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C0 PENALTY METHODS FOR THE FULLY NONLINEAR

MONGE-AMPÈRE EQUATION

SUSANNE C. BRENNER, THIRUPATHI GUDI, MICHAEL NEILAN, AND LI-YENG SUNG

Abstract. In this paper, we develop and analyze C0 penalty methods for
the fully nonlinear Monge-Ampère equation det(D2u) = f in two dimensions.
The key idea in designing our methods is to build discretizations such that

the resulting discrete linearizations are symmetric, stable, and consistent with
the continuous linearization. We are then able to show the well-posedness of
the penalty method as well as quasi-optimal error estimates using the Banach
fixed-point theorem as our main tool. Numerical experiments are presented
which support the theoretical results.

1. Introduction

Consider the following boundary-value problem for the Monge-Ampère equation:
[25, 23, 10]:

det(D2u) = f in Ω,(1.1a)

u = g on ∂Ω.(1.1b)

Here, Ω ⊂ R2 is a convex domain, f is a strictly positive function on Ω, and

det(D2u) =
∂2u

∂x2
1

∂2u

∂x2
2

−
(

∂2u

∂x1∂x2

)2

denotes the determinant of the Hessian matrix D2u.
The goal of this paper is to develop and analyze C0 penalty methods for classical

solutions of the Monge-Ampère equation. In particular, we assume that (1.1) has a
strictly convex solution u ∈ Hs(Ω) with s > 3. We will also assume that Ω is either
a convex polygon or a smooth convex domain. In the case where Ω is smooth, the
smoothness of u follows from the smoothness of f and g by the results in Caffarelli-
Nirenberg-Spruck [10]. In fact, in this case there are exactly two solutions: one
being convex, the other concave [14]. The case of less smooth (viscosity) solutions
as well as more general types of Monge-Ampère equations (where f depends on u
and ∇u) and the three-dimensional case will be addressed in future works.

Even for linear problems, the case of curved boundaries require special care in
the finite element context. To cope with this difficulty, we use Nitsche’s method

Received by the editor May 9, 2010 and, in revised form, September 1, 2010.
2010 Mathematics Subject Classification. Primary 65N30, 35J60.
Key words and phrases. Monge-Ampère equation, fully nonlinear PDEs, finite element method,

convergence analysis.
The work of the first and fourth authors were supported in part by the National Science

Foundation under Grants No. DMS-07-13835 and DMS-10-16332. The work of the third author
was supported by the National Foundation under Grant No. DMS-09-02683.

c©2011 American Mathematical Society

1979



1980 S. C. BRENNER, T. GUDI, M. NEILAN, AND L-Y. SUNG

[28] to enforce the Dirichlet boundary condition (1.1b). The crux of this method
is that a weak form of the essential boundary condition (1.1b) is included into the
variational formulation by penalization techniques.

Another hurdle (and the most obvious one) that must be overcome is the strong
nonlinearity in the PDE (1.1a). In order to deal with this difficulty, in both the
construction and analysis of the numerical scheme, we derive consistent discretiza-
tions of (1.1) such that the resulting (discrete) linearization is stable. This simple
idea leads to not-so-obvious discretizations of (1.1). For example, the most natural
finite element method using Nitsche’s technique is to find a finite element function
uh such that ∫

Ω

(
f − det(D2

huh)
)
v dx+ σ

∑
e∈Eb

h

h−1
e

∫
e

(uh − g)v ds = 0

for all test functions v. However this naive method does not work either in prac-
tice or analysis, as the linearization of the discrete problem is not consistent with
the linearization of the continuous problem. In the next section, we derive some
consistent schemes which inherit a stable discrete linearization.

Once we are able to construct such methods, we carry out the numerical analysis
using the Banach fixed-point theorem as our main tool. We prove optimal order
error estimates in H1-like and H2-like norms. Furthermore, by way of a duality
argument we are able to derive (almost) optimal order error estimates in the L2

norm.
Due to their important role in many application areas [11, 31, 9] there has been

a growing interest and a surge of papers in recent years towards developing nu-
merical schemes for the Monge-Ampère equation. The first attempt was by Oliker
and Prussner [30] who constructed schemes for computing the Aleksandrov measure
induced by D2u and obtained the solution of problem (1.1) as a by-product. Us-
ing convexity arguments, they showed that their sequences converge monotonically
to the solution, although no rates of convergence were provided. More recently,
Oberman [29, 22] constructed a wide stencil difference scheme for nonlinear elliptic
PDEs which can be written as functions of eigenvalues of the Hessian matrix (such
as the Monge-Ampère equation). It was proved that the finite difference scheme
satisfies the convergence criterion (consistency, stability, and monotonicity) estab-
lished by Barles and Souganidis [2], although no rates of convergence were given.
Other relevant finite difference schemes include [3] and [1].

The implementation and the convergence theory of finite element methods for
the Monge-Ampère equation is less understood. Dean and Glowinski [15] presented
an augmented Lagrange multiplier method and a least squares method for the
Monge-Ampère equation by treating the nonlinear equations as a constraint and
using a variational principle to select a particular solution. The convergence of their
method still remains an open problem. Böhmer [5] introduced a projection method
using C1 finite element functions for a certain class of fully nonlinear second order
elliptic PDEs and analyzes the methods using consistency and stability arguments.
Finally, Feng and the third author considered fourth order singular perturbations of
(1.1) by adding a small multiple of the biharmonic operator to the PDE (1.1a) [18].
Many numerical methods for the regularized problem were proposed in [19, 20, 27].

The finite element method considered here is a projection-type method as is
the method proposed in [5]. But we use the standard Lagrange finite elements
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which were originally designed for second order linear problems. Advantages of our
method in comparison to the aforementioned works include:

• Lagrange elements are simple to use and are available on practically all
finite element commercial software.

• The method has a similar number of degrees of freedom compared to non-
conforming finite element methods [27], but is easier to implement.

• The method has a small number of degrees of freedom in comparison to C1

finite element methods [5, 20] and mixed finite element methods [19].
• Curved boundaries can be handled easily in comparison to finite difference
methods [29, 30, 3].

• We can handle general Monge-Ampère equations, where the function f
depends on both u and its gradient.

• The method and analysis can be extended to the three-dimensional setting
[8].

The rest of the paper is organized as follows. In Section 2, we set the notation
and give the motivation behind the C0 penalty method. We end this section with
a few standard lemmas that are used frequently throughout the paper. In Section
3, we give a complete analysis of the discrete nonlinear problem. Using the Banach
fixed point theorem, we are able to establish the well-posedness of the method as
well as derive quasi-optimal error estimates. We end this section by deriving L2

estimates using a duality argument. Finally, in Section 4 we provide some numerical
examples which show the efficiency of the method as well as back up the theoretical
findings.

2. Notation and discretization

Throughout the paper, we use Hr(Ω) (r ≥ 0) to denote the set of all L2(Ω)
functions whose distributional derivatives up to order r are in L2(Ω), and we use
Hr

0 (Ω) to denote the set of functions whose traces vanish up to order r − 1 on
∂Ω. For a normed linear space X, we denote by X ′ its dual and

〈
·, ·
〉
the pairing

between X and X ′.
We let Th be a quasi-uniform, simplicial, and conforming triangulation [12, 7, 4]

of the domain Ω where each triangle on the boundary has at most one curved side.
Set hT = diam(T ) ∀T ∈ Th, h = maxT∈Th

hT , and define the piecewise Sobolev
space associated with the mesh as

Hr(Ω; Th) =
∏

T∈Th

Hr(T ).

We denote by E i
h the set of interior edges in Th, Eb

h the set of boundary edges,
Eh = E i

h ∪ Eb
h, and he = diam(e) ∀e ∈ Eh.

We define the jump of a vector function w on an interior edge e = ∂T+ ∩ ∂T−

as follows: [[
w
]]∣∣

e
= w+ · n+

∣∣
e
+w− · n−

∣∣
e
∈ R,

where w± = w
∣∣
T± and n± is the outward unit normal of T±. On a boundary edge

e ∈ Eb
h, we define [[

w
]]∣∣

e
= w · n

∣∣
e
∈ R.
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Next, for a matrix w ∈ R2×2, we define the average of w on e = ∂T+ ∩ ∂T− by

{{
w
}}∣∣

e
=

1

2

(
w+

∣∣
e
+w−∣∣

e

)
∈ R2×2.

On the boundary e ∈ Eb
h, we take{{

w
}}∣∣

e
= w

∣∣
e
∈ R2×2.

We denote by D2
hw the piecewise Hessian of a function w ∈ H2(Ω; Th) and use

cof(D2
hw) to denote the piecewise cofactor matrix of D2

hw; i.e.,

cof(D2
hw)

∣∣
T
=

⎛
⎜⎜⎝

∂2wT

∂x2
2

− ∂2wT

∂x1∂x2

− ∂2wT

∂x1∂x2

∂2wT

∂x2
1

⎞
⎟⎟⎠ ∀T ∈ Th,

where wT = w
∣∣
T
.

To construct a consistent scheme which inherits a stable discrete linearization,
we take w ∈ H3(Ω; Th) ∩H1(Ω) and v ∈ H2(Ω; Th) ∩H1(Ω). By using (1.1a), the
divergence-free row property of cofactor matrices (cf. Lemma 2.3), and integration
by parts, we have∫

Ω

(
f − det(D2

h(u+ w))
)
v dx

=−
∫
Ω

(
det(D2

hw)
)
v dx−

∑
T∈Th

∫
T

(
∇ ·

(
cof(D2u)∇w

))
v dx

=−
∫
Ω

(
det(D2

hw)
)
v dx+

∫
Ω

(
cof(D2u)∇w

)
·∇v dx−

∑
e∈Eh

∫
e

[[
cof(D2u)∇w

]]
v ds.

Therefore, by rearranging and adding terms on both sides of the equation, we get∫
Ω

(
f − det

(
D2

h(u+ w)
))

v dx+
∑
e∈Ei

h

∫
e

[[{{
cof(D2

h(u+ w))
}}
∇(u+ w)

]]
v ds(2.1)

=

∫
Ω

(
cof(D2u)∇w

)
· ∇v dx−

∑
e∈Eb

h

∫
e

[[
cof(D2u)∇w

]]
v ds

−
∫
Ω

(
det(D2

hw)
)
v dx+

∑
e∈Ei

h

∫
e

[[{{
cof(D2

hw)
}}
∇w

]]
v ds.

The guiding principle here and in the derivation of (2.2) below is that we want
to write the left-hand side as a functional in u + w and the right-hand side as the
sum of a linear and a quadratic functional in w (cf. (2.3) below).

Observe that the bilinear form

(w, v) →
∫
Ω

(
cof(D2u)∇w

)
· ∇v dx−

∑
e∈Eb

h

∫
e

[[
cof(D2u)∇w

]]
v ds

that appears on the right-hand side of (2.1) can be symmetrized and stabilized to
become a consistent and stable bilinear form for the second order differential oper-
ator −∇ ·

(
cof(D2u)∇(·)

)
, as developed by Nitsche in [28]. After symmetrization
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and stabilization, equation (2.1) becomes∫
Ω

(
f − det

(
D2

h(u+ w)
))

v dx+
∑
e∈Ei

h

∫
e

[[{{
cof(D2

h(u+ w))
}}
∇(u+ w)

]]
v ds(2.2)

−
∑
e∈Eb

h

[[
cof(D2

h(u+ w))∇v
]]
(u+ w) ds+

∑
e∈Eb

h

∫
e

[[
cof(D2

h(u+ w))∇v
]]
g ds

+ σ
∑
e∈Eb

h

h−1
e

∫
e

(u+ w)v ds− σ
∑
e∈Eb

h

h−1
e

∫
e

gv ds

=

∫
Ω

(
cof(D2u)∇w

)
· ∇v dx−

∑
e∈Eb

h

∫
e

[[
cof(D2u)∇w

]]
v ds

−
∑
e∈Eb

h

∫
e

[[
cof(D2u)∇v

]]
w ds+ σ

∑
e∈Eb

h

h−1
e

∫
e

wv ds

−
∫
Ω

(
det(D2

hw)
)
v dx+

∑
e∈Ei

h

∫
e

[[{{
cof(D2

hw)
}}
∇w

]]
v ds

−
∑
e∈Eb

h

∫
e

[[
cof(D2

hw)∇v
]]
w ds,

where σ is a positive penalty parameter. Equation (2.2) can be written compactly
as

F (u+ w) = Lw +Rw,(2.3)

where the nonlinear mappings F,R : H3(Ω; Th) →
[
H2(Ω; Th) ∩ H1(Ω)

]′
and the

linear mapping L : H2(Ω; Th) →
[
H2(Ω; Th) ∩H1(Ω)

]′
are defined by

〈
Fw, v

〉
=

∫
Ω

(
f − det(D2

hw)
)
v dx+

∑
e∈Ei

h

∫
e

[[{{
cof(D2

hw)
}}
∇w

]]
v ds(2.4)

−
∑
e∈Eb

h

∫
e

[[
cof(D2

hw)∇v
]]
(w − g) ds+ σ

∑
e∈Eb

h

h−1
e

∫
e

(w − g)v ds,

〈
Rw, v

〉
= −

∫
Ω

(
det(D2

hw)
)
v dx+

∑
e∈Ei

h

∫
e

[[{{
cof(D2

hw)
}}
∇w

]]
v ds(2.5)

−
∑
e∈Eb

h

∫
e

[[
cof(D2

hw)∇v
]]
w ds,

〈
Lw, v

〉
=

∫
Ω

(
cof(D2u)∇w

)
· ∇v dx−

∑
e∈Eb

h

∫
e

[[
cof(D2u)∇w

]]
v ds(2.6)

−
∑
e∈Eb

h

∫
e

[[
cof(D2u)∇v

]]
w ds+ σ

∑
e∈Eb

h

h−1
e

∫
e

vw ds.

Lastly, to define the finite element method, we must define the appropriate finite
element spaces. For an integer k ≥ 3, we define the finite element space Vh ⊂ H1(Ω)
as follows:
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• If T ∈ Th does not have a curved edge, then v
∣∣
T
is a polynomial of (total)

degree ≤ k in the rectilinear coordinates for T ;
• If T ∈ Th has one curved edge, then v

∣∣
T
is a polynomial of degree ≤ k in the

curvilinear coordinates of T that correspond to the rectilinear coordinates
on the reference triangle (Example 2, p. 1216 of [4]).

Remark 2.1. The requirement k ≥ 3 as well as the regularity condition u ∈ Hs(Ω),
s > 3 will be made obvious in Theorem 3.1.

Let Fh : Vh → V ′
h be the restriction of F to Vh. Then the penalty method for

(1.1) is to find uh ∈ Vh such that

Fhuh = 0;(2.7)

that is,∫
Ω

(
f − det(D2

huh)
)
v dx+

∑
e∈Ei

h

∫
e

[[{{
cof(D2

huh)
}}
∇uh

]]
v ds

−
∑
e∈Eb

h

∫
e

[[
cof(D2

huh)∇v
]]
(uh − g) ds+σ

∑
e∈Eb

h

h−1
e

∫
e

(uh − g)v ds=0 ∀v ∈ Vh.

The well-posedness as well as the error estimates of the penalty method (2.7)
are established in the following section. For now, we end the current section with
a few remarks and technical lemmas which are used throughout the paper.

Remark 2.2. Noting R is quadratic in its arguments, we conclude from (2.3) that
the operator L is the linearization of F at u. The motivation of the finite element
method (2.7) is based on the fact that L is the operator associated with Nitsche’s
method for the second order differential operator −∇ ·

(
cof(D2u)∇(·)

)
, i.e., the

linearization of the nonlinear operator (1.1a).

Remark 2.3. In order to avoid the proliferation of constants, we shall use the no-
tation A � B to represent the relation A ≤ constant × B, where the constant is
independent of the mesh parameter h and the penalty parameter σ.

Lemma 2.1 (An Algebraic Identity). For any v, w ∈ H2(Ω; Th), there holds

det(D2
hv)− det(D2

hw) =
1

2
cof(D2

hv) : D
2
hv −

1

2
cof(D2

hw) : D
2
hw(2.8)

=
1

2

(
cof(D2

hv) + cof(D2
hw)

)
:
(
D2

hv −D2
hw

)
.

Lemma 2.2 (A Discrete Sobolev Inequality [6, 7]). For any v ∈ Vh there holds

‖v‖L∞(Ω) � (1 + | lnh| 12 )‖v‖H1(Ω).(2.9)

Lemma 2.3 (Divergence-Free Property of Cofactor Matrices [17]). For any smooth
function v,

(2.10) ∇ ·
(
cof(D2v)i

)
=

2∑
j=1

∂

∂xj

(
cof(D2v)ij

)
= 0 for i = 1, 2,

where cof(D2v)i and cof(D2v)ij denote respectively the ith row and the (i, j)-entry
of the cofactor matrix cof(D2v).
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Lemma 2.4 (Trace and Inverse Inequalities [7, 12]). Let D ⊂ R2 be a regular and
star-like domain. Then there holds

‖v‖L2(∂D) � diam(D)
1
2 ‖v‖H1(D) + diam(D)−

1
2 ‖v‖L2(D) ∀v ∈ H1(D),

‖v‖Wm,q(D) � diam(D)n−m+2min{0,1/q−1/p}‖v‖Wn,p(D) ∀v ∈ Pk(D),

where Pk(D) denotes the set of polynomials up to degree k restricted to D.

Lemma 2.5 (Approximation Properties of Vh [4]). Let m, � be two integers such
that 0 ≤ m ≤ � ≤ k + 1. Then for any χ ∈ H�(Ω), there exists v ∈ Vh such that( ∑

T∈Th

‖χ− v‖2Hm(T )

) 1
2

� h�−m‖χ‖H�(Ω).

Remark 2.4. Due to interpolation of Sobolev spaces (e.g. [7, Theorem 14.3.3]), the
parameter � appearing in Lemma 2.5 can be taken to be any real number such that
0 ≤ m ≤ � ≤ k + 1.

3. Convergence analysis

Let Lh : Vh → V ′
h be the restriction of L (defined by (2.6)) to Vh, and let

L−1
h : V ′

h → Vh denote its inverse (which exists if σ is sufficiently large; see Lemma
3.1). Define the mapping M : H3(Ω; Th) → Vh as

M = L−1
h

(
L− F

)
,(3.1)

and let Mh : Vh → Vh be the restriction of M to Vh; that is,

Mh = Idh − L−1
h Fh,(3.2)

where Idh is the identity map on Vh. The existence of a solution to (2.7) near u will
be proven by establishing a fixed point for Mh in a small ball centered at uc,h ∈ Vh,
where

uc,h = L−1
h Lu.(3.3)

Define the discrete H1-like and H2-like norms as

‖v‖21,h = ‖v‖2H1(Ω) +
∑
e∈Eb

h

(
h−1
e ‖v‖2L2(e) + he‖∇v‖2L2(e)

)
,(3.4)

‖v‖22,h =
∑
T∈Th

|v|2H2(T ) +
∑
e∈Eh

(
h−1
e

∥∥[[∇v
]]∥∥2

L2(e)
+ he

∥∥{{D2
hv

}}∥∥2
L2(e)

)
(3.5)

+
∑
e∈Eb

h

h−3
e ‖v‖2L2(e),

and define the corresponding discrete negative norm as

‖q‖−1,h = sup
0�=v∈Vh

〈
q, v

〉
‖v‖1,h

.(3.6)

Remark 3.1. By Lemma 2.4 and scaling, there holds

‖v‖2,h � h−1‖v‖1,h ∀v ∈ Vh.(3.7)
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Remark 3.2. By Lemma 2.5 and scaling, if u ∈ Hs(Ω), then there exists v ∈ Vh

such that

‖u− v‖1,h + h‖u− v‖2,h � h�−1‖u‖H�(Ω),(3.8)

where � = min{k + 1, s} and k denotes the polynomial degree of the finite element
space Vh.

The analysis of the discrete problem (2.7) is based on the following lemmas.

Lemma 3.1. We have

‖Lv‖−1,h � (1 + σ)‖v‖1,h ∀v ∈ H2(Ω; Th) ∩H1(Ω).(3.9)

Moreover, there exists a σ0 > 0 that depends on u and the minimum angle of Th
such that the map Lh : Vh → V ′

h is invertible and

‖L−1
h q‖1,h � ‖q‖−1,h,(3.10)

provided σ ≥ σ0.

Proof. Since u is strictly convex in Ω, the matrix cof(D2u) is positive definite.
Furthermore by a Sobolev embedding, if u ∈ Hs(Ω) for some s > 3, then u ∈
W 2,∞(Ω). Therefore, there exist constants λ,Λ > 0 such that

λ‖w‖2H1(Ω) ≤
∫
Ω

(
cof(D2u)∇w

)
· ∇w dx ≤ Λ‖w‖2H1(Ω) ∀w ∈ H1(Ω).(3.11)

The conclusion of the lemma then follows from (3.11) and the results of Nitsche
[28]. �

Remark 3.3. By Lemma 3.1, both uc,h and the operators M,Mh are well defined
if σ ≥ σ0, which we assume for the rest of the paper.

Lemma 3.2. Suppose that u ∈ Hs(Ω) and let uc,h ∈ Vh be defined by (3.3). Then
there holds

‖u− uc,h‖1,h + h‖u− uc,h‖2,h � (1 + σ)h�−1‖u‖H�(Ω),(3.12)

where � = min{k+1, s} and k denotes the polynomial degree of the finite space Vh.

Proof. By (3.10), (3.3), and (3.9), we have for any v ∈ Vh,

‖u− uc,h‖1,h ≤ ‖u− v‖1,h + ‖L−1
h Lh(v − uc,h)‖1,h

� ‖u− v‖1,h + ‖L(v − u)‖−1,h

� (1 + σ)‖u− v‖1,h.

As v was arbitrary, the first estimate in (3.12) follows from (3.8).
To obtain the second error estimate in (3.12), we use the inverse inequality (3.7)

to conclude that

‖u− uc,h‖2,h � ‖u− v‖2,h + h−1‖uc,h − v‖1,h
� ‖u− v‖2,h + h−1‖u− v‖1,h + h−1‖u− uc,h‖1,h.

Again, choosing v so that (3.8) holds, we obtain (3.12). �
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With the preliminary analysis completed, we turn our attention to the nonlinear
problem (2.7) and the mapping M defined in (3.1). Note that by (3.1), (2.3), and
(3.3), for all w ∈ H3(Ω; Th),

Mw = L−1
h

(
Lw − Fw

)
(3.13)

= L−1
h

(
Lw − L(w − u)− R(w − u)

)
= L−1

h

(
Lu−R(w − u)

)
= uc,h − L−1

h R(w − u),

and hence

Mw1 −Mw2 = L−1
h

(
R(w2 − u)−R(w1 − u)

)
∀w1, w2 ∈ H3(Ω; Th).(3.14)

From (3.14) and (3.13) it is clear that the crucial ingredient for applying the
Banach fixed point theorem to the map Mh in a small ball around uc,h is the
contraction estimate of R established in the next lemma.

Lemma 3.3 (Contraction Estimate of R). For any w1, w2 ∈ H3(Ω; Th), there holds∥∥Rw1 −Rw2

∥∥
−1,h

� (1 + | lnh| 12 )
(
‖w1‖2,h + ‖w2‖2,h

)
‖w1 − w2‖2,h.(3.15)

Proof. By (2.5) and (2.8) we have for any v ∈ Vh,〈
Rw1 −Rw2, v

〉
=

∫
Ω

(
det(D2

hw2)− det(D2
hw1)

)
v dx

+
∑
e∈Ei

h

∫
e

([[{{
cof(D2

hw1)
}}
∇w1

]]
−
[[{{

cof(D2
hw2)

}}
∇w2

]])
v ds

−
∑
e∈Eb

h

∫
e

([[
cof(D2

hw1)∇v
]]
w1 −

[[
cof(D2

hw2)∇v
]]
w2

)
ds

=
1

2

∫
Ω

(
cof(D2

h(w1 + w2)) : D
2
h(w2 − w1)

)
v dx

+
∑
e∈Ei

h

∫
e

([[{{
cof(D2

h(w1−w2))
}}
∇w1

]]
−
[[{{

cof(D2
hw2)

}}
∇(w2 − w1)

]])
v ds

−
∑
e∈Eb

h

∫
e

([[
cof(D2

hw1)∇v
]]
(w1 − w2)−

[[
cof(D2

h(w2 − w1))∇v
]]
w2

)
ds.

Using the inverse inequality (3.7), (2.9), (3.5), and the Cauchy-Schwarz inequal-
ity we obtain

〈
Rw1 −Rw2, v

〉
≤

(
1

2

∑
T∈Th

|w1 + w2|H2(T )|w1 − w2|H2(T )

+
∑
e∈Ei

h

(∥∥{{D2
h(w1 − w2)

}}∥∥
L2(e)

∥∥[[∇w1

]]∥∥
L2(e)

+
∥∥{{D2

hw2

}}∥∥
L2(e)

∥∥[[∇(w1 − w2)
]]∥∥

L2(e)

))
‖v‖L∞(Ω)

+
∑
e∈Eb

h

(
‖D2

hw1‖L2(e)‖w1 − w2‖L2(e)
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+ ‖D2
h(w1 − w2)‖L2(e)‖w2‖L2(e)

)
‖∇v‖L∞(Ω)

� (1 + | lnh| 12 )
((

‖w1‖2,h + ‖w2‖2,h
)
‖w1 − w2‖2,h

+
∑
e∈Ei

h

(
h

1
2
e

∥∥{{D2
h(w1 − w2)

}}∥∥
L2(e)

h− 1
2

∥∥[[∇w1

]]∥∥
L2(e)

+ h
1
2

∥∥{{D2
hw2

}}∥∥
L2(e)

h− 1
2

∥∥[[∇(w1 − w2)
]]∥∥

L2(e)

)
+

∑
e∈Eb

h

h−1
e

(
h

1
2

∥∥D2
hw1

∥∥
L2(e)

h− 1
2 ‖w1 − w2‖L2(e)

+ h
1
2

∥∥D2
h(w1 − w2)

∥∥
L2(e)

h− 1
2 ‖w2‖L2(e)

))
‖v‖1,h

� (1+| lnh| 12 )
(
‖w1‖2,h+‖w2‖2,h

)
‖w1 − w2‖2,h‖v‖1,h.

The estimate (3.15) then follows from (3.6). �

In light of (3.13)–(3.14), Lemma 3.3 immediately gives us the following three
results.

Lemma 3.4 (Contraction Property ofM onH3(Ω; Th)). For any w1, w2∈H3(Ω;Th)
there holds

‖Mw1 −Mw2‖1,h(3.16)

� (1 + | lnh| 12 )
(
‖u− w1‖2,h + ‖u− w2‖2,h

)
‖w1 − w2‖2,h.

Proof. By (3.14), (3.10), and (3.15), we have

‖Mw1 −Mw2‖1,h =
∥∥L−1

h

(
R(w2 − u)−R(w1 − u)

)∥∥
1,h

� ‖R(w2 − u)−R(w1 − u)‖−1,h

� (1 + | lnh| 12 )
(
‖u− w1‖2,h + ‖u− w2‖2,h

)
‖w1 − w2‖2,h. �

Lemma 3.5 (Contraction Property of Mh on Vh). Define the discrete closed ball
with center uc,h and radius ρ as

Bρ(uc,h) = {v ∈ Vh; ‖uc,h − v‖1,h ≤ ρ}.(3.17)

Then there exists a constant C1 > 0 such that for any v1, v2 ∈ Bρ(uc,h) there holds

‖Mhv1 −Mhv2‖1,h(3.18)

≤ C1h
−2(1 + | lnh| 12 )

(
ρ+ (1 + σ)h�−1‖u‖H�(Ω)

)
‖v1 − v2‖1,h.

Proof. By (3.16), (3.17), the inverse inequality (3.7) and (3.12), we have

‖Mhv1 −Mhv2‖1,h � (1 + | lnh| 12 )
(
‖u− v1‖2,h + ‖u− v2‖2,h

)
‖v1 − v2‖2,h

� h−1(1 + | lnh| 12 )
(
‖u− uc,h‖2,h + h−1ρ

)
‖v1 − v2‖1,h

� h−2(1 + | lnh| 12 )
(
ρ+ (1 + σ)h�−1‖u‖H�(Ω)

)
‖v1 − v2‖1,h. �
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Lemma 3.6 (Mapping Property of Mh). There holds for any v ∈ Bρ(uc,h),

‖uc,h −Mhv‖1,h ≤ C2h
−2(1 + | lnh| 12 )

(
ρ2 + (1 + σ)2h2(�−1)‖u‖2H�(Ω)

)
.(3.19)

Proof. For any w∈H3(Ω; Th), we have by (3.13), (3.10), and (3.15) that

‖uc,h −Mw‖1,h =
∥∥L−1

h R(w − u)
∥∥
1,h

� ‖R(w − u)‖−1,h

� (1 + | lnh| 12 )‖u− w‖22,h.
Therefore by the inverse inequality (3.7), (3.17) and (3.12), we have for v ∈ Bρ(uc,h),

‖uc,h −Mhv‖1,h � (1 + | lnh| 12 )‖u− v‖22,h
� (1 + | lnh| 12 )

(
‖u− uc,h‖22,h + ‖uc,h − v‖22,h

)
� h−2(1 + | lnh| 12 )

(
(1 + σ)2h2(�−1)‖u‖2H�(Ω) + ρ2

)
. �

With the preceding results established, we are now in position to prove the first
main result.

Theorem 3.1 (Main Theorem I). There exists an h0(σ) > 0 such that for h ≤
h0(σ) there exists a solution uh to the penalty method (2.7). Moreover,

‖u− uh‖1,h � (1 + σ)h�−1‖u‖H�(Ω),(3.20)

‖u− uh‖2,h � (1 + σ)h�−2‖u‖H�(Ω).(3.21)

Proof. Since � = min{k + 1, s} > 3, we can choose h0(σ) > 0 such that h ≤ h0(σ)
implies

δ = 2max{C1, C2}h−2(1 + | lnh| 12 )(1 + σ)h�−1‖u‖H�(Ω) < 1.(3.22)

Fix h ≤ h0(σ) and set

ρ0 = (1 + σ)h�−1‖u‖H�(Ω).(3.23)

Then for any v ∈ Bρ0
(uc,h), we have by (3.19), (3.22) and (3.23) that

‖uc,h −Mhv‖1,h ≤ C2h
−2(1 + | lnh| 12 )

(
ρ20 + (1 + σ)2h2(�−1)‖u‖2H�(Ω)

)
= 2

(
C2h

−2(1 + | lnh| 12 )(1 + σ)h�−1‖u‖H�(Ω)

)
ρ0

≤ ρ0,

and so Mh maps Bρ0
(uc,h) into Bρ0

(uc,h). Moreover, by (3.18) and (3.22) for
v1, v2 ∈ Bρ0

(uc,h),

‖Mhv1 −Mhv2‖1,h ≤ C1h
−1(1 + | lnh| 12 )

(
ρ0 + (1 + σ)h�−1‖u‖H�(Ω)

)
‖v1 − v2‖1,h

= 2C1h
−1(1 + | lnh| 12 )(1 + σ)h�−1‖u‖H�(Ω)‖v1 − v2‖1,h

≤ δ‖v1 − v2‖1,h.
Hence Mh has a unique fixed point uh ∈ Bρ(uc,h), which is a solution of (2.7).

Moreover, by (3.23) and (3.12),

‖u− uh‖1,h ≤ ‖u− uc,h‖1,h + ρ0 � (1 + σ)h�−1‖u‖H�(Ω).

Finally, by the inverse inequality, we have

‖u− uh‖2,h ≤ ‖u− uc,h‖2,h + h−1ρ0 � (1 + σ)h�−2‖u‖H�(Ω). �
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Remark 3.4. Theorem 3.1 shows that ‖uh − uc,h‖1,h ≤ ρ0 = (1 + σ)h�−1‖u‖H�(Ω),
but this estimate is not sharp. Indeed, by (3.13) we have

uh = Mhuh = uc,h − L−1
h R(uh − u),(3.24)

and therefore by (3.1), (3.15), and (3.21),

‖uh − uc,h‖1,h = ‖L−1
h R(uh − u)‖1,h(3.25)

� ‖R(uh − u)‖−1,h

� (1 + | lnh| 12 )‖u− uh‖22,h
� (1 + | lnh| 12 )(1 + σ)2h2(�−2)‖u‖2H�(Ω).

Theorem 3.2 (Main Theorem II). In addition to the hypotheses of Theorem 3.1,
assume that u ∈ W 3,∞(Ω). Then there holds

‖u− uh‖L2(Ω) � (1 + σ)2
(
h�‖u‖H�(Ω) + (1 + | lnh| 12 )h2(�−2)‖u‖2H�(Ω)

)
.(3.26)

Proof. Let ψ ∈ H1
0 (Ω) be the solution to the following auxiliary problem:

−∇ ·
(
cof(D2u)∇ψ

)
= u− uh in Ω,(3.27a)

ψ = 0 on ∂Ω.(3.27b)

Since u ∈ W 3,∞(Ω), there holds cof(D2u) ∈
[
W 1,∞(Ω)

]2×2
. Therefore by elliptic

regularity theory [23, 17, 24], we have

‖ψ‖H2(Ω) � ‖u− uh‖L2(Ω).(3.28)

Let ψh ∈ Vh be chosen so that

‖ψ − ψh‖1,h � h‖ψ‖H2(Ω) � h‖u− uh‖L2(Ω).(3.29)

Note that by the trace inequality,(∑
e∈Eb

h

he‖∇ψ‖2L2(e)

) 1
2 � ‖ψ‖H2(Ω),

and therefore by (3.4) and (3.27b),

‖ψ‖1,h � ‖ψ‖H2(Ω).

Hence, by (3.29) we have

‖ψh‖1,h ≤ ‖ψh − ψ‖1,h + ‖ψ‖1,h � ‖ψ‖H2(Ω) � ‖u− uh‖L2(Ω).(3.30)

Using (3.27), we can write

‖u− uh‖2L2(Ω) =
〈
L(u− uh), ψ

〉
(3.31)

=
〈
L(u− uh), ψ − ψh

〉
+
〈
L(u− uh), ψh

〉
.

From (3.9), (3.29) and (3.28), we have〈
L(u− uh), ψ − ψh

〉
≤ ‖L(u− uh)‖−1,h‖ψ − ψh‖1,h(3.32)

� (1 + σ)‖u− uh‖1,h‖ψ − ψh‖1,h
� h(1 + σ)‖u− uh‖1,h‖u− uh‖L2(Ω).
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On the other hand, (3.24), (3.15), (3.30) and (3.28) imply〈
L(uh − u), ψh

〉
=

〈
Lh(uh − uc,h), ψh

〉
(3.33)

=
〈
R(u− uh), ψh

〉
≤ ‖R(u− uh)‖−1,h‖ψh‖1,h
� (1 + | lnh| 12 )‖u− uh‖22,h‖ψh‖1,h
� (1 + | lnh| 12 )‖u− uh‖22,h‖u− uh‖L2(Ω).

Combining (3.31)–(3.33), dividing by ‖u−uh‖L2(Ω), and using (3.20)–(3.21), we
obtain

‖u− uh‖L2(Ω) � (1 + σ)2
(
h�‖u‖H�(Ω) + (1 + | lnh| 12 )h2(�−2)‖u‖2H�(Ω)

)
. �

Remark 3.5. Since � > 3, the error estimate (3.26) is of higher order than (3.20).
Moreover, the L2 estimate is (almost) of the optimal order k + 1 provided s ≥ 4.

4. Numerical experiments

In this section, we perform some numerical tests that back up the theoretical re-
sults proved in the previous section, as well as show the effectiveness and efficiency
of the method. We solve the finite element method (2.7) using the COMSOL Mul-
tiphysics software package [13], and solve the resulting nonlinear algebraic system
using Newton’s method. Given u0 ∈ Vh, the Newton approximations to uh form a
sequence {uk}∞k=0 ⊂ Vh satisfying

DFh[uk](uk+1 − uk) = −Fhuk,(4.1)

where DFh : Vh → L(Vh;V
′
h) denotes the Gâteaux derivative of Fh. Here, L(Vh;V

′
h)

denotes the space of linear maps from Vh to V ′
h.

Similar to other numerical methods for the Monge-Ampère equation [22, 26],
the Newton iteration requires an accurate starting value to ensure convergence. In
order to obtain a good initial guess, we apply the vanishing moment methodology to
the Monge-Ampère equation [18]. The crux of the vanishing moment method is to
approximate fully nonlinear PDEs by higher order semi-linear PDEs, in particular,
fourth order PDEs. For the case of the Monge-Ampère equation (1.1) the vanishing
moment approximation is defined to be the solution to the following fourth order
problem:

−εΔ2uε + det(D2uε) = f 0 < ε � 1,(4.2)

along with appropriate boundary conditions. We refer the reader to [18, 21] for
more details and motivation of the vanishing moment method. Besides being a
valuable tool to obtain close approximations of the Monge-Ampère equation, an-
other interesting feature of the vanishing moment methodology is the ability to
choose the concave solution (recall there is a convex solution and concave solution
to the Monge-Ampère equation) by substituting ε by −ε in (4.2). However, we do
not pursue this direction in the numerical experiments below.

The C0 interior penalty method for (4.2) is defined as seeking uε
h ∈ Vh such that

εAhu
ε
h + Fhu

ε
h = 0,(4.3)
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Table 1. Example 1. Errors of computed solution and rates of
convergence with respect to h with σ = 100.

h ‖u− uh‖L2(Ω) rate |u− uh|H1(Ω) rate |u− uh|H2(Th) rate

k = 2 1/8 3.06E-03 7.69E-02 7.88E+00
1/16 1.62E-03 0.92 4.74E-02 0.70 6.33E+00 0.31
1/32 1.96E-04 3.05 1.13E-02 2.06 3.18E+00 0.99
1/64 2.79E-05 2.81 2.77E-03 2.03 1.59E+00 1.00
1/128 7.07E-06 1.98 6.88E-04 2.01 7.97E-01 1.00
1/256 2.03E-06 1.80 1.72E-04 2.00 3.99E-01 1.00

k = 3 1/8 1.47E-04 1.87E-03 4.27E-01
1/16 5.62E-05 1.38 9.45E-04 0.98 2.72E-01 0.65
1/32 3.89E-06 3.85 9.51E-05 3.31 6.82E-02 2.00
1/64 2.55E-07 3.93 1.00E-05 3.25 1.71E-02 2.00
1/128 1.64E-08 3.96 1.13E-06 3.14 4.27E-03 2.00
1/256 1.08E-09 3.92 1.35E-07 3.07 1.07E-03 2.00

k = 4 1/8 5.21E-06 7.99E-05 1.23E-02
1/16 1.68E-06 1.63 3.09E-05 1.37 6.22E-03 0.99
1/32 6.06E-08 4.79 1.79E-06 4.11 7.80E-04 3.00
1/64 2.04E-09 4.89 1.06E-07 4.07 9.72E-05 3.01
1/128 6.47E-11 4.98 6.52E-09 4.03 1.22E-05 3.00

where〈
Ahv, w

〉
=

∫
Ω

D2
hv : D2

hw dx−
∑
e∈Ei

h

∫
e

({{
∂2
nnv

}}[[
∇w

]]
+
[[
∇v

]]{{
∂2
nnw

}}

− σh−1
e

[[
∇v

]][[
∇w

]])
ds ∀v, w ∈ Vh,

and{{
∂2
nnw

}}∣∣
e
=

1

2

(
D2

hw
+n+ · n+

∣∣
e
+D2

hw
−n− · n−

∣∣
e

)
e = ∂T+ ∩ ∂T− ∈ E i

h

denotes the average of the second order normal derivative of w. To solve (4.3), we
again use Newton’s method, which creates a sequence {uε

k}∞k=0 ⊂ Vh satisfying

εAhu
ε
k+1 +DFh[u

ε
k](u

ε
k+1 − uε

k) = −Fhu
ε
k.(4.4)

We plan to address the convergence of the Newton iterations (4.1) and (4.4) in
the near future. For now, we provide some numerical experiments illustrating the
robustness of this technique.

4.1. Example 1. In this test, we solve (2.7) for varying values of h and k, and
choose our data such that the exact solution to the Monge-Ampère equation (1.1)

is u = 20ex
6
1/6+x2 . We take Ω = (0, 1)2, the unit square and set σ = 100.

In order to obtain some good initial guesses, we first solve (4.3) with ε-values
1E-2, 1E-4, 1E-6, and 0, using each previous solution as our initial guess in the
Newton iteration (4.4) (we take uε

0 = x2
1 + x2

2 as our initial guess for the first
iteration with ε = 1E-2). After computing the solution of (2.7) we calculate the
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L2, H1, and broken H2 error and record the errors in Table 11. As predicted by the
theoretical results in Theorem 3.1, for k ≥ 3 we observe (k + 1), (k), and (k − 1)-
order convergence in the L2, H1 and H2-norms. Furthermore, the numerical tests
also indicate that the method is convergent using quadratic polynomials, although
a theoretical proof of such a result has yet to be shown.

4.2. Example 2. In this test, we solve the Monge-Ampère equation on the unit
disc Ω = B(0, 1) with the same test problem as Example 1. Our finite ele-
ment space is constructed such that on curved elements, we use polynomial func-
tions of degree ≤ k in the curvilinear coordinates for T , which in this case, are
isoparametric/subparametric finite elements.

We solve (2.7) for varying h and k values and record the errors in Table 2. In
order to obtain good initial guesses for the Newton iteration, we use the same
strategy as in Example 1, first solving the regularized problem (4.3). As expected,
the convergence rates are exactly the same as the previous test with convergence
rates of O(h4), O(h3), O(h2) in the L2, H1, andH2-norms using cubic polynomials.
Similar to the previous tests, we also observe that the method is also convergent
using quadratic polynomials.

Table 2. Example 2. Errors of computed solution and rates of
convergence with respect to h with σ = 100 on curved domain.

h ‖u− uh‖L2(Ω) rate |u− uh|H1(Ω) rate |u− uh|H2(Th) rate

k = 2 1/8 3.30E-03 1.35E-01 9.73E+00
1/16 1.03E-03 1.68 3.50E-02 1.95 4.90E+00 0.99
1/32 1.66E-04 2.64 1.01E-02 1.79 2.41E+00 1.02
1/64 3.06E-05 2.44 1.89E-03 2.42 1.12E+00 1.10
1/128 1.11E-05 1.46 4.66E-04 2.02 5.54E-01 1.02

k = 3 1/8 9.40E-04 4.91E-03 8.73E-01
1/16 7.85E-05 3.58 5.82E-04 3.08 2.24E-01 1.96
1/32 4.63E-06 4.08 5.66E-05 3.36 4.89E-02 2.20
1/64 2.99E-07 3.95 6.51E-06 3.12 1.16E-02 2.07
1/128 1.89E-08 3.98 7.91E-07 3.04 2.84E-03 2.04

4.3. Example 3. For the last test we solve (2.7) on the unit square Ω = (0, 1)2

using quadratic polynomials and choose our data such that the exact solution is

u =
(4(x2

1+x2
2))

3
4

3 . Unlike the previous two tests, the exact solution is not smooth,

and one can readily check that u ∈ W 2,p(Ω) for all p ∈ [1, 4) but u 
∈ C2(Ω) [15].
Using the same strategy as the previous two tests, we first solve the regularized

problem (4.3) with σ = 100 using quadratic polynomials to obtain some good
initial guesses. We then solve (2.7) and record the errors in Table 3. Although a
theoretical proof of such a result has not been proven, the numerical experiments
indicate that the method is convergent with rates of O(h2), O(h

3
2 ), and O(h

1
2 ) in

the L2, H1, and H2-norms. The suboptimal rates are most likely due to the low
regularity of the solution.

1We define the piecewise H2-seminorm as |u− uh|H2(Th) =
(∑

T∈Th
|u− uh|2H2(T )

) 1
2
.
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Table 3. Example 3. Errors of computed solution and rates of
convergence with respect to h with σ=100 for nonsmooth solution.

h ‖u− uh‖L2(Ω) rate |u− uh|H1(Ω) rate |u− uh|H2(Th) rate

k = 2 1/8 2.96E-05 2.61E-03 2.52E-01
1/16 6.33E-06 2.22 9.46E-04 1.46 1.79E-01 0.49
1/32 1.48E-06 2.09 3.44E-04 1.46 1.27E-01 0.49
1/64 3.73E-07 1.99 1.26E-04 1.45 9.03E-02 0.50
1/128 9.74E-08 1.94 4.66E-05 1.43 6.41E-02 0.50

5. Concluding remarks

In this paper, we have developed and analyzed C0 penalty methods for the fully
nonlinear Monge-Ampère equation. To build convergent numerical schemes, we
constructed discretizations such that the resulting discrete linearization is stable,
symmetric, and consistent with the continuous linearization. With this in hand,
we proved existence of the numerical solution as well as derived quasi-optimal error
estimates using a simple fixed-point technique.

The methodology developed in this paper has been applied to the three dimen-
sional Monge-Ampère equation [8]. Due to the simplicity and flexibility of the
method, it is also relatively straightforward to formulate discretizations for more
general Monge-Ampère equations in which the function f depends on ∇u and u.
We plan to address the convergence properties of such problems in the near future.
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