arithmetic in Maple to simulate the hardware precision, Newton’s iteration without
depth-deflation attains only 4 correct digits, whileas a single depth-deflation step
eliminates the singularity and obtains 15 correct digits, as shown in the follow-
ing table. The error estimates listed in the table are calculated using (28) which
provides an adequate accuracy measurement for the computed zeros.
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without deflation with deflation exact value

x 1.0003 0.999999999999999 1.0
zero y 1.9997 1.999999999999999 2.0

z 3.0003 3.000000000000000 3.0

error estimate 0.00027 0.000000000000019

Since the estimated error of the approximate zero is 1.94×10-14, we set the rank
threshold to be slightly larger: 10−12. Algorithm NonlinearSystemMultiplic-

ity accurately produces the multiplicity 11, breadth 3, depth 4, Hilbert function
{1, 3, 3, 3, 1, 0, . . . , } and (approximate) dual basis

∂000, ∂100, ∂010, ∂001, ∂200, ∂020, ∂002, .707106781186544 ∂101 + .707106781186543 ∂030,

.707106781186544 ∂011 + .707106781186545 ∂300, .707106781186545 ∂110 + .707106781186545 ∂003,

.500000000000008 ∂111 +.500000000000007 ∂400 +.500000000000009 ∂040+.500000000000008 ∂004.

Example 4. Consider the system

ez − .944956946314738 cos y + .327194696796152 sin y = 0,

z2 − y3 − y2 − .333333333333333 y − .0370370370370370 = 0,

y2 + .666666666666667 y + .148148148148148 − x3 + x2 − .333333333333333 x = 0.

This is a perturbation of magnitude 10-15 from an exact system
{
ez −cos

(
y+ 1

3

)
=

z2 − (y + 1
3

)3
= (y + 1

3

)2 − (x − 1
3

)3
= 0

}
with zero (1/3,−1/3, 0) of multiplicity

9, depth 5, breadth 2 and Hilbert function {1, 2, 2, 2, 1, 1, 0, . . .}. Again, using
16-digits arithmetic in Maple, Newton’s iteration diverges from the initial iterate
(0.31,−0.31, 0.01). In contrast, our depth-deflation method takes three deflation
steps to eliminate the singularity and obtains 15 correct digits of the multiple zero:

without deflation with deflation exact value

x diverges 0.3333333333333336 1/3
zero y diverges -0.3333333333333334 −1/3

z diverges 0.0000000000000002 0

error estimate —– 0.0000000000001950

3.2. Multiplicity analysis of the depth-deflation method. We shall use
some additional differential notations and operations. The original variables x =
[x1, · · · , xs]

� will be denoted by x1 in accordance with the notation for the auxiliary
(vector) variables x2, x3, . . ., etc. For any fixed or variable vector y = [y1, . . . , ys]

�,
the directional differentiation operator along y is defined as

(33) ∇y ≡ y1
∂

∂x1
+ · · ·+ ys

∂
∂xs

.

When y is fixed in �s, ∇y induces a functional ∇y[x̂] : p −→ (∇yp)(x̂). For any

variable u = [u1, . . . , us]
�, the gradient operator Δu ≡

[
∂

∂u1
, . . . , ∂

∂us

]�
, whose

“dot product” with a vector v = [v1, . . . , vs]
� is defined as

(34) v ·Δu ≡ v1
∂

∂u1
+ · · ·+ vs

∂
∂us

.

In particular, ∇y ≡ y · Δx ≡ y · Δx1
for any y of dimension s. Let y and z be

auxiliary variables. Then, for any function f(x),

(35)
(y ·Δx1

)(∇zf(x1)) = ∇y∇zf(x1), z ·Δyf(x1) ≡ 0,
(z ·Δy)(∇yf(x1)) = (z ·Δy)(y ·Δx1

)f(x1) = ∇zf(x1).
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Let f0(x1) ≡ f(x) = [f1(x), . . . , ft(x)]
� be a nonlinear system in variable vector x

and let J0(x) be its Jacobian matrix. Then

J0(x) z =

⎡
⎢⎢⎣
Δxf1(x)

�

.

.

.

Δxft(x)
�

⎤
⎥⎥⎦ z =

⎡
⎢⎢⎣
z · Δxf1(x)

.

.

.
z · Δxft(x)

⎤
⎥⎥⎦ = ∇zf(x1).

The first depth-deflation step expands the system to f1(x1,x2) = 0 with

(36) f1(x1,x2) ≡
⎡
⎣ f0(x1)[

J0(x1)
R1

]
x2 −

[
0
e1

] ⎤
⎦ ≡

⎡
⎣ f0(x1)
∇x2

f0(x1)
R1x2 − e1

⎤
⎦,

where R1 is a random matrix whose row dimension equals the nullity of J0(x1).
The values of x2 = x̂2 �= 0 induce a functional ∇x̂2

[x̂1] ∈ Dx̂(f). If the zero (x̂1, x̂2)
of f1 remains multiple, then the Jacobian J1(x̂1, x̂2) of f1(x1,x2) at (x̂1, x̂2) has a
nullity k1 > 0 and a nontrivial kernel. The depth-deflation process can be applied
to f1 the same way as (36) applied to f0. Namely, we seek a zero (x̂1, x̂2, x̂3, x̂4) to
the system

f2(x1,x2,x3,x4) =

⎡
⎣ f1(x1,x2)[

J1(x1,x2)
R2

] [
x3

x4

]
−

[
0
e1

] ⎤
⎦

where R2 is any matrix of size k1 × 2s that makes
[
J1(x1,x2)

R2

]
full rank. By (33) –

(35), equation J1
(
x1,x2

) [x3

x4

]
= 0 implies

(37)⎡
⎣ (x3 · Δx1

)f0(x1) + (x4 · Δx2
)f0(x1)

(x3 · Δx1
)∇x2

f0(x1) + (x4 · Δx2
)∇x2

f0(x1)
(x3 · Δx1

)(R1x2 − e1) + (x4 · Δx2
)(R1x2 − e1)

⎤
⎦ =

⎡
⎣ ∇x3

f0(x1)
(∇x3

∇x2
+ ∇x4

)f0(x1)
R1x4

⎤
⎦ = 0.

Thus, the second depth-deflation seeks a solution (x̂1, x̂2, x̂3, x̂4) to the equations
(38)

f0(x1) = 0, ∇x2
f0(x1) = 0, ∇x3

f0(x1) = 0, (∇x3
∇x2

+∇x4
)f0(x1) = 0.

It is important to note that x̂3 �= 0. Otherwise, from (37),[
∇x̂4

f0(x̂1)
R1x̂4

]
≡

[
J0(x̂1)
R1

]
x̂4 = 0,

which would lead to x̂4 = 0, making it impossible for R2

[
x̂3

x̂4

]
= e1.

After α depth-deflation steps, in general, we have an isolated zero (x̂1, . . . , x̂2α)
to the expanded system fα(x1, . . . ,x2α) with Jacobian Jα(x1, . . . ,x2α) of rank rα. If
rα < 2αs, then the next depth-deflation step seeks a zero to fα+1(x1, . . . ,x2α+1) = 0
defined in (31).

Lemma 5. Let f0(x1) ≡ f(x) be a system of t functions of s variables with a
multiple zero x̂1 = x̂. Assume that the depth-deflation process described above
reaches the extended system fα+1 in (31) with isolated zero (x̂1, . . . , x̂2α+1). Then
x̂2j+1 �= 0, j = 0, 1, . . . , α.

Proof. The assertion is true for j = 0 and j = 1 as shown above. Let

y =

⎡
⎢⎢⎣

x1

.

.

.
x2α−1

⎤
⎥⎥⎦, z =

⎡
⎢⎢⎣

x2α−1+1

.

.

.
x2α−1+2α−1

⎤
⎥⎥⎦, u =

⎡
⎢⎢⎣

x2α+1

.

.

.
x2α+2α−1

⎤
⎥⎥⎦, v =

⎡
⎢⎢⎣

x2α+2α−1+1

.

.

.
x2α+2α−1+2α−1

⎤
⎥⎥⎦.

Then

(39) Jα(y, z)
[
u
v

]
=

⎡
⎣ u · Δyfα-1(y)

[(u · Δy)(z · Δy) + (v · Δy)] fα-1(y)
Rα-1v

⎤
⎦ = 0



MULTIPLE ZEROS OF NONLINEAR SYSTEMS 2161

together with u = 0 would imply

Jα(ŷ, ẑ)
[
0
v

]
=

⎡
⎣ 0

(v · Δŷ)fα-1(ŷ)
Rα-1v

⎤
⎦ =

⎡
⎣ 0

Jα-1(ŷ)
Rα-1

⎤
⎦v = 0

and thereby v = 0 since
[
Jα-1(ŷ)
Rα-1

]
is of full column rank. Therefore,

(40) û =
(
x̂�
2α+1, . . . , x̂

�
2α+2α−1

)� �= 0.

Moreover, from (39),

(41) 0 = û ·Δyfα-1(ŷ) ≡ Jα-1(ŷ)û.

It now suffices to show that for all η,

(42) Jη(x̂1, . . . , x̂2η)

⎡
⎢⎢⎣

w1

.

.

.
w2η

⎤
⎥⎥⎦ = 0 and

⎡
⎢⎢⎣

w1

.

.

.
w2η

⎤
⎥⎥⎦ �= 0

would imply w1 �= 0. Obviously, this is true for η = 1. Assume it is true up to
η − 1. Then, using the same argument for (40) and (41), we have (42) implying⎡

⎢⎢⎣
w1

.

.

.
w2η−1

⎤
⎥⎥⎦ �= 0 and Jη−1

⎡
⎢⎢⎣

w1

.

.

.
w2η−1

⎤
⎥⎥⎦ = 0.

Thus w1 �= 0 from the induction assumption. �

It is clear that the third depth-deflation, if necessary, adds variables x5, x6, x7,
x8 and equations

(43)
∇x5

f(x1) = 0, (∇x5
∇x2

+∇x6
)f(x1) = 0, (∇x5

∇x3
+∇x7

)f(x1) = 0,
(∇x5

∇x3
∇x2

+∇x5
∇x4

+∇x3
∇x6

+∇x7
∇x2

+∇x8
)f(x1) = 0.

Any solution (x̂1, . . . , x̂8) ∈ �8s to (38) and (43) induces eight differential func-
tionals,

1, ∇x̂2
, ∇x̂3

, ∇x̂5
,∇x̂3

∇x̂2
+∇x̂4

, ∇x̂5
∇x̂2

+∇x̂6
, ∇x̂5

∇x̂3
+∇x̂7

,
∇x̂5

∇x̂3
∇x̂2

+∇x̂5
∇x̂4

+∇x̂3
∇x̂6

+∇x̂7
∇x̂2

+∇x̂8

that vanish on f at x̂1. In general, the α-th depth-deflation step produces a collec-
tion of 2α differential functionals of order α or less that vanish on the system f at
x̂1. Also notice that the highest order differential terms are

∇x̂2
≡ ∇x̂20+1

, ∇x̂3
∇x̂2

≡ ∇x̂21+1
∇x̂20+1

, ∇x̂5
∇x̂3

∇x̂2
≡ ∇x̂22+1

∇x̂21+1
∇x̂20+1

for depth-deflation steps 1, 2 and 3, respectively.
Actually, these functionals induced by the depth-deflation method all belong to

the dual space Dx̂(f). To show this, we define differential operators Φα, α = 1, 2, . . .
as follows:

(44) Φν+1 =

2ν∑
ζ=1

x
2ν+ζ

·Δxζ
, ν = 0, 1, . . . .

Specifically, Φ1 = x2 · Δx1
, Φ2 = x3 · Δx1

+ x4 · Δx2
and Φ3 = x5 · Δx1

+ x6 ·
Δx2

+ x7 ·Δx3
+ x8 ·Δx4

. For convenience, let Φ0 represent the identity operator.
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Thus

Φ0f(x1) = f(x1),Φ1f(x1) = ∇x2
f(x1),Φ2f(x1) = ∇x3

f(x1),

Φ2 ◦ Φ1f(x1) = (x3 ·Δx1
)∇x2

f(x1) + (x4 ·Δx2
)∇x2

f(x1)

= (∇x3
∇x2

+∇x4
)f(x1),

etc. For any expanded system fα(x1, . . . ,x2α) generated in the depth-deflation
process, its Jacobian Jα(x1, . . . ,x2α) satisfies

Jα(x1, . . . ,x2α)

⎡
⎢⎢⎣

x2α+1

.

.

.
x2α+2α

⎤
⎥⎥⎦ = Φα+1fα(x1, . . . ,x2α).

It is easy to see that (38) and (43) can be written as

Φ0f(x1) = 0, Φ1f(x1) = 0, Φ2f(x1) = 0, Φ2 ◦ Φ1f(x1) = 0,

Φ3f(x1) = 0, Φ3 ◦ Φ1f(x1) = 0, Φ3 ◦ Φ2f(x1) = 0,

Φ3 ◦ Φ2 ◦ Φ1f(x1) = 0.

As a consequence, Theorem 4 given in §3.1 provides an upper bound, the depth,
on the number of depth-deflation steps required to regularize the singularity at the
multiple zero. This bound substantially improves the result in [17, Theorem 3.1]. In
fact, our version of the deflation method deflates depth rather than the multiplicity
as suggested in [17].

Proof of Theorem 4. We first claim that the α-th depth-deflation step induces all
differential functionals

(45) f −→ Φμ1
◦ · · · ◦Φμk

f
∣∣
(x1,...,x2α )=(x̂1,...,x̂2α )

with α ≥ μ1 > μ2 > · · · > μk ≥ 0

and 1 ≤ k ≤ α that vanish on f . This is clearly true for α = 1 since f1(x1,x2) = 0
induces Φ0f(x1) = Φ1f(x1) ≡ Φ1Φ0f(x1) = 0 at (x1,x2) = (x̂1, x̂2). Assume
the claim is true for α − 1. At the α-th depth-deflation, consider a functional
(45). If μ1 < α, then such a functional has already been induced from solving
fα−1 = 0. On the other hand, if μ1 = α, then Φμ2

◦ · · · ◦ Φμk
f(x1) = 0, for

α − 1 ≥ μ2 > · · · > μk ≥ 0 is in fα−1 = 0. Therefore, Φαfα−1 induces the
functional in (45). Next, the functional in (45) satisfies closedness condition (11).
To show this, let p be any polynomial in variables x. By applying the product rule
Φα(f g) = (Φα f) g + (Φα g) f in an induction,

Φμ1
◦ · · · ◦ Φμk

(pfi) =
∑

{η1,...,ηj}⊂{μ1,...,μk}
pη1···ηj

Φη1
◦ · · · ◦ Φηj

fi

where η1 > · · · > ηj and pη1···ηj
is a polynomial generated by applying Φj ’s on

p. Therefore, Φμ1
◦ · · · ◦ Φμk

(pfi) = 0 at (x̂1, . . . , x̂2α) since Φη1
◦ · · · ◦ Φηj

fi = 0,
showing that functionals (45) all belong to Dx̂(f). Finally, the highest order part of

the differential functional Φα ◦Φα−1 ◦ · · · ◦Φ1 is
∏α−1

j=0 (x̂2j+1 ·Δx) ≡
∏α−1

j=0 ∇x̂2j+1

which is of order α since x̂2j+1 �= 0 by Lemma 5. However, differential orders of all
functionals in Dx̂(f) are bounded by δx̂(f), so α is also. �

In general, Theorem 4 does not guarantee those 2k functionals are linearly inde-
pendent. From computing experiments, the number k of depth-deflation steps also
correlates to the breadth βx̂(f). Especially when βx̂(f) = 1, it appears that k al-
ways reaches its maximum. This motivates the special case breadth-one algorithm
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which will be presented in §3.3. On the other hand, when breadth βx̂(f) > 1, very
frequently the depth-deflation process pleasantly terminates only after one depth-
deflation step regardless of the depth or multiplicity. A possible explanation for
such a phenomenon is as follows. At each depth-deflation step, say the first, the
isolated zero ẑ to the system (36) is multiple only if there is a differential functional
in the form of ∇x3

∇x2
+∇x4

in D2
x̂(f) while R1x2 = e1 and R1x4 = 0 for a ran-

domly chosen R1. In most of the polynomial systems we have tested, functionals in
this special form rarely exist in D2

x̂(f) when βx̂(f) > 1. If no such functionals exist

in D2
x̂(f), the zero ẑ must be a simple zero of F̃ in (36) according to Theorem 4,

therefore the depth-deflation ends at k = 1 step.

3.3. Special case: dual space of breadth one. Consider a nonlinear system
f = [f1, . . . , ft]

� having breadth-one at an isolated zero x̂, namely βx̂(f) = 1. The
Hilbert function is {1, 1, . . . , 1, 0, . . .}, making the depth one less than the multi-
plicity: δx̂(f) = dim

(
Dx̂(f)

)
− 1. This special case includes the most fundamental

univariate equation f(x) = 0 at a multiple zero. As mentioned above, the general
depth-deflation method derived in §3.1 always exhausts the maximal number of
steps in this case, and the final system is expanded undesirably from t× s to over
(2m−1t)× (2m−1s) at an m-fold zero. To overcome this exponential growth of the
system size, we shall modify the depth-deflation process for the breadth-one system
in this section so that the regularized system is of size close to (mt) × (ms), and
upon solving the system, a complete basis for the dual space Dx̂(f) is obtained as
a by-product.

Denote x = x1 and the zero x̂ = x̂1 as in §3.1. It follows from (20), that the
breadth βx̂(f) = h(1) = nullity (J0(x̂1) ) = 1 implies system (36), simplifying

to
[
J0(x̂1)
bH

]
x2 =

[
0
1

]
in the variable vector x2, has a unique solution x̂2 ∈ �s for

randomly chosen vector b ∈ �s. Similar to the general depth-deflation method in
§3.1, the first step of depth-deflation is to expand the system:

g1 (x1,x2) =
[

h0(x1)
h1(x1,x2)

]
(46)

where h0(x1) ≡ f(x) and h1(x1,x2) =
[
J0(x1)x2

bHx2 − 1

]
≡

[∇x2
f(x1)

bHx2 − 1

]
.

The system g1(x1,x2) has an isolated zero (x̂1, x̂2). If the Jacobian J1(x1,x2) of
g1(x1,x2) is of full rank at (x̂1, x̂2), then the system is regularized and the depth-
deflation process terminates. Otherwise, there is a nonzero vector (v1,v2) ∈ �2s

such that

(47) J1(x̂1, x̂2)
[

v1

v2

]
≡

⎡
⎣ ∇v1

f(x̂1)
(∇v1

∇x̂2
+ ∇v2

)f(x̂1)

bHv2

⎤
⎦ = 0.

Since the Jacobian J0(x̂) of f at x̂1 is of nullity one, there is a constant γ ∈ � such
that v1 = γx̂2. Equation (47) together with βx̂0

(f) = 1 and (v1,v2) �= (0,0) imply
γ �= 0. Consequently, we may choose γ = 1, namely v1 = x̂2. Setting x̂3 = v2, the
system

g2(x1,x2,x3) ≡
⎡
⎣ h0(x1)

h1(x1,x2)
h2(x1,x2,x3)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

f(x1)
∇x2

f(x1)

bHx2 − 1
(∇x2

∇x2
+ ∇x3

)f(x1)

bHx3

⎤
⎥⎥⎥⎥⎦(48)

where h2(x1,x2,x3) =
[
(∇x2

∇x2
+ ∇x3

)f(x1)

bHx3

]
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has an isolated zero (x̂1, x̂2, x̂3). In general, if an isolated zero (x̂1, . . . , x̂γ+1) to
the system

gγ(x1, . . . ,xγ+1) =

⎡
⎢⎢⎢⎣

h0(x1)
h1(x1,x2)

.

.

.
hγ(x1, · · · ,xγ+1)

⎤
⎥⎥⎥⎦

remains singular, or the Jacobian Jγ(x̂1, · · · , x̂γ+1) is rank-deficient, then there is
a nonzero solution to the homogeneous system

Jγ(x̂1, . . . , x̂γ+1)

⎡
⎢⎢⎣

u1

.

.

.
uγ+1

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣ Jγ−1(x̂1, . . . , x̂γ)

⎡
⎢⎢⎣

u1

.

.

.
uγ

⎤
⎥⎥⎦

∗

⎤
⎥⎥⎥⎦ = 0.

Therefore, by setting uj = x̂j+1 for j = 1, . . . , γ, we take its unique solution uγ+1

as x̂γ+2.
The pattern of this depth-deflation process can be illustrated by defining

(49) Ψ =
∞∑
η=1

xη+1 ·Δxη
.

When applying Ψ to any function f in (vector) variables, say x1, . . . ,xσ, the re-
sulting Ψf is a finite sum since Δxμ

f = 0 for μ ≥ σ + 1. Thus,

h1(x1,x2) =
[
Ψh0(x1)

bHx2 − 1

]
,h2(x1,x2,x3) =

[
Ψh1(x1,x2)

bHx3 − 1

]
and

hν(x1, . . . ,xν) =

⎡
⎢⎢⎢⎣

ν−1︷ ︸︸ ︷
Ψ ◦ Ψ ◦ · · · ◦ Ψh1(x1,x2),

bHxν+1

⎤
⎥⎥⎥⎦, for ν ≥ 2.(50)

For instance, with h1 and h2 in (46) and (48), respectively, we have

h3(x1,x2,x3,x4) =
[
(∇x2

∇x2
∇x2

+ 3∇x2
∇x3

+ ∇x4
)h0(x1)

bHx4

]
.

If, say, h3 = 0 at (x̂1, x̂2, x̂3, x̂4), a functional

f −→ (∇x̂2
∇x̂2

∇x̂2
+ 3∇x̂2

∇x̂3
+∇x̂4

) f(x1)

is obtained and it vanishes on the system f . The original system f(x) = 0 provides
a trivial functional ∂0···0 : f → f(x̂1). By the following lemma those functionals
are all in the dual space.

Lemma 6. Let f = [f1, . . . , ft]
� be a nonlinear system with an isolated zero x̂ ∈ �s.

Write g0 = f , x̂1 = x̂ and x1 = x. For any γ ∈ { 1, 2, . . . }, let (x̂1, x̂2, . . . , x̂γ+1)
be a zero of

(51) gγ(x1,x2, . . . ,xγ+1) =

⎡
⎢⎢⎣

h0(x1)

.

.

.
. . .

hγ(x1, . . . ,xγ+1)

⎤
⎥⎥⎦.

Then the functionals derived from gγ(x̂1, . . . , x̂γ+1) = 0 constitutes a linearly inde-
pendent subset of the dual space Dx̂0

(f).



MULTIPLE ZEROS OF NONLINEAR SYSTEMS 2165

Proof. By a rearrangement, finding a zero of gγ(x1,x2, . . . ,xγ+1) is equivalent to
solving

(52)

f(x1) = 0, bHx2 = 1,
Ψf(x1) = 0, bHx3 = 0,

...
...

Ψ ◦ · · · ◦Ψf(x1) = 0, bHxγ+1 = 0.

for (x1, . . . ,xγ+1) ∈ �(γ+1)s. Let (x̂1, . . . , x̂γ+1) be an isolated zero. Then each
Ψ ◦ · · · ◦Ψ induces a differential functional

(53) ρα : f −→
α︷ ︸︸ ︷

Ψ ◦ · · · ◦Ψ f

∣∣∣∣
(x1,...,xα+1)=(x̂1,...,x̂α+1)

, for α = 0, 1, . . . , γ.

Those functionals vanish on f1, . . . , ft because of (52). Since Ψ satisfies product
rule Ψ(fg) = (Ψf)g + f(Ψg) for any functions f and g in finitely many variables
among x1,x2, . . . , for any polynomial p ∈ �[x1], we have, for α = 0, 1, . . . , γ and
i = 1, . . . , t,

ρα(pfi) =
α∑

j=0

(
α
j

)
(

j︷ ︸︸ ︷
Ψ ◦ · · · ◦Ψ p)(

α−j︷ ︸︸ ︷
Ψ ◦ · · · ◦Ψ fi)

∣∣∣∣
(x1,...,xα+1)=(x̂1,...,x̂α+1)

= 0.

Namely, ρα’s satisfy the closedness condition (11), so they belong to Dx̂1
(f).

The leading (i.e., the highest order differential) term of ρα is

α︷ ︸︸ ︷
∇x̂2

· · · ∇x̂2
which

is of order α since x̂2 �= 0. Therefore, they are linearly independent. �

Theorem 5 (Breadth-one Deflation Theorem). Let x̂ be an isolated multiple zero
of the nonlinear system f = [f1, . . . , ft]

� with breadth βx̂(f) = 1. Then there is an
integer γ ≤ δx̂(f) such that, for almost all b ∈ �s, the system gγ in (51) has a
simple zero (x̂1, x̂2, . . . , x̂γ+1) which induces γ+1 linearly independent functionals
in Dx̂(f).

Proof. A straightforward consequence of Lemma 6. �

While the general depth-deflation method usually terminates with one or two
steps of system expansion for systems of breadth higher than one, the breadth-
one depth-deflation always terminates at step γ = δx̂(f) exactly. Summarizing the
above elaboration, we give the pseudo-code of an efficient algorithm for computing
the multiplicity structure of the breadth one case as follows:

Algorithm: BreadthOneMultiplicity

Input: Nonlinear system f = [f1, . . . , ft]
T, zero x̂1 ∈ �s

– set random vectors b ∈ �s and obtain x̂2 by solving
[

J(x̂1)

bH

]
x2

=

[
0
1

]
– initialize p2(x1,x2) = J(x1)x2

– for k = 2, 3, . . . do

∗ set dk(x1, . . . ,xk) = −
∑k−1

j=1 x̂j+1 ·Δxj
pk(x1, . . . ,xk)

∗ solve for xk+1 = x̂k+1 in the system

(54)
[

J(x̂1)

bH

]
xk+1 =

[
dk(x̂1, . . . , x̂k)

0

]
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∗ if the equation (54) has no solution, set γ = k − 1 and
break the loop; otherwise, set

pk+1(x1, . . . ,xk+1) = Ψpk(x1, . . . ,xk) ≡ dk(x1, . . . ,xk) + J(x1)xk+1

end do

Output: multiplicity γ + 1 and functionals ρ0, ρ1, . . . , ργ as in (53)

Example 5. One of the main advantages of our algorithms is the capability of
accurate identification of multiplicity structures even if the system data are given
with perturbations and the zero is approximate. Consider the sequence of nonlinear
systems

(55) f̃k(x, y, z) = [x2 sin y, y − z2, z − 1.772453850905516 cosxk ]�,

which is an inexact version of the system fk(x, y, z)=[x2 sin y, y−z2, z−
√
π cosxk]�

with breadth-one and isolated zero (0, π,
√
π). The multiplicity is 2(k+ 1) and the

depth is δ(0,π,
√
π)(fk) = 2k + 1 for k = 1, 2, . . .. Our code BreadthOneMulti-

plicity running on floating point arithmetic accurately identifies the multiplicity
structure with the approximate dual basis

1, ∂x, ∂x2 , . . . , ∂x2k-1 , ∂y + 0.2820947917738781 ∂z − 0.3183098861837908 ∂x2k ,

∂xy + 0.2820947917738781 ∂xz − 0.3183098861837908 ∂x2k+1

at the numerical zero (0, 3.141592653589793, 1.772453850905516). The computing time is
shown in Table 2 for Algorithm BreadthOneMultiplicity.

Table 2. Results of BreadthOneMultiplicity in floating
point arithmetic on the inexact systems f̃k in (55) at the approxi-
mate zero (0, 3.141592653589793, 1.772453850905516).

k: 2 4 6 8 10
computed depth : 5 9 13 17 21

computed multiplicity : 6 10 14 18 22

BreadthOneMultiplicity elapsed time 0.34 1.45 3.58 18.22 63.42

In our extensive computing experiments, AlgorithmBreadthOneMultiplicity

always produces a complete dual basis without premature termination. We believe
the following conjecture is true.

Conjecture 1. Under the assumptions of Theorem 5, Algorithm BreadthOne-

Multiplicity terminates at γ = δx̂(f) and generates a complete basis for the dual
space

Dx̂(f) = span{ρ0, ρ1, . . . , ργ}.
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