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ANALYSIS OF FULLY-MIXED FINITE ELEMENT METHODS

FOR THE STOKES-DARCY COUPLED PROBLEM

GABRIEL N. GATICA, RICARDO OYARZÚA, AND FRANCISCO-JAVIER SAYAS

Abstract. In this paper we analyze fully-mixed finite element methods for the
coupling of fluid flow with porous media flow in 2D. Flows are governed by the
Stokes and Darcy equations, respectively, and the corresponding transmission
conditions are given by mass conservation, balance of normal forces, and the
Beavers-Joseph-Saffman law. The fully-mixed concept employed here refers
to the fact that we consider dual-mixed formulations in both media, which
means that the main unknowns are given by the pseudostress and the velocity
in the fluid, together with the velocity and the pressure in the porous medium.
In addition, the transmission conditions become essential, which leads to the
introduction of the traces of the porous media pressure and the fluid velocity
as the associated Lagrange multipliers. We apply the Fredholm and Babuška-
Brezzi theories to derive sufficient conditions for the unique solvability of the
resulting continuous and discrete formulations. In particular, we show that
the existence of uniformly bounded discrete liftings of the normal traces sim-
plifies the derivation of the corresponding stability estimates. A feasible choice
of subspaces is given by Raviart-Thomas elements of lowest order and piece-
wise constants for the velocities and pressures, respectively, in both domains,
together with continuous piecewise linear elements for the Lagrange multipli-
ers. Finally, several numerical results illustrating the good performance of
the method with these discrete spaces, and confirming the theoretical rate of
convergence, are provided.

1. Introduction

The derivation of suitable numerical methods for the coupling of fluid flow (mod-
elled by the Stokes equations) with porous media flow (modelled by the Darcy
equation) has become a very active research area during the last decade (see, e.g.
[2], [9], [10], [11], [13], [14], [18], [20], [21], [27], [28], [29], [33], [34], [35], [37], and
the references therein). This fact has been motivated by the diverse applications
of this coupled model (in petroleum engineering, hydrology, and environmental sci-
ences, to name a few), and also by the increasing need of simpler, more accurate,
and more efficient procedures to solve it. Moreover, the latest results available in
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the literature also include porous media with cracks, nonlinear problems, and the
incorporation of the Brinkman equation in the model (see, e.g. [7], [16], and [38]).

In general, most of the finite element formulations developed for the Stokes-
Darcy coupled problem are based on appropriate combinations of stable elements
for the free fluid flow and for the porous medium flow. The first theoretical results
in this direction go back to [14] and [28]. An iterative subdomain method employing
the primal variational formulation and standard finite element subspaces in both
domains is proposed in [14]. Alternatively, the approach from [28] applies the
primal method in the fluid and the dual-mixed one in the porous medium, which
means that only the original velocity and pressure unknowns are considered in the
Stokes domain, whereas a further unknown (velocity) is added in the Darcy region.
The corresponding interface conditions are given by mass conservation, balance of
normal forces, and the Beavers-Joseph-Saffman law. Since one of them becomes
essential, the trace of the porous medium pressure needs to be incorporated as an
additional Lagrange multiplier.

More recently, new mixed finite element discretizations of the variational formu-
lation from [28] have been introduced and analyzed in [20] and [21]. The stability
of a specific Galerkin method is the main result in [20]. This scheme is defined by
using Bernardi-Raugel elements for the velocity in the fluid region, Raviart-Thomas
elements of lowest order for the filtration velocity in the porous media, piecewise
constants with null mean value for the pressures, and continuous piecewise linear
elements for the Lagrange multiplier on the interface. The resulting mixed finite
element method is the first one which is conforming for the primal/dual-mixed for-
mulation proposed in [28]. The results from [20] are improved in [21] where it is
shown that the use of any pair of stable Stokes and Darcy elements implies the
stability of the corresponding Stokes-Darcy Galerkin scheme. In particular, this in-
cludes Hood-Taylor, Bernardi-Raugel and MINI element for the Stokes region, and
Raviart-Thomas of any order for the Darcy domain. The analysis in [21] hinges on
the fact that the operator defining the continuous variational formulation is given
by a compact perturbation of an invertible mapping.

On the other hand, mortar finite element techniques, discontinuous Galerkin
(DG) schemes, and stabilized formulations have also been applied to solve the
Stokes-Darcy coupled problem. We first refer to [18] where a nonmatching ap-
proach is combined with Hood-Taylor and lowest order Raviart-Thomas spaces in
the Stokes and Darcy regions, respectively. Also, stabilized formulations for the
free fluid flow combined with stable elements for the Darcy equation are considered
in [2] and [34], while stabilized formulations for the porous medium flow combined
with stable elements for the Stokes equations are provided in [12] and [37]. Simi-
larly, stabilized formulations in the whole domain are presented in [11] and [33]. It
is important to notice here that the formulations in [2] and [11] are able to approx-
imate the Stokes and Darcy flows with the same finite element subpaces. Other
stabilized formulations with this characteristic are developed in [9], [10], [29], and
[35]. In particular, a stabilized piecewise linear/piecewise constant method with
an added penalization of pressure jumps over the edges is proposed in [10]. In
addition, Crouzeix-Raviart elements for the velocities and piecewise constants for
the pressures in both regions, combined with a stabilization term penalizing the
jumps of the discontinuous velocities over the edges, are employed in [35]. This
approach differs from the one in [9] where the stabilization term depends on the
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normal vectors of the interior edges. In connection with these references we remark
that different finite element subspaces in each flow region may lead to different
approximation properties for each subproblem. For instance, one could obtain a
more accurate velocity field in the Stokes domain than in the Darcy region. On the
contrary, employing the same spaces guarantees the same accurateness along the
entire domain and leads to simpler and more efficient computational codes.

The purpose of the present work is to contribute in the development of new nu-
merical methods for the 2D Stokes-Darcy coupled problem, allowing on one hand
the introduction of further unknowns of physical interest, and on the other hand,
the utilization of the same family of finite element subspaces in both media, with-
out requiring any stabilization term. To reach this aim we consider dual-mixed
formulations in both domains, which yields the pseudostress and the velocity in
the fluid, together with the velocity and the pressure in the porous medium, as
the main unknowns. The pressure and the gradient of the velocity in the fluid can
then be computed as a very simple postprocess of the above unknowns, in which
no numerical differentiation is applied, and hence no further sources of error arise.
In addition, since the transmission conditions become essential, we impose them
weakly and introduce the traces of the porous media pressure and the fluid veloc-
ity, which are also variables of importance from a physical point of view, as the
corresponding Lagrange multipliers. Then, we apply the well-known Fredholm and
Babuška-Brezzi theories to prove the unique solvability of a suitably chosen con-
tinuous formulation and derive sufficient conditions on the finite element subspaces
ensuring that the associated Galerkin scheme becomes well posed. In particular,
among the several different ways in which the equations and unknowns can be or-
dered, we choose the one yielding a doubly mixed structure for which the inf-sup
conditions of the off-diagonal bilinear forms follow straightforwardly. In this way,
the arguments of the continuous analysis can be easily adapted to the discrete case.

The rest of this paper is organized as follows. In Section 2 we introduce the
main aspects of the continuous problem, which includes the coupled model, its
weak formulation, and the corresponding variational system. The Fredholm theo-
rems and the classical Babuška-Brezzi theory are applied in Section 3 to analyze
the continuous problem. Then, in Section 4 we define the Galerkin scheme and de-
rive general hypotheses on the finite element subspaces ensuring that the discrete
scheme becomes well posed. In addition, we show that the assumption of existence
of uniformly bounded discrete liftings of the normal traces on the interface sim-
plifies the statement of one of the hypotheses. Next, in Section 5 we describe a
specific choice of finite element subspaces, namely Raviart-Thomas of lowest order
and piecewise constants on both domains, and piecewise linears on the interface,
and show that they satisfy all the required assumptions. In particular, we prove
that a quasiuniformity condition in a neighborhood of the interface implies the
existence of the above-mentioned discrete liftings. Finally, several numerical exam-
ples employing these spaces, illustrating the good performance of the method, and
confirming the theoretical order of convergence, are reported in Section 6.

We end this section by summarizing in advance, and according to the already
mentioned purpose of the paper, the main advantages of the present fully-mixed
approach: it provides either direct finite element approximations or very simple
postprocess formulae for several additional quantities of physical interest; it yields,
under a special ordering of the resulting equations and unknowns, a unified and
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straightforward analysis of the continuous and discrete formulations; it leads to
independent but analogously structured stability assumptions on the finite element
subspaces for the Stokes and Darcy regions; and it allows the utilization of the
same kind of finite elements in both media, with the consequent simplification of
the respective code.

2. The continuous problem

2.1. Statement of the model problem. The Stokes-Darcy coupled problem con-
sists of an incompressible viscous fluid occupying a region ΩS, which flows back and
forth across the common interface into a porous medium living in another region ΩD

and saturated with the same fluid. Physically, we consider a simplified 2D model
where ΩD is surrounded by a bounded region ΩS (see Figure 1 below). Their com-
mon interface is supposed to be a Lipschitz curve Σ and we assume that ∂ΩD = Σ.
The remaining part of the boundary of ΩS is also assumed to be a Lipschitz curve
ΓS. For practical purposes, we can assume that both ΓS and Σ are polygons, al-
though this fact will not be used in the general considerations about the formulation
of the problem. The unit normal vector field on the boundaries n is chosen pointing
outwards from ΩS (and therefore inwards to ΩD when seen on Σ). On Σ we also
consider a unit tangent vector field t in any fixed orientation of this closed curve.

Γ

t

n

n
ΩD

ΩS
S

Σ

Figure 1. The domains for our simplified 2D Stokes–Darcy model

The mathematical model is defined by two separate groups of equations and a
set of coupling terms. In ΩS, the governing equations are those of the Stokes prob-
lem, which are written in the following nonstandard velocity-pressure-pseudostress
formulation:

(2.1)
σS = − pS I + ν∇uS in ΩS , divσS + fS = 0 in ΩS ,

divuS = 0 in ΩS , uS = 0 on ΓS ,

where ν > 0 is the viscosity of the fluid, uS is the fluid velocity, pS is the pressure,
σS is the pseudostress tensor, I is the 2×2 identity matrix, and fS are known source
terms. Here, div is the usual divergence operator acting on vector fields,

∇u =

(
∂ui

∂xj

)
and divσ =

(
div(σi1, σi2)

)
,
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i.e., the divergence operator applied to a matrix-valued function (a tensor) is taken
row-wise. On the other hand, the flow equations in ΩD are those of the linearized
Darcy model:

(2.2) uD = −K∇pD in ΩD , divuD = fD in ΩD ,

where the unknowns are the pressure pD and the flow uD. The matrix-valued
function K, describing permeability of ΩD divided by the viscosity ν, satisfies Kt =
K, has L∞(ΩD) components and is uniformly elliptic. Finally, fD are source terms.
We will see that a necessary and sufficient condition for well posedness of the model
equations is

(2.3)

∫
ΩD

fD = 0.

Finally, the transmission conditions on Σ are given by

(2.4)
uS · n = uD · n on Σ ,

σS n + ν κ−1 (uS · t) t = − pD n on Σ ,

where κ :=

√
(ν K t) · t

α
is the friction coefficient, and α is a positive parameter

to be determined experimentally. The first equation in (2.4) corresponds to mass
conservation on Σ, whereas the second one can be decomposed into its normal and
tangential components as follows:(

σS n
)
· n = − pD and

(
σS n

)
· t = − ν κ−1 (uS · t) on Σ ,

which constitute the balance of normal forces and the Beavers-Joseph-Saffman law,
respectively. The latter establishes that the slip velocity along Σ is proportional
to the shear stress along Σ (assuming also, based on experimental evidences, that
uD ·t is negligible). We refer to [6], [26], and [36] for further details on this interface
condition. Throughout the rest of the paper we assume, without loss of generality,
that κ is a positive constant.

The description of our model problem is completed by observing that the equa-
tions in the Stokes domain (cf. (2.1)) can be rewritten equivalently as

(2.5)
ν−1 σd

S = ∇uS in ΩS , divσS + fS = 0 in ΩS ,

pS = − 1
2 trσS in ΩS , uS = 0 on ΓS ,

where tr stands for the usual trace of tensors, that is, tr τ := τ11 + τ22, and

τ d := τ − 1
2 (tr τ ) I

is the deviatoric part of the tensor τ . The third equation in (2.5) allows us to
eliminate pS from the system and compute it as a simple postprocess of the solution.
Similarly, the first equation in (2.5) yields a straightforward postprocess formula
for the gradient of the velocity in the fluid. Note that a constant c added to both
pS and pD is not perceived by the system; its only effect is a correction in σS that
has to be subtracted c times the identity matrix.

We end this section by remarking that, though the geometry described by Figure
1 was chosen to simplify the presentation, the case of a fluid flowing only across a
part of the boundary of the porous medium does not really yield further complica-
tions for the analysis in the present paper. For instance, if we consider a fluid over
the porous medium, ∂ΩS stays given by ΓS ∪ Σ, but now with both curves meeting
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at their end points, whereas a new piece of ∂ΩD, say Γ, such that ∂ΩD = Σ ∪ Γ,
needs to be identified. In this case, besides the equations given in the present sec-
tion (which hold now with the notations introduced here), a boundary condition on
Γ needs to be added. Following [18] and [28] (see also [16]), one usually considers
the homogeneous Neumann condition:

(2.6) uD · n = 0 on Γ ,

which constitutes a no flow assumption through Γ. We refer to [18] for further
details and emphasize that only minor modifications will need to be incorporated
into the forthcoming analysis. In particular, this is certainly valid for the discrete
analysis, which is illustrated by two numerical examples reported below in Sec-
tion 6. Alternatively, instead of (2.6) one can consider the homogeneous Dirichlet
condition:

(2.7) pD = 0 on Γ ,

which, as will be explained at the end of Section 3 below, becomes a unique solv-
ability condition for the resulting variational formulation.

2.2. The weak formulation. Let us first introduce some general functional spa-
ces. If O is a domain, Γ is a closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , H
r(O) := [Hr(O)]2×2 , and Hr(Γ) := [Hr(Γ)]2 .

In the particular case r = 0 we usually write L2(O), L2(O), and L2(Γ) instead of
H0(O), H0(O), and H0(Γ), respectively. The corresponding norms are denoted by
‖ · ‖r,O (for Hr(O), Hr(O), and H

r(O)) and ‖ · ‖r,Γ (for Hr(Γ) and Hr(Γ)).
Also, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [8] or [23] for instance). The
space of matrix-valued functions whose rows belong to H(div;O) will be denoted
H(div;O). The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖ ·‖div;O
and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O). Note
also that H(div;O) can be characterized as the space of matrix-valued functions τ
such that ctτ ∈ H(div;O) for any constant column vector c. In addition, it is easy
to see that there holds:

(2.8) H(div;O) = H0(div;O) ⊕ P0(O) I ,

where

(2.9) H0(div;O) :=

{
σ ∈ H(div;O) :

∫
O
trσ = 0

}
and P0(O) is the space of constant polynomials on O. More precisely, each τ ∈
H(div;O) can be decomposed uniquely as:

(2.10) τ = τ 0 + c I , with τ 0 ∈ H0(div;O) and c :=
1

2 |O|

∫
O
tr τ ∈ R .

This decomposition will be utilized below to analyze the weak formulation of our
problem.

On the other hand, for simplicity of notation we will also denote, with � ∈ {S,D}

(u, v)� :=

∫
Ω�

u v, (u,v)� :=

∫
Ω�

u · v, (σ, τ )� :=

∫
Ω�

σ : τ ,
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where σ : τ = tr (σtτ ) =
2∑

ij=1

σijτij . Note the following simple and useful

identity

σd : τ d = σd : τ = σ : τ − 1

2
(trσ) (tr τ ) .

The symbols for the L2(Σ) and L2(Σ) inner products

〈ξ, λ〉Σ :=

∫
Σ

ξ λ, 〈ξ,λ〉Σ :=

∫
Σ

ξ · λ ,

will also be employed for their extensions as the duality products H−1/2(Σ) ×
H1/2(Σ) and H−1/2(Σ)×H1/2(Σ), respectively.

The unknowns in the weak (mixed) formulation will be the two unknowns in
(2.2) and the unknowns of (2.5) without the pressure pS. The corresponding spaces
will be:
(2.11)

σS ∈ H(div; ΩS), uS ∈ L2(ΩS), uD ∈ H(div; ΩD), pD ∈ L2(ΩD).

In addition, we will need to define two unknowns on the coupling boundary

(2.12) ϕ := −uS ∈ H1/2(Σ), λ := pD ∈ H1/2(Σ).

Note that in principle the spaces for uS and pD do not allow enough regularity for
the traces above to exist. However, solutions of (2.2) and (2.5) have these unknowns
in H1(ΩS) and H1(ΩD), respectively.

In order to obtain the weak formulation of (2.2)–(2.4)–(2.5), we apply the di-
vergence theorem to the first equation in both (2.2) and (2.5), that is to those
equations relating σS and uD to other magnitudes. Then, due to the mixed nature
of the model, the Dirichlet condition in (2.5) and the traces of pD and uS on Σ
become natural and hence they are incorporated directly in the weak formulation.
On the contrary, both transmission conditions in (2.4) become essential, whence
they have to be imposed independently, thus yielding the introduction of the auxil-
iary unknowns (2.12) as the corresponding Lagrange multipliers. According to the
above, the weak equations can be written as follows: we look for the unknowns

(2.13)
(σS,uS,ϕ) ∈ H(div; ΩS)× L2(ΩS)×H1/2(Σ),

(uD, pD, λ) ∈ H(div; ΩD)× L2(ΩD)×H1/2(Σ)

satisfying two variational equations

ν−1 (σd
S, τ

d
S)S + (div τ S,uS)S + 〈τS n,ϕ〉Σ = 0 ∀ τ S ∈ H(div; ΩS) ,(2.14)

(K−1 uD,vD)D − (divvD, pD)D − 〈vD · n, λ〉Σ = 0(2.15)

∀vD ∈ H(div; ΩD),

two differential equations

(2.16)
divσS + fS = 0 in ΩS ,

divuD = fD in ΩD ,
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with source terms fS ∈ L2(ΩS) and fD ∈ L2(ΩD), and two restrictions on the
boundary

(2.17)
ϕ · n + uD · n = 0 in H−1/2(Σ) ,

σS n + λn − ν κ−1 (ϕ · t) t = 0 in H−1/2(Σ) .

The apparently wrong sign in the term where λ appears in the second equation of
(2.17) is due to the fact that the normal on Σ points inwards from the point of view
of ΩD.

Different orderings of the equations and unknowns will emphasize different struc-
tural properties of the system. We will show three possibilities shortly.

Theorem 2.1. Assume that we have a solution (2.13) of the system (2.14)–(2.15)–
(2.16)–(2.17) and that we define pS := − 1

2 trσS. Then uS ∈ H1(ΩS), pD ∈
H1(ΩD), ϕ = −uS on Σ, λ = pD on Σ and we have a solution of the system
(2.1)–(2.2)–(2.4).

Proof. It is a simple application of well-known results on distribution theory and
Sobolev spaces of H1(O) and H(div;O) type. �

2.3. The variational system. The weak system (2.14)–(2.15)–(2.16)–(2.17) can
be described in purely variational form. To do that, we now test the equations
(2.16) and the first equation of (2.17) with arbitrary v ∈ L2(ΩS), q ∈ L2(ΩD),
and ξ ∈ H1/2(Σ), respectively, which give

(divσS,vS)S = − (fS,vS)S ∀vS ∈ L2(ΩS) ,(2.18)

(divuD, qD)D = (fD, qD)D ∀ qD ∈ L2(ΩD) ,(2.19)

and

(2.20) 〈ϕ · n, ξ〉Σ + 〈uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) .

In addition, for convenience of the subsequent analysis we consider the decompo-
sition (2.8)–(2.9) with O = ΩS, and from now on redefine the fluid pseudostress
as
(2.21)

σS + μ I with the new unknowns σS ∈ H0(div; ΩS) and μ ∈ R .

In this way, the variational formulation of the second transmission condition in
(2.17) becomes

〈σS n,ψ〉Σ + 〈ψ · n, λ〉Σ − ν κ−1 〈ϕ · t,ψ · t〉Σ + μ 〈ψ · n, 1〉Σ = 0(2.22)

∀ψ ∈ H1/2(Σ) ,

and the equation (2.14) is rewritten, equivalently, as

(2.23) ν−1 (σd
S, τ

d
S)S + (div τ S,uS)S + 〈τS n,ϕ〉Σ = 0 ∀ τ S ∈ H0(div; ΩS)

and

(2.24) η 〈ϕ · n, 1〉Σ = 0 ∀ η ∈ R .

As a consequence of the above, we find that the resulting variational formulation
reduces to a system of seven equations ((2.15), (2.18)–(2.20), (2.22)–(2.24)) and



FULLY-MIXED FEM FOR STOKES-DARCY 1919

seven unknowns, which can be written in terms of the following nine bilinear forms:

A : ν−1 (σd
S, τ

d
S)S D : ν κ−1 〈ϕ · t,ψ · t〉Σ G : −(divuD, qD)D,(2.25)

B : (divσS,vS)S E : 〈ϕ · n, ξ〉Σ H : −〈uD · n, ξ〉Σ,
C : 〈σS n,ψ〉Σ F : (K−1 uD,vD)D J : η 〈ϕ · n, 1〉Σ.

On the left of each column of (2.25) we have added a key letter for the nine different
bilinear forms (or related operators). It is easy to see that all of these bilinear forms
are bounded. Also, those with both arguments in the same space

A : ν−1 (σd
S, τ

d
S)S , D : ν κ−1 〈ϕ · t,ψ · t〉Σ , F : (K−1 uD,vD)D

are symmetric and positive semidefinite. In addition, the bilinear forms

D : ν κ−1 〈ϕ · t,ψ · t〉Σ , E : 〈ϕ · n, ξ〉Σ
are compact by the compact inclusion of H1/2(Σ) in L2(Σ).

Now, it is quite clear that there are many different ways of ordering the varia-
tional system. In order to illustrate this fact and identify a suitable form, in Table
1 below we show three options, emphasizing different structural properties of them.
On the left of each row we indicate the corresponding equation. Besides the row
and the column involving the unknown μ, we observe in ((1)) that the remaining
equations show two blocks on the diagonal: the Stokes block in mixed form with a
penalization term and the Darcy block in mixed form. The coupling is limited to
E and Et. Changing the sign of the fourth equation we obtain a symmetric system,
whereas changing the sign of the second and third equations we see the sign of the
underlying quadratic form: off–diagonal terms compose a skew–symmetric matrix
and diagonal terms are positive semidefinite. Similarly, beside again the row and
the column involving μ, we observe in ((2)) that the variables are grouped by charac-
ter and a different mixed structure, with a nonsymmetric and negative semidefinite
penalization term, is recovered. Nevertheless, a good feature of this system is the
fact that D and E are compact, so taking away the penalization term, the remaining
system consists of a purely mixed problem, which can be decoupled in two mixed
problems. On the other hand, ((3)) shows a particular overlapping of the Stokes
and Darcy blocks, which, at first, seems to mix everything in an inconvenient way.
However, a closer look to this ordering allows us to identify a doubly-mixed struc-
ture in which the interior mixed formulation contains the same penalization term
observed in ((2)). Moreover, all the block bilinear forms, except the one defining the
penalization term, show a diagonal structure, which constitutes an advantageous
feature when proving the corresponding inf-sup conditions.

Throughout the rest of the paper we adopt the structure ((3)) for our analysis.
This means that we group unknowns and spaces as follows:
(2.26)

σ := (σS,uD,ϕ, λ) ∈ X0 := H0(div; ΩS)×H(div; ΩD)×H1/2(Σ)×H1/2(Σ) ,

u := (uS, pD, μ) ∈ M := L2(ΩS)× L2(ΩD)× R .

In this way, the variational system of our problem reads: Find (σ,u) ∈ X0 × M

such that

(2.27)
A(σ, τ ) + B(τ ,u) = F(τ ) ∀ τ := (τ S,vD,ψ, ξ) ∈ X0 ,

B(σ,v) = G(v) ∀v := (vS, qD, η) ∈ M ,
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Table 1. Three different forms of structuring the variational system.

((1)) σS uS ϕ uD pD λ μ

(2.23) A Bt Ct

(2.18) B
(2.22) C −D Et Jt

(2.15) F Gt Ht

(2.19) −G
(2.20) E −H

(2.24) J

((2)) σS uD uS pD ϕ λ μ

(2.23) A Bt Ct

(2.15) F Gt Ht

(2.18) B
(2.19) G
(2.22) C −D Et Jt

(2.20) H −E

(2.24) − J

((3)) σS uD ϕ λ uS pD μ

(2.23) A Ct Bt

(2.15) F Ht Gt

(2.22) C −D Et Jt

(2.20) H −E

(2.18) B
(2.19) G
(2.24) J

where

(2.28) F(τ ) := 0, G(v) = G((vS, qD, η)) := − (fS,vS)S − (fD, qD) ,

and A and B are the bounded bilinear forms defined by

(2.29)
A(σ, τ ) = a((σS,uD), (τS,vD)) + b((τS,vD), (ϕ, λ))

+ b((σS,uD), (ψ, ξ)) − c((ϕ, λ), (ψ, ξ)) ,
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with

a((σS,uD), (τS,vD)) := ν−1 (σd
S, τ

d
S)S + (K−1 uD,vD)D ,

[A + F]

b((τS,vD), (ψ, ξ)) := 〈τS n,ψ〉Σ − 〈vD · n, ξ〉Σ ,

[C + H]

c((ϕ, λ), (ψ, ξ)) := ν κ−1 〈ϕ · t,ψ · t〉Σ + 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ

[D + E− Et] ,

and

(2.30) B(τ ,v) := (div τS,vS)S − (divvD, qD)D + η 〈ψ ·n, 1〉σ [B + G+ J] .

It is quite evident from (2.29) that A has a mixed structure with penalization
term given by − c, which confirms the doubly-mixed character of (2.27). Note also
that c is nonsymmetric and positive semidefinite (this fact will be emphasized and
utilized in Section 3). In addition, we remark again that the diagonal character of
the bilinear forms a, b, and B will yield simpler and more straightforward proofs
of the corresponding inf-sup conditions.

3. Analysis of the continuous problem

The approach that we will follow for the analysis of the continuous problem (2.27)
is the one of Fredholm theorems and Babuška-Brezzi theory for mixed problems.

3.1. Preliminaries. We group here some merely technical results and further no-
tations that will serve for the forthcoming analysis. For elementary results on
Hilbert space theory, we refer to [17] for example. The first of them is an abstract
result on Hilbert spaces that can be read as follows: a symmetric positive definite
bilinear form in a Hilbert space that can be made elliptic by the addition of a
compact bilinear form, is necessarily elliptic.

Lemma 3.1. Let X be a Hilbert space, and let a : X×X → R and k : X×X → R

be bounded bilinear forms. Assume that a is symmetric and positive definite, k is
compact, and there exists α > 0 such that

a(x, x) + k(x, x) ≥ α ‖x‖2 ∀x ∈ X .

Then there exists β > 0 such that

a(x, x) ≥ β ‖x‖2 ∀x ∈ X .

Proof. Let A : X → X ′ and K : X → X ′ be the linear and bounded operators
induced by a and k, respectively, that is, A(x) = a(x, ·) and K(x) = k(x, ·) for
each x ∈ X. The hypotheses on a and k imply that A is selfadjoint and injective,
K is compact, and A + K is invertible, whence A is Fredholm of index zero. It
follows that A is an invertible selfadjoint positive definite operator, and hence, by
elementary spectral properties of bounded selfadjoint operators, A is necessarily
elliptic. �

Lemma 3.2. There exists c > 0 such that

‖vD‖0,ΩD
≥ c ‖vD‖div,ΩD

∀vD ∈ H(div; ΩD) such that div vD ∈ P0(ΩD) .
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Proof. Let vD ∈ H(div; ΩD) such that div vD ∈ P0(ΩD). It is simple to see that

‖vD‖2div,ΩD
= ‖vD‖20,ΩD

+ k(vD,vD) ,

where k : H(div; ΩD)×H(div; ΩD) → R is the bounded bilinear form defined by

k(wD,vD) :=
1

|ΩD|

{∫
ΩD

divwD

}{∫
ΩD

div vD

}
∀wD, vD ∈ H(div; ΩD) .

Since k is clearly compact, a direct application of Lemma 3.1 ends the proof. �

Lemma 3.3. There exists c1 > 0 such that

(3.1) ‖τ d
S‖20,ΩS

+ ‖div τ S‖20,ΩS
≥ c1 ‖τ S‖20,ΩS

∀ τ S ∈ H0(div; ΩS) .

Proof. See [3, Lemma 3.1] or [8, Proposition 3.1, Chapter IV]. �

Lemma 3.4. Let (X, 〈·, ·〉X) and Y, 〈·, ·〉Y ) be Hilbert spaces and let A : X → X,
B : X → Y , and C : Y → Y be bounded linear operators. Assume that A is elliptic,
B is surjective, and C is positive semidefinite, that is, respectively,

i) there exists α > 0 such that 〈A(x), x〉X ≥ α ‖x‖2X ∀x ∈ X,
ii) there exists β > 0 such that ‖B∗(y)‖X ≥ β ‖y‖Y ∀ y ∈ Y ,
iii) 〈C(y), y〉Y ≥ 0 ∀ y ∈ Y .

Then the matrix operator T :=

[
A B∗

B −C

]
: X × Y → X × Y is bijective.

Proof. It suffices to observe that, being A invertible thanks to i), T is bijective if
and only if S := BA−1 B∗ + C : Y → Y is bijective, which follows from the fact
that S becomes elliptic. We omit further details and refer to [19, Lemma 2.1] for a
nonlinear version of this result. �

We end this section with some notation concerning our product spaces. In fact,
we now let

X := H(div; ΩS)×H(div; ΩD)×H1/2(Σ)×H1/2(Σ) ,

recall that M := L2(ΩS)× L2(ΩD)× R (cf. (2.26)), and define

‖τ‖X := ‖τ S‖div,ΩS
+ ‖vD‖div,ΩD

+ ‖ψ‖1/2,Σ+ ‖ξ‖1/2,Σ ∀ τ := (τ S,vD,ψ, ξ) ∈ X

and

‖v‖M := ‖vS‖0,ΩS
+ ‖qD‖0,ΩD

+ |η| ∀v := (vS, qD, η) ∈ M .

Note that ‖ · ‖X and ‖ · ‖M are equivalent to the product norms that make X and
M (and hence X0 and M0) Hilbert spaces. We will use them for all forthcoming
estimates.

3.2. The main results. We begin by showing that (2.27) has a one-dimensional
kernel. More precisely, we have the following result.

Lemma 3.5. Let (σ,u) := ((σS,uD,ϕ, λ), (uS, pD, μ)) ∈ X0 ×M be a solution of
(2.27) with homogeneous right-hand side. Then there exists c ∈ R such that

σ = (0,0,0, c). and u = (0, c,−c).
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Proof. Testing the equations (2.27) with the vectors τ = (σS,uD,−ϕ,−λ) and
v = (−uS,−pD, μ), and then adding them, we find that

0 = ν−1 (σd
S,σ

d
S)S + (K−1uD,uD)D + ν κ−1 〈ϕ · t,ϕ · t〉Σ .

Note that this is equivalent to changing the sign of either the second and third rows
in ((1)) or all the rows but the first two in ((2)) or all the rows but the first two and
the last one in ((3)) (see Table 1), and then adding all of them. It is clear from the
above equation that

σd
S = 0 in ΩS, uD = 0 in ΩD, and ϕ · t = 0 on Σ .

Using Theorem 2.1 it follows that ∇uS = ν−1 σd
S = 0 (cf . (2.5)) and −uS ·t = 0,

which implies that uS = 0 in ΩS. Hence, again by Theorem 2.1 we have that
ϕ = 0 and divσS = 0, which, together with the fact that σS ∈ H0(div; ΩS) and
σd

S = 0, yields σS = 0 in ΩS. Next, since ∇ pD = K−1 uD = 0, we deduce the
existence of c ∈ R such that pD = c in ΩD, whence λ = c on Σ. According to
the above, the equation (2.22) reduces now to μn + cn = 0 on Σ, which gives
μ = − c. �

Our next goal is to demonstrate that a simple restriction on the pressure in the
Darcy domain solves the indetermination generated by the nonnull kernel of (2.27).
To this end, we now let

M0 := L2(ΩS)× L2
0(ΩD)× R ,

where

L2
0(ΩD) :=

{
q ∈ L2(ΩD) :

∫
ΩD

q = 0

}
,

and consider the reduced problem: Find (σ,u) ∈ X0 ×M0 such that

(3.2)
A(σ, τ ) + B(τ ,u) = F(τ ) ∀ τ := (τS,vD,ψ, ξ) ∈ X0 ,

B(σ,v) = G(v) ∀v := (vS, qD, η) ∈ M0 .

Throughout the rest of the section we follow the analysis suggested by the Babuška-
Brezzi theory to conclude finally that (3.2) is well posed. This requires the inf-sup
condition for B and the invertibility of the operator induced by A in the kernel of
B. We begin with the first.

Lemma 3.6. There exists β > 0 such that

(3.3) sup
τ ∈X0\0

B(τ ,v)
‖τ‖X

≥ β ‖v‖M ∀v ∈ M0 .

Proof. We first observe that the diagonal character of B (cf. (2.30)) guarantees
that (3.3) is equivalent to the following three independent inf-sup conditions:

sup
τS ∈H0(div;ΩS)\0

(div τ S,vS)S
‖τ S‖div,ΩS

≥ βS ‖vS‖0,ΩS
∀vS ∈ L2(ΩS) ,(3.4)

sup
vD ∈H(div;ΩD)\0

(divvD, qD)D
‖vD‖div,ΩD

≥ βD ‖qD‖0,ΩD
∀ qD ∈ L2

0(ΩD) ,(3.5)

sup
ψ∈H1/2(Σ)\0

η 〈ψ · n, 1〉Σ
‖ψ‖1/2,Σ

≥ βΣ |η| ∀ η ∈ R ,(3.6)
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with βS, βD, βΣ > 0. For instance, the above statement follows from a direct
application of the characterization result for the inf-sup condition on product spaces
provided in [22, Theorem 5].

Now, given vS ∈ L2(ΩS) we define τ as the H0(div; ΩS)–component of ∇z ∈
H(div; ΩS), where z ∈ H1(ΩS) is the unique solution of the boundary value prob-
lem:

Δz = vS in ΩS , z = 0 on ∂ΩS .

This proves the surjectivity of the operator div : H0(div; ΩS) → L2(ΩS), which is
(3.4). Similarly, it is easy to see that div : H(div; ΩD) → L2(ΩD) is also surjective,
which yields (3.5).

On the other hand, the inf-sup condition (3.6) is equivalent to the surjectivity
of the operator ψ → 〈ψ · n, 1〉Σ from H1/2(Σ) to R, which in turn is equivalent to
showing the existence of ψ0 ∈ H1/2(Σ) such that 〈ψ0 · n, 1〉Σ �= 0. In fact, we pick
one corner point of Σ and define a function v that is continuous, linear on each side
of Σ, equal to one in the chosen vertex, and zero on all other ones. If n1 and n2

are the normal vectors on the two sides of Σ that meet at the corner point, then
ψ0 := v (n1 + n2) satisfies the required property. �

We now let V be the kernel of B, that is,

V :=
{
τ ∈ X0 : B(τ ,v) = 0 ∀v ∈ M0

}
.

It is easy to see from the definition of B (cf. (2.30)) that V = V1 × V2, where

V1 = H̃0(div; ΩS)× H̃(div; ΩD) and V2 = H̃1/2(Σ)×H1/2(Σ) ,

with

H̃0(div; ΩS) :=
{
τ S ∈ H0(div; ΩS) : div τS = 0

}
,

H̃(div; ΩD) :=
{
vD ∈ H(div; ΩD) : div vD ∈ P0(ΩD)

}
,

and

H̃1/2(Σ) :=
{
ψ ∈ H1/2(Σ) : 〈ψ · n, 1〉Σ = 0

}
.

Then, in what follows we apply Lemma 3.4 to prove that the operator induced by
A (cf. (2.29)) is invertible in V. This means showing that a is elliptic on V1, b
satisfies the inf-sup condition on V1 × V2, and c is positive semidefinite on V2.

As remarked in Section 2, the condition on c is pretty straightforward since

(3.7) c((ϕ, λ), (ϕ, λ)) = ν κ−1 ‖ϕ · t‖20,Σ ≥ 0 ∀ (ϕ, λ) ∈ H1/2(Σ)×H1/2(Σ) .

The remaining conditions for a and b are established in the following lemmas.

Lemma 3.7. There exists α1 > 0 such that for each (τS,vD) ∈ V1 there holds

a((τS,vD), (τS,vD)) ≥ α1

{
‖τ S‖2div,ΩS

+ ‖vD‖2div,ΩD

}
.

Proof. It suffices to observe that

a((τS,vD), (τS,vD)) = ν−1 ‖τ d
S‖20,ΩS

+ (K−1 vD,vD)D

≥ c
{
‖τ d

S‖20,ΩS
+ ‖vD‖20,ΩD

}
,

and then apply Lemmas 3.3 and 3.2. �
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Lemma 3.8. There exists β̃ > 0 such that

(3.8) sup
(τS,vD)∈V1\0

b((τS,vD), (ψ, ξ))

‖(τS,vD)‖
≥ β̃ ‖(ψ, ξ)‖ ∀ (ψ, ξ) ∈ V2 .

Proof. Analogously to the proof of Lemma 3.6, and thanks to the diagonal character
of b, we find that (3.8) is equivalent to the following two independent inequalities:

sup
τS ∈ H̃0(div;ΩS)\0

〈τS n,ψ〉Σ
‖τ S‖div,ΩS

≥ β̃S ‖ψ‖1/2,Σ ∀ψ ∈ H̃1/2(Σ) ,(3.9)

sup
vD ∈ H̃(div;ΩD)\0

〈vD · n, ξ〉Σ
‖vD‖div,ΩD

≥ β̃D ‖ξ‖1/2,Σ ∀ ξ ∈ H1/2(Σ) ,(3.10)

with β̃S, β̃D > 0.
Now, given χ ∈ H−1/2(Σ) we let τ be the H0(div; ΩS)–component of ∇ z ∈

H(div; ΩS), where z ∈ H1(ΩS) is the unique solution of the boundary value prob-
lem:

(3.11) Δz = 0 in ΩS , z = 0 on ΓS , ∇zn = χ on Σ .

In other words, τ := ∇ z − c I, where c :=
1

2 |ΩS|

∫
ΩS

tr∇ z (cf. (2.10)),

which implies that τ ∈ H̃0(div; ΩS) and τ n = χ − cn on Σ. It follows that

〈τ n,ψ〉Σ = 〈χ,ψ〉Σ for each ψ ∈ H̃1/2(Σ), which proves the surjectivity of the

operator τ → τ n from H̃0(div; ΩS) to
(
H̃1/2(Σ)

)′
, that is, (3.9).

Similarly, given χ ∈ H−1/2(Σ) we define v := ∇z ∈ H(div; ΩD), where z ∈
H1(ΩD) is the unique solution of the boundary value problem:

(3.12) Δz =
1

|ΩD|
〈χ, 1〉Σ in ΩD , ∇z · n = χ on Σ ,

∫
ΩD

z = 0 .

It follows that v ∈ H̃(div; ΩD) and v·n = χ on Σ, which proves the surjectivity

of the operator v → v · n from H̃(div; ΩD) to H−1/2(Σ), that is, (3.10). �

As a consequence of the previous analysis we conclude that A is invertible in the
kernel of B. This result and the inf-sup condition for B (cf. Lemma 3.6) allow us
to establish the following theorem.

Theorem 3.9. For each pair (F ,G) ∈ X
′
0 × M

′
0 there exists a unique (σ,u) ∈

X0 × M0 solution to (3.2), and there exists a constant C > 0, independent of the
solution, such that

‖(σ,u)‖X×M ≤ C
{
‖F‖X′

0
+ ‖G‖M′

0

}
.

In particular, if (F ,G) is given by (2.28) and there holds

∫
ΩD

fD = 0 (cf. (2.3)),

then the solution of (3.2) is also a solution of the original variational formulation
(2.27).

Proof. The well posedness of (3.2) follows from a straightforward application of
the classical Babuška-Brezzi theory for mixed problems (see, e.g. [23, Theorem
I.4.1] or [8, Chapter II]). Now, let (σ,u) ∈ X0 ×M0 be the solution of (3.2) with
(F ,G) given by (2.28). Since the first equations of (2.27) and (3.2) coincide, it
only remains to show that σ verifies the second equation of (2.27) to conclude that
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(σ,u) also solves that problem. In fact, taking τ = (0,0,0, ξ) in the first equation
of (3.2) we deduce that uD · n + ϕ · n = 0 on Σ, and hence, according to the
definition of B (cf. (2.30)) and the second equation of (3.2), we obtain that

B(σ, (0, 1, 0)) = − (divuD, 1)D = 〈uD · n, 1〉Σ = −〈ϕ · n, 1〉Σ

= B(σ, (0, 0,−1)) = G((0, 0,−1)) = 0 .

Then, given v = (vS, qD, η) ∈ M, where qD = q0 + c, with (q0, c) ∈ L2
0(ΩD)×R,

we use the above identity and again the second equation of (3.2), to find that

B(σ,v) = B(σ, (vS, q0, η)) = G((vS, q0, η)) = − (fS,vS)S − (fD, q0)D

= − (fS,vS)S −
(
fD − 1

|ΩD|

∫
ΩD

fD, qD

)
D

,

which, thanks to the assumption (2.3), becomes B(σ,v) = G(v) ∀v ∈ M. �

Note from the last identity in the previous proof that if we solve (3.2) with (F ,G)
given by (2.28) but (2.3) is not satisfied, then we are finding a solution of (2.27) for
a slightly modified right-hand side, with fS unchanged but with fD − 1

|ΩD|
∫
ΩD

fD
instead of fD. Moreover, we can actually prove the following result characterizing
the solvability of (2.27).

Theorem 3.10. Problem (2.27) with (F ,G) given by (2.28) is solvable if and only
if (2.3) holds. In that case, the solution is defined up to a multiple of the vector
((0,0,0, 1), (0, 1,−1)).

Proof. It suffices to observe that the operator induced by the left-hand side of
(2.27), say L, is Fredholm of index zero. In fact, using that L2(ΩD) = L2

0(ΩD) ⊕
P0(ΩD), we decompose the pressure unknown pD in (2.27) as pD = p0 + c with
p0 ∈ L2

0(ΩD) and c ∈ P0(ΩD), and similarly for the corresponding test functions
qD ∈ L2(ΩD). In this way, it is easy to realize that (2.27) is equivalent to a compact
perturbation of a problem equivalent to (3.2). Since the latter is well posed, this
proves the announced property of L. Now, the kernel of the adjoint operator L∗ is
the same as L because this operator is symmetric up to some sign changes of its
rows (see Table 1). Therefore, by the Fredholm alternative, the system (2.27) is
solvable if and only if the right-hand side vanishes when applied to an element of
the kernel of the adjoint. With the right-hand side (2.28) and the kernel given in
Lemma 3.5 this is just condition (2.3). �

At this point we remark that the above analysis also applies when the fluid lies
over the porous medium and the additional Neumann boundary condition (2.6) is
incorporated into the model (as described at the end of Section 2.1). In particular,
it is easy to see that (2.3) and its equivalence with the solvability of the original
formulation (2.27) remain unchanged in this case. On the other hand, if we assume
(2.7) instead of (2.6), the condition (2.3) does not hold any longer and the solvability
analysis of (2.27) becomes simpler. Indeed, following the same arguments of the
proof of Lemma 3.5, we find now, thanks to the fact that ∇pD = 0 in ΩD and
pD = 0 on Γ, that pD = 0 in ΩD, which leads to a trivial kernel for (2.27). In
other words, there is no need of incorporating any further restriction on the pressure
pD and the subsequent reduced problem (3.2) since the homogeneous Dirichlet
boundary condition (2.7) already insures the uniqueness of solution. Consequently,



FULLY-MIXED FEM FOR STOKES-DARCY 1927

up to minor modifications, the solvability analysis of (2.27) becomes very similar
to the corresponding analysis of the present formulation (3.2).

4. The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the reduced
problem (3.2).

4.1. Preliminaries. Here we define the discrete system and establish suitable as-
sumptions on the finite element subspaces ensuring later on that it becomes well
posed. For this purpose, we first select two collections of discrete spaces:
(4.1)

Hh(ΩD) ⊆ H(div; ΩD) , Lh(ΩD) ⊆ L2(ΩD) , ΛD
h (Σ) ⊆ H1/2(Σ) ,

Hh(ΩS) ⊆ H(div; ΩS) , Lh(ΩS) ⊆ L2(ΩS) , ΛS
h(Σ) ⊆ H1/2(Σ) .

However, the spaces for the Stokes domain will have to be doubled. In particular,
in the case of the matrix-valued unknown σS we will consider the space of matrix-
valued functions whose rows belong to Hh(ΩS). According to this we now define

Lh(ΩS) := Lh(ΩS)× Lh(ΩS) , ΛS
h(Σ) := ΛS

h(Σ)× ΛS
h(Σ) ,(4.2)

Hh(ΩS) := { τ : ΩS → R
2×2 : ct τ ∈ Hh(ΩS) ∀ c ∈ R

2 } ⊆ H(div; ΩS) ,(4.3)

and

(4.4) Hh,0(ΩS) := Hh(ΩS) ∩ H0(div; ΩS) .

In addition, in order to deal with the mean value condition of the Darcy pressure
we define

(4.5) Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) .

In this way, we define the global finite element subspaces as:

(4.6)
Xh,0 := Hh,0(ΩS)×Hh(ΩD)×ΛS

h(Σ)× ΛD
h (Σ) ,

Mh,0 := Lh(ΩS)× Lh,0(ΩD)× R ,

and consider the following Galerkin scheme for (3.2): Find (σh,uh) ∈ Xh,0 ×Mh,0

such that

(4.7)
A(σh, τh) + B(τh,uh) = F(τh) ∀ τh ∈ Xh,0 ,

B(σh,vh) = G(vh) ∀vh ∈ Mh,0 .

Note that the different structures shown in Table 1 are inherited by the linear
system associated to (4.7) once we have chosen bases for all the discrete spaces.

In what follows we derive general hypotheses on the spaces (4.1) that will allow
us to show in Section 4.2 below that (4.7) is well posed. Our approach consists
of adapting to the present discrete case the arguments employed in the analysis
of the continuous problem, mainly those from the proofs of Lemmas 3.6, 3.7, and
3.8. We begin by observing that in order to have meaningful spaces Hh,0(ΩS)
and Lh,0(ΩD) (cf. (4.4) and (4.5)), we need to be able to eliminate multiples of
the identity matrix from Hh(ΩS) and constants polynomials from Lh(ΩD). This
request is certainly satisfied if we assume that:

(H.0) [P0(ΩS)]
2 ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD).
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We remark that the above hypothesis is only related to the ability of the spaces
to deal with problems inherent to the kernel of (2.27). In particular, it follows that
I ∈ Hh(ΩS) for all h, and hence there holds the decomposition:

(4.8) Hh(ΩS) = Hh,0(ΩS) ⊕ P0(ΩS) I .

Next, following the same diagonal argument utilized in the proof of Lemma 3.6,
we deduce that B satisfies the discrete inf-sup condition uniformly on Xh,0 ×Mh,0

if and only if there exist βS , βD , βΣ > 0, independent of h, such that

sup
τh ∈Hh,0(ΩS)\0

(div τh,vh)S
‖τh‖div,ΩS

≥ βS ‖vh‖0,ΩS
∀vh ∈ Lh(ΩS) ,(4.9)

sup
vh ∈Hh(ΩD)\0

(div vh, qh)D
‖vh‖div,ΩD

≥ βD ‖qh‖0,ΩD
∀ qh ∈ Lh,0(ΩD) ,(4.10)

sup
ψh ∈ΛS

h(Σ)\0

η 〈ψh · n, 1〉Σ
‖ψh‖1/2,Σ

≥ βΣ |η| ∀ η ∈ R .(4.11)

However, since divHh(ΩS) = divHh,0(ΩS) (cf. (4.8)), the supremum in (4.9)
remains the same if taken on Hh(ΩS) instead of Hh,0(ΩS), and hence this inequality
turns out to be equivalent to the following inf-sup condition:

sup
τh ∈Hh(ΩS)\0

(div τh, vh)S
‖τh‖div,ΩS

≥ βS ‖vh‖0,ΩS
∀ vh ∈ Lh(ΩS) .

Notice also that a sufficient condition for (4.11) is the existence of ψ0 ∈ H1/2(Σ)

such that ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0 ·n, 1〉Σ �= 0. Consequently, we now introduce

the following hypothesis summarizing the above analysis:

(H.1) There exist βS , βD > 0, independent of h, and there exists ψ0 ∈ H1/2(Σ),
such that

sup
τh ∈Hh(ΩS)\0

(div τh, vh)S
‖τh‖div,ΩS

≥ βS ‖vh‖0,ΩS
∀ vh ∈ Lh(ΩS) ,(4.12)

sup
vh ∈Hh(ΩD)\0

(div vh, qh)D
‖vh‖div,ΩD

≥ βD ‖qh‖0,ΩD
∀ qh ∈ Lh,0(ΩD) ,(4.13)

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0 · n, 1〉Σ �= 0 .(4.14)

On the other hand, we now look at the discrete kernel of B, which is defined by

Vh :=
{
τh ∈ Xh,0 : B(τh,vh) = 0 ∀vh ∈ Mh,0

}
.

In order to have a more explicit definition of Vh we introduce the following
assumption:

(H.2) divHh(ΩS) ⊆ Lh(ΩS) and divHh(ΩD) ⊆ Lh(ΩD).

It follows from the definition of B (cf. (2.30)) and (H.2) that Vh = V1,h ×V2,h,
where

V1,h = H̃h,0(ΩS)× H̃h(ΩD) and V2,h = Λ̃
S

h(Σ)× ΛD
h (Σ) ,
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with

H̃h,0(ΩS) :=
{
τh ∈ Hh,0(ΩS) : div τh = 0

}
,

H̃h(ΩD) :=
{
vh ∈ Hh(ΩD) : div vh ∈ P0(ΩD)

}
,

and

Λ̃
S

h(Σ) :=
{
ψh ∈ ΛS

h(Σ) : 〈ψh · n, 1〉Σ = 0
}
.

Note that Vh ⊆ V, which yields, in particular, V1,h ⊆ V1.
Then, applying the same diagonal argument employed in the proof of Lemma

3.8, we find that b satisfies the discrete inf-sup condition uniformly on V1,h ×V2,h

if and only if there exist β̃S, β̃D > 0, independent of h, such that

sup
τh ∈ H̃h,0(ΩS)\0

〈τh n,ψh〉Σ
‖τh‖div,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ Λ̃
S

h(Σ) ,(4.15)

sup
vh ∈ H̃h(ΩD)\0

〈vh · n, ξh〉Σ
‖vh‖div,ΩD

≥ β̃D ‖ξh‖1/2,Σ ∀ ξh ∈ ΛD
h (Σ) .(4.16)

In addition, the characterization of the elements of Λ̃
S

h(Σ) yields the supremum in

(4.15) to remain unchanged if taken on H̃h(ΩS) :=
{
τh ∈ Hh(ΩS) : div τh = 0

}
instead of H̃h,0(ΩS), and therefore it is not difficult to see that a sufficient condition
for (4.15) is given by:

sup
τh ∈ H̃h(ΩS)\0

〈τh · n, ψh〉Σ
‖τh‖div,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
h(Σ) ,

where

H̃h(ΩS) :=
{
τh ∈ Hh(ΩS) : div τh = 0

}
.

In this way, we now add the following hypothesis:

(H.3) There exist β̃S, β̃D > 0, independent of h, such that

sup
τh ∈ H̃h(ΩS)\0

〈τh · n, ψh〉Σ
‖τh‖div,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
h(Σ) ,(4.17)

sup
vh ∈ H̃h(ΩD)\0

〈vh · n, ξh〉Σ
‖vh‖div,ΩD

≥ β̃D ‖ξh‖1/2,Σ ∀ ξh ∈ ΛD
h (Σ) .(4.18)

We end this section by mentioning that for computational purposes we replace
the Galerkin scheme (4.7) by the equivalent one arising from the utilization of the
decomposition (4.8). In other words, we drop the explicit unknown approximating
μ ∈ R and keep it implicitly by redefining the approximation of the pseudostress
σS ∈ H(div; ΩS) as an unknown in Hh(ΩS). This can also be seen as a discrete
version of the reconstruction of σS from the decomposition (2.21). In this way, the
equivalent Galerkin scheme reduces to: Find (σh,uh) ∈ Xh ×Mh such that

(4.19)
A(σh, τh) + B(τh,uh) = F(τh) ∀ τh ∈ Xh ,

B(σh,vh) = G(vh) ∀vh ∈ Mh ,
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where

(4.20)
Xh := Hh(ΩS)×Hh(ΩD)×ΛS

h(Σ)× ΛD
h (Σ) ,

Mh := Lh(ΩS)× Lh,0(ΩD) ,

and B is redefined by suppressing the third term on the right-hand side of (2.30).
The numerical results shown below in Section 6 consider precisely this scheme
in which the mean value condition of Lh,0(ΩD) is imposed through a Lagrange
multiplier.

4.2. The main result. The following theorem establishes the well posedness of
(4.7) and the associated Cea estimate.

Theorem 4.1. Assume that the hypotheses (H.0), (H.1), (H.2), and (H.3) hold.
Then the Galerkin scheme (4.7) has a unique solution (σh,uh) ∈ Xh,0 ×Mh,0 and
there exists C1 > 0, independent of h, such that

‖(σh,uh)‖X×M ≤ C1

{
‖F|Xh,0

‖X′
h,0

+ ‖G|Mh,0
‖M′

h,0

}
.

In addition, there exists C2 > 0, independent of h, such that

(4.21) ‖σ−σh‖X + ‖u−uh‖M ≤ C2

{
inf

τh∈Xh,0

‖σ−τh‖X + inf
vh∈Mh,0

‖u−vh‖M
}
,

where (σ,u) ∈ X0 ×M0 is the unique solution of (3.2).

Proof. It is clear from the analysis in Section 4.1 that (H.1) (resp. (H.3)) implies
the discrete inf-sup condition for B (resp. for b) uniformly on Xh,0 × Mh,0 (resp.
on V1,h×V2,h). In addition, the fact that V1,h ⊆ V1 and Lemma 3.7 imply that a
is uniformly elliptic in V1,h, whereas c is trivially positive semidefinite on V2,h ⊆
V2 ⊆ H1/2(Σ) × H1/2(Σ) (cf. (3.7)). In this way, applying the discrete version
of Lemma 3.4 we conclude that the discrete operator induced by A is invertible
in Vh with uniformly bounded inverse. Therefore, the rest of the proof reduces to
a straightforward application of the discrete Babuška-Brezzi theory (see, e.g. [23,
Theorem II.1.1], [8, Chapter II]). �

It is important to remark here that the second and third terms defining the
bilinear form c are the only ones in the whole variational system where the Darcy
and Stokes discrete spaces meet. However, it is also clear from the previous proof
that these terms do not play any role in the stability analysis of the Galerkin scheme
since c is already positive semidefinite in the whole space H1/2(Σ) × H1/2(Σ).
This fact also explains why each one of the hypotheses (H.0), (H.1), (H.2), and
(H.3), is formed by independent conditions concerning the subspaces for the Stokes
and Darcy domains separately. Nevertheless, we notice that these independent
assumptions show analogue structures, particularly with respect to the kind of
operators and continuous spaces involved: compare for instance (4.12) with (4.13)
in (H.1) and (4.17) with (4.18) in (H.3). This fact confirms the strong possibility of
deriving stable finite element subspaces of the same kind in both domains. A specific
example in this direction employing the well-known Raviart–Thomas subspaces is
given precisely in Section 5 below.

Meanwhile, we prove next that the existence of uniformly bounded discrete lift-
ings for the normal traces on Σ coming from both regions simplifies the statement
of (H.3).
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4.3. Stable discrete liftings. The aim of this section is to give sufficient condi-
tions for the inf-sup inequalities (4.17) and (4.18) in hypothesis (H.3). These new
conditions have to do with the eventual existence of stable discrete liftings of the
normal traces on Σ, and they will be working hypotheses that can be more easily
verified for each set of discrete spaces. In particular, these will be the conditions
that we will verify for the example with Raviart–Thomas elements in Section 5.

We notice first that conditions (4.17) and (4.18) are hypotheses that deal with

how the normal components of elements of H̃h(ΩS) and H̃h(ΩD) are tested with
ΛS
h(Σ) and ΛD

h (Σ), respectively. Because of the already mentioned analogue struc-
ture of these assumptions, we summarize them as follows with � ∈ {S,D}:

(4.22) sup
vh ∈ H̃h(Ω�)\0

〈vh · n, ξh〉Σ
‖vh‖div,Ω�

≥ β̃� ‖ξh‖1/2,Σ ∀ ξh ∈ Λ�
h(Σ) .

This kind of condition can be broken into two pieces. Let us recall from Section
4.1 that

(4.23)
H̃h(ΩS) :=

{
vh ∈ Hh(ΩS) : div vh = 0

}
,

H̃h(ΩD) :=
{
vh ∈ Hh(ΩD) : div vh ∈ P0(ΩD)

}
,

and for � ∈ {S,D} define

(4.24) Φ�
h(Σ) := {vh · n|Σ : vh ∈ H̃h(Ω�) } .

Assume that the linear operator vh �→ vh · n from H̃h(Ω�) to Φ�
h(Σ) has a

uniformly bounded right inverse, i.e., there exist a linear operator L�
h : Φ∗

h(Σ) →
H̃h(ΩS) and c� > 0, independent of h, such that

‖L�
h(φh)‖div,Ω�

≤ c� ‖φh‖−1/2,Σ and

L�
h(φh) · n = φh on Σ ∀φh ∈ Φ�

h(Σ) .
(4.25)

Such a uniformly bounded right inverse of the normal trace will henceforth be
referred to as a stable discrete lifting to Ω� (� ∈ {S,D}). Note that by [15],
existence of L�

h satisfying (4.25) is equivalent to existence of a Scott–Zhang type

operator π�
h : H(div; Ω�) → H̃h(Ω�), linear and uniformly bounded, such that

π∗
h(vh) = vh ∀vh ∈ H̃h(Ω�) , and v · n = 0 on Σ

=⇒
(
π�

h(v)
)
· n = 0 on Σ .

The following lemma reduces the inf-sup condition (4.22) to the inherited inter-
action between the elements of Φ�

h(Σ) and Λ�
h(Σ).

Lemma 4.2. Assume that there exists a stable discrete lifting to Ω�. Then (4.22)

is equivalent to the existence of β̃� > 0, independent of h, such that

(4.26) sup
φh∈Φ�

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̃� ‖ξh‖1/2,Σ ∀ ξh ∈ Λ�
h(Σ) .
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Proof. It suffices to show that there exist C1, C2 > 0, independent of h, such that
for each ξh ∈ Λ�

h(Σ) there holds

C1 sup
φh∈Φ�

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≤ sup
vh∈H̃h(Ω�)\0

〈vh · n, ξh〉Σ
‖vh‖div,Ω�

≤ C2 sup
φh∈Φ�

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

.

(4.27)

In fact, on the one hand,

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≤ c�
〈φh, ξh〉Σ

‖L�
h(φh)‖div,Ω�

≤ c� sup
vh∈H̃h(Ω�)\0

〈vh · n, ξh〉Σ
‖vh‖div,Ω�

∀φh ∈ Φ�
h(Σ) ,

and on the other hand,

〈vh · n, ξh〉Σ
‖vh‖div,Ω�

≤ C
〈vh · n, ξh〉Σ
‖vh · n‖−1/2,Σ

≤ C sup
φh∈Φ�

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

∀vh ∈ H̃h(Ω�) ,

which yield (4.27) with C1 = 1/c� and C2 = C. �

We have thus proved that the existence of stable discrete liftings to ΩS and
ΩD together with the inf-sup condition (4.26) constitute sufficient conditions for
(H.3) to hold. In this respect, we find it important to emphasize that (4.26) deals
exclusively with spaces of functions defined on the interface Σ.

5. A particular choice of discrete spaces

5.1. Discretization of the domains. Let T S
h and T D

h be respective triangulations
of the domains ΩS and ΩD formed by shape-regular triangles in the usual conditions
of the finite element literature. Assume that these triangulations match in Σ, so
that T S

h ∪ T D
h is a triangulation of ΩS ∪ Σ ∪ ΩD. Let Σh be the partition of

Σ inherited from T S
h (or T D

h ). Then, given a triangle T we consider the local
Raviart–Thomas space of the lowest order

RT0(T ) := span
{
(1, 0), (0, 1), (x1, x2)

}
.

We then define one Raviart–Thomas space on each subdomain and their usual
companion spaces of piecewise constant functions: for � ∈ {S,D},

(5.1)
Hh(Ω�) :=

{
vh ∈ H(div; Ω�) : vh|T ∈ RT0(T ) ∀T ∈ T �

h

}
,

Lh(Ω�) :=
{
qh : Ω� → R : qh|T ∈ P0(T ) ∀T ∈ T �

h

}
.

It is clear that (H.0) and (H.2) are satisfied and it is well known that the discrete
inf-sup conditions (4.12) and (4.13) in (H.1) are as well (see, e.g. [8, Chapter IV]
or [31, Chapter 7]). Moreover, the spaces ΦS

h(Σ) and ΦD
h (Σ) of discrete normal

traces on Σ (cf. (4.24)) are, for the time being, contained in

(5.2) Φh(Σ) :=
{
ξh : Σ → R : ξh|e ∈ P0(e) ∀ edge e ∈ Σh

}
.

We will see later on, as a corollary of Lemma 5.1 below, that actually ΦS
h(Σ) =

ΦD
h (Σ) = Φh(Σ).
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Now, although we could keep our options open for the remaining spaces ΛS
h(Σ)

and ΛD
h (Σ), we simplify the situation by taking

ΛS
h(Σ) = ΛD

h (Σ) = Λh(Σ) .

Gathering Theorem 4.1 and Lemma 4.2 we are left with the following tasks:

i) Prove the existence of stable discrete liftings (or give conditions on the grid
that ensure their existence).

ii) Choose Λh(Σ) such that we can find ψ0 ∈ H1/2(Σ) satisfying ψ0 ∈ Λh(Σ)
∀h and 〈ψ0 · n, 1〉Σ �= 0 (cf. (4.14) in (H.1)), and such that the inf–sup
condition (4.26) holds.

In Sections 5.2 and 5.3 below we deal precisely with i) and ii), respectively.

5.2. The discrete liftings. We are going to be able to construct discrete liftings
to ΩS and ΩD by demanding some additional conditions on the triangulations.
Namely, we ask for T S

h and T D
h to be quasiuniform in a neighborhood of Σ. More

precisely, we assume that there is an open neighborhood of Σ, say ΩΣ, with Lipschitz
boundary, and such that the elements intersecting that region are roughly of the
same size. In other words, for � ∈ {S,D} we let Ω�,Σ := Ω� ∩ ΩΣ, define

T �
h,Σ :=

{
T ∈ T �

h : T ∩ Ω�,Σ �= ∅
}
, Th,Σ := T S

h,Σ ∪ T D
h,Σ ,

and assume that there exists c > 0, independent of h, such that

max
T ∈Th,Σ

hT ≤ c min
T ∈Th,Σ

hT .

Because of the shape-regularity property, this implies that Σh is quasiuniform,
which means that there exists C > 0, independent of h, such that

hΣ := max
{
|e| : e ∈ Σh

}
≤ C min

{
|e| : e ∈ Σh

}
.

Moreover, the quasiuniformity of Σh implies the inverse inequality in Φh(Σ), that
is,

(5.3) ‖φh‖−1/2+δ,Σ ≤ C h−δ
Σ ‖φh‖−1/2,Σ ∀φh ∈ Φh(Σ) , ∀ δ ∈ [0, 1/2] .

Next, in order to define the discrete liftings we need to introduce the Raviart–
Thomas interpolation operator. For the forthcoming definitions and arguments �
is a mute symbol taken in {S,D}. Hence, given a sufficiently smooth vector field
v : Ω� → R

2, we define Π�
h(v) as the only element of Hh(Ω�) such that

(5.4)

∫
e

Π�
h(v) · n =

∫
e

v · n ∀ e ∈ E�
h ,

where E�
h is the set of the edges of the triangulation T �

h . Let us review some
properties of this operator that we will use in the sequel:

a) The interpolation operator Π�
h is well defined in Hδ(Ω�) ∩ H(div; Ω�) for

any δ > 0 (see, e.g. [1, Theorem 3.1]).
b) For all v there holds div Π�

h(v) = P�
h(div v), where P�

h : L2(Ω�) →
Lh(Ω�) is the orthogonal projector. Equivalently,

(divΠ�
h(v), qh)� = (divv, qh)� ∀ qh ∈ Lh(Ω�) .

This property is a simple consequence of the divergence theorem and the
interpolation property (5.4) defining Π�

h. In particular, if div v ≡ c, it
follows that div Π�

h(v) ≡ c.
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c) If v · n ∈ Φh(Σ), then Π�
h(v) · n = v · n. This property also follows from

(5.4).
d) There exists C > 0, independent of h, such that for each v ∈ Hδ(Ω�) ∩

H(div; Ω�), with δ ∈ (0, 1], and for all T ∈ T �
h , there holds (see, e.g. [25,

Theorem 3.16])

(5.5) ‖v − Π∗
h(v)‖0,T ≤ C hδ

T

{
|v|δ,T + ‖div v‖0,T

}
.

We are now in a position to establish the existence of stable discrete liftings.

Lemma 5.1. Assume that T S
h and T D

h are quasiuniform in a neighborhood ΩΣ of
Σ as explained in the present section. Then there exist uniformly bounded linear
operators L�

h : Φh(Σ) → H̃h(Ω�) (cf. (4.23)) such that L�
h(φh) · n = φh on Σ

for each φh ∈ Φh(Σ).

Proof. We start with the lifting to the Stokes domain ΩS. First, we increase this
region across the external boundary ΓS to a new domain Ωext

S with Lipschitz bound-
ary Σ ∪ Γext

S . Then we recall that ΩS,Σ := ΩS ∩ ΩΣ and remark that ΩS \ΩS,Σ is
interior to Ωext

S , since both parts of its boundary lie at a nonzero distance of ∂Ωext
S .

We refer to Figure 2 for the geometry. The thick lines enclose the extended Stokes
domain Ωext

S , whereas the shaded area corresponds to the neighborhood ΩΣ.

Σ

ΓS
ext

SΓ

Figure 2. The domains in the proof of Lemma 5.1.

We now begin the construction of our operator. Given φh ∈ Φh(Σ), we let
v ∈ H1(Ωext

S ) be the unique solution of the boundary value problem

Δv = 0 in Ωext
S , v = 0 on Γext

S , ∂nv = φh on Σ ,

which can be seen as a discrete version of (3.11). Then, as a consequence of the
Lax–Milgram lemma and the classical regularity result on polygonal domains (see,
e.g. [24]), we obtain, respectively, the following continuity bounds (we write them
in the domains where they will be used):

‖v‖1,ΩS
≤ C1 ‖φh‖−1/2,Σ ,(5.6)

‖v‖5/4,ΩS
≤ C2 ‖φh‖−1/4,Σ .(5.7)
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In addition, since ΩS\ΩS,Σ is an interior region of Ωext
S , the interior elliptic regularity

estimate (see, e.g. [30, Theorem 4.16]) yields

(5.8) ‖v‖2,ΩS\ΩS,Σ
≤ C3 ‖φh‖−1/2,Σ ,

Note that, in particular, ∇v ∈ H1/4(ΩS) ∩ H(div; ΩS), and hence, thanks to a),
we can define

LS
h(φh) := ΠS

h(∇v) ∈ Hh(ΩS) .

Since div∇v = Δv = 0 in ΩS and ∇v · n = ∂nv = φh ∈ Φh(Σ) on Σ, we
deduce from b) and c), respectively, that

divLS
h(φh) = 0 in ΩS and LS

h(φh) · n = φh on Σ ,

which proves that LS
h is a lifting satisfying LS

h(φh) ∈ H̃h(ΩS) ∀φh ∈ Φh(Σ).
It remains to show that LS

h is uniformly bounded. To this end, we divide ΩS into
two regions

Ω1
S,h :=

⋃{
T ∈ T S

h : T �∈ T S
h,Σ

}
⊆ ΩS \ ΩS,Σ and Ω2

S,h := ΩS \ Ω1
S,h ,

where we recall that T S
h,Σ :=

{
T ∈ T S

h : T ∩ ΩS,Σ �= ∅
}
. Then, using (5.6),

(5.8), and the stability of the Raviart–Thomas projection when applied to functions
in H1(Ω1

S,h), we can bound:

‖LS
h(φh)‖div,ΩS

= ‖LS
h(φh)‖0,ΩS

≤ ‖LS
h(φh)‖0,Ω1

S,h
+ ‖LS

h(φh)‖0,Ω2
S,h

≤ ‖ΠS
h(∇v)‖0,Ω1

S,h
+ ‖∇v‖0,Ω2

S,h
+ ‖∇v − ΠS

h(∇v)‖0,Ω2
S,h

≤ C
{
‖∇v‖1,ΩS\ΩS,Σ

+ ‖φh‖−1/2,Σ + ‖∇v −ΠS
h(∇v)‖0,Ω2

S,h

}
≤ C

{
‖φh‖−1/2,Σ + ‖∇v − ΠS

h(∇v)‖0,Ω2
S,h

}
.

At the same time, applying (5.5) in d) to ∇v ∈ H1/4(ΩS) ∩ H(div; ΩS), and
employing the bound (5.7) and the inverse inequality (5.3) with δ = 1/4, we find
that

‖∇v − ΠS
h(∇v)‖20,Ω2

S,h
≤ C

∑
T ∈T S

h,Σ

h
1/2
T ‖∇v‖21/4,T ≤ C h

1/2
Σ ‖v‖25/4,ΩS

≤ C h
1/2
Σ ‖φh‖2−1/4,Σ ≤ C ‖φh‖2−1/2,Σ .

This estimate and the preceeding inequality give the result.
On the other hand, in the case of the Darcy domain ΩD, the interface Σ consti-

tutes the whole boundary, which implies that ΩD \ΩD,Σ is interior to ΩD, and hence
there is no need to extend the domain to deal with regularity issues in the (nonex-
istent) remaining part of the boundary. According to this, given φh ∈ Φh(Σ), we
now define

LD
h (φh) := ΠD

h (∇v) ∈ Hh(ΩD) ,

where v ∈ H1(ΩD) is the unique solution of the bounday value problem

Δv =
1

|ΩD|

∫
Σ

φh in ΩD , ∂nv = φh on Σ ,

∫
ΩD

v = 0 ,

which can be seen as a discrete version of (3.12). Since

div∇v = Δv =
1

|ΩD|

∫
Σ

φh in ΩD and ∇v ·n = ∂nv = φh ∈ Φh(Σ) on Σ ,
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we use again b) and c) to deduce, respectively, that

divLD
h (φh) =

1

|ΩD|

∫
Σ

φh ∈ R in ΩS and LD
h (φh) · n = φh on Σ ,

which proves that LD
h is a lifting satisfying LD

h (φh) ∈ H̃h(ΩD) ∀φh ∈ Φh(Σ).
The uniform boundedness of LD

h proceeds as in the previous case. We omit further
details. �

As a consequence of this lemma, and as already announced in Section 5.1, we
now notice that ΦS

h(Σ) and ΦD
h (Σ) coincide with Φh(Σ) (cf. (5.2)), and therefore

the inf-sup condition (4.26) reduces simply to the existence of β̃ > 0, independent
of h, such that

(5.9) sup
φh ∈Φh(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̃ ‖ξh‖1/2,Σ ∀ ξh ∈ Λh(Σ) .

5.3. Discretization on the interface. In this section we discuss how to choose
Λh(Σ) so that ii) is satisfied. In fact, there are many possible choices of Λh(Σ)
such that (5.9) holds, while the condition requiring the existence of ψ0 ∈ H1/2(Σ)
such that ψ0 ∈ Λh(Σ) ∀h and 〈ψ0 · n, 1〉Σ �= 0, is easy to verify if the sequence of
subspaces is nested or if we are able to find a coarser space where the hypotheses
hold.
Option 1. If the partition Σh inherited from the interior triangulations is uniform,
which is feasible only on very simple geometries Σ, we can take Λh(Σ) to be the
space of continuous linear elements of the dual grid, that is, on the grid whose
nodes are the midpoints of Σh. Note that dimΛh(Σ) = dimΦh(Σ), and that on
each corner of Σ there is an element of the dual grid with half of its length on each
of the edges that meet in that corner. The inf-sup condition (5.9) for these spaces
is verified in [32, Lemma 6.4].

Option 2. Let Σ̃h be another partition of Σ, completely independent from Σh,
and then take

Λh(Σ) := P1(Σ̃h) ∩ C(Σ), with P1(Σ̃h) :=
∏
e∈˜Σh

P1(e) .

If both Σh and Σ̃h are quasiuniform, then there exists a constant C0 ∈ (0, 1] such
that whenever

hΣ ≤ C0 h̃Σ , h̃Σ := max{ |ẽ| : ẽ ∈ Σ̃h } ,

then (5.9) holds [5, Lemma 3.3]. In this case, if we assume that elements of Σ̃h are
segments (no element crosses a corner point), then ψ0 can be constructed exactly
as explained at the end of the proof of Lemma 3.6.
Option 3. A very flexible (from the geometric point of view) construction of Λh(Σ)
can be done using a coarsened grid. Let us first assume that the number of edges
of Σh is an even number (we will show a simple strategy in case this number is
odd at the end). Then, we let Σ2h be the partition of Σ arising by joining pairs of
adjacent elements and define

(5.10) Λh(Σ) := P1(Σ2h) ∩ C(Σ).
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Note that because Σh is inherited from the interior triangulation, it is automatically
of bounded variation (that is, the ratio of lengths of adjacent elements is bounded)
and, therefore, so is Σ2h.

Lemma 5.2. The inf-sup condition (5.9) holds for the space (5.10).

Proof. We will actually prove an inequality that is more demanding than (5.9) (see
(5.12) below). The structure of the proof (but not the result itself) follows closely
[32, Section 7]. Let Σ2h = {ei | i = 1, . . . , N} be a numbering of the elements of the
coarsened grid, where adjacent elements are numbered consecutively and where, in
case of need, e0 = eN and e1 = eN+1. Also, let hi := |ei|. To each pair (ei, ei+1)
we assign a hat function ηi ∈ Λh(Σ), supported in this pair and equal to one in the
interior node ei ∩ ei+1. Note that {η1, η2, ..., ηN} is the usual basis of Λh(Σ).

e
i

e
i+1

l
i

r
i l

i+1
r
i+1

η
i

χ
i

Figure 3. Construction of the basis functions of Φ◦
h.

For each ei ∈ Σ2h there are two elements li, ri ∈ Σh, whose union is ei. They are
tagged as left and right in the numbering direction of Σ2h, so that ri is adjacent to
li+1 (see Figure 3). As a consequence of the bounded variation property

(5.11) 0 < C1 ≤ ci :=
|ri|
hi

≤ C2 < 1 and 0 < C3 ≤ hi

hi+1
≤ C4 ∀i.

We now define the piecewise constant function χi ∈ Φh(Σ) given by

χi =

⎧⎪⎪⎨⎪⎪⎩
c−1
i in ri,

(1− ci+1)
−1 in li+1,

0 otherwise.

The functions χi are mutually orthogonal in L2(Σ). We define

Φ◦
h := span{χ1, . . . , χN} ⊂ Φh(Σ).
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The aim of what follows is showing that there exists C (which depends only on the
four constants in (5.11)) such that

(5.12) sup
φh∈Φ◦

h\0

〈ξh, φh〉Σ
‖φh‖−s,Σ

≥ C‖ξh‖s,Σ ∀ξ ∈ Λh(Σ), s ∈ [0, 1].

We will prove the result for s = 0 and s = 1. Given the fact that the dimensions
of Λh(Σ) and Φ◦

h coincide, an interpolation argument proves the result for the
remaining cases. The case s = 1/2 implies (5.9), since the supremum in this last
inequality is taken over a larger space.

1st step. We first prove (5.12) for s = 0. Here we follow [32, Proposition 7.1].
Let us define the operator Th : Λh(Σ) → Φ◦

h by

Thξh = Th

( N∑
i=1

ξiηi

)
:=

N∑
i=1

ξiχi.

Simple computations can be used to show that for all ξh ∈ Λh(Σ),

‖ξh‖20,Σ ≤ 1

2

N∑
i=1

ξ2i (hi + hi+1),

‖Thξh‖20,Σ =
N∑
i=1

ξ2i
(
c−1
i hi + (1− ci+1)

−1hi+1

)
≤ C

N∑
i=1

ξ2i (hi + hi+1)

〈ξh, Thξh〉Σ ≥ 1

2

N∑
i=1

ξ2i
(
hi(

3
2 − ci) + hi+1(

1
2 + ci+1)

)
≥ C

N∑
i=1

ξ2i (hi + hi+1).

These three inequalities can be used to prove (5.12) when s = 0. Note that only
the constants C1 and C2 of (5.11) are involved in these bounds.

2nd step. An intermediate step requires proving the following inequality:

(5.13)
N∑
i=1

h2
i

∫
ei

|φh|2 ≤ C
N∑
i=1

(
〈φh, ηi〉Σ
‖ηi‖1,Σ

)2

∀φh ∈ Φ◦
h.

The proof retraces the steps of [32, Lemma 7.2]. For integrals of Σ we can use the
arc parameterization x : [0, |Σ|] → Σ, where |Σ| is the length of Σ, and identify

‖η‖21,Σ :=

∫ |Σ|

0

(
|(η ◦ x)(t)|2 + |(η ◦ x)′(t)|2

)
dt.

Each of the following inequalities, valid for each ηi and for arbitrary φh =
∑N

i=1 φiχi

∈ Φ◦
h, is easy to prove:

‖ηi‖21,Σ =
1

3
(hi + hi+1) + h−1

i + h−1
i+1 ≤ Ch−1

i ,

N∑
i=1

h2
i

∫
ei

|φh|2 =

N∑
i=1

h3
i

(
c−1
i φ2

i + (1− ci)
−1φ2

i−1

)
≤ C

N∑
i=1

φ2
ih

3
i ,

N∑
i=1

φ2
ih

3
i ≤ C

N∑
i=1

〈φh, ηi〉Σ h2
iφi

≤ C

(
N∑
i=1

(
〈φh, ηi〉Σ
‖ηi‖1,Σ

)2
)1/2 ( N∑

i=1

‖ηi‖21,Σh4
iφ

2
i

)1/2

.
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In particular, note that the second estimate uses that |ri| = cihi and |li| = (1−ci)hi.
From these inequalities the result follows readily.

3rd step. Once (5.13) has been proved, inequality (5.12) for s = 1 can be proved
following step by step the proof of [32, Proposition 7.3]. This finishes the proof of
the lemma. �

If the number of elements in Σh is odd we simply reduce it to the even case.
Indeed, in this case we can prove (5.9) for the subspace of Φh(Σ) consisting of
elements such that the value of φh in a fixed set of two adjacent elements coincides.
This fixed double element is considered as a single element and hence Λh(Σ) is built
as in (5.10) on the resulting even number of elements covering Σ.

5.4. The main results. As a consequence of the results and analyses in Sections
5.1, 5.2, and 5.3, we can establish the following theorems.

Theorem 5.3. Let Hh(ΩS), Hh(ΩD), Lh(ΩS), and Lh(ΩD) be the Raviart–Thomas
finite element subspaces given in (5.1) and define

Hh(ΩS) := { τ : ΩS → R
2×2 : ct τ ∈ Hh(ΩS) ∀ c ∈ R

2 } ,

Hh,0(ΩS) := Hh(ΩS) ∩ H0(div; ΩS) ,

Lh(ΩS) := Lh(ΩS)× Lh(ΩS) ,

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) .

Assume that T S
h and T D

h are quasiuniform in a neighborhood of Σ and that Λh(Σ)
(and hence Λh(Σ) := Λh(Σ)×Λh(Σ)) is given by any of the three options described
above. Then the Galerkin scheme (4.7) with the discrete spaces Xh,0 := Hh,0(ΩS)×
Hh(ΩD) × Λh(Σ) × Λh(Σ) and Mh,0 := Lh(ΩS) × Lh,0(ΩD) × R, has a unique
solution (σh,uh) ∈ Xh,0 × Mh,0, which satisfies the corresponding stability and
Cea estimates.

Proof. It follows by gathering the results from Sections 4 and 5. �
Theorem 5.4. Assume the same hypotheses of Theorem 5.3. Then the Galerkin
scheme (4.19) with the spaces Xh := Hh(ΩS) × Hh(ΩD) × Λh(Σ) × Λh(Σ) and
Mh := Lh(ΩS) × Lh,0(ΩD), has a unique solution (σh,uh) ∈ Xh × Mh, which
satisfies the corresponding stability and Cea estimates.

Proof. It follows from Theorem 5.3 and the equivalence between (4.7) and (4.19).
�

In order to provide the rate of convergence of the Galerkin scheme (4.7), we
now recall the approximation properties of the subspaces involved (see, e.g. [4], [8],
[25]):

(AP1) For � ∈ {S,D}, for each δ ∈ (0, 1], and for each τ ∈ Hδ(Ω�) with div τ ∈
Hδ(Ω�), there exists τh ∈ Hh(Ω�) such that

‖τ − τh‖div,Ω�
≤ C hδ

{
‖τ‖δ,Ω�

+ ‖div τ‖δ,Ω�

}
.

(AP2) For � ∈ {S,D}, for each δ ∈ [0, 1], and for each q ∈ L2(Ω�), there exists
qh ∈ Lh(Ω�) such that

‖q − qh‖0,Ω�
≤ C hδ ‖q‖δ,Ω�

.
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(AP3) For each δ ∈ [0, 1] and for each ξ ∈ H1/2+δ(Σ), there exists ξh ∈ Λh(Σ)
such that

‖ξ − ξh‖1/2,Σ ≤ C hδ ‖ξ‖1/2+δ,Σ .

The following theorem provides the theoretical rate of convergence of the Galer-
kin scheme (4.7) (equivalently (4.19)), under suitable regularity assumptions on the
exact solution.

Theorem 5.5. Let (σ,u) ∈ X0 ×M0 and (σh,uh) ∈ Xh,0 ×Mh,0 be the unique
solutions of the continuous and discrete formulations (3.2) and (4.7), respectively.
Assume that there exists δ ∈ (0, 1] such that σS ∈ H

δ(ΩS), divσS ∈ Hδ(ΩS),
uD ∈ Hδ(ΩD), and divuD ∈ Hδ(ΩD). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD),
ϕ ∈ H1/2+δ(Σ), λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h and the
continuous and discrete solutions, such that

(5.14)
‖(σ,u) − (σh,uh)‖X×M ≤ C hδ

{
‖σS‖δ,ΩS

+ ‖divσS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖divuD‖δ,ΩD

+ ‖uS‖1+δ,ΩS
+ ‖pD‖1+δ,ΩD

}
.

Proof. We first recall from Theorem 2.1 that ∇uS = ν−1 σd
S and ∇pD = −K−1 uD,

which implies that uS ∈ H1+δ(ΩS) and pD ∈ H1+δ(ΩD), whence ϕ = −uS|Σ ∈
H1/2+δ(Σ) and λ = pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the
corresponding Cea estimate, the above approximation properties, and the fact that,
thanks to the trace theorem in ΩS and ΩD, respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩS
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

. �
We end this section by commenting that one should be able to extend the anal-

ysis of Section 5, without difficulties, to the case of Raviart–Thomas finite ele-
ment subspaces of higher order. In this case, given k ≥ 1, RT0(T ) is replaced
by RTk(T ) := [Pk(T )]

2 ⊕ Pk(T )
(
x1

x2

)
, and Λh(Σ) is defined in terms of piecewise

polynomials of degre 2 k + 1.

6. Numerical results

In this section we present three examples illustrating the performance of the
Galerkin scheme (4.19) (equivalently (4.7)) with the subspaces Xh := Hh(ΩS) ×
Hh(ΩD)×Λh(Σ)×Λh(Σ) and Mh := Lh(ΩS)×Lh,0(ΩD) defined in Section 5. In
particular, we adopt the third option from Section 5.3 to choose the space Λh(Σ)
of continuous piecewise linear functions on Σ.

We now introduce additional notation. The variable N stands for the number of
degrees of freedom defining Xh and Mh, and the individual errors are denoted by

e(σS) := ‖σS − σS,h‖div,ΩS
, e(uS) := ‖uS − uS,h‖div,ΩS

,

e(uD) := ‖uD − uD,h‖div,ΩD
, e(pD) := ‖pD − pD,h‖0,ΩD

,

e(ϕ) := ‖ϕ−ϕh‖1/2,Σ , e(λ) := ‖λ− λh‖1/2,Σ ,

where σh := (σS,h,uD,h,ϕh, λh) ∈ Xh and uh := (uS,h, pD,h) ∈ Mh constitute
the unique solution of (4.19).

Also, we let r(σS), r(uS), r(uD), r(pD), r(ϕ), and r(λ) be the experimental rates
of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
σS,uS,uD, pD,ϕ, λ

}
,
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where h and h′ denote two consecutive meshsizes with errors e and e′.
In what follows we describe the data of the examples. In all cases we choose for

simplicity ν = 1, K = I, the identity matrix of R2×2, and κ = 1.
In Example 1 we consider the regions ΩD :=] − 1/2, 1/2[ × ] − 1/2, 1/2[ and

ΩS := ] − 1, 1[ × ] − 1, 1[ \ΩD, which represents a porous medium completely sur-
rounded by a fluid. Then we choose the data fS and fD so that the exact solution
is given by

uS(x1, x2) =

( −4 (x2
1 − 1)2 (x2

2 − 1) x2

4 (x2
1 − 1) (x2

2 − 1)2 x1

)
in ΩS ,

pS(x1, x2) = − sin(x1) e
x2 in ΩS ,

and

pD(x1, x2) = − sin(x1) e
x2 in ΩD .

In Example 2 we let ΩS and ΩD be the polygonal domains delimited by the set of
points {(−1, 0), (1, 0), (1, 1), (−1/2, 1)} and {(−1/2,−1), (1/2,−1), (1, 0), (−1, 0)},
respectively, which constitutes a particular case of a fluid over a porous medium,
and choose the data fS and fD so that the exact solution is given by

uS(x1, x2) =

(
2 (x2 − 1) (x1 − 1)2 (2x1 − x2 + 2) (2x1 − 2x2 + 3)

−2 (x2 − 1)2 (x1 − 1) (4x1 − x2) (2x1 − x2 + 2)

)
in ΩS ,

pS(x1, x2) = ex1 sin(x2) in ΩS ,

and

pD(x1, x2) = sin(x1) (4x
2
1 − (x2 + 2)2)2 (x2 + 1)2 in ΩD .

Finally, in Example 3 we consider the domains ΩS := ] − 1, 1[ × ]0, 1[ and
ΩD := ] − 1, 1[ × ] − 1, 0[, which constitutes another case of a fluid over a porous
medium, and take the data fS and fD given by

fS(x1, x2) =

( −4 sin(x1x2) x1 + exp(x3
2)

4 exp(3x1) + 4x2

)
and

fD(x1, x2) = x3
1

(
exp(x2

2)− 0.5
)
.

This example corresponds to a more realistic situation in which the exact solution
is unknown.

The numerical results shown below were obtained using a MATLAB implemen-
tation. In Tables 2 and 3 we present the convergence history of Examples 1 and
2, respectively, for a set of shape-regular triangulations of the computational do-
main Ω̄S ∪ Ω̄D. We see there that the dominant error in both examples is given
by e(σS), though this is more evident in Example 1. In addition, we observe that
the rate of convergence O(h) provided by Theorem 5.5 for δ = 1 is attained by all
the unknowns. Next, in Figures 4 and 5 (resp. Figures 6 and 7) we display the
approximate and exact values of some components of the solution of Example 1 for
N=144641 (resp. Example 2 for N = 273071). It is clear from these figures that
the finite element subspaces employed provide very accurate approximations to the
unknowns in both domains. In particular, the quality of these approximations is
not affected at all by the strong oscillations of some solutions. The shape-regular
character of the meshes is illustrated in Figure 8 for Example 2.
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Next, in Table 4 we present the convergence history of Example 3 for a set of
shape-regular triangulations of the computational domain Ω̄S ∪ Ω̄D. The errors
and experimental rates of convergence shown there are computed by considering
the discrete solution obtained with a finer mesh (N = 984068) as the exact solution.
Similarly, as for Examples 1 and 2, we observe that the rate of convergence O(h) is
attained by all the unknowns, and the dominant error is also given by e(σS). Next,
in Figures 9, 10, and 11 we show some components of the approximate solutions
obtained for N=123396. Note that in this example the normal on the interface
Σ := (−1, 1) × {0} is given by n = (0,−1)t, and hence the first transmission
condition becomes the equality of the second components of uS and uD. This can
be verified at the discrete level in Figure 10 where we display 3D and 2D joint
pictures of the second components of uS,h and uD,h.

Summarizing, the numerical results reported here confirm the good performance
of the mixed finite element scheme (4.19) with Raviart–Thomas finite element sub-
spaces of lowest order in ΩS and ΩD, and continuous piecewise linear functions on
the interface Σ, for different geometries of the coupled problem.

We end this paper by mentioning that the only reason for restricting here to
2D is the simple fact that in our previous works [20] and [21] we assumed that
dimension. We believe, however, that the present results should be extended, with
minor modifications, to the three-dimensional case. Indeed, it is easy to see that the
sections concerning the model problem and the general analysis of the continuous
and discrete formulations, should look more or less the same as the ones provided
here. Eventual technical difficulties, not too hard to solve, nevertheless, might
appear only in the analogue of Section 5, probably in the construction of the discrete
liftings and the verification of the discrete inf-sup condition (5.9). We hope to
address this issue in a separate work.

Table 2. Degrees of freedom, meshsizes, errors, and rates of con-
vergence (Example 1).

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)
641 0.3536 5.2974 0.3622 0.1204
2401 0.1768 2.6875 1.0277 0.1802 1.0573 0.0584 1.0957
9281 0.0884 1.3468 1.0219 0.0900 1.0269 0.0289 1.0406
36481 0.0442 0.6737 1.0121 0.0450 1.0128 0.0144 1.0178
144641 0.0221 0.3369 1.0062 0.0225 1.0064 0.0072 1.0064

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)
641 0.3536 0.0645 1.0988 0.2572
2401 0.1768 0.0320 1.0615 0.5390 1.0787 0.1260 1.0807
9281 0.0884 0.0160 1.0253 0.2661 1.0441 0.0619 1.0514
36481 0.0442 0.0080 1.0128 0.1321 1.0232 0.0306 1.0294
144641 0.0221 0.0040 1.0064 0.0658 1.0119 0.0152 1.0159
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Figure 4. Components (1, 1) of σS,h and σS (Example 1)
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Figure 5. Second components of uS,h and uS (Example 1)

Table 3. Degrees of freedom, meshsizes, errors, and rates of con-
vergence (Example 2).

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)
219 0.2500 15.4093 1.5670 11.2401
1225 0.0885 6.6580 0.9748 0.7182 0.9063 5.1261 0.9121
7368 0.0347 2.4934 1.0948 0.2789 1.0543 1.6395 1.2707
44595 0.0117 0.9809 1.0363 0.1135 0.9989 0.6796 0.9783
273071 0.0035 0.4041 0.9789 0.0461 0.9931 0.2742 1.0017

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)
219 0.2500 1.0956 11.6289 6.2759
1225 0.0885 1.0870 0.0091 4.0529 1.2245 4.2773 0.4454
7368 0.0347 0.1317 2.3529 1.2658 1.2972 1.1155 1.4982
44595 0.0117 0.0434 1.2324 0.5188 0.9907 0.3315 1.3478
273071 0.0035 0.0180 0.9709 0.2010 1.0468 0.1286 1.0452
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Figure 6. First components of uD,h and uD (Example 2)
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Figure 7. pD,h and pD (Example 2)

Figure 8. Meshes for N = 1225 and N = 7368 (Example 2)
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Table 4. Degrees of freedom, meshsizes, errors, and rates of con-
vergence (Example 3).

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)
516 0.3536 6.7467 0.1873 0.1911
1988 0.1768 3.4022 1.0152 0.0758 1.3414 0.0921 1.0823
7812 0.0884 1.6984 1.0153 0.0340 1.1717 0.0456 1.0273
30980 0.0442 0.8482 1.0080 0.0164 1.0584 0.0227 1.0126
123396 0.0221 0.4243 1.0024 0.0081 1.0208 0.0114 0.9967

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)
516 0.3536 0.0301 0.5915 0.1324
1988 0.1768 0.0112 1.4659 0.2838 1.0890 0.0498 1.4499
7812 0.0884 0.0050 1.1786 0.1449 0.9824 0.0185 1.4472
30980 0.0442 0.0024 1.0655 0.0761 0.9349 0.0062 1.5870
123396 0.0221 0.0012 1.0031 0.0401 0.9271 0.0019 1.7115

Figure 9. First and second components of uS,h (Example 3)

Figure 10. Second components of uS,h and uD,h (Example 3)



1946 G.N. GATICA, R. OYARZÚA, AND F.-J. SAYAS
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Académie des Sciences. Paris, vol. 337, 12, pp. 805–808, (2003). MR2033124
16. V.J. Ervin, E.W. Jenkins, and S. Sun, Coupled generalized nonlinear Stokes flow with flow

through a porous medium. SIAM Journal on Numerical Analysis, vol. 47, 2, pp. 929-952,
(2009). MR2485439 (2010b:65254)

17. A. Friedman, Foundations of Modern Analysis. Holt, Rinehart and Winston, Inc., New York-
Montreal, Que.-London, 1970. MR0275100 (43:858)

18. J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling
Stokes-Darcy equations. Electronic Transactions on Numerical Analysis, vol. 26, pp. 350-384,
(2007). MR2391227 (2009a:76120)

19. G.N. Gatica, N. Heuer, and S. Meddahi, On the numerical analysis of nonlinear twofold
saddle point problems. IMA Journal of Numerical Analysis, vol. 23, 2, pp. 301-330, (2003).
MR1975268 (2004b:65183)
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