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DIVERGENCE-FREE WAVELET BASES ON THE HYPERCUBE:

FREE-SLIP BOUNDARY CONDITIONS, AND APPLICATIONS

FOR SOLVING THE INSTATIONARY STOKES EQUATIONS

ROB STEVENSON

Abstract. We construct wavelet Riesz bases for the usual Sobolev spaces
of divergence free functions on (0, 1)n that have vanishing normals at the
boundary. We give a simultaneous space-time variational formulation of the
instationary Stokes equations that defines a boundedly invertible mapping
between a Bochner space and the dual of another Bochner space. By equip-
ping these Bochner spaces by tensor products of temporal and divergence-free
spatial wavelets, the Stokes problem is rewritten as an equivalent well-posed
bi-infinite matrix vector equation. This equation can be solved with an adap-
tive wavelet method in linear complexity with best possible rate, that, under
some mild Besov smoothness conditions, is nearly independent of the space
dimension. For proving one of the intermediate results, we construct an eigen-
function basis of the stationary Stokes operator.

1. Introduction

Divergence-free wavelet bases have been advocated for solving Stokes and incom-
pressible Navier-Stokes equations. Our main interest in such bases is to use them
for solving the time-dependent Stokes equations. On the space of divergence-free
velocities, these equations are of parabolic nature. We derive a simultaneous space-
time variational formulation that defines a boundedly invertible operator between
a Bochner space and the dual of another Bochner space. By equipping these spaces
by tensor products of temporal and spatial wavelet bases—the latter being a basis
of divergence-free wavelets—we arrive at an equivalent, well-posed bi-infinite ma-
trix vector problem. By solving this problem with an adaptive wavelet method, the
best possible convergence rate will be realized in linear complexity. Thanks to the
use of tensor product bases, apart for some log-factors, this rate will be equal as
when solving a one-dimensional problem with wavelets of the same order.

The construction of a divergence-free wavelet basis on Rn by Lemarié-Rieusset
in [LR92] relies on the availability of two pairs of biorthogonal Riesz bases (Ψ, Ψ̃)

and (Ψ+, Ψ̃−) for L2(R), that for some invertible diagonal matrix D, satisfy

(1.1) Ψ̇+ = DΨ, ˙̃Ψ = −DΨ̃−.
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Here we view bases formally as column vectors. Shift invariant wavelet bases that
satisfy these conditions were constructed in [LR92].

Replacing R by I := (0, 1), the same construction applies to yield divergence-
free wavelet bases on In, assuming that two pairs of biorthogonal Riesz bases for
L2(I) are available that satisfy (1.1). With the notation 〈Σ,Υ〉 := [〈σ, υ〉]σ∈Σ,υ∈Υ,
integration by parts shows that (1.1) implies that necessarily

Ψ+(1)Ψ̃(1)� −Ψ+(0)Ψ̃(0)� = 〈Ψ̇+, Ψ̃〉L2(I) + 〈Ψ+, ˙̃Ψ〉L2(I)

= 〈DΨ, Ψ̃〉L2(I) − 〈Ψ+,DΨ̃−〉L2(I) = D ◦ Id− Id ◦D = 0,

i.e.,

(1.2) ψ+(1)ψ̃(1)− ψ+(0)ψ̃(0) = 0 (ψ+ ∈ Ψ+, ψ̃ ∈ Ψ̃).

To obtain such vanishing boundary terms, one may consider Ψ+ ⊂ H1
0 (I). Then,

any element of Ψ = D−1Ψ̇+ has a vanishing mean, so that Ψ cannot be a basis for
L2(I), the reason being that the mean value is a nonzero, continuous functional on
L2(I) (it is not continuous on L2(R), and therefore the latter space can be equipped
with a Riesz basis of functions all having a vanishing mean). The collection Ψ can
be arranged to be a basis for L2,0(I) = {u ∈ L2(I) :

∫
I
u = 0}. In that case, however,

for n ≥ 3, the resulting divergence-free wavelets will not span the whole space of
divergence-free vector fields, but only that space intersected with

L̂2(I
n)n := L2(I)⊗L2,0(I)⊗· · ·⊗L2,0(I)× · · · × L2,0(I)⊗· · ·⊗L2,0(I)⊗L2(I),

the codimension being infinite.
Alternatively, we may search Ψ̃ in H1

0 (I). In this case, the same argument shows

that Ψ̃− cannot be a basis for L2(I), and so neither can Ψ+, and we end up with
the same problem.

A third possibility is to impose periodic boundary conditions for both Ψ+ and
Ψ̃. In this case, any element from even both Ψ and Ψ̃− has vanishing mean, giving
rise to the same problem as above.

In [Ste08], these consideration led us to search Ψ̃ and Ψ+ such that the elements

of Ψ̃ vanish at 1, and those of Ψ+ vanish at 0. With this option we could satisfy
(1.1), and with that we constructed divergence-free wavelet bases on In. To the best
of our knowledge, this was the first time that on a bounded domain such a basis was
constructed. Divergence free wavelets on bounded domains were constructed earlier,
but due to the difficulties outlined above, in any case in three more dimensions,
they did not generate a basis.

A disadvantage of the construction from [Ste08] is that, due to the special bound-
ary conditions satisfied by Ψ+, the resulting divergence-free wavelets span the space
of divergence-free vector fields subject to the unusual boundary conditions of having
vanishing normal components on half of the boundary of In.

In this paper, we will construct divergence-free wavelets that span the space of
divergence-free vector fields on In that have vanishing normals on the whole of the
boundary, i.e., that satisfy the standard free-slip boundary conditions. In order to
do so, we make an orthogonal decomposition of L2(I

n)n into 2n−1 subspaces, each

of them being (isomorphic to) ̂L2(I
k)k for k = 1, . . . , n. Each of these spaces ̂L2(I

k)k

can be orthogonally split into a space of gradients and a space of divergence-free
vector fields with vanishing normals on the boundary (Helmholtz decomposition).
We know how to equip the latter spaces with wavelet bases, and we conclude that
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the union of (isomorphic images of) these bases is a Riesz basis for the space of all
divergence-free vector fields in L2(I

n)n with vanishing normals on the boundary.
The same procedure will be followed to construct Riesz bases for the spaces of all

divergence free vector fields in H1(In)n or H2(In)n that satisfy certain boundary
conditions. These spaces become relevant for deriving a well-posed simultaneous
space-time variational formulation of the time-dependent Stokes problem.

This paper is organized as follows: In Sect. 2, we present the orthogonal decom-
position of L2(I

n)n into finitely many subspaces each of them being (isomorphic

to) ̂L2(I
k)k for k = 1, . . . , n. In Sect. 3, for each of these subspaces, we equip

its subspace of divergence vector fields with vanishing normals at the boundary
with a Riesz basis of wavelet type. In Sect. 4, we derive a simultaneous space-time
variational formulation of the time-dependent Stokes problem. The operator that
corresponds to this variational form is shown to be bounded invertible between two
pairs of Hilbert spaces. For one of these results, an elliptic regularity result for
the stationary Stokes problem is used that is shown in Sect. 6. In Sect. 5, using
the results concerning bounded invertibility and the construction of divergence-free
wavelet bases, the instationary Stokes problem is formulated as an equivalent well-
posed bi-infinite matrix vector problem that can be solved with an adaptive wavelet
method. To show the elliptic regularity result, in Sect. 6 an eigenfunction basis of
the stationary Stokes operator is constructed which seems to be unavailable yet.
In Sect. 7, it is shown that also the problem for the pressure can be written as an
equivalent well-posed bi-infinite matrix vector equation. Finally, in Sect. 8, it is
discussed to which extent the results from this paper apply to the Stokes problem
with no-slip boundary conditions.

In this paper, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C � D
is defined as D � C, and C � D as C � D and C � D.

2. Orthogonal space decompositions

2.1. Decomposition of L2(I
n)n. Let I := (0, 1) and, for n ∈ {2, 3, . . .},

H(div; In) := {u ∈ L2(I
n)n : divu ∈ L2(I

n)},
H0(div; I

n) := {u ∈ H(div; In) : u · n = 0 on ∂In},

H(In) = H0(div0; I
n) := {u ∈ H0(div; I

n) : divu = 0}.

The boundary conditions incorporated in H0(div; I
n), and so in H(In), are com-

monly called free-slip boundary conditions, since they do not restrict the tangential
components of a flow.

Our goal is to construct a Riesz basis of wavelet type for H(In). By applying
integration by parts, one directly verifies that the subspacesH(In) and gradH1(In)
of L2(I

n)n are orthogonal. Below, we will make an orthogonal decomposition of
L2(I

n)n into a finite sum of subspaces such that each of them is either in H(In) or
in gradH1(In). Furthermore, we will be able to equip all aforementioned subspaces
in H(In) with a Riesz basis of wavelet type. We may conclude that the union of
these bases is a Riesz basis for H(In).

Actually, the same procedure will be followed for the subspaces in gradH1(In),
with which we end up with a Riesz basis for that space as well.
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We set L2 := L2(I), L2,0 := {u ∈ L2 :
∫
I
u = 0}, and for n ∈ N, s ≥ 0,

L̂2(I
n)n := L2 ⊗ L2,0 ⊗ · · · ⊗ L2,0 × · · · × L2,0 ⊗ · · · ⊗ L2,0 ⊗ L2,

Ĥs(In) := Hs(In) ∩ (L2,0 ⊗ · · · ⊗ L2,0),

and for n ≥ 2,

Ĥ(In) := H(In) ∩ L̂2(I
n)n.

In Sect. 3, we will give a constructive proof of the following result:

Proposition 2.1. There exist biorthogonal Riesz bases Ψ(n) = Ψ
(n)
df ∪ Ψ

(n)
gr and

Ψ̃(n) = Ψ̃
(n)
df ∪ Ψ̃

(n)
gr for L̂2(I

n)n (of wavelet type), such that

Ψ
(n)
df ⊂ Ĥ(In), Ψ̃(n)

gr ⊂ grad Ĥ1(In).

Corollary 2.2. It holds that Ψ
(n)
df and Ψ̃

(n)
gr are Riesz bases for Ĥ(In) and

grad Ĥ1(In), respectively.

Proof. For, say, u ∈ Ĥ(In), by Ĥ(In) ⊥ grad Ĥ1(In) we have

u = 〈u, Ψ̃(n)〉L2(In)nΨ
(n) = 〈u, Ψ̃(n)

df 〉L2(In)nΨ
(n)
df

and

‖u‖L2(In)n � ‖〈u, Ψ̃(n)
df 〉L2(In)n‖�2 . �

Having biorthogonal Riesz bases Ψ(n), Ψ̃(n) as in Proposition 2.1 implies the
following result:

Proposition 2.3. The following Helmholtz decomposition holds:

L̂2(I
n)n = Ĥ(In)⊕⊥ grad Ĥ1(In),

that for n = 1 has to be read as L2(I) (= L̂2(I)) = (Ĥ1(I))′.

Proof. Since u = 〈u,Ψ(n)
df 〉L2(In)nΨ̃

(n)
df +〈u,Ψ(n)

gr 〉L2(In)nΨ̃
(n)
gr =〈u,Ψ(n)

gr 〉L2(In)nΨ̃
(n)
gr

for any u ∈ Ĥ(In)⊥, we have Ĥ(In)⊥ ⊂ grad Ĥ1(In), and so, by Ĥ(In)⊥ ⊃
grad Ĥ1(In), Ĥ(In)⊥ = grad Ĥ1(In). Since Ĥ(In) is closed in L̂2(I

n)n, we have

L̂2(I
n)n = Ĥ(In)⊕ Ĥ(In)⊥. �

Next, we make an orthogonal decomposition of L2(I
n)n into L̂2(I

n)n and spaces
of vector fields that have one or more zero coordinates and which are independent
of the corresponding variables. Let us explain the idea for n = 3. Consider the
orthogonal decompositions L2 = L2,0 ⊕⊥ � and

L2⊗L2⊗L2 = L2⊗L2,0⊗L2,0 ⊕⊥ L2⊗L2,0⊗� ⊕⊥ L2⊗�⊗L2,0 ⊕⊥ L2⊗�⊗�
L2⊗L2⊗L2 = L2,0⊗L2⊗L2,0 ⊕⊥ �⊗L2⊗L2,0 ⊕⊥ L2,0⊗L2⊗� ⊕⊥ �⊗L2⊗�
L2⊗L2⊗L2 = L2,0⊗L2,0⊗L2 ⊕⊥ L2,0⊗�⊗L2 ⊕⊥ �⊗L2,0⊗L2 ⊕⊥ �⊗�⊗L2.
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Using a vector notation for Cartesian products, by collecting terms we find that

L2(I
3)3 = L̂2(I

3)3(2.1)

⊕⊥

⎡⎣L2⊗L2,0⊗�
L2,0⊗L2⊗�

0

⎤⎦⊕⊥

⎡⎣L2⊗�⊗L2,0

0
L2,0⊗�⊗L2

⎤⎦⊕⊥

⎡⎣ 0
�⊗L2⊗L2,0�⊗L2,0⊗L2

⎤⎦(2.2)

⊕⊥

⎡⎣L2⊗�⊗�
0
0

⎤⎦⊕⊥

⎡⎣ 0
�⊗L2⊗�

0

⎤⎦⊕⊥

⎡⎣ 0
0

�⊗�⊗L2

⎤⎦ .(2.3)

By Proposition 2.3, it holds that

L̂2(I
3)3 = Ĥ(I3)⊕⊥ grad Ĥ1(I3),⎡⎣L2⊗L2,0⊗�

L2,0⊗L2⊗�
0

⎤⎦ =

[
Ĥ(I2)⊗�

0

]
︸ ︷︷ ︸

⊂H(I3)

⊕⊥
[
grad Ĥ1(I2)⊗�

0

]
︸ ︷︷ ︸

⊂gradH1(I3)

,

and similarly for the other two terms in (2.2), and⎡⎣L2⊗�⊗�
0
0

⎤⎦ =

⎡⎣(Ĥ1(I))′⊗�⊗�
0
0

⎤⎦ ⊂ gradH1(I3),

and similarly for the other two terms in (2.3).
Having found an orthogonal decomposition of L2(I

3)3 into subspaces that are ei-
ther in H(I3) or in gradH1(I3), we conclude that L2(I

3)3 = H(I3)⊕⊥gradH1(I3).
To give a more formal description of the above orthogonal decomposition, as well

as to generalize it to n �= 3, for 1 ≤ k ≤ n, and S = {s1, . . . , sk} ⊂ {1, . . . , n}, we
define the embedding

E
(n)
S : ̂L2(I

k)k → L2(I
n)n by (E

(n)
S v)(x) =

k∑
i=1

vi(xs1 , . . . , xsk)esi .

So for n=3, ImE
(3)
{1,2}=

[
L2⊗L2,0⊗� L2,0⊗L2⊗� 0

]�
, ImE

(3)
{1}=

[
L2⊗�⊗� 0 0

]�
,

and E
(3)
{1,2,3} = I.

With ( )� denoting the adjoint with respect to L2 scalar products, it holds that

(E
(n)
S )�E

(n)
S′ =

{
0 when S �= S′,
Id when S = S.

Furthermore,

(2.4) L2(I
n)n =

∑
∅�=S⊂{1,...,n}

ImE
(n)
S ,

which decomposition is thus orthogonal,

Im(E
(n)
S |Ĥ(I#S)) ⊂ H(In), Im(E

(n)
S |grad Ĥ1(I#S)) ⊂ gradH1(In),

and thus, thanks to Proposition 2.3,

L2(I
n)n =

∑
S⊂{1,...,n},#S≥2

Im(E
(n)
S |Ĥ(I#S)) +

∑
∅�=S⊂{1,...,n}

Im(E
(n)
S |grad Ĥ1(I#S)),

which decomposition is orthogonal because of H(In) ⊥ gradH1(In).
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In view of Corollary 2.2, we end up with the following result:

Theorem 2.4. It holds that

L2(I
n)n := H(In)⊕⊥ gradH1(In),

that for n = 1 has to be read as L2(I) = H1(I)′. In the situation of Proposition 2.1,
the collections

Ψdf :=
⋃

S⊂{1,...,n},#S≥2

E
(n)
S Ψ

(#S)
df , Ψ̃gr :=

⋃
∅�=S⊂{1,...,n}

E
(n)
S Ψ̃(#S)

gr ,

are Riesz bases for H(In) and gradH1(In), respectively.

For n = 3, this theorem reads as the statement that

Ψ
(3)
df ∪ E

(3)
{1,2}Ψ

(2)
df ∪ E

(3)
{1,3}Ψ

(2)
df ∪ E

(3)
{2,3}Ψ

(2)
df

is a Riesz basis for H(I3), and that

Ψ̃(3)
gr ∪E

(3)
{1,2}Ψ̃

(2)
gr ∪E

(3)
{1,3}Ψ̃

(2)
gr ∪E

(3)
{2,3}Ψ̃

(2)
gr ∪E

(3)
{1}Ψ̃

(1)
gr ∪ E

(3)
{2}Ψ̃

(1)
gr ∪E

(3)
{3}Ψ̃

(1)
gr

is a Riesz basis for gradH1(I3). For n = 2, it reads as the statement that Ψ̃
(2)
gr ∪

E
(2)
{1}Ψ̃

(1)
gr ∪E

(2)
{2}Ψ̃

(1)
gr is a Riesz basis for gradH1(I2), and that Ψ

(2)
df is a Riesz basis

for H(I2), meaning, in particular, that H(I2) = Ĥ(I2).

2.2. Decomposition of (subspaces of) H1(In)n and H2(In)n. With

H1
0(I

n) := {u ∈ H1(In)n : u · n = 0 on ∂In},
H2

0(I
n) := {u ∈ H2(In)n : u · n = 0, ∂u

∂n · τi = 0 on ∂In, 1 ≤ i ≤ n− 1},

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors, for solving the Stokes
equations we like to construct Riesz bases for

V(In) := H1
0(I

n) ∩H(In), W(In) := H2
0(I

n) ∩H(In).

Similarly to the construction of a Riesz basis for H(In), we will construct these
bases by making an orthogonal splitting of H1

0(I
n) and H2

0(I
n).

Note that an equivalent formulation of the boundary conditions involved in the
definition of W(In) is, for 1 ≤ i ≤ n, ui = 0 on xi ∈ {0, 1}, and ∂ui

∂n = 0 on the
other faces of the boundary.

The following result will be verified in Sect. 3.

Proposition 2.5. For m ∈ {1, 2}, the collection Ψ(n) from Proposition 2.1 can be
constructed such that, normalized in Hm(In)n, it is a Riesz basis for

Ĥm
0 (In) := Hm

0 (In) ∩ L̂2(I
n)n.

Corollary 2.6. It holds that Ψ
(n)
df , normalized in Hm(In)n, is a Riesz basis for

V̂(In) := V(In) ∩ L̂2(I
n)n (m = 1)

or for

Ŵ(In) := W(In) ∩ L̂2(I
n)n (m = 2).
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Proof. By Proposition 2.5 and Ψ̃
(n)
gr ⊂ grad Ĥ1(In), for u ∈ V̂(In) (m = 1) or

u ∈ Ŵ(In) (m = 2), we have u = 〈u, Ψ̃(n)〉L2(In)nΨ
(n) = 〈u, Ψ̃(n)

df 〉L2(In)nΨ
(n)
df

in Hm(In)n with ‖u‖2Hm(In)n �
∑

ψ̃∈Ψ̃
(n)
df

|〈u, ψ̃〉|2‖ψψ̃‖2Hm(In)n , where ψψ̃ ∈ Ψ
(n)
df

denotes the primal wavelet corresponding to ψ̃. �

For m ∈ {1, 2}, ∅ �= S ⊂ {1, . . . , n}, we have that E
(n)
S |Ĥm

0 (I#S) : Ĥm
0 (I#S) →

Hm
0 (In) and

(E
(n)
S |Ĥm

0 (I#S))
∗(E

(n)
S′ |Ĥ1

0(I
#S′

)) =

{
0 when S �= S′,
Id when S = S′,

where ( )∗ denotes the adjoint with respect to the Hm inner products. Moreover,

Im(E
(n)
S |Ĥm

0 (I#S)) = Hm
0 (In) ∩ ImE

(n)
S ,

so that

Hm
0 (In) =

∑
∅�=S⊂{1,...,n}

Im(E
(n)
S |Ĥm

0 (I#S)),

which decomposition is stable, since even orthogonal.
Using Proposition 2.5, we conclude that, normalized in Hm(In)n,∑

∅�=S⊂{1,...,n}
E

(n)
S Ψ(#S) is a Riesz basis for Hm

0 (In).

Recalling that (E
(n)
S )�E

(n)
S′ =

{
0 when S �= S′,
Id when S = S′,

we infer that its dual basis is∑
∅�=S⊂{1,...,n} E

(n)
S Ψ̃(#S). Splitting Ψ(#S) = Ψ

(#S)
df ∪Ψ

(#S)
gr and Ψ̃(#S) = Ψ̃

(#S)
df ∪

Ψ̃
(#S)
gr , and recalling that E

(n)
S Ψ

(#S)
df ⊂ H(In) and E

(n)
S Ψ̃

(#S)
gr ⊂ gradH1(In), we

end up with the following result:

Theorem 2.7. In the situation of Propositions 2.1 and 2.5, for m ∈ {1, 2} the

collection Ψdf =
⋃

S⊂{1,...,n},#S≥2 E
(n)
S Ψ

(#S)
df , normalized in Hm(In)n, is a Riesz

basis for V(In) (m = 1) or for W(In) (m = 2).

Remark 2.8. In view of solving for the pressure component of the Stokes equa-
tions, we collect some additional facts about the wavelet basis construction: Let
L2,0(I

n) := {u ∈ L2(I
n) :

∫
In
u dx = 0}. By Friedrich’s inequality, grad : H1(In) ∩

L2,0(I
n) → gradH1(In) is boundedly invertible. So, in the setting of Theorem 2.4,

the unique collection Π̃ ⊂ H1(In) ∩ L2,0(I
n) with grad Π̃ = Ψ̃gr is a Riesz basis

of that space. Similarly, in the setting of Corollary 2.2, for 1 ≤ k ≤ n, the unique

collection Π̃(k) ⊂ Ĥ1(Ik), with grad Π̃(k) = Ψ̃
(k)
gr is a Riesz basis for Ĥ1(Ik).

For 1 ≤ k ≤ n, and S = {s1, . . . , sk} ⊂ {1, . . . , n}, let us define the embedding

F
(n)
S : L2,0 ⊗ · · · ⊗ L2,0︸ ︷︷ ︸

k×

→ L2,0(I
n) by (F

(n)
S v)(x) = v(xs1 , . . . , xsk).

Then E
(n)
S ◦ grad = grad ◦ F (n)

S , and we infer that

Π̃ =
⋃

∅�=S⊂{1,...,n}
F

(n)
S Π̃(#S).
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We have L2,0(I
n) =

∑
∅�=S⊂{1,...,n} ImF

(n)
S , (F

(n)
S )�F

(n)
S =

{
0 when S �= S′,
Id when S = S.

We conclude that for Π(k) ⊂ L2,0 ⊗ · · · ⊗ L2,0︸ ︷︷ ︸
k×

being the (unique) collection that

is dual to Π̃(k) (as we will see, a dual collection with this regularity exists), Π =⋃
∅�=S⊂{1,...,n} F

(n)
S Π(#S) is the unique collection in L2,0(I

n) that is dual to Π̃.

For m ∈ N, we have Hm(In) ∩ L2,0(I
n) =

∑
∅�=S⊂{1,...,n} Im(F

(n)
S |Ĥm(I#S)), and

(F
(n)
S |Ĥm(I#S))

∗(F
(n)
S |Ĥm(I#S)) =

{
0 when S �= S′,
Id when S = S.

Therefore, Π̃ (Π) is, properly scaled, a Riesz basis for Hm(In) ∩ L2,0(I
n) if and

only if for all 1 ≤ k ≤ n, Π̃(k) (Π(k)) is, properly scaled, a Riesz basis for Ĥm(Ik).

Furthermore, Π̃ (Π) is, properly scaled, a Riesz basis for (Hm(In)∩L2,0(I
n))′ if and

only if, for 1 ≤ k ≤ n, Π(k) (Π̃(k)) is, properly scaled, a Riesz basis for Ĥm(Ik).

3. Riesz bases of wavelet type for Ĥ(In), V̂(In), and Ŵ(In)

The construction presented in this section is similar to that from [Ste08]. For
this reason the exposition is kept concise. In Subsect. 3.1, starting from a pair of
biorthogonal univariate wavelet bases for L2,0(I), a new pair is constructed by inte-
gration/differentiation. This construction generalizes the one from [LR92] for the
stationary multiresolution case on the line. Then, in Subsect. 3.2, the divergence-
free wavelets on the hypercube are constructed as Cartesian products of tensor
products of these univariate wavelets.

The idea to construct divergence-free wavelets by essentially tensorizing uni-
variate wavelet bases was proposed in [DP06]. Compared to isotropic divergence-
free wavelet bases as developed in [LR92], the construction of such anisotropic
divergence-free wavelet bases is simpler, and the so-called “curse of dimensional-
ity” is avoided as the convergence rates that are obtained with such bases are
(nearly) dimension independent.

3.1. Biorthogonal wavelets on the interval. Let

Ψ = {ψλ : λ ∈ ∇}, Ψ̃ = {ψ̃λ : λ ∈ ∇}
be biorthogonal Riesz bases for L2,0(I) of wavelet type, such that

{2−|λ|ψ̃λ : λ ∈ ∇} is a Riesz basis for Ĥ1(I) (= H1(I) ∩ L2,0(I)).

Here |λ| ∈ N0 denotes the level of λ.
From this pair, by integration or differentiation, we define another pair of primal

and dual wavelets. Define

(3.1) Ψ+ = {ψ+
λ : λ ∈ ∇}, Ψ̃− = {ψ̃−

λ : λ ∈ ∇}
by

ψ+
λ : x �→

∫ x

0

2|λ|ψλ(y)dy, ψ̃−
λ = −2−|λ| ˙̃ψλ.

Proposition 3.1. (Ψ+, Ψ̃−) are biorthogonal Riesz bases for L2(I), {2−|λ|ψ+
λ :

λ ∈ ∇} is a Riesz basis for H1
0 (I), and suppψ+

λ ⊂ convhull(suppψλ), suppψ
−
λ ⊂

supp ψ̃λ.
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Proof. The last statement is obvious, and the second last follows from Ψ ⊂ L2,0(I).
This property also implies that Ψ+ ⊂ H1

0 (I), from which it follows that

〈ψ+
λ , ψ̃

−
μ 〉L2(I) = 〈ψ+

λ ,−2−|μ| ˙̃ψ−
μ 〉L2(I) = 2−|μ|〈ψ̇+

λ , ψ̃μ〉L2(I) = 2|λ|−|μ|〈ψλ, ψ̃μ〉L2(I),

and so that (Ψ+, Ψ̃−) are biorthogonal.
Since L2,0(I) → H1

0 (I) : g �→ (x �→
∫ x

0
g(y)dy) is bounded, with bounded inverse

f �→ ḟ , Ψ being a Riesz basis for L2,0(I) is equivalent to {2−|λ|ψ+
λ : λ ∈ ∇} being

a Riesz basis for H1
0 (I).

Since Ĥ1(I) → L2(I) : g �→ ġ is bounded, with bounded inverse f �→ (x �→∫ x

0
f(y)dy −

∫ 1

0

∫ z

0
f(y)dydz, {2−|λ|ψ̃λ : λ ∈ ∇} being a Riesz basis for Ĥ1(I) is

equivalent to Ψ̃− being a Riesz basis for L2(I). �

Arguments as applied in the above proof can also be used to show that if, properly
scaled, Ψ is a Riesz basis for a scale of Sobolev spaces, then so is Ψ+ for a shifted
scale. Below, however, we follow the alternative route of verifying Jackson and
Bernstein estimates because of their own interest. We omit the proof since it may
follow standard lines.

Proposition 3.2. In addition to biorthogonality of (Ψ, Ψ̃) ⊂ L2,0(I), assume that

for some 0 < γ < d ∈ N, 1 < γ̃ < d̃ ∈ N,

inf
v∈span{ψλ:|λ|≤�}

‖u− v‖L2(I) � 2−�d‖u‖Hd(I) (u ∈ Ĥd(I)),(3.2)

inf
v∈span{ψ̃λ:|λ|≤�}

‖u− v‖L2(I) � 2−�d̃‖u‖H d̃(I) (u ∈ Ĥ d̃(I)),(3.3)

for s < γ, ‖ · ‖Hs(I) � 2�s‖ · ‖L2(I) on span{ψλ : |λ| ≤ �},(3.4)

for s < γ̃, ‖ · ‖Hs(I) � 2�s‖ · ‖L2(I) on span{ψ̃λ : |λ| ≤ �}.(3.5)

Then

inf
v∈span{ψ+

λ :|λ|≤�}
‖u− v‖L2(I) � 2−�(d+1)‖u‖Hd+1(I) (u ∈ Hd+1(I) ∩H1

0 (I)),

inf
v∈span{ψ̃−

λ :|λ|≤�}
‖u− v‖L2(I) � 2−�(d̃−1)‖u‖H d̃−1(I) (u ∈ H d̃−1(I)),

for s < γ + 1, ‖ · ‖Hs(I) � 2�s‖ · ‖L2(I) on span{ψ+
λ : |λ| ≤ �},

for s < γ̃ − 1, ‖ · ‖Hs(I) � 2�s‖ · ‖L2(I) on span{ψ̃−
λ : |λ| ≤ �}.

The next consequence of the Jackson and Bernstein estimates from Proposi-
tion 3.2 and the fact that (Ψ, Ψ̃) and (Ψ+, Ψ̃−) are biorthogonal Riesz bases for
L2,0(I) and L2(I), respectively, is well known; see e.g. [Dah96].

Corollary 3.3. Under the conditions of Proposition 3.2, it holds that

{2−|λ|sψλ : λ ∈ ∇} is a Riesz basis for Ĥs(I), s ∈ [0, γ),

{2−|λ|sψ̃λ : λ ∈ ∇} is a Riesz basis for Ĥs(I), s ∈ [0, γ̃),

{2−|λ|sψ+
λ : λ ∈ ∇} is a Riesz basis for Hs

0(I), s ∈ [0, γ + 1),

{2−|λ|sψ̃−
λ : λ ∈ ∇} is a Riesz basis for Hs(I), s ∈ [0, γ̃ − 1),

where Hs
0(I) :=

{
[L2(I), H

1
0 (I)]s,2 when s ∈ [0, 1],

Hs(I) ∩H1
0 (I) when s ≥ 1.
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It is easy to construct biorthogonal Riesz bases Ψ and Ψ̃ for L2(I) that satisfy

the above Jackson and Bernstein assumptions for whatever values of d, d̃, γ, and γ̃.
Simply take standard biorthogonal wavelet bases for L2(I) that satisfy the assump-

tions (3.2)-(3.5) with Ĥd(I) and Ĥ d̃(I) reading as Hd(I) and H d̃(I). These bases
can be organized so that they contain only one scaling function without vanishing
moment. By removing these functions, collections are obtained that satisfy the
conditions of Proposition 3.2.

Remark 3.4. With an appropriate generalization of the Jackson and Bernstein as-
sumptions, the results of Proposition 3.2 and Corollary 3.3 for the Sobolev spaces
measuring smoothness in L2(I) can be generalized to Sobolev or Besov spaces mea-
suring smoothness in Lp(I) for p �= 2. Such results are particularly relevant in the
context of nonlinear approximation.

The collections of univariate wavelets from Corollary 3.3 will be used to con-
struct a collection of vector-valued multivariate functions that, normalized in the

corresponding norms, is a Riesz basis for Ĥ(In) and V̂(In). For constructing such

a collection that, normalized in H2(In)n, is also a Riesz basis for Ŵ(In), homoge-
neous Neumann boundary conditions have to be incorporated in the construction
of Ψ.

Proposition 3.5. Let (Ψ, Ψ̃) ⊂ L2,0(I) be biorthogonal collections with

Ψ ⊂ {v ∈ Ĥ2(I) : v̇(0) = v̇(1) = 0},
that for some 1 < γ̃ < d̃, 2 < γ, satisfy (3.3)–(3.5), and that, instead of (3.2), for
some d > γ satisfy

inf
v∈span{ψλ:|λ|≤�}

‖u− v‖L2(I) � 2−�d‖u‖Hd(I) (u ∈ {v ∈ Ĥd(I) : v̇(0) = v̇(1) = 0}).

Then (Ψ, Ψ̃) and (Ψ+, Ψ̃−) are biorthogonal Riesz bases for L2,0(I) and L2(I), re-

spectively, {4−|λ|ψλ : λ ∈ ∇} is a Riesz basis for {v ∈ Ĥ2(I) : v̇(0) = v̇(1) = 0},
{2−|λ|ψλ : λ ∈ ∇} is a Riesz basis for Ĥ1(I), and {4−|λ|ψ+

λ : λ ∈ ∇} is a Riesz
basis for H1

0 (I) ∩H2(I).

Proof. Similar to the first two statements of Corollary 3.3, for s ∈ [0, γ̃), {2−|λ|sψ̃λ :

λ ∈ ∇} is a Riesz basis for Ĥs(I), and for s ∈ [0, γ), {2−|λ|sψλ : λ ∈ ∇} is a Riesz

basis for H̆s(I) := [L2,0(I), {u ∈ Ĥd(I) : u̇(0) = u̇(1) = 0}]s/d,2. In particular,

(Ψ, Ψ̃) and (Ψ+, Ψ̃−) are biorthogonal Riesz bases for L2,0(I) and L2(I) (cf. proof

of Proposition 3.1 for the second statement), and, since H̆2(I) = {v ∈ Ĥ2(I) :
v̇(0) = v̇(1) = 0}, {4−|λ|ψλ : λ ∈ ∇} is a Riesz basis for the latter space, and,

since H̆1(I) = Ĥ1(I), {2−|λ|ψλ : λ ∈ ∇} is a Riesz basis for Ĥ1(I). Finally, since

Ĥ1(I) → H1
0 (I)∩H2(I) : g �→ (x �→

∫ x

0
g(y)dy) is boundedly invertible, with inverse

f �→ ḟ , the latter fact is equivalent to {4−|λ|ψ+
λ : λ ∈ ∇} being a Riesz basis for

H1
0 (I) ∩H2(I). �

Remarks 3.6. In the setting of Proposition 3.5, we have ψ̈+
λ (0) = ψ̈+

λ (1) = 0. As

a consequence, the error in the best approximation from span{ψ+
λ : |λ| ≤ �} for a

general smooth function in H1
0 (Ω) ∩H2(Ω) cannot be expected to be smaller than

of order
√
2−� (assuming locally supported Ψ̃ and thus Ψ̃−). Although this low rate

can be compensated by local refinements towards the boundary, for our goal it is
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irrelevant since W(In), and so the elements of its basis, will only be used as a test
space or as test functions, respectively.

As far as we know, biorthogonal univariate wavelet collections (Ψ, Ψ̃) as in Propo-
sition 3.5, where thus Ψ satisfies the unusual homogeneous Neumann boundary
conditions, have not been constructed before. We envisage, however, that the pro-
cedures given in [DKU99, Dij09], e.g., apply here as well.

3.2. Divergence-free wavelets. Let (Ψ, Ψ̃) be wavelet collections as in Propo-
sition 3.2. Then from that proposition together with Corollary 3.3 we have the
following result:

Corollary 3.7. For 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1,{
(

n∑
m=1

4|λm|)−
s
2ψλ1

⊗ · · · ⊗ ψ+
λk

⊗ · · · ⊗ ψλn
: λ ∈ ∇ := ∇n

}
,

{
(

n∑
m=1

4|λm|)−
s̃
2 ψ̃λ1

⊗ · · · ⊗ ψ̃−
λk

⊗ · · · ⊗ ψ̃λn
: λ ∈ ∇

}
are Riesz bases for

Ĥs⊗L2,0⊗· · ·⊗L2,0⊗
↓kth position

L2⊗L2,0 ⊗ · · · ⊗L2,0 ∩
...

kth position → L2,0⊗ · · · ⊗L2,0⊗Hs
0⊗L2,0⊗ · · · ⊗L2,0 ∩

...

L2,0⊗ · · · ⊗L2,0⊗L2⊗L2,0⊗· · ·⊗L2,0⊗Ĥs

or for

Ĥ s̃⊗L2,0⊗· · ·⊗L2,0⊗L2⊗L2,0⊗ · · · ⊗L2,0 ∩
...

kth position → L2,0⊗ · · · ⊗L2,0⊗H s̃⊗L2,0⊗ · · · ⊗L2,0 ∩
...

L2,0⊗ · · · ⊗L2,0⊗L2⊗L2,0⊗· · ·⊗L2,0⊗Ĥ s̃,

respectively. Here, we wrote Ĥs and Hs
0 for Ĥs(I) and Hs

0(I), respectively.
For s = s̃ = 0, the collections are biorthogonal.

Proof. Since, normalized in the corresponding norms, the collections are Riesz bases
for each of the spaces that form the intersection, normalized in the norm of the
intersection space, they generate a Riesz basis for that space.

For completeness, for Hilbert spaces K1 and K2, K1∩K2 is a Hilbert space with

norm
√
‖ · ‖2K1

+ ‖ · ‖2K2
. �

From Corollary 3.7 and the definition of Ĥ1
0(I

n) we infer the following result.
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Corollary 3.8. Setting for λ ∈ ∇, 1 ≤ k ≤ n, the vector-valued wavelets

(3.6)
ψ(n)

λ,k
:= ψλ1

⊗ · · · ⊗ ψλk−1
⊗ ψ+

λk
⊗ ψλk+1

⊗ · · · ⊗ ψλn
ek,

ψ̃
(n)

λ,k
:= ψ̃λ1

⊗ · · · ⊗ ψ̃λk−1
⊗ ψ̃−

λk
⊗ ψ̃λk+1

⊗ · · · ⊗ ψ̃λn
ek,

for 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1, we have that

{
(

n∑
m=1

4|λm|)−
s
2ψ(n)

λ,k
: 1 ≤ k ≤ n, λ ∈ ∇

}
,

{
(

n∑
m=1

4|λm|)−
s̃
2 ψ̃

(n)

λ,k
: 1 ≤ k ≤ n, λ ∈ ∇

}

are Riesz bases for

{
[L̂2(I

n)n, Ĥ1
0(I

n)]s,2 when s ∈ [0, 1],

Ĥ1
0(I

n) ∩Hs(In)n when s ≥ 1,

or for L̂2(I
n)n ∩Hs(In)n, respectively.

For s = s̃ = 0, the collections are biorthogonal, and the primal collection is in
H0(div; I

n).

For any λ ∈ ∇, let us now select an orthogonal A(λ) ∈ Rn×n with its nth row
given by

A(λ)
n• = α� where α (= αλ) := [2|λ1| · · · 2|λn|]�/(

n∑
m=1

4|λm|)
1
2 .

An example of such a matrix A(λ) is given by the Householder transformation

A(λ) = I − 2(α− en)(α− en)
�

(α− en)�(α− en)
,

that for n = 2, 3 reads as

[
−α2 α1

α1 α2

]
,

⎡⎢⎣ 1− α2
1

1−α3
− α1α2

1−α3
α1

− α1α2

1−α3
1− α2

2

1−α3
α2

α1 α2 α3

⎤⎥⎦ ,

respectively.
We use the matricesA(λ) to orthogonally transform the bases from Corollary 2.2:

We define Ψ(n) = {ψ(n)
λ,k : λ ∈ ∇, 1 ≤ k ≤ n}, Ψ̃(n) = {ψ̃(n)

λ,k : λ ∈ ∇, 1 ≤ k ≤ n}
by setting for any λ ∈ ∇,

(3.7)

⎡⎢⎢⎣
ψ

(n)
λ,1
...

ψ
(n)
λ,n

⎤⎥⎥⎦ := A(λ)

⎡⎢⎢⎣
ψ(n)

λ,1
...

ψ(n)

λ,n

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ψ̃

(n)
λ,n
...

ψ̃
(n)
λ,n

⎤⎥⎥⎦ := A(λ)

⎡⎢⎢⎢⎣
ψ̃

(n)

λ,1
...

ψ̃
(n)

λ,n

⎤⎥⎥⎥⎦ .

Now we are ready to verify the claims made in Propositions 2.1 and 2.5:
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Proposition 3.9. (a) For 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1,{
(

n∑
m=1

4|λm|)−
s
2ψ

(n)
λ,k : 1 ≤ k ≤ n, λ ∈ ∇

}
,

{
(

n∑
m=1

4|λm|)−
s̃
2 ψ̃

(n)
λ,k : 1 ≤ k ≤ n, λ ∈ ∇

}
are Riesz bases for

{
[L̂2(I

n)n, Ĥ1
0(I

n)]s,2 when s ∈ [0, 1],

Ĥ1
0(I

n) ∩Hs(In)n when s ≥ 1,

or for L̂2(I
n)n ∩Hs(In)n, respectively. Furthermore 〈Ψ(n), Ψ̃(n)〉L2(In)n = Id, and

Ψ(n) ⊂ H0(div; I
n).

(b) With Ψ
(n)
df := {ψ(n)

λ,k : λ ∈ ∇, 1 ≤ k ≤ n− 1}, Ψ̃(n)
gr := {ψ̃(n)

λ,n : λ ∈ ∇}, and
Ψ

(n)
gr := Ψ(n) \Ψ(n)

df and Ψ̃
(n)
df := Ψ̃(n) \ Ψ̃(n)

gr , we have

Ψ
(n)
df ⊂ Ĥ(In), Ψ̃(n)

gr = grad Π̃(n),

where Π̃(n) = {−ψ̃λ1
⊗ · · · ⊗ ψ̃λn

/(
∑n

m=1 4
|λm|)

1
2 : λ ∈ ∇} ⊂ Ĥ1(In).

Proof. (a) This part is a consequence of Corollary 3.8. Biorthogonality of the
collections from Corollary 3.8 is preserved because A(λ) is orthogonal. The remain-
der follows from the fact that the scaling factors (

∑n
m=1 4

|λm|)−s/2 and

(
∑n

m=1 4
|λm|)−s̃/2 in the statement of Corollary 3.8 are independent of k.

(b) By definition of the nth row of the orthogonal A(λ), and ψ̇+
λ = 2|λ|ψλ, for

1 ≤ k ≤ n− 1,

divψ
(n)
λ,k =

n∑
m=1

A
(λ)
kmdivψ(n)

λ,m
=
( n∑

m=1

A
(λ)
km2|λm|

)
ψλ1

⊗ · · · ⊗ ψλn
= 0.

The last statement follows from ψ̃−
λ = −2−|λ| ˙̃ψλ. �

Having this result, from Corollaries 2.2 and 2.6 recall that Ψ
(n)
df and Ψ̃

(n)
gr are

Riesz bases for Ĥ(In) and grad Ĥ1(In), respectively, and that, when γ > 1, for

s ∈ [1, γ),
{
(
∑n

m=1 4
|λm|)−s/2ψ

(n)
λ,k : 1 ≤ k ≤ n − 1, λ ∈ ∇

}
is a Riesz basis for

Ĥ(In) ∩Hs(In)n, and so, for s = 1, in particular for V̂(In).

With a biorthogonal collection (Ψ, Ψ̃) as in Proposition 3.5, the analogous con-
struction of divergence-free wavelets can be followed.

Proposition 3.10. (a) For 0 ≤ s ≤ 2 and 0 ≤ s̃ < γ̃ − 1,{
(

n∑
m=1

4|λm|)−
s
2ψ

(n)
λ,k : 1 ≤ k ≤ n, λ ∈ ∇

}
,

{
(

n∑
m=1

4|λm|)−
s̃
2 ψ̃

(n)
λ,k : 1 ≤ k ≤ n, λ ∈ ∇

}
are Riesz bases for [L̂2(I

n)n, Ĥ2
0(I

n)]s,2 or for L̂2(I
n)n∩Hs(In)n, respectively. Fur-

thermore, 〈Ψ(n), Ψ̃(n)〉L2(In)n = Id, and Ψ(n) ⊂ H0(div; I
n).

(b) Equal to Part (b) of Proposition 3.9.
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As was shown in Corollaries 2.2 and 2.6, with this result we have that for s =

0, 1, 2,
{
(
∑n

m=1 2
|λm|)−s/2ψ

(n)
λ,k : 1 ≤ k ≤ n− 1, λ ∈ ∇

}
is a Riesz basis for Ĥ(In),

V̂(In), and Ŵ(In), respectively.

4. Simultaneous space-time variational formulation

of the time-dependent Stokes equations

For given functions q, gi and a divergence-free vector field u0, we consider the
instationary Stokes problem of finding the velocities u and pressure p that satisfy

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t −Δu− grad p = q on [0, T ]× In,

divu = 0 on [0, T ]× In,
u · n = 0 on [0, T ]× ∂In,

∂u
∂n · τi = gi on [0, T ]× ∂In, 1 ≤ i ≤ n− 1,
u(0, ·) = u0 on In,

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors.
By taking the standard scalar product of the first equation with smooth test

functions v of t and x, that as functions of x are divergence-free and have vanishing
normals at the boundary, and that as functions of t vanish at T , and by applying
integration by parts in space and time, we arrive at the corresponding variational
formulation

b(u,v) = f(v),

for all such v, where

b(w,v) := −
∫ T

0

∫
In
w · ∂v

∂t
dxdt+

∫ T

0

a(w,v) dt,

a(w,v) :=

∫
In
gradxw : gradxv dx,(4.2)

f(v) :=

∫ T

0

∫
In
q · vdtdx+

∫ T

0

∫
∂In

n−1∑
i=1

(v · τi)gi dtdx+

∫
In
u0 · v(0, ·) dx.(4.3)

It holds that V(In) ↪→ H(In) with dense embedding, and a is a bounded and
coercive bilinear form on V(In). This dense embedding will determine the inter-
pretation of

∫
In
w · ∂v

∂t dx for w ∈ V(In) and ∂v
∂t ∈ V(In)′.

Theorem 4.1. With

X 0 := L2((0, T );V(In)), Y0 := L2((0, T );V(In)) ∩H1
0,{T}((0, T );V(In)′),

the operator B ∈ L(X 0,Y ′
0) defined by (Bw)(v) = b(w,v) is boundedly invertible.

Here H1
0,{T}(0, T ) denotes the closure in H1(0, T ) of the space of smooth func-

tions on (0, T ) that vanish at t = T .
Theorem 4.1 is proved by checking the following three conditions:

sup
0�=w∈X 0, 0�=v∈Y0

|b(w,v)|
‖w‖X 0

‖v‖Y0

< ∞ (continuity),(4.4)

inf
0�=v∈Y0

sup
0�=w∈X 0

|b(w,v)|
‖w‖X 0

‖v‖Y0

> 0 (inf sup-condition),(4.5)

∀0 �= w ∈ X 0, sup
0�=v∈Y0

|b(w,v)| > 0 (surjectivity),(4.6)
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This can be done similarly to [SS09, Appendix A]; cf. also [Tem79, Ch.3,§1.2], e.g.,
where, however, the aim was not to establish bounded invertibility of B between
suitable Hilbert spaces, but only existence and uniqueness of the solution of the
variational problem. In [SS09, Tem79], the bilinear form b and so the spaces X 0 and
Y0 were different from here, since there no integration by parts with respect to time
was applied. With the current approach, the condition u(0) = u0 is incorporated in
the variational formulation as a natural boundary condition instead of an essential
one.

For solving the operator equation Bu = f with an adaptive wavelet scheme,
the spaces X 0 and Y0 have to be equipped with Riesz bases of wavelets type.
To equip Y0 with a Riesz basis, we need a collection of spatial functions that
when normalized in the corresponding norm is a Riesz basis for both V(In) and
V(In)′. In the previous sections (see Theorem 2.7), we constructed a Riesz basis
Ψdf of wavelet type for V(In). It is, properly scaled, a Riesz basis for V(In)′ if
and only if its dual collection is, properly scaled, a Riesz basis for V(In). In the

current setting, the dual collection of Ψdf is the unique collection Ψ̃df in H(In)

with 〈Ψdf , Ψ̃df〉L2(In)n = Id, i.e., Ψ̃df = 〈Ψdf ,Ψdf〉−1
L2(In)n

Ψdf . Unfortunately, we

do not know whether this collection is, properly scaled, a Riesz basis for V(In).
For this reason, below we prove bounded invertibility of B : X 1 → Y1 for other

spaces X 1 and Y1, created from X 0 and Y0 by applying a shift in the spatial
smoothness indices.

Theorem 4.2. With

X 1 := L2((0, T );H(In)), Y1 := L2((0, T );W(In)) ∩H1
0,{T}((0, T );H(In)),

the operator B ∈ L(X 1,Y ′
1) defined by (Bw)(v) = b(w,v) is boundedly invertible.

Proof. From a(w,v) = −
∫
In
w ·Δv dx for w ∈ H(In) and v ∈ W(In), it follows

easily that B ∈ L(X 1,Y ′
1).

Membership of B−1 ∈ L(Y ′
1,X 1) is equivalent to (B′)−1 ∈ L(X ′

1,Y1). To
demonstrate the latter, we have to show that for any f ∈ X 1 = X ′

1, the variational
problem of finding z such that

(4.7)

∫ T

0

∫
In
−w · ∂z

∂t
dxdt+

∫ T

0

a(w, z) dt =

∫ T

0

∫
In
f ·w dxdt (w ∈ X 1),

has a unique solution z ∈ Y1 with ‖z‖Y1
� ‖f‖X 1 .

Although this result may follow from the theory of analytic semigroups (e.g. see
[MM09]), we give a more elementary derivation. From Theorem 4.1 we know that
for f ∈ X ′

0 ⊃ X ′
1, (4.7), with test space X 0, has a unique solution z ∈ Y0. Below,

we will show that for a subspace of sufficiently smooth f , this solution is in Y1, and
thus that (4.7) holds for all w ∈ X 1, and, moreover, that ‖z‖Y1

� ‖f‖X 1
. Since

the subspace of these smooth f will be dense in X 1, this will complete the proof.
Equation (4.7) is the variational formulation of the problem of finding, for t ∈

[0, T ], z(t, ·) ∈ V(In) that satisfies

(4.8)

{∫
In
−∂z

∂t (t, ·) ·w dx+ a(w, z(t, ·)) =
∫
In
f(t, ·) ·w dx (w ∈ V(In)),

z(T, ·) = 0.

Note that as a function of t̃ = T − t, z satisfies a standard parabolic initial value
problem. As shown in [Wlo82, Ch. IV, §27], if f ∈ H2((0, T );V(In)′) with f(T, ·) ∈
W(In) and ∂f

∂t (T, ·) ∈ H(In), then its solution is z ∈ H2((0, T );V(In)).
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By substituting w = −∂z
∂t (t, ·) ∈ V(In) in (4.8), we obtain

‖∂z
∂t

(t, ·)‖2L2(In)n
− 1

2

∂

∂t
a(z(t, ·), z(t, ·)) = −

∫
In
f(t, ·) · ∂z

∂t
(t, ·) dx.

By integrating this equality over time, applying z(T, ·) = 0 and Cauchy-Schwarz’
inequality, and by additionally assuming that f ∈ L2((0, T );H(In)), we arrive at∫ T

0

‖∂z
∂t

(t, ·)‖2L2(In)n
dt ≤ 1

2

∫ T

0

‖f(t, ·)‖2L2(In)n
dt+

1

2

∫ T

0

‖∂z
∂t

(t, ·)‖2L2(In)n
dt

or

(4.9)

∫ T

0

‖∂z
∂t

(t, ·)‖2L2(In)n
dt ≤

∫ T

0

‖f(t, ·)‖2L2(In)n
dt.

By additionally assuming that f(t, ·) ∈ H(In), from ∂z
∂t (t, ·) ∈ V(In) ⊂ H(In)

and the elliptic regularity result from the forthcoming Theorem 6.1, (4.8) shows
that z(t, ·) ∈ W(In) with ‖z(t, ·)‖H2(In)n � ‖f(t, ·)‖L2(In)n + ‖∂z

∂t (t, ·)‖L2(In)n . By
integrating this inequality over time and applying (4.9), we obtain that

(4.10) ‖z‖L2((0,T );W(In)) � ‖f‖L2((0,T );L2(In)n)

By combining (4.9) and (4.10), we have ‖z‖Y1
� ‖f‖X 1 and the proof is completed.

�

Theorem 4.2 shows that the instationary Stokes problem can be formulated as

(4.11) Bu = f

where f is defined in (4.3) and B ∈ L(X 1,Y ′
1) is boundedly invertible.

Remark 4.3. Let us collect some sufficient conditions for f ∈ Y ′
1. Because V(In) =

[H(In),W(In)]1/2, for v ∈ Y1, v(0, ·) ∈ V(In) with ‖v(0, ·)‖H1(In)n � ‖v‖Y1

([DL92, Ch. XVIII, §1.3]). So for u0 ∈ V(In)′ and, say, q ∈ L2((0, T );W(In)′)
and gi ∈ L2((0, T );H

−3/2(∂In)) (i = 1, . . . , n − 1), we have f ∈ Y ′
1 with ‖f‖Y′

1
�

‖u0‖V(In)′ + ‖q‖L2((0,T );W(In)′) +
∑n−1

i=0 ‖gi‖L2((0,T );H−3/2(∂In)).

5. The time-dependent Stokes equations as a bi-infinite matrix

vector equation, and the adaptive wavelet solver

Let ΣX 1 = {σX 1} andΣY1 = {σY1} be Riesz bases for X 1 and Y1, respectively.
Then (4.11) can be equivalently formulated as

(5.1) �B�u = �f ,

where �u is the vector of coefficients of u with respect to the basis ΣX 1 , �f :=

[f(σY1)]σY1∈ΣY1 and �B := (BΣX1)(ΣY1) := [(BσX 1)(σY1)]σY1∈ΣY1 ,σX1∈ΣX1 .

For f ∈Y ′
1, the vector

�f is in �2(Σ
Y1), and by Theorem 4.2, �B∈L(�2(ΣX 1), �2(Σ

Y1))
is boundedly invertible.

Since X 1 and Y1 are (intersections of) tensor products of spaces in time and
space, a natural construction of Riesz bases for these spaces is as follows: Let
ΘX 1 , ΘY1 and ΨX 1

df , ΨY1

df be collections of temporal and spatial trial and test
wavelets such that, normalized in the corresponding norms, ΘX 1 is a Riesz basis
for L2(0, T ), Θ

Y1 is a Riesz basis for L2(0, T ) and for H1
0,{T}(0, T ), Ψ

X1

df is a Riesz

basis for H(In), and ΨY1

df is a Riesz basis for H(In) and for W(In). Such temporal
wavelets can be constructed easily (e.g. see [CS10]), whereas Sections 2 and 3 of the
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current paper are devoted to the construction of such collections ΨX 1

df and ΨY1

df ;
see Theorems 2.4 and 2.7.

Having such collections, normalized in the corresponding norms, ΘX 1 ⊗ ΨX 1

df

is a Riesz basis for X 1 = L2(0, T ) ⊗ H(In), and ΘY1 ⊗ ΨY1

df is a Riesz basis
for L2(0, T ) ⊗ W(In) and for H1

0,{T}(0, T ) ⊗ H(In), and so for Y1. With, for

Z ∈ {X 1,Y1}, DZ := diag{‖θZ ⊗ ψZ‖Z : θZ ∈ ΘZ ,ψZ ∈ ΨZ
df}, it holds that

�f = �D−1
Y1

[f(θY1 ⊗ψY1)]
θ∈ΘY1 ,ψY1∈Ψ

Y1
df

and

�B = �D−1
Y1

[
− 〈ΘX 1 , Θ̇Y1〉L2(0,T ) ⊗ 〈ΨX1

df ,ΨY1

df 〉L2(In)n

+ 〈ΘX 1 ,ΘY1〉L2(0,T ) ⊗ a(ΨX1

df ,ΨX 1

df )]�D−1
X 1

.

When the temporal and spatial wavelets are sufficiently smooth and have suf-
ficiently many vanishing moments, then the adaptive wavelet scheme applied to
�B�u = �f converges with the best possible rate in X 1 in linear complexity. The best
possible rate is that of the best N -term approximation from the span of ΘX 1⊗ΨX 1

df .
We refer to [Ste09] and the references cited there.

When the univariate wavelet basis Ψ, that is used as a building block to construct
ΨX 1

df , and the temporal wavelets ΘX 1 are of order d, i.e., when (3.2) and a similar
estimate is valid for ΘX 1 , then the error in the best N -term approximation is of
order N−d(logN)n(

1
2+d). So, thanks to the use of tensor product bases, up to some

log factors, this rate is independent of the total dimension n+ 1 of the time-space
cylinder [0, T ] × In. This result can be demonstrated using non-adaptive sparse-
grid approximations, assuming sufficient smoothness of u. By considering adaptive
approximations, however, the smoothness conditions can be largely reduced, being
the reason to consider an adaptive scheme in the first place. For any s < d, a
characterization of the space of vector fields that can be approximated at rate s
can be given in terms of Besov smoothness; see [Nit06].

Remark 5.1. As we have seen in Subsect. 3.1, for constructing a Riesz basis for
W(In), we have to start with a collection of univariate wavelets Ψ that satisfies
homogeneous Neumann boundary conditions. Renormalized in the corresponding
norms, this Ψdf is also a Riesz basis for V(In) and H(In). Since all of its elements,
however, satisfy the boundary conditions incorporated in the definition of W(In),
locally at the boundary, Ψdf has strongly reduced approximation properties for a
velocity field that does not satisfy these boundary conditions, i.e., when one or more
gi’s are not identically zero (Ψ satisfies (3.2) only for d = 1). Although this can be
compensated by local refinements at the boundary (the non-linear approximation
classes can be shown to be only marginally smaller as a consequence of the low
order at the boundary (see [CS10, §6.7])), it can be expected to be quantitatively
disadvantageous. Concluding, we can say that when not all gi’s are zero, for the
construction of the basis for H(In) and thus for the trial space X 1, it is better to
use a collection Ψ that satisfies (3.2) for a d that in any case is larger than 1, and
which thus does not satisfy the boundary conditions required for the construction
of a basis for W(In) and thus for the test space Y1.
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6. Elliptic regularity of the stationary Stokes problem

For a given function q, we consider the stationary Stokes problem of finding the
velocities u and pressure p that satisfy

(6.1)

⎧⎪⎪⎨⎪⎪⎩
−Δu− grad p = q on In,

divu = 0 on In,
u · n = 0 on ∂In,

∂u
∂n · τi = 0 on ∂In, 1 ≤ i ≤ n− 1,

or, concerning the velocities, its variational problem of finding, for given q ∈ V(In)′,
u ∈ V(In), such that

(6.2) a(u,v) = q(v) (v ∈ V(In)).

Our aim in this section is to prove the following regularity result that was used
in the proof of Theorem 4.2:

Theorem 6.1. If q ∈ L2(I
n)n, then u ∈ W(In), with

‖u‖H2(In)n � ‖q‖L2(In)n .

Remark 6.2. In the case of no-slip boundary conditions, i.e., u = 0 at the boundary,
Theorem 6.1 with W(In) reading as {v ∈ (H1

0 (Ω) ∩ H2(Ω))n : div v = 0} has
been shown for 2-dimensional convex polygons Ω in [KO76]. This result has been
generalized to three-dimensional convex polyhedrons in [Dau89]. For domains with
non-smooth boundaries, we could not find, however, corresponding results for free-
slip boundary conditions.

Using the fact that we work on the hypercube, we give an elementary proof of
Theorem 6.1 by constructing an orthogonal basis of eigenfunctions for the Stokes
problem. This basis can be used to construct an explicit expression for the solution
of the stationary and unstationary Stokes problem as an infinite series.

Remark 6.3. Having such an expansion for the exact solution, one may think of
constructing an approximation by collecting the N largest “Fourier” coefficients.
Since the eigenfunctions will be globally supported, this does not not allow for
local refinements. As a consequence, even for a smooth, but for the rest general
right-hand side q, the convergence rate of this approximation can be expected to
be (much) lower than that of an adaptive wavelet scheme. See [DS09, Remark 6.5],
[Dij09] for an analysis of the corresponding issue for the Poisson problem on the
hypercube.

The eigenfunctions of the Stokes operator are studied intensively in the literature.
Only in rare cases explicit expressions are available (cf. [LR02]). We could not find
such expressions for the case that is studied here.

Lemma 6.4. With

Φ+ = {φ+
p := x �→

√
2 sin pπx : p ∈ N},

Φ = {φp := x �→
√
2 cos pπx : p ∈ N},

we have

(6.3) φ̇+
p = pπφp, φ+

p = − 1
pπ φ̇p,
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and the following collections are orthonormal bases:

Φ+ for L2(0, T ),

Φ for L2,0(0, T ),{φ+
p

pπ : p ∈ N
}
for H1

0 (0, T ), equipped with | · |H1(0,T ),{φp

pπ : p ∈ N
}
for Ĥ1(0, T ), equipped with | · |H1(0,T ),{ φ+

p

(pπ)2 : p ∈ N
}
for H1

0 (0, T ) ∩H2(0, T ), equipped with | · |H2(0,T ),{ φp

(pπ)2 : p ∈ N
}
for {v ∈ Ĥ2(0, T ) : v̇(0) = v̇(T ) = 0}, equipped with | · |H2(0,T ).

Proof. Orthonormality of all collections is easily verified. It is well known that Φ+

and Φ are orthonormal bases for L2(0, T ) and L2,0(0, T ).

For u ∈ H1
0 (0, T ), let u =

∑
p∈N

cpφ
+
p in L2(0, T ). Then cp =

∫ T

0
uφ+

p =

−
∫ T

0
u
φ̇p

pπ = 1
pπ

∫ T

0
u̇φp, or (pπcp)p ∈ �2(N) and so u =

∑
p∈N

pπcp
φ+
p

pπ in H1(0, T ).

Similarly, for u ∈ H1
0 (0, T ) ∩ H2(0, T ), cp = 1

pπ

∫ T

0
u̇
φ̇+
p

pπ = −1
(pπ)2

∫ T

0
üφ+

p . Writing

u =
∑

p∈N
dpφp, for u ∈ Ĥ1(0, T ), dp =

∫ T

0
uφp =

∫ T

0
u
φ̇+
p

pπ = − 1
pπ

∫ T

0
u̇φ+

p , and for

u ∈ Ĥ2(0, T ) with u̇(0) = u̇(T ) = 0, dp = 1
pπ

∫ T

0
u̇
φ̇p

pπ = −1
(pπ)2

∫ T

0
üφp. �

The property (6.3) for the orthonormal collections Φ+ and Φ is similar to (3.1)

for the biorthogonal wavelet collections (Ψ+, Ψ̃−) and (Ψ, Ψ̃). Therefore, using Φ+

and Φ as univariate building blocks, below a procedure analogous to that from

Sect. 3 will be followed to construct bases for Ĥ(In), V̂(In), and Ŵ(In). Then, as
in Sect. 2, by making an orthogonal decomposition of L2(I

n)n into 2n−1 subspaces

isomorphic to L̂2(I
n)k for k = 1, . . . , n, and by applying a Helmholtz decomposition

on each of these subspaces, a union of (isomorphic images) of the aforementioned
bases will be, properly scaled, a basis H(In), V(In), and W(In). Other than in
Sects. 2 and 3, however, in the current setting, these bases will be orthonormal.

Similar to (3.6) and (3.7), for p ∈ Nn, 1 ≤ k ≤ n, we set

φ(n)

p,k
:= φp1

⊗ · · · ⊗ φpk−1
⊗ φ+

pk
⊗ φpk−1

⊗ · · · ⊗ φpn
ek

and ⎡⎢⎢⎣
φ

(n)
p,1
...

φ
(n)
p,n

⎤⎥⎥⎦ := A(p)

⎡⎢⎢⎣
φ(n)

p,1
...

φ(n)

p,n

⎤⎥⎥⎦ ,

where A(p) ∈ Rn× is orthogonal with its last row given by

A(p)
n• = [p1π · · · pnπ]/‖πp‖2.

Similar to Corollary 3.8, Proposition 3.9, and Corollaries 2.2 and 2.6, we have
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Proposition 6.5. The following collections are orthonormal bases:

Φ
(n)
df :=

{
φ

(n)
p,k : 1 ≤ k ≤ n− 1, p ∈ Nn

}
for Ĥ(In),

Φ̂
(n)

df :=
{ φ

(n)
p,k

‖πp‖2
: 1 ≤ k ≤ n− 1, p ∈ Nn

}
for V̂(In) with | · |H1(In)n ,̂̂

Φ
(n)

df :=
{ φ

(n)
p,k

‖πp‖2
2
: 1 ≤ k ≤ n− 1, p ∈ Nn

}
for Ŵ(In) with | · |H2(In)n .

Proof. The sets
{
φ

(n)
p,k : 1 ≤ k ≤ n, p ∈ Nn

}
,
{ φ

(n)
p,k

‖πp‖2
: 1 ≤ k ≤ n, p ∈ Nn

}
,{ φ

(n)
p,k

‖πp‖2
2
: 1 ≤ k ≤ n, p ∈ Nn

}
are orthonormal bases for L̂2(I

n)n, L̂2(I
n)n ∩H1

0(I
n)

equipped with | · |H1(In)n , and for L̂2(I
n)n ∩H2

0(I
n) equipped with | · |H2(In)n , re-

spectively.

Now use that
{
φ

(n)
p,k : 1 ≤ k ≤ n, p ∈ Nn

}
⊂ H0(div; I

n), for 1 ≤ k ≤ n− 1,

divφ
(n)
p,k =

n∑
m=1

A
(p)
kmdivφ(n)

p,m
=
( n∑

m=1

A
(p)
kmpmπ

)
φp1

⊗ · · · ⊗ φpn
= 0

and
φ(n)

p,n = −gradφp1
⊗ · · · ⊗ φpn

/‖πp‖2. �
Similar to Theorems 2.4 and 2.7, we conclude the following:

Corollary 6.6. The following collections are orthonormal bases:

Φdf :=
⋃

S⊂{1,...,n},#S≥2

E
(n)
S Φ

(#S)
df for H(In),

Φ̂df :=
⋃

S⊂{1,...,n},#S≥2

E
(n)
S Φ̂

(#S)
df for V(In) with | · |H1(In)n ,

̂̂
Φdf :=

⋃
S⊂{1,...,n},#S≥2

E
(n)
S

̂̂
Φ

(#S)

df for W(In) with | · |H2(In)n .

Proof of Theorem 6.1. Since Φ̂df is an orthonormal basis for V(In) equipped with

| · |H1(In)n = a(·, ·) 1
2 , for q ∈ V(In)′, the solution of (6.2) is

u = 〈q, Φ̂df〉�L2(In)n
Φ̂df .

From Proposition 6.5 we know that for some invertible diagonal matrix �D, Φ̂df =

�DΦdf and
̂̂
Φdf = �DΦ̂df , and so for q ∈ H(In),

u = 〈q,Φdf〉�L2(In)n
̂̂
Φdf .

Since Φdf is an orthonormal basis for H(In), and
̂̂
Φdf is an orthonormal basis for

W(In) equipped with | · |H2(In)n , we conclude that

|u|H2(In)n = ‖〈q,Φdf〉L2(In)n‖�2 = ‖Qdfq‖L2(In)n ,

where Qdf is the L2(I
n)n-orthogonal projector onto H(In). �

Remark 6.7. For q ∈ H1
0(I)

′, the pressure component p of the solution of (6.1)
can be found from −

∫
In
grad p · v dx = q(v) − a(u,v) (v ∈ H1

0(I
n)). Assuming

that q ∈ L2(I
n)n, as we will see we can test with v ∈ L2(I

n)n and obtain p ∈
H1(In) ∩ L2,0(I

n).
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Indeed, using Remark 2.8, let us equip H1(In) ∩ L2,0(I
n) with the orthonormal

basis (with respect to | · |H1(In))

Π =
⋃

∅�=S⊂{1,...,n}
F

(n)
S

{φp1
⊗ · · · ⊗ φp#S

‖πp‖2
: p ∈ N#S

}
.

We decompose L2(I
n)n = H(In)⊕⊥ gradH1(In), and equip gradH1(In) with the

L2(I
n)n-orthonormal basis

Φgr := −gradΠ =
⋃

∅�=S⊂{1,...,n}
E

(n)
S

{
φ

(#S)
p,#S : p ∈ N#S

}
.

Since the right-hand side q(v) − a(u,v) = q(v) +
∫
In
Δu · v dx vanishes for v ∈

H(In), we conclude that

p = 〈q,Φgr〉�L2(In)n
Π,

so that

|p|H1(In) = ‖〈q,Φgr〉L2(In)n‖�2 = ‖(Id−Qdf)q‖L2(In)n .

7. Solving for the pressure

Having discussed how to solve for the velocity field that satisfies the instationary
Stokes equations (4.1), in this section we discuss the remaining problem of how to
find the pressure.

Taking into account the initial and boundary conditions on u, by taking the
standard scalar product of the first equation of (4.1) with smooth test functions v
of t and x, that, as functions of x, at the boundary have vanishing normals and
normal derivatives with vanishing tangential components, and that, as functions of
t, vanish at T , we arrive at the problem of finding p such that

(7.1) c(p,v) := −
∫ T

0

∫
In
grad p · v dxdt =

∫ T

0

∫
In
u · ∂v

∂t
+ u ·Δv dxdt+ f(v),

where f is defined in (4.3).

Lemma 7.1. With

Y̆1 := L2((0, T );H
2
0(I

n)) ∩H1
0,{T}((0, T ), L2(I

n)n),

let f ∈ Y̆ ′
1 and let b(u,v) = f(v) (v ∈ Y1). Then, as a functional on v, the right-

hand side of (7.1) is in Y̆ ′
1, vanishes on Y1, and has norm less than or equal to

some absolute multiple of ‖f‖Y̆′
1
.

Proof. Since Y1 ↪→ Y̆1, Y̆
′
1 ↪→ Y ′

1, and so by Theorem 4.2, u ∈ L2((0, T );H(In)) ↪→
L2((0, T );L2(I

n)n) with ‖u‖L2((0,T );L2(In)n) � ‖f‖Y̆′
1
. Since the bilinear form

(u,v) �→
∫ T

0

∫
In
u · ∂v

∂t + u · Δv dxdt is bounded on L2((0, T );L2(I
n)n) × Y̆1, the

proof is completed. �

Remark 7.2. Similar to Remark 4.3, sufficient conditions for f ∈ Y̆ ′
1 are u0 ∈

H1
0(I

n)′ and, say, q ∈ L2((0, T );H
2
0(I

n)′) and gi ∈ L2((0, T );H
−3/2(∂In)) (i =

1, . . . , n− 1).
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Theorem 7.3. With

P :=
(
L2

(
(0, T );H1(In) ∩ L2,0(I

n)
)
∩H1

0,{T}
(
(0, T ); (H1(In) ∩ L2,0(I

n))′
))′

,

c is a bounded bilinear form on P × Y̆1. For any g ∈ Y̆ ′
1 with g(v) = 0 for v ∈ Y1,

there exists a unique p ∈ P such that

(7.2) c(p,v) = g(v) (v ∈ Y̆1),

and ‖p‖P � ‖g‖Y̆′
1
.

Proof. Let Θ be a Riesz basis for L2(0, T ) with dual basis Θ̃ = {θ̃θ : θ ∈ Θ}, such
that { θ

‖θ‖H1(0,T )
: θ ∈ Θ} is a Riesz basis for H1

0,{T}(0, T ).

Let Ψ = {ψλ : λ ∈ ∇}, Ψ̃ = {ψ̃λ : λ ∈ ∇} be biorthogonal collections in L2,0(I)
as in Proposition 3.5. Then, as shown in Proposition 3.10(a) together with Sect. 2,
for s = 0 and s = 2,⋃

∅�=S⊂{1,...,n}

{
(

#S∑
m=1

4|λm|)−
s
2E

(n)
S ψ

(#S)
λ,k : 1 ≤ k ≤ #S, λ ∈ ∇#S

}
as defined by (3.6) and (3.7) is a Riesz basis for L2(I

n)n and H2
0(I

n), respectively.
Consequently,⋃

∅�=S⊂{1,...,n}

{ θ ⊗ E
(n)
S ψ

(#S)
λ,k√

(
∑#S

m=1 4
|λm|)2 + ‖θ‖2H1(0,T )

: 1 ≤ k ≤ #S, λ ∈ ∇#S , θ ∈ Θ
}

is a Riesz basis for Y̆1.
As we have seen before, all basis functions with indices k < #S are, as functions

of the spatial variables, divergence free and have vanishing normals at the boundary,
and they form a Riesz basis for Y1. By applying integration by parts, we conclude
that c(·, ·) vanishes on P×Y1. Denoting the space of the remaining basis functions

as Yc
1, we have Y̆1 = Y1 ⊕Yc

1.
As follows from Proposition 3.10(b) and Remark 2.8, a collection that is dual to

the basis for Yc
1 is obtained by applying −gradx to

(7.3)⋃
∅�=S⊂{1,...,n}

{(∑#S
m=1 4

|λm|+
‖θ‖2

H1(0,T )∑#S
m=1 4|λm|

) 1
2

θ̃θ⊗F
(n)
S ψ̃λ1

⊗· · ·⊗ψ̃λ#S
: λ ∈ ∇#S , θ∈Θ

}
,

which is in L2((0, T );L2,0(I
n)). So by searching p from the span of this collection

and by testing (7.2) with all basis functions for Yc
1, the system matrix is the identity.

We infer that the proof is completed once we have shown that (7.3) is a Riesz basis
for P.

Again, Remark 2.8 shows that the collection in L2((0, T );L2,0(I
n)) that is dual

to (7.3) is
(7.4)⋃
∅�=S⊂{1,...,n}

{(∑#S
m=1 4

|λm|+
‖θ‖2

H1(0,T )∑#S
m=1 4|λm|

)− 1
2

θ⊗F
(n)
S ψλ1

⊗· · ·⊗ψλ#S
: λ ∈ ∇#S , θ∈Θ

}
.

The univariate collections Ψ and {2−|λ|ψλ : λ ∈ ∇} are Riesz bases for L2,0(I) and

Ĥ1(I), respectively, and so {(
∑#S

m=1 4
|λm|)−

1
2ψλ1

⊗· · ·⊗ψλ#S
: λ ∈ ∇#S} is a Riesz
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basis for Ĥ1(I#S). Since the same statements are valid with (Ψ, ψλ) reading as

(Ψ̃, ψ̃λ), using Remark 2.8 we infer that for m ∈ {−1, 1},⋃
∅�=S⊂{1,...,n}

{(∑#S
m=1 4

|λm|)−m
2 F

(n)
S ψλ1

⊗ · · · ⊗ ψλ#S
: λ ∈ ∇#S

}
is a Riesz basis for H1(In)∩L2,0(I

n) (m = 1) or for (H1(In)∩L2,0(I
n))′ (m = −1).

Because of the conditions on Θ, these results imply that (7.4) is a Riesz basis for
L2

(
(0, T );H1(In) ∩ L2,0(I

n)
)
∩ H1

0,{T}
(
(0, T ); (H1(In) ∩ L2,0(I

n))′
)
, and thus that

(7.3) is a Riesz basis for its dual, being the space P, which was left to show. �

The proof of Theorem 7.3 already suggested a way to compute the pressure by
the application of (an adaptive) numerical method. Let Y̆1 = Y1 ⊕ Yc

1 be some

stable decomposition. Then the canonical mapping between the space of g ∈ Y̆ ′
1

with g(v) = 0 for v ∈ Y1 and (Yc
1)

′ is boundedly invertible. The pressure p solves
(7.2) if and only if it solves

(7.5) c(p,v) = g(v) (v ∈ Yc
1).

The bilinear form c is bounded on P × Yc
1; for any v ∈ Yc

1 there exists a q ∈ P
such that c(q,v) �= 0; and, using Theorem 7.3, c(P,Y1) = 0, and by the stability

of the decomposition Y̆1 = Y1 ⊕Yc
1, we have

‖q‖P � sup
0�=v∈Y̆1

|c(q,v)|
‖v‖Y̆1

� sup
0�=v∈Yc

1

|c(q,v)|
‖v‖Y̆1

, (q ∈ P).

We conclude that

(Id⊗ (−grad)) : P → (Yc
1)

′ : q �→ (v �→ c(q,v))

is boundedly invertible, so that by equipping P and Yc
1 with Riesz bases of wavelet

type, (7.5) with right-hand side from (7.1) can be solved with an adaptive wavelet
scheme.

8. No-slip boundary conditions?

Let us discuss whether the material from this paper can be extended to the case
of having no-slip boundary conditions, i.e., when the boundary conditions of the
(in)stationary Stokes problem read as u = 0 on ([0, T ]×) ∂In. In this case, the
definitions of V(In) and W(In) have to be replaced by V(In) := H(In) ∩H1

0 (I
n)n

and W(In) := V(In)∩H2(In)n, and V̂(In) := V(In)∩ L̂2(I
n)n, Ŵ(In) := W(In)∩

L̂2(I
n)n.

The construction of wavelet Riesz bases for H(In) and V(In) can follow the same
lines as with free-slip boundary conditions. The difference is that the collection
of univariate wavelets Ψ now has to satisfy (lowest order) homogeneous Dirichlet
boundary conditions. Theorems 4.1 and 4.2 dealing with bounded invertibility of
the operator defined by the simultaneous space-time variational formulation of the
instationary Stokes problem are still valid. In the most relevant cases of n = 2
and n = 3, the elliptic regularity result similar to Theorem 6.1 that is needed for
Theorem 4.2 is now shown in [KO76] and [Dau89], respectively. Actually, in this
case, we do not know how to construct an eigenvector basis for the stationary Stokes
operator, but because of these regularity results from the literature, we do not need
it here.
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Problems arise with the transformation of the instationary Stokes equations as a
well-posed operator equation to a bi-infinite matrix vector equation. In the setting
of Theorem 4.1, we need a wavelet collection Ψdf that, properly scaled, is a Riesz
basis for both V(In) and V(In)′. As in the free-slip boundary conditions case, we
do not not know how to construct such a collection. In the setting of Theorem 4.1,
the problem is how to construct a Riesz basis for W(In). As we wrote before, the
collection of univariate wavelets Ψ that is used as a building block of the collection
Ψdf now has to satisfy (lowest order) homogeneous Dirichlet boundary conditions.
But then the collection Ψ+ has vanishing function values and first order derivatives
at the boundary, and thus cannot span H1

0 (I) ∩H2(I) as required.

Remark 8.1. Considering the stationary Stokes problem, it is easy to handle both
free-slip and no-slip boundary conditions. Indeed, for both V(In) := H(In) ∩
H1

0(I) or V(In) := H(In) ∩H1
0 (I

n)n, the bilinear form a from (4.2), (6.2) defines a
boundedly invertible operator between V(In) and its dual. By equipping V(In) with
a Riesz basis, the corresponding variational problem can be equivalently written as
well-posed bi-infinite matrix vector equation to which the adaptive wavelet scheme
can be applied.
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Sobolevräume und Randwertaufgaben. MR652934 (84a:35002)

Korteweg–de Vries Institute for Mathematics, University of Amsterdam, P.O. Box

94248, 1090 GE Amsterdam, The Netherlands

E-mail address: R.P.Stevenson@uva.nl

http://www.ams.org/mathscinet-getitem?mr=2501051
http://www.ams.org/mathscinet-getitem?mr=603444
http://www.ams.org/mathscinet-getitem?mr=603444
http://www.ams.org/mathscinet-getitem?mr=652934
http://www.ams.org/mathscinet-getitem?mr=652934

	1. Introduction
	2. Orthogonal space decompositions
	2.1. Decomposition of L2(In)n
	2.2. Decomposition of (subspaces of) H1(In)n and H2(In)n

	3. Riesz bases of wavelet type for H"0362H(In), V"0362V(In), and W"0362W(In)
	3.1. Biorthogonal wavelets on the interval
	3.2. Divergence-free wavelets

	4. Simultaneous space-time variational formulation of the time-dependent Stokes equations
	5. The time-dependent Stokes equations as a bi-infinite matrix vector equation, and the adaptive wavelet solver
	6. Elliptic regularity of the stationary Stokes problem
	7. Solving for the pressure
	8. No-slip boundary conditions?
	References

