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TREATMENT OF INCOMPATIBLE INITIAL AND BOUNDARY

DATA FOR PARABOLIC EQUATIONS IN HIGHER DIMENSION

QINGSHAN CHEN, ZHEN QIN, AND ROGER TEMAM

Abstract. A new method is proposed to improve the numerical simulation
of time dependent problems when the initial and boundary data are not com-
patible. Unlike earlier methods limited to space dimension one, this method
can be used for any space dimension. When both methods are applicable (in
space dimension one), the improvements in precision are comparable, but the
method proposed here is not restricted by dimension.

1. Introduction

When performing large scale numerical simulations for evolutionary problems,
we use most often initial and boundary conditions provided by approximations, by
other simulations, or by experimental measurements. These data may not satisfy
certain compatibility conditions verified by the solutions; thus various modifications
deemed nonessential are made on the data to overcome these difficulties. Such issues
are extensively addressed in the literature; see for instance in geophysical fluid
mechanics [3] or [27] which contains many allusions to this difficulty; in classical
fluid mechanics, see e.g. [7, 12, 13, 15, 16]; see also [1] in chemistry and [28] in a
general mathematical context.

We want to address here a less known difficulty of “mathematical” nature which,
the specialists believe, will become very important as we move to high resolution
methods thanks to the increase of computing power and memory capacity of the
computers. A very simple example of such a difficulty appears when solving in space
dimension one on (0, 1), the heat equation ut − uxx = 0 with boundary conditions
u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = 1. The solution exists and is
unique (for t > 0) and the analytic expressions of u are provided in the literature
(see e.g. [4]). This problem is simple enough that it can be solved satisfactorily
by numerical methods, but the solution does display singularities in the corner
x = 0, t = 0 and x = 1, t = 0. For this problem and for general parabolic equations,
it is known from semi-group theory [14, 22] or by using the analyticity in time of
the solutions (see [11]) that certain norms of ∂u/∂t grow as a power of 1/t when
t → 0. It is believed that such singularities will affect large scale computations
as our demand for better results increases. In fact, it has been observed by some
authors that, when using spectral methods for the space discretization, the spectral
accuracy is lost if nothing is made to address this singularity and a series of works
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resulted from this observation; see e.g. [2, 3, 8, 9, 10], see also [5] for a nonlinear
equation.

The mathematical difficulty studied in detail, e.g., in [18, 19, 20, 23, 24, 25] is
the following; even if the initial and boundary data of an evolution problem are
given C∞, the solution may not be C∞ near t = 0. In fact, k compatibility condi-
tions between the data are needed for the solution to be Ck near t = 0 and hence
an infinite number of compatibility conditions are needed for the solution to be
C∞. Furthermore, the initial and boundary conditions that are compatible form a
relatively small set (in an informal sense), so that most numerical simulations are
done with data which are not compatible, generating a loss of accuracy near t = 0
if nothing is done. In the works mentioned above, methods have been proposed to
address the first or the first two incompatibilities. It is believed that dealing with
one or two incompatibilities substantially improves the quality of the simulation
and, in many cases, dealing with more incompatibility conditions may become im-
practical. However, a strict limitation of these works is that the proposed methods
only apply to space dimension one and, to the best of our knowledge, there is (there
was) no method available in dimension two or larger to address this difficulty.

As we said, past works, on the computational side, have been devoted to space
dimension one. This problem has been addressed in a series of articles by Flyer,
Boyd, Fornberg and Swarztrauber [2, 10, 8, 9] who proposed a number of remedies
in space dimension one for linear equations. Nonlinear equations in space dimension
one were considered in [5].

In these articles, the authors introduce a correction term in the linear and non-
linear cases by setting

(1.1) u = v + S,

where S absorbs the incompatibilities between the initial and boundary data up to a
certain order. Now, free of incompatibilities of lower orders (the most severe ones), v
is computed by an appropriate numerical procedure, such as finite differences, the
Galerkin finite element method, spectral or pseudo-spectral methods. As a final
step, the original solution u is recovered through (1.1). This remedy procedure
effectively reduces the errors at the spatio-temporal corners during the short initial
transient period.

For dimensions higher than one, the construction of S, to correct for singularities
generated at t = 0 by incompatible data, remains an open problem. A method to
overcome this difficulty is proposed, analyzed and tested in this article.

In this article, we intend to study, from both a theoretical and numerical point
of view, the incompatibility issue for the multi-dimensional time-dependent linear
parabolic equation:

(1.2)

⎧⎪⎨
⎪⎩
ut − ν�u = f, x ∈ Ω ⊂ Rd, t ∈ R+,

u|t=0 = u0,

u|∂Ω = g.

We believe that our method applies to a more general parabolic equation, but
we restrict ourselves to equation (1.2) in this article devoted to feasibility.

The method that we propose is based on the concept of penalty. We replace in
(1.2) the boundary value u|∂Ω = g by u|∂Ω = kε. This boundary value kε which
depends on a parameter ε > 0 is such that kε|t=0 = u0|∂Ω (see equations (2.1),
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(2.2) below), so that the first incompatibility has disappeared. Now kε, through a
penalty procedure with parameter ε, is forced to rapidly vary from u0|∂Ω at t = 0 to
the desired value, namely g. This is achieved through equation (2.2); initially kεt is
large, but it becomes rapidly of order 1, and then, by the first equation (2.2), kε−g
is of order ε. It is easy of course to integrate equation (2.2) although an explicit
solution is not available in the general case where g depends on time. The concept
of penalty has been introduced in the mathematical literature by R. Courant [6];
it has been adapted to evolution problems by J. L. Lions in [21], a reference which
contains many evolution equations similar to (2.2) (Chapter 3, Sections 5 to 8); it is
widely used in optimization1; see also [26] (Chapter 1, Section 6). In this work, we
first present our approach in detail and study it theoretically to prove the strong
convergence of the method. Then we implement it numerically on a number of
examples. Because the penalty method does not depend on the properties of Ω,
we believe that this method can be applied to many systems with many different
domains Ω. The question that remains is the choice of small ε. In optimization
theory, the choice of ε is usually made by trial and error and is not a major issue.
It does not follow the “intuitive” idea that the error becomes smaller as ε becomes
smaller because of many other contingent errors such as round-off and descretization
errors. In general the error becomes “optimal” for some value of ε and the method
gives fewer good results for smaller or larger values of ε. In our case (see Figures 6
and 7), at the initial steps, the error decreases sharply as ε increases and remains
close to 0, then it becomes stable flat. At the final steps, the error increases almost
linearly as ε increases. With ε at about 0.1, the initial error is minimized while the
error at the final step is well controlled. In a short time period ε = 0.5 gives us
smaller errors and again after a short time period ε = 0.1 gives us a smaller errors.
In general the choice of ε really depends on our goals of the computation.

This article is organized as follows. In Section 2 we present the method and
establish various approximation results. Then, in Section 3 we present numerical
results showing the efficiency of the method and comparing it to earlier methods.
In Section 4 we present some conclusions and perspective of future developments.

2. penalty method

2.1. Perturbed problem (and the statement of the main result). We con-
sider the system (1.2), where ν > 0. If u0|∂Ω �= g(0), then we face an incompatibility
problem, in which case we consider a new system instead, namely, for ε > 0 fixed,⎧⎪⎨

⎪⎩
uε
t − ν�uε = f, x ∈ Ω ⊂ Rd, t ∈ R+,

uε|t=0 = u0,

uε|∂Ω = kε,

(2.1)

{
kεt + 1

ε (kε − g) = 0, t ∈ R+,

kε(0) = u0|∂Ω.
(2.2)

In this article, | · | is the L2(Ω) norm, and ‖ · ‖= |∇ · | is the H1
0 (Ω) norm; for

other norms, we will use the subscript notation.
The system (2.1)–(2.2) is actually decoupled and (2.2) is just an Ordinary Dif-

ferential Equation with x ∈ ∂Ω as a parameter. As we see below, if we are given

g, g′ = ∂g
∂t ∈ L2(0, T ;H

1
2 (Γ)), then we have the existence and uniqueness of kε in

1A search on Google with the words “optimization, penalty” produced 3,350,000 entries.
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L2(0, T ;H
1
2 (Γ)) and furthermore, by the effect of the penalty term, (kε − g)/ε, kε

converges to g in suitable spaces as ε → 0. Equations (2.1) is a heat equation with
nonhomogeneous boundary conditions, and we have the existence and uniqueness of
a solution if the data are sufficiently regular. Then we have the following theorem.

Theorem 2.1. Assume that we are given g ∈ L∞(0, T ;H
1
2 (Γ)) (Γ = ∂Ω), with

gt ∈ L2(0, T ;H
1
2 (Γ)), and u0 ∈ H1(Ω). Then (1.2) has a unique solution u ∈

L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), and for each ε > 0, (2.1)–(2.2) has a unique so-

lution uε ∈ L2(0, T ;H1(Ω))∩ C([0, T ]; L2(Ω)), kε ∈ L2(0, T ;H
1
2 (Γ)). Furthermore,

as ε → 0,

(2.3)
uε → u in L2(0, T ;H−1(Ω)) strongly, and in

C([t0, T ];H−2(Ω)) strongly, ∀t0 > 0.

Remark 2.1. We do not prove a strong convergence of uε to u on all of [0, T ] in
the L∞ sense, and we do not expect such a convergence to occur since u has a
singularity at t = 0. Alternatively, one could capture the singularity of u near t = 0
by using the methods of singular perturbation theory, e.g., as in Jung-Temam [17],
which we do briefly in Section 2.3, and will also be studied elsewhere.

Before we prove Theorem 2.1, we will first prove the following lemma.

Lemma 2.1. If g ∈ L∞(0, T ;H
1
2 (Γ)) and g′ ∈ L2(0, T ;H

1
2 (Γ)), then there ex-

ists a unique kε in L2(0, T ;H
1
2 (Γ)) satisfying (2.2), and as ε → 0, kε → g in

L2(0, T ;H
1
2 (Γ)) strongly. Furthermore, as ε → 0,

∫ t

0

kε(s)ds →
∫ t

0

g(s)ds in

L2(0, T ;H
1
2 (Γ)) strongly.

Proof. We explicitly solve the ODE system (2.2), and we obtain the solution kε ∈
L2(0, T ;H

1
2 (Γ)):

(2.4) kε(t) = e−
t
ε kε(0) +

∫ t

0

1

ε
g(s)e

s−t
ε ds.

Then we rewrite (2.2)1 in the form

(2.5) (kε − g)t +
1

ε
(kε − g) = −gt.

Taking the scalar product of (2.5) with kε − g in H
1
2 (Γ), we obtain

1

2

d

dt
|kε − g|2

H
1
2 (Γ)

+
1

ε
|kε − g|2

H
1
2 (Γ)

= −(gt, k
ε − g)

≤ |gt|
H

1
2 (Γ)

|kε − g|
H

1
2 (Γ)

≤ ε

2
|gt|2

H
1
2 (Γ)

+
1

2ε
|kε − g|2

H
1
2 (Γ)

.

Hence

(2.6)
d

dt
|kε − g|2

H
1
2 (Γ)

+
1

ε
|kε − g|2

H
1
2 (Γ)

≤ ε|gt|2
H

1
2 (Γ)

.

Using the Gronwall inequality we obtain

(2.7) |kε − g|2
H

1
2 (Γ)

(t) ≤ e−
t
ε |kε − g|2

H
1
2 (Γ)

(0) + ε|gt|2
L2(0,T ;H

1
2 (Γ))

.
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We integrate (2.7) over (0, T ), and we obtain (u0 ∈ H1(Ω)),2

(2.8)

∫ T

0

|kε − g|2
H

1
2 (Γ)

dt ≤ ε(1 − e−
T
ε )
∣∣∣u0|Γ − g(0)

∣∣∣2
H

1
2 (Γ)

+ εT |gt|2
L2(0,T ;H

1
2 (Γ))

,

and hence
|kε − g|

L2(0,T ;H
1
2 (Γ))

= O(
√
ε),

which implies

(2.9) kε → g strongly in L2(0, T ;H
1
2 (Γ)) as ε → 0.

Integrating (2.5) from 0 to t, we obtain

(2.10)

∫ t

0

(kε − g)ds = −ε(kε − g)(t) − εg(t) + εu0|∂Ω,

which yields

(2.11)

∫ t

0

kε(s)ds →
∫ t

0

g(s)ds strongly in L2(0, T ;H
1
2 (Γ)) as ε → 0.

The proof of Lemma 2.1 is complete. �

Remark 2.2. We could prove a stronger result namely, kε → g,
∫ t

0
kε(s)ds →∫ t

0
g(s)ds strongly in Lq(0, T ;H

1
2 (Γ)), for all 1 ≤ q < ∞. But in this article,

q = 2 is enough for our needs; and for q = ∞, from (2.7), we obtain

(2.12) kε − g = O(
√
ε) in L∞(t0, T ;H

1
2 (Γ)) for ∀t0 > 0,

and also from (2.10), because kε − g and g are bounded in L∞(0, T ;H
1
2 (Γ)), we

obtain

(2.13)

∫ t

0

kε(s)ds →
∫ t

0

g(s)ds strongly in L∞(0, T ;H
1
2 (Γ)),

the norm of the difference being of order ε.

2.2. Convergence results for uε. Since Ω is smooth, there exists a lifting opera-

tor L, linear continuous from H
1
2 (Γ) to H1(Ω). We consider such an operator and

set Kε = L(kε), G = L(g), and thus have by assumption G ∈ L∞(0, T ;H1(Ω)),
Gt ∈ L2(0, T ;H1(Ω)). So we immediately infer from (2.9), (2.11), (2.12) and (2.13)
that, as ε → 0

Kε → G strongly in L2(0, T ;H1(Ω)) ∩ L∞(t0, T ;H1(Ω)) ∀t0 > 0,(2.14) ∫ t

0

Kε(s)ds →
∫ t

0

G(s)ds strongly in L∞(0, T ;H1(Ω)).(2.15)

We now prove Theorem 2.1.

Proof of Theorem 2.1. Set vε = uε −Kε; then the system (2.1) yields

(2.16)

⎧⎪⎨
⎪⎩

vεt − ν�vε = f −Kε
t + ν�Kε,

vε|t=0 = u0 −Kε(0) = u0 − Lu0|∂Ω,
vε|∂Ω = 0.

2We do not address the question of minimal regularity of u0, that is e.g. u0 ∈ L2(Ω), which
is not in the scope of this article. Indeed the problem of incompatible data occurs already with
very smooth data.
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Integrating (2.16)1 from 0 to t, we obtain

(2.17) vε(t) − ν�
∫ t

0

vε(s)ds =

∫ t

0

f(s)ds−Kε(t) + ν�
∫ t

0

Kε(s)ds + u0.

We set V ε =
∫ t

0
vε(s)ds (with V ε(0) = 0), and F (t) =

∫ t

0
f(s)ds + u0, so V ε

solves the following system:

(2.18)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V ε
t − ν�V ε = F −Kε + ν�

∫ t

0

Kε(s)ds,

V ε|t=0 = 0,

V ε|∂Ω = 0.

We take the scalar product of (2.18)1 with V ε in L2(Ω) and find,

(2.19)
1

2

d

dt
|V ε|2 + ν ‖ V ε ‖2= (F, V ε) − (Kε, V ε) + ν(�

∫ t

0

Kε(s)ds, V ε).

We can bound the terms in the right-hand-side of (2.19) as follows:

(F, V ε) ≤ |F ||V ε| ≤ c1|F | ‖ V ε ‖≤ c′1|F |2 +
ν

6
‖ V ε ‖2,(2.20)

−(Kε, V ε) ≤ |Kε||V ε| ≤ c1|Kε| ‖ V ε ‖≤ c′2|Kε|2 +
ν

6
‖ V ε ‖2,(2.21)

ν(�
∫ t

0

Kε(s)ds, V ε) = −ν(∇
∫ t

0

Kε(s)ds,∇V ε)

≤ ν ‖
∫ t

0

Kε(s)ds ‖‖ V ε ‖

≤ ν

6
‖ V ε ‖2 +c′3 ‖

∫ t

0

Kε(s)ds ‖2 .

(2.22)

Here and below, the c, c′, ci, c
′
i are various constants independent of ε, which may

be different at different places.

Combining (2.19), (2.20), (2.21) and (2.22) gives

(2.23)
d

dt
|V ε|2 + ν ‖ V ε ‖2≤ c′1|F |2 + c′2|Kε|2 + c′3 ‖

∫ t

0

Kε(s)ds ‖2 .

Integrating (2.23) over (0, t), we obtain

(2.24)

|V ε(t)|2 + ν

∫ t

0

‖ V ε ‖2 ds ≤ c′1

∫ t

0

|F |2ds + c′2

∫ t

0

|Kε|2ds

+ c′3

∫ t

0

‖
∫ s

0

Kε(τ )dτ ‖2 ds.

We also integrate (2.23) over (0, T ), and obtain

(2.25)

|V ε(T )|2 + ν

∫ T

0

‖ V ε ‖2 ds ≤ c′1

∫ T

0

|F |2ds + c′2

∫ T

0

|Kε|2ds

+ c′3

∫ T

0

‖
∫ s

0

Kε(τ )dτ ‖2 ds.
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It follows from (2.14) and (2.15) that Kε and
∫ t

0
Kε(s)ds are bounded in

L2(0, T ;H1(Ω)), and thus (2.24), (2.25) yields:

(2.26) V ε remains bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) as ε → 0.

Thus, there exists a subsequence V ε′ and V ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ; H1
0 (Ω))

such that, as ε′ → 0,

(2.27) V ε′ → V weakly in L2(0, T ;H1
0 (Ω)), and weak-star in L∞(0, T ;L2(Ω)).

Using (2.14), (2.15) and (2.27), we can pass to the limit in (2.16) with the
sequence ε′ → 0. We proceed as follows.

For all a ∈ H1
0 (Ω), and φ in C1(0, T ) with φ(T ) = 0, we multiply (2.18)1 by aφ

and integrate over Ω × (0, T ); we obtain

(2.28)

−
∫ T

0

(V ε′ , a)φ′(t)dt + ν

∫ T

0

(∇V ε′ ,∇a)φ(t)dt =

∫ T

0

(F, a)φ(t)dt

−
∫ T

0

(Kε′ , a)φ(t)dt− ν

∫ T

0

(∇
∫ t

0

Kε′(s)ds,∇a)φ(t)dt.

Passing to the limit with (2.14), (2.15), (2.27), we find

(2.29)

−
∫ T

0

(V, a)φ′(t)dt + ν

∫ T

0

(∇V,∇a)φ(t)dt =

∫ T

0

(F, a)φ(t)dt

−
∫ T

0

(G, a)φ(t)dt− ν

∫ T

0

(∇
∫ t

0

G(s)ds,∇a)φ(t)dt.

Taking φ ∈ D(0, T ), we see that V satisfies

(2.30) (Vt, a) − ν(�V, a) = (F −G + ν�
∫ t

0

G(s)ds, a), ∀ a ∈ H1
0 (Ω).

Now we want to show that V (0) = 0.

We classically integrate (2.30) times φ(t) over (0, T ) and we obtain:

(2.31)

−
∫ T

0

(V, a)φ′(t)dt + ν

∫ T

0

(∇V,∇a)φ(t)dt =

∫ T

0

(ν�
∫ t

0

G(s)ds, a)φ(t)dt

+

∫ T

0

(F −G, a)φ(t)dt + (V (0), a)φ(0).

By comparing with (2.29), we find that

(2.32) (V (0), a)φ(0) = 0,

for every a ∈ H1
0 (Ω) and every φ ∈ C1([0, T ]) with φ(T ) = 0. This implies V (0) = 0

as desired. Finally, V satisfies

(2.33)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vt − ν�V = F −G + ν�
∫ t

0

G(s)ds,

V |t=0 = 0,

V |∂Ω = 0.
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Remark 2.3. Furthermore, we could prove that the whole sequence V ε → V weakly
in L2(0, T ;H1

0 (Ω)), and weak star in L∞(0, T ;L2(Ω)). Indeed, if not, arguing by
contradiction, we could find a subsequence εi → 0, such that

(2.34)
V εi

� V in L2(0, T ;H1
0 (Ω)) weakly,

L∞(0, T ;L2(Ω)) weak-star.

Repeating the argument above leading to (2.27), we could extract from εi a subse-
quence ε′i and find V̄ such that, as ε′i → 0,

(2.35)
V ε′i → V̄ in L2(0, T ;H1

0 (Ω)) weakly,

L∞(0, T ;L2(Ω)) weak-star,

where V̄ is the solution of (2.33). But the solution of (2.33) is unique; hence V = V̄ ,
and then (2.35) contradicts (2.34).

Before we finish the proof of the theorem, we now prove the following lemma.

Lemma 2.2. Under the assumptions of Theorem 2.1, with V, V ε being the solutions
of (2.33) and (2.18), we have, as ε → 0,

(2.36) V ε → V strongly in L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)).

Proof. We subtract (2.18)1 from (2.33)1, and obtain

(2.37) Vt − V ε
t − ν(�V −�V ε) = Kε −G + ν(�

∫ t

0

G(s)ds−�
∫ t

0

Kε(s)ds).

We then take the scalar product of (2.37) with V − V ε in L2(Ω), and integrate
in time from 0 to t, and we obtain:

(2.38)

1

2
|(V − V ε)(t)|2 + ν

∫ t

0

‖ V − V ε ‖2 ds =

∫ t

0

(Kε −G, V − V ε)ds∫ t

0

(ν�
∫ t

0

G(s)ds− ν�
∫ t

0

Kε(s)ds, V − V ε)ds.

Now we set

(2.39) χε(t) =
1

2
|(V − V ε)(t)|2 +

ν

2

∫ t

0

‖ V − V ε ‖2 ds,
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and estimate the right-hand side of (2.38) as follows:∫ t

0

(Kε −G, V − V ε)ds ≤
∫ t

0

|Kε −G||V − V ε|ds

≤ c1

∫ t

0

|Kε −G| ‖ V − V ε ‖ ds

≤ c1(

∫ T

0

|Kε −G|2ds) 1
2 (

∫ t

0

‖ V − V ε ‖2 ds)
1
2

≤ c

∫ T

0

|Kε −G|2ds +
ν

4

∫ t

0

‖ V − V ε ‖2 ds,

(2.40)

∫ t

0

ν(�
∫ s

0

G(τ )dτ −�
∫ s

0

Kε(τ )dτ, V − V ε)ds

≤ ν

∫ t

0

‖
∫ s

0

(G(τ )−Kε(τ ))dτ ‖‖ V − V ε ‖ ds

≤ c′
∫ T

0

‖
∫ s

0

(G−Kε)(τ )dτ ‖2 ds +
ν

4

∫ t

0

‖ V − V ε ‖2 ds.

(2.41)

Combining (2.40) and (2.41), we see that

(2.42) χε(t) ≤ c′
∫ T

0

‖
∫ s

0

(G−Kε)(τ )dτ ‖2 ds + c

∫ T

0

|Kε −G|2ds.

The right-hand side of (2.42) converges to 0 as ε converges to 0, because of (2.14)
and (2.15), and so does χε(t). For t = T , we find

(2.43) V ε → V strongly in L2(0, T ;H1
0 (Ω)) as ε → 0,

and taking the supreme of (2.42) with respect to t, we see that

(2.44) V ε → V strongly in L∞(0, T ;L2(Ω)) as ε → 0.

The lemma is proved. �

Now we apply Lemma 2.2 and obtain as ε → 0,

(2.45) �V ε → �V strongly in L2(0, T ;H−1(Ω)) ∩ C([0, T ];H−2(Ω)),

and from (2.15), we obtain as ε → 0,

(2.46) �
∫ t

0

Kε(s)ds → �
∫ t

0

G(s)ds strongly in L∞(0, T ;H−1(Ω)),

so after comparing (2.18)1 with (2.33)1, we conclude that as ε → 0,

(2.47)
V ε
t → Vt strongly in L2(0, T ;H−1(Ω)) and

C([t0, T ];H−2) ∀t0 > 0.

Now we define v = Vt, and take the derivative on (2.33)1, we obtain that v solves
the following system:

(2.48)

⎧⎪⎨
⎪⎩

vt − ν�v = f −Gt + ν�G,

v|t=0 = u0 − u0|∂Ω,
v|∂Ω = 0.
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So (2.47) yields as ε → 0,

(2.49)
vε → v strongly in L2(0, T ;H−1(Ω)) and

C([t0, T ];H−2) ∀t0 > 0.

The final stage of the proof of Theorem 2.1 consists of reinterpreting the results
above, that is, (2.14), (2.15) and (2.49) in terms of the convergence of uε = vε +Kε

towards u = v + G; we obtain precisely (2.3). Theorem 2.1 is proven. �

Remark 2.4. Similarly, as Remark 2.2, we see that we also have uε → u strongly in
Lq(0, T ;H−1(Ω)) for all 1 ≤ q < ∞.

2.3. Boundary layer analysis for kε. In the previous section, Lemma 2.1 stated
that under our assumptions, kε strongly converges to g in L2(0, T ;H

1
2 (Γ)), as ε → 0.

Here in order to better compare kε and g, we are going to study the boundary layer
for the system (2.2).

Along the asymptotic analysis, we define the outer expansion kε ∼
∑∞

j=0 ε
jkj .

By formal identification at each power of ε, we obtain

(2.50)
O(ε−1) : k0 = g,

O(εj) : kjt + kj+1 = 0, ∀j ≥ 0.

By explicit calculations, we find:

(2.51) kj = (−1)jg(j), ∀j ≥ 0.

It is clear that the functions kj of the outer expansion do not generally satisfy the
initial condition in (2.2) in the case of interest here where g(0) �= u0|∂Ω. To account
for this discrepancy, we classically introduce the inner expansion kε ∼

∑∞
j=0 ε

jθj ,

where θj = θj(t), (t = t/ε). Then we find
∞∑
j=0

εj
dθj

dt
+

∞∑
j=0

εjθ(t) = 0.

By formal identification at each power of ε, we obtain the following equations:

(2.52)
dθj

dt
+ θj(t) = 0, for j ≥ 0.

The initial conditions that we choose are:

(2.53)
θ0(0) = u0|∂Ω − g(0),

θj(0) = −kj(0) = (−1)j+1g(j)(0), for j ≥ 1.

By explicit calculations, we obtain:

(2.54) θj = e−
t
ε θj(0), for j ≥ 0.

To obtain the asymptotic error estimate, we set

(2.55) wεn = kε − kεn − θεn,

where

kεn =
n∑

j=0

εjkj , θεn =
n∑

j=0

εjθj .

Now we can conclude as follows.
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Theorem 2.2. If g(n+1) ∈ L2(0, T ;H
1
2 (Γ)) for n ≥ 0, and wεn is defined in (2.55),

then as ε → 0,

(2.56)
wεn = O(εn+1) in L2(0, T ;H

1
2 (Γ)),

wεn = O(εn+
1
2 ) in L∞(0, T ;H

1
2 (Γ)).

Proof. We first notice that wεn vanishes at t = 0. We then insert (2.55) into (2.2),
and we find:

(2.57)

{
ε(wεn)t + wεn = εn+1(−1)n+1g(n+1),

wεn|t=0 = 0.

We take the H
1
2 (Γ) scalar product of (2.57)1 with wεn and integrate over [0, t]; we

obtain

ε

2
|wεn(t)|2

H
1
2 (Γ)

+

∫ t

0

|wεn(s)|2
H

1
2 (Γ)

ds =

∫ t

0

((−ε)n+1g(n+1), wεn)
H

1
2 (Γ)

ds

≤ 1

2

∫ t

0

|wεn(s)|2
H

1
2 (Γ)

ds +
ε2(n+1)

2

∫ t

0

|g(n+1)(s)|2
H

1
2 (Γ)

ds,

ε|wεn(t)|2
H

1
2 (Γ)

+

∫ t

0

|wεn(s)|2
H

1
2 (Γ)

ds ≤ ε2(n+1)

∫ T

0

|g(n+1)(s)|2
H

1
2 (Γ)

ds.

(2.58)

If we set t = T in (2.58), we obtain wεn=O(εn+1) in L2(0, T ;H
1
2 (Γ)), and if we

take the supremum of (2.58) over [0,T ], we obtain wεn=O(εn+
1
2 ) in L∞(0, T ;H

1
2 (Γ)).

Theorem 2.2 has been proved. �

Remark 2.5. If we additionally assume that gtt ∈ L2(0, T ;H
1
2 ) in Theorem 2.1,

from (2.56), setting n = 1, we find wε1 = kε − g + εgt − (u0|∂Ω − g(0))e−t/ε +

εgt(0)e−t/ε = O(ε3/2), in L∞(0, T ;H
1
2 (Γ)). Then for any t0 > 0, (kε − g)(t0) =

−εgt(t0) + O(ε3/2) + e.s.t., where e.s.t. means exponentially small term (for all
Hm-norms).

Hence |(kε − g)(t0)|
H

1
2

= O(ε), for ∀t0 > 0 fixed. We now do similarly as

(2.5)-(2.7) for kεt − gt and integrate from t0 to t,

(2.59) |kεt − gt|2
H

1
2 (Γ)

(t) ≤ e−
t−t0

ε |kεt − gt|2
H

1
2 (Γ)

(t0) + ε|gtt|2
L2(0,T ;H

1
2 (Γ))

,

which yield

(2.60) kεt − gt = O(
√
ε) in L∞(t0, T ;H

1
2 (Γ)), ∀t0 > 0.

3. Numerical results for the penalty method

3.1. Approximations of kε. In order to test the efficiency of the proposed penalty
method, we will provide in this section and in the next one (Sec. 3.3) some numerical
results for system (2.2) with Ω = (0, 1)× (0, 1), and 0 ≤ t ≤ 1; we set g(t) = sin(t)
for all (x, y) ∈ ∂Ω, u0(x, y) = sin( 5π4 x + 3π

4 )sin( 5π4 y + 3π
4 ), in which case, we face

the discrepancies all along the lines x = 0 and y = 0 (but no discrepancy along the
parts x = 1 or y = 1 of the boundary).

We start by testing the quality of the approximation of kε inferred by the bound-
ary layer analysis of Section 2.3; that is, kε ∼

∑n
j=0 ε

j(kj + θj), for suitable ε’s
and n’s.
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Figure 1. (a) Boundary Layer Element with ε = 0.1, kε ∼ k0+θ0,
(b) Boundary Layer Element with ε = 0.1, kε ∼ k0+θ0+εk1+εθ1,
(c) Boundary Layer Element with ε = 0.01, kε ∼ k0 + θ0, (d)
Boundary Layer Element with ε = 0.01, kε ∼ k0 + θ0 + εk1 + εθ1.

Because (2.2) is a 2D system which makes the graphing impossible along the time
axis, we restrict ourselves to follow the time evolution of the exact and approximate
function at one point of the boundary; for simplicity we choose the corner (x, y) =
(0, 0). We then plot in Figure 1, g(t) (solid line) and kε (dash-dot line), kε ∼∑n

j=0 ε
j(kj + θj) with n = 0 or 1, and ε = 0.1 or 0.01. For n = 1, the proposed

new scheme gives a good approximation of kε.
Figure 2 gives the L2− and L∞− errors which stand, respectively, for the

L2(0, T ;H
1
2 (Γ)) and L∞(0, T ;H

1
2 (Γ)) norms of the difference between the real so-

lution kε and the approximations
∑n

j=0 ε
j(kj + θj), as the number of time steps T ,

ε and n vary. It is clear that the smaller ε is, the smaller both errors are.

3.2. A two-dimensional system in a square Ω. To verify the effectiveness of
the penalty method, we use the finite elements method for the spatial approximation
of u. The Penalty Method is mainly aimed for multi-dimensional time-dependent
PDEs, so we consider the 2D system, as in (1.2):

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
− ν(uxx + uyy) = f,

u|∂Ω = g,

u|t=0 = u0.

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1.
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Figure 2. L2(plot o)- and L∞(plot *)- error between the bound-
ary layer schemes and the real solution for εkt + k = g.
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Figure 3. The exact solution of the system in the square Ω with-
out applying the penalty method, at times 0, 0.5 and 1 (Figures
3(a), 3(b), 3(c)).
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Figure 5. The comparative errors of the 2D system in the L∞

norm for ε = 0.1. (a) Maximum comparative error for a short
time period (in real value), (b) Maximum comparative error when
applying the Penalty Method (times 10−3).
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x 10 The choice of epsilon

M
ax

im
u
m

 C
om

p
ar

at
iv

e 
E

rr
o
r

 

 
epsilon=0.1
epsilon=0.5
epsilon=0.8

Figure 7. The maximum comparative errors for the 2D system
in square domain.



2086 QINGSHAN CHEN, ZHEN QIN, AND ROGER TEMAM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

Time

C
om

p
ar

at
iv

e 
M

ax
im

u
m

 E
rr

o
r

Comparative Maximum Error at Each Time Step

 

 
coarse mesh
fine mesh

Figure 8. The comparative errors for the 2D system in L∞ sense
at ε = 0.1. The upper line is with mesh �x = 1

24 ,�y = 1
24 ,�t =

1
1000 , the lower line is with mesh �x = 1

48 ,�y = 1
48 ,�t = 1

4000

1 1.5 2
5

5

5

5

5
Maximum Error at the Initial Time Steps

logarithm of the number of the 
segment in x (base 10)

lo
ga

ri
th

m
 o

 t
h
e 

m
ax

im
u
m

 e
rr

or
 (

b
as

e 
10

)

 

 

(a)

Without Penalty Method

With Penalty Method

1 1.5 2

5

5
Maximum Error at the Final Time Steps

logarithm of the number of the 
segment in x (base 10)

lo
ga

ri
th

m
 o

 t
h
e 

m
ax

im
u
m

 e
rr

or
 (

b
as

e 
10

)

 

 

(b)

Without Penalty Method

With Penalty Method
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We set ν = 0.2, f = 0, g = 0, u0 = sin( 5π4 x + 3π
4 )sin( 5π4 y + 3π

4 ), so that
g(0) �= u0|∂Ω on the lines x = 0 and y = 0. So we face the incompatibility
problem, namely the boundary conditions and the initial condition do not match
at these corners of the time and spatial axes. For the test we set ε = 0.1 in the
penalty approximation (2.1)–(2.2) of (3.1). In more general problems, we might
have discontinuities at the space corners x = 0 or 1, y = 0 or 1. But since the
function u0 is smooth at the corners, these singularities do not occur here, at least
at the low orders.

We first plot the solution of system (3.1) without applying the penalty method.
The solution is plotted in Figure 3; (a) is the graph of the approximate solution
at t = 0, (b) is the graph of the approximate solution at t = 0.5, and (c) is the
graph of the approximate solution at t = 1. The graph displays a sharp gradient
around the corner of the time–space axis during an initial short period due to the
incompatibility between the initial and boundary conditions there. In order to see
the sharp gradient clearly and the changes of the gradient as time evolves, we plot
the sections (x ∈ (0, 1), y = 0.6) of the solution at times close to 0; see Figure 4. It
is clear that, at t = 0, we observe the sharpest gradient at the time–space corner
and as time evolves, the gradient becomes smoother and smoother at that corner,
until t = 0.08, when it is essentially flat.

Next, to study the accuracy of the numerical method, we must measure the
errors for the approximate solutions. Hence we compute the comparative errors
which are the differences between two numerical solutions for the problem, one
with the stated mesh sizes, and the other one with a finer mesh. Then at each time
step, we obtain the maximum error between the two meshes above; it is understood
to be L∞ comparative errors, or maximum comparative errors. In what follows, all
the error terms are to be understood in this sense.

We plot the maximum comparative errors of the 2D system on Figure 5. Graph
(b) is the plot of the maximum comparative errors along the whole time period if
we apply the penalty method. Because the discrepancy happens at the time-space
corner, we zoom into the left corner of graph (b) and compare it with the error
when we do no apply the penalty method. In graph (a), the line with stars is
the maximum comparative errors with the penalty method applied, and the line
with circles is the maximum comparative errors without the penalty method. We
observe that the magnitude of the errors at the time-space corner is reduced by
around one order by the penalty method.

Because we use finite difference methods, for the same ε, if we have a finer mesh,
the maximum comparative error should be smaller. In Figure 8 we plot the error
of the 2D system with ε = 0.1, the lower curve with a finer mesh, the upper curve
with a coarser mesh. The magnitude of the errors is reduced by around 40%. So for
a fixed ε, the finer the mesh is, the smaller the error is. We are also interested in the
decay of the maximum errors. The most interesting and informative comparison
can be made between the decay rates of the maximum errors at the initial and final
time steps. In Figure 9 (a), the maximum errors at the initial time step are plotted
against the grid resolution in the log-log scale. Without the penalty method, the
maximum errors do not decrease as the grid refines, which demonstrates that the
singularity in the solution during the initial period is serious. With the penalty
method (ε = 0.1), the maximum errors decay at roughly the second order. Figure
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9 (b) shows that, with and without applying penalty method, the maximum errors
at the final steps (t = 1) decay at approximately the second order.

Next, we fix the meshes, e.g., at �x = 1
24 ,�y = 1

24 ,�t = 1
1000 , and let ε vary.

In Figure 6, we plot the maximum comparative errors of system (3.1). At the
initial steps, the error decreases sharply as ε increases and remains close to 0, then
it becomes stable flat. At the final steps, the error increases almost linearly as ε
increases. With ε at about 0.1, the initial error is minimized while the error at final
step is well controlled. But as Figure 7 shows, in a short time period ε = 0.5 gives
us smaller errors and again after a short time period ε = 0.1 gives us a smaller error.
In optimization theory, the choice of ε is usually made by trial and error and is not a
major issue. It does not follow the “intuitive” idea that the error becomes smaller
as ε becomes smaller because of many other contingent errors such as round-off
and descretization errors. In general the choice of ε depends on our goals of the
computation.

3.3. 2D system in a disk Ω. To further verify the effectiveness of the penalty
method we now test the results in a different domain. We now choose a disk
Ω = {(x, y)|x2 + y2 ≤ 1}. The 2D heat equations in the polar coordinates x =
r cos(θ), y = r sin(θ) where 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 read

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
− ν(urr +

ur

r
+

uθθ

r2
) = f,

u|t=0 = u0,

u|r=1 = g.

Consider the 2D system (3.2), where 0 ≤ t ≤ 1, and set ν = 0.2, f = 0, g = 0
and u0(x, y) = xy, so that g(0) �= u0|∂Ω. We also set ε = 0.1 the same as before. In
this case, we face the singularities almost everywhere along the unit circle except at
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Figure 10. The solution of the system in disk Ω without applying
the penalty method.
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Element and penalty method in L∞ sense with ε = 0.1
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Figure 13. The maximum comparative errors for penalty method
at both initial and final steps as ε variants with mesh �r =
1
10 ,�θ = 1

10 ,�T = 1
1000 .

the points where x = 0 or y = 0. The effectiveness of this method will be verified
with the following numerical results.

We first compute the solution of (3.2) without applying the penalty method.
The solution is plotted in Figure 10; (a) is the graph of the solution at t = 0, (b) is
the graph of the solution at t = 0.5, and (c) is the graph of the solution at t = 1.
As we did for the system (3.1) for the square, we plot in Figure 11 the sections
(r ∈ (0, 1), θ = π

4 ) of the solution at times close to 0. It is clear that, at t = 0,
the graph displays a sharp gradient around the corner of the time-space axis due
to the discrepancy between the initial and boundary conditions there, and as time
evolves, the gradient becomes smoother and smoother.

To study the error of the system in the disk Ω, we define the maximum compar-
ative errors as for the square Ω. Hence we plot the L∞ errors for the 2D system
for the disk Ω on Figure 12; graph (b) is the maximum comparative error along
the whole time period if we apply the penalty method. Because the discrepancy
happens at the time-space corner, we zoom into the left corner of graph (b) and
compare it with the error when we do not apply the penalty method. From graph
(a), we observe that the magnitude of the errors at the time-space corner are re-
duced by a factor of 10 if we apply the penalty method.

In Figure 13, we plot the maximum comparative error for (3.2) with a fixed mesh
at both initial and final steps. At the initial step, the error decreases sharply as
ε increases and remains close to 0, and then it becomes flat. At the final step,
the error increases almost linearly as ε increases. The observation also leads to the
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Figure 14. Decay of the maximum errors. When we apply the
penalty method here ε = 0.1. (a) at the initial steps, (b) at the
final steps

following conclusion: at about ε = 0.1, the initial error is minimized while the error
at final step is well controlled.

As for the previous example, we shall now look at how the singularity, induced
by the compatibility between the initial and boundary data, affects the convergence
rates of the numerical scheme. In Figure 14 we plot the maximum errors, at the
initial and final time steps, with and without the penalty method, against the
spatial resolution in the log-log scale. We see in Figure 14 (a) that, without the
penalty method, the maximum errors do not decrease as the grid refines, which
demonstrates that the singularity in the solution at the initial time step is serious.
With the penalty method, the maximum errors decay at roughly the second order.
Figure 14 (b) shows that, with and without applying penalty method, the maximum
errors at the final steps (t=1) decay at approximately the second order.

3.4. Implementation in a 1D system. As we said in the Introduction the
penalty method applies without any restriction on space dimension. However, a
number of methods have previously been proposed which only apply to space di-
mension one. Our aim is now to compare the efficiency of the penalty method with
some of the earlier methods; and therefore we can only consider the case of space
dimension 1. More precisely, we will consider the Corrector Methods as proposed
in [8]–[10] and compare them with the penalty method for the 1D system
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Figure 15. Comparative error of the two methods in 1D system
in L∞ sense at ε = 0.1

(3.3)

⎧⎪⎨
⎪⎩

ut − νuxx = 0, 0 < x < 1, 0 < t < 1,

u(x, 0) = u0,

u(0, t) = g1(t), u(1, t) = g2(t).

Here we set u0(x) = sin( 5π4 x+ 3π
4 ), g1(t) = 0, g2(t) = 0, ν = 0.2. For the Penalty

Method, we also set ε = 0.1, and for the Corrector Method, we have the following
choice of correctors [5]–[9] offering increasing accuracy:

(3.4) S =

⎧⎪⎨
⎪⎩

0,

α0S0, (Procedure 1),

α0S0 + α1S1, (Procedure 2),

where α0 = g1(0) − u0(0), α1 = g1t(0) − u0xx(0), S0 = 1√
πνt

∫∞
x

e−
s2

4νt ds =

erfc( x√
νt

) and S1 =
∫ t

0
S0(x, τ )dτ . Here Procedure 1 absorbs the 0th order in-

compatibility (g1(0) �= u0(0)), and Procedure 2 absorbs both the 0th and 1st order
incompatibilities (g1(0) �= u0(0) and g1t(0) �= νu0xx(0)).

Let u = v + S; we see that v is the solution of the following equation:

(3.5)

⎧⎪⎨
⎪⎩

vt − νvxx = 0, 0 < x < 1, 0 < t < 1,

v(x, 0) = u0(x),

v(0, t) = g1(t) − S(0, t), v(1, t) = g2(t) − S(1, t).
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Figure 16. The maximum comparative errors for the 1D system
in L∞ sense along the time

We choose to solve equation (3.5) by finite differences. Figure 15 gives the
comparison between different methods (Penalty Method and Correction Method).
Figure 15 (a) gives us the maximum comparative error of system (3.3) without
applying any methods. Figure 15 (b) compares the two methods, zooming into the
corner of the time-space domain where errors are the largest due to the incompati-
bility at t = 0. As expected Procedure 2 gives slightly better results than Procedure
1. Also, the errors with the penalty method are larger than with both procedures,
but still of comparable magnitude whereas the errors without any procedure reach
a pick about 6 times larger (4.8 × 10−3 vs 0.8 × 10−3). Now we want to vary ε in
this 1D system, Figure 16 shows that if ε is too small as compared to the mesh, the
Penalty Method would not reduce the errors at the spatio-temporal corner, but if
it is an appropriate small number, it could really reduce the errors by more than
80%.

4. Conclusion

The penalty method gives a way to solve the higher dimensional incompatibility
problems. As expected, there exists a solution for system (1.2) which is continuous
over [t0, T ], for all t0 > 0.

The discrepancy occurs at the time-space corner; we are effectively interested
in the errors for the initial short time period. The numerical simulations for the
system with both a square Ω and a disk Ω yield similar results. At the spatio-
temporal corner, the magnitudes of the errors are reduced by about one order of
magnitude by the penalty method. Tests are also conducted to study the effects of
different values of ε, the key parameter in the penalty method. We find that with
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an appropriate small value for ε, the initial error can be minimized while the error
at final step is under well controlled.

Finally, in space dimension one, when both methods are available (penalty
method and correction procedures 1 and 2), the penalty method gives a slightly
larger error than the Correction Procedures 1 and 2; but the order of magnitude
of the errors are comparable and they are all significantly smaller than the errors
appearing when no correction procedure is implemented .

Appendix: The user guide

The aim is to address the incompatibility issue for the multi-dimensional time-
dependent linear parabolic equation

(4.1)

⎧⎪⎨
⎪⎩

ut − ν�u = f, x ∈ Ω ⊂ Rd, t ∈ R+,

u|t=0 = u0,

u|∂Ω = g.

where u0|∂Ω �= g|t=0. So we consider new system instead, namely, for ε > 0 fixed,⎧⎪⎨
⎪⎩

uε
t − ν�uε = f, x ∈ Ω ⊂ Rd, t ∈ R+,

uε|t=0 = u0,

uε|∂Ω = kε,

(4.2)

⎧⎨
⎩ kεt +

1

ε
(kε − g) = 0, t ∈ R+,

kε(0) = u0|∂Ω.
(4.3)

We consider, for instance, the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ t ≤ 1.
We consider the discretization meshes �x = 1/M , �y = 1/N and �t = 1/T ,
where M,N, T are integers. We use an explicit scheme to compute the numerical
solution of the original system (4.1) and of the modified system (4.2), (4.3), that
is, respectively:

(4.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un+1
i,j − un

i,j

�t
− ν(

un
i+1,j + un

i−1,j − 2un
i,j

�x2
+

un
i,j+1 + un

i,j−1 − 2un
i,j

�y2
) = fn

i,j ,

for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, 1 ≤ n ≤ T,

un
i,j |∂Ω = gi,j(n�t)|∂Ω, for i = 0, N or j = 0,M,

u0
i,j = u0(i�x, j�y), for 0 ≤ i ≤ N, 0 ≤ j ≤ M,

for (4.1), and , for (4.2)–(4.3):

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
i,j − un

i,j

�t
− ν(

un
i+1,j + un

i−1,j − 2un
i,j

�x2
+

un
i,j+1 + un

i,j−1 − 2un
i,j

�y2
) = fn

i,j ,

for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, 1 ≤ n ≤ T,

un
i,j |∂Ω = kεni,j |∂Ω, for i = 0, N or j = 0,M,

u0
i,j = u0(i�x, j�y), for 0 ≤ i ≤ N, 0 ≤ j ≤ M,

kεn+1
i,j − kεni,j

�t
+

1

ε
(kεni,j − gi,j(n�t)) = 0,

for i = 0, N or j = 0,M, n ≥ 1,

kε0i,j = u0(i�x, j�y), for i = 0, N or j = 0,M.
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