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POSITIVITY-PRESERVING DISCONTINUOUS

GALERKIN SCHEMES FOR LINEAR

VLASOV-BOLTZMANN TRANSPORT EQUATIONS

YINGDA CHENG, IRENE M. GAMBA, AND JENNIFER PROFT

Abstract. We develop a high-order positivity-preserving discontinuous
Galerkin (DG) scheme for linear Vlasov-Boltzmann transport equations
(Vlasov-BTE) under the action of quadratically confined electrostatic poten-
tials. The solutions of such BTEs are positive probability distribution func-
tions and it is very challenging to have a mass-conservative, high-order accurate
scheme that preserves positivity of the numerical solutions in high dimensions.
Our work extends the maximum-principle-satisfying scheme for scalar conser-
vation laws in a recent work by X. Zhang and C.-W. Shu to include the linear
Boltzmann collision term. The DG schemes we developed conserve mass and
preserve the positivity of the solution without sacrificing accuracy. A discus-
sion of the standard semi-discrete DG schemes for the BTE are included as a
foundation for the stability and error estimates for this new scheme. Numerical

results of the relaxation models are provided to validate the method.

1. Introduction

The primary behavior of kinetic models is driven by the interaction between
transport and collisional operators. They describe the evolution of a probability
density mass associated to interacting particle systems, where the transport is mod-
eled by a first order linear differential operator along a particle path modified by
the presence of an electric field which is balanced by a particle interacting integral
(collisional) operator, of a dissipative nature, modeling the rate of gain and loss of
the probability density mass due to the interactions. Such an integro-differential
operator is referred to as a Vlasov-Boltzmann transport equation (Vlasov-BTE).

In this particular manuscript we focus on linear collisional structures where the
transport along parabolic energy bands in phase space are modified by an external
electric field. Due to the mathematical difficulties that arise by this interaction,
operators as well as the large number of unknowns, the numerical approximation
of such kinetic transport models is highly demanding from a computational stand-
point. Traditional computational schemes for this type of linear transport developed
several decades ago were based in Discrete Simulations Monte Carlo (DSMC) [3, 39]
or more recently deterministic approaches initiated by [26, 37] and more recently
extended WENO finite difference based schemes [6, 7, 8, 9, 5].
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The discontinuous Galerkin (DG) finite element method, which is well suited for
hp-adaptivity and parallel implementation, recently gained much attention in this
field [12, 10, 13].

In this particular manuscript we focus on numerical analytical issues as well
as positivity preserving schemes by the DG approach for these types of transport
problems with degenerate linear collisional forms. These methods were originally
developed for computing hyperbolic conservation laws. These DG methods are
compact, locally conservative and high-order accurate. They can be easily extended
to very high order and be adapted to unstructured grids. More specifically, we prove
analytical properties of the approximating scheme such as numerical stability and
error estimates and develop a positivity-preserving DG scheme that ensures the
positivity of numerical solution and is genuinely high order for arbitrary order of
discretization.

The Vlasov-BTE describes the evolution properties of a probability distribution
function (pdf) f = f(t, x, v) representing the probability of finding a particle at
time t with position at x and phase velocity v. This model represents a dilute or
rarefied gaseous state corresponding to a probabilistic description of particles when
the transport is given by a classical Hamiltonian with acceleration component given
by the action of a Lorentzian force and particle interactions taken into account in
a dissipative, non-local framework modeled by the so-called collision operator.

In the case of charged transport in the absence of strong magnetic effects, the
Lorentzian force field is reduced to an electric force field corresponding to an elec-
trostatic potential modeled by the Poisson equation for total charges, as in the mean
field theory approximation. The collisional integral, classically modeled by bilinear
non-local interactions, satisfy the Pauli Exclusion Principle for which Fermi-Dirac
distributions are in their null spaces. However, it is well known [44, 48] that for low
density or hot temperature transport the collisional form is well approximated by a
linear non-local operator modeling charged electrons interacting with background
impurities or other carrier types.

In our framework, such a linear collision operator, denoted by Q(f, σ), models
a gain/loss of probability rates, where the function σ represents transition proba-
bilities of scatters from one state to another (scattering mechanisms) multiplied by
given distributions.

We consider then an initial value problem to the Vlasov-BTE equation, which
has a linear hyperbolic component of transport and a dissipative mechanism due to
the collision operator. Its solutions are positive probability distributions, so-called
Borel measures. In the absence of boundary injection, they conserve the total mass,∫
Rdx

∫
Rdv

f(t, x, v)dx dv, at any time.

The development and analytical properties of any discrete scheme to compute
the Vlasov-BTE deterministically requires that the approximation is done in a finite
domain, both in physical x-space and phase v-space, even though the setting of the
problem is in all Rd in v-space. In particular, the choice of the finite computational
domain depends very much on the nature of the problem to be solved and analyzed.
More specifically, since the computed problem admits a stationary state, one may
use an educated guess for the choice of the computational domain for which the
stationary state has the same mass as that of the initial state.

However, if the solution of the problem does not stabilize, due for instance, to
external unstable forcing or a bifurcation phenomena, one must carefully monitor



POSITIVITY-PRESERVING DISCONTINUOUS GALERKIN SCHEMES 155

the evolution of the pdf and secure that at any time step there is no significant loss
of mass with respect to the initial state and its discretization in the corresponding
truncated domain. This procedure could be done by an a posteriori algorithm using
data postprocessing but it is beyond the scope of this paper.

Only in recent years has the Boltzmann equation been tackled numerically with
particular attention paid to accuracy and computational costs. The mathemat-
ical difficulties related to the Boltzmann equation make it extremely difficult, if
not impossible, to determine analytic solutions in most physically relevant situa-
tions. Consequently, numerical methods, particularly highly accurate deterministic
methods, must be used to obtain valid approximations of the solution.

We mentioned that the well-known Discrete Simulation Monte Carlo (DSMC)
methods have traditionally been used to numerically model classical kinetic equa-
tions in rarefied gas dynamics [3, 39], and in charge transport in submicron struc-
tures [48, 1]. Although Monte Carlo techniques guarantee efficiency and preser-
vation of some of the fundamental physical properties (ex. observables), it is well
established that in the presence of non-equilibrium stationary states or near contin-
uum regimes, avoiding statistical fluctuations in the resulting solution may become
extremely expensive. Consequently, deterministic methods are more competitive
when greater accuracy is required. A comparative study of DSMC and deter-
ministic solvers by WENO [8, 9] and DG schemes [11, 10, 12, 13, 14] for short
base channel models by 1-dimensional electron transport models and 2-dimensional
MESFET and MOSFET devices have been carried out. There are important dis-
crepancies between both methods near ohmic contacts and interface layers. It is
also well accepted that a more refined Monte Carlo code is able to generate bet-
ter hydrodynamical profiles; the authors observed an excellent agreement for grid
points where the solution shows strong gradients, better resolution and implemen-
tations of boundary conditions as well as comparative computational time by mesh
adaptivity. Other popular deterministic solvers for Boltzmann equations have been
developed in the last two decades. They include the discrete velocity methods
initiated by [4], spectral methods [40, 27], and finite difference schemes [26, 8, 9]
among many others. However, to the best of our knowledge neither discrete velocity
models nor spectral methods, which have been essentially computational tools for
non-linear collisional operators, have been implemented in the modeling of charged
electron transport in nano devices where the collisional forms are taken to be linear
in the hot electron or low density transport.

It is quite interesting to observe that the first DG method approach, introduced
first in 1973 by Reed and Hill [43] for neutron transport, are truly relevant to our
studies. Later, Lesaint and Raviart [36] performed the first convergence study for
the original DG method. Cockburn et al. in a series of papers [22, 21, 20, 18, 23]
developed the Runge-Kutta DG (RKDG) method for hyperbolic equations. For
more details about the RKDG scheme, one can refer to the survey paper [24] and
the references within. Very recently in [11, 10, 12, 13], DG schemes for solving the
Boltzmann-Poisson system in semiconductor device modeling are proposed. The
scheme shows excellent behavior in terms of quality of the numerical solution and
computational efficiency. The DG schemes provide a tool to accurate transient
calculations of strong non-equilibrium stationary states, and allows for the explicit
computation of the probability density function and, consequently, all moments
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with greater accuracy as compared to Monte Carlo methods. Moreover, their in-
herent flexibility allows for the resolution of temporal and spatial non-uniformities.
The additional computational costs associated with deterministic methods can be
greatly reduced by focusing on regions of interest, and coarsening the mesh in areas
such as the “tails” of the probability density function where there is little action in
the behavior of the solution.

In this manuscript, we propose a positivity preserving DG scheme and rigourously
analyze the computational scheme in the case where the solution corresponds to
the initial value problem of the linear BTE evolving under the field generated by
a confined potential. In this case it is easy to find stationary states for relaxation
models and their corresponding decay rates to equilibrium [33, 38]. We will use
these properties to select an appropriate truncation for the computational domain.
L2-stability and error estimates for general order of approximations are provided.
Since the solutions to the BTEs are positive pdfs, it is desired for the numerical
scheme to generate positive solutions since approximated negative pdfs are not only
non-physical, but will also produce negative contribution to higher order moments
such as energy or heat flow. So it is highly desired to have mechanisms for high
order schemes that preserve the positivity of the solution.

We recall that such numerical positivity property is easily verified for the piece-
wise constant DG schemes. However, typical DG or finite difference schemes of
order higher than one are no longer monotone and will not preserve the positivity
of the solution. In addition monotone schemes can only be first-order accurate and
total variation diminishing (TVD) and those that satisfy the maximum principle
are at most second-order accurate in the L1-norm.

It is, therefore, a difficult task to preserve the positivity and high-order accuracy
of the solution at the same time. This is a drawback for most high-order numerical
methods.

Our current work uses a maximum-principle-satisfying limiter that has been
recently proposed by Zhang et al. in [52] for conservation laws and we develop
it for the Boltzmann equation. This method has been used to develop positivity-
preserving schemes for compressible Euler [53] and shallow water equations [55].
The resulting scheme preserves positivity of numerical solution in a cell average
sense and is genuinely high-order accurate for arbitrary order of discretization. In
addition, the limiter is applied as a post-processing step, which induces minimal
computational cost. In particular, most of the new work presented here focuses on
the treatment of the approximation of the collisional integral for the preservation
of positivity under the proposed new scheme.

It is to our conclusion that, based on the analysis of the standard DG methods
and the positivity-preserving property of this modified scheme, we have obtained
a highly efficient deterministic solver that obtains accurate and physically relevant
solutions to the linear BTEs.

The rest of the paper is organized as follows. In Section 1, we introduce the
Vlasov-BTE and recent global regularity and decay results. A discussion of the
choice of computational domain is included. We summarize some important prop-
erties of the collisional operator in Section 2. The traditional semi-discrete DG
scheme and the positivity-preserving DG scheme will be formulated in Section 3.
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Those two schemes are analyzed in Sections 4 and 5 respectively. Numerical re-
sults for relaxation models are given in Section 6. Finally, concluding remarks and
remarks on future work are provided in Section 7.

We consider the initial value problem for the linear Vlasov Boltzmann Transport
Equation for a charged particle distribution function f = f(t, x, v) defined on R

+
t ×

R
d
x × R

d
v ,

∂f

∂t
+ vfx − e

m
E(t, x)fv = Qσ(f)(t, x, v),

f(0, x, v) = f0(x, v) in R
d
x × R

d
v

(1)

where e is the space charge constant associated to the particle species and m is the
effective particle mass constant. Denoting by f ′ = f(t, x, v′), the linear collision
operator Qσ : f(t, x, v) → Qσ(f)(t, x, v) is given by

(2) Qσ(f)(t, x, v) =

∫
v′∈Rd

(σ(x, v, v′)f ′ − σ(x, v′, v)f)dv′,

where the scattering function σ(x, v, v′) is positive and may satisfy the detailed
balance principle, usually modeled by

(3) σ(x, v, v′) = k(x, v, v′)M(v), σ(x, v′, v) = k(x, v′, v)M(v′).

Here k(x, v, v′) is symmetric in (v, v′) and represents the transition probability of
scatters passing from a state with velocity v into v′ including spacial variations,
and M(v) is a stationary probability distribution, independent of space. Such an
operator models a linear degenerate collisional form, sometimes referred to as a
thermostat, such that the only function in its kernel is M(v). When one assumes
this stationary probability distribution to be an absolute Maxwellian distribution
denoted by

(4) μ∞(v) = M(v) =
exp(−|v|2/2θ)

(2πθ)d/2
,

then the collisional integral interacts with Gaussian distributed background impu-
rities with constant kinetic temperature θ.

In general, provided that both M(v), |v|2M(v) ∈ L1(Rd) , such collisional forms
preserve mass, but do not conserve any other velocity moment of f . In particular,
it conserves neither momentum

∫
v∈Rd

vf(t, x, v)dv nor energy
∫
v∈Rd

|v|2f(t, x, v)dv.
We also need to use that the scattering function is not singular, and so we shall

use that
∫
Rd

|σ(x, v′, v)|dv′ ≤ K(x, v) with K(x, v), a function with at most linear

growth (see Property 1 in the next section). Usually, ν(x, v) =
∫
Rd

|σ(x, v′, v)|dv′
is referred to as the collision frequency term. In particular, taking the transition
probability k constant, one obtains the well-establish linear relaxation model

(5) L(f)(t, x, v) =
μ∞(v) ρ(t, x)− f(t, x, v)

τ
,

where τ = 1
k , and

ρ(t, x) =

∫
Rd

v

f(t, x, v) dv

denotes the macroscopic density.
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We mention that in the mean field theory approximation that accounts for long
range interactions this Vlasov-Boltzmann transport equation is coupled to the Pois-
son equation modeling electrostatic potential due to total space charges

(6) E(t, x) = −∇xV, divx(ε0∇xV ) = e(ρ(t, x)− C(x)),

where ε0 is the permittivity of the medium and C(x) is the background distribu-
tion density. The resulting non-linear system is referred as the Boltzmann-Poisson
systems that appears in the modeling of charged transport in sub-micron devices.
In this case, the scattering function, derived from Fermi’s Golden Rule, may be
modeled by singular distribution measure supported on energy levels associated to
the underlying model of electronic band structure for the semiconducting material.
A DG implementation for this system in realistic sub-micron highly heterogeneous
structures was developed by the authors in collaboration with A. Majorana and
C.W. Shu; see [11, 10, 12, 13].

In the case of a smooth, bounded spatial domain Dd
x = [0, L]d ⊂ R

d
x, boundary

and initial conditions supplementing the Boltzmann equation (1) are

Bf(t, x, v) |∂Dd
x

is prescribed on v · ν(x) < 0,(7)

where ν(x) is the outer unit normal to ∂Dd
x and Bf is a boundary operator. These

spatial boundary conditions can be of different natures, such as particle injection,
specular reflection or diffusive conditions, as well as periodic spatial conditions.
In addition, our analysis will use zero particle density at the boundary essentially
due to the stability nature of the problem for which the numerical analysis of the
approximation is performed. This latter one is a delicate issue related to a suitable
cut-off domain that we will carefully address below.

The initial condition for the particle distribution function is given by

f(0, x, v) = f0(x, v), for x ∈ Dd
x, v ∈ R

d
v ,(8)

in an adequate space for which existence, uniqueness and functional and decay
estimates hold. We will describe the available analytical properties for the initial
boundary value problem in subsection 1.1 below.

Without loss of generality, we redefine Ṽ = e
mV , and eliminate the tilde notation

and we rewrite the transport equation (1) as

(9)
∂f

∂t
+ α · ∇f = Qσ(f),

where
(10)

α(x, v) =

(
v

−E(t, x)

)
, E = −∇xV, ∇ =

(
∇x

∇v

)
, |α| = |v|+ |∇xV |.

Clearly, div
x,v

α = 0. The quantity |α| is the l1-distance of the vector α to the

origin in R
2d.

In order to properly truncate the computational domain, we first recall properties
of existence, uniqueness and stability of the linear collisional model in a properly
selected Banach space for which decay rates to equilibrium have been established.
These properties allow us to conclude that, within our truncated computational
domain, the proven error estimates are going to be optimal up to a uniform in time
error depending only on the total mass of the stationary state.
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1.1. Notation and recent global regularity and decay results. We recall the
following weighted functional spaces to be used in our estimates. Let

Lp
m(Ω) ≡ {ψ :

∫
Ω

|ψ|p(1 + |x|2 + |v|2)m/2 dvdx < ∞}

denote the space of Lp integrable functions with bounded polynomial decay, both
x and v, with the natural norm when Ω = R

2d given by

(11) ‖ψ‖
L
p
m(R2d)

=

(∫
Rdx

∫
Rdv

|ψ|p (1 + |x|2 + |v|2)m/2 dv dx,

)1/p

.

Note that Lp
0 is the classical Lp-space.

In the case where the force field is given externally by the gradient of a time
independent potential, i.e., E(x) = −∇V (x), where the potential V (x) satisfies
that its derivatives of order higher than or equal to second-order are bounded and
that exp(V (x)) ∈ L1, the unique stationary state solution to the system is the
global Maxwellian distribution μ∞(v) in v-space, defined in (4) (which lays in the
kernel of the collision operator) multiplied by the stationary macroscopic density
given by the spatial Maxwellian

ρ∞ =
eV/θ∫
eV/θdx

.

Consequently, the unique stationary state is given by

(12) M(x, v) = ρ∞(x)μ∞(v) =
e−(

|v|2
2 −V (x))/θ

(2πθ)d/2
∫
eV (x)/θdx

.

Additionally, there exist positive constants K1,K2, R > 0, such that

(13) K1|x| ≤ |∇xV | ≤ K2|x| , for any |x| > R.

Thus, any other steady states in S ′(
2d) are proportional to the Maxwellian M,
where S ′(
2d) is the dual of the Schwartz class of rapidly decaying functions in 
2d

(see [33]). Without loss of generality, we take θ = 1.
Finally, we mention that the collision operator Qσ(f) is mass preserving, positiv-

ity preserving and dissipative in the sense of non-negative in L1(R2d). In particular,
it is easy to see that v∂x+∂xV (x)∂v +Q is also mass and positivity preserving and
dissipative in L1(R2d).

In addition, the initial value problem is also solvable in L2(R2d) since the mono-
tonicity of Qσ(f) (see Property 2 in Section 2) is preserved by the multiplication
and integration with respect to v ∈ R

d of any function monotone function in v.
Although these properties have been shown in many previous analytical works

such as those in [25, 49] and others, we will include some constructive proofs of these
properties not only for completeness, but also to draw their discrete counterparts
when we prove similar properties for the scheme.

We cite several results for existence and uniqueness as well as regularity of initial-
boundary value problems associated to the Vlasov-Boltzmann equation (1). Y. Guo
showed [30, 31] that the non-linear Vlasov-Boltzmann-Poisson-Maxwell system, un-
der spatial periodic boundary conditions and initial data near a global Maxwellian
distribution, propagates the regularity of the initial behavior; and further, with
R. Strain [47], calculated almost exponential decay rates to such Maxwellian equi-
librium.
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More recently in the case of the initial and boundary value problem, N. Ben-
Abdallah and M. Tayeb [2] showed existence and uniqueness of solutions to the
linear Vlasov-Boltzmann equation with a continuous in space-time field E(x, t) and
non-negative initial and boundary conditions having the same polynomial decay
in L1 ∪ L∞ in one space dimension and higher dimensional phase-space (velocity).
This solution preserves the regularity and decay properties of the initial state.
While this result uses low regularity of the integrating characteristic field E(x, t)
with non-vanishing gradients, it is a hope that higher order Sobolev regularity may
propagate for more regular fields, as well as more regular initial and boundary
conditions satisfying at least polynomial decay, however, such result is still not
available. We also mention that in the same manuscript [2] the authors showed the
existence of weak solutions to the Boltzmann-Poisson system with incoming data
with polynomial decay in the case of one phase-space dimension.

We also mention an interesting result of M. Portelheiro [42], who showed that
the propagation properties of v∂x+∂xV (x)∂v+Q yield that the closure in L1(R2d)
from C∞

0 generates a semi-group of contraction in L1(R2d).
More relevant to our problem of error analysis and long time numerical behavior,

is the work of F. Herau [33] who studied the exponential decay properties of the
solution of the initial value problem to the stationary solution (12) in the case of
linear relaxation operator (5), by introducing the additional operator

(14) Λ2 = −γ∂v(∂v + v)− γ∂x(∂x + ∂V (x) + 1),

and showing that problems (1) and (14) have nice properties in the weighted space

(15) B2 = {f ∈ D′ :
f

M−1/2
∈ L2(dx, dv)}

with the natural norm defined by ‖f‖2B2 =
∫
|f |2M−1dxdv. Indeed, it is possible

to see that the closure from C∞
0 of the operator Λ2 − 1 in the space B2 is maximal

accretive (see [32]) and has 0 as the single eigenvalue associated with the eigen-
function M and, in addition, has a spectral gap λ > 0 in B2. We recall that the
spectral gap is defined as the infimum of the spectrum except for the lowest eigen-
value. Example cases when this property holds are either when HessV ≥ λ Id, then
λ is the spectral gap; or for |V ′(x)| going to infinity in x, then the operator Λ2 is
compact with resolvent in B2 and so the operator Λ2 − 1 has a spectral gap λ > 0
in B2. We refer to [32], [34] and the references therein.

In addition, it was shown in [33] that in the case of a relaxation operator Q(f)(v)
= ρ(t, x)μ∞(v)− f(x, v) the above properties hold in B2 as well, and the Cauchy
problem is well posed and, further, there exists a constant A > 0 depending only
on the second- and third-order derivatives of V (x) , such that for all L1 normalized
initial state functions f0 ∈ B2,

||f(t, x, v)−M(x, v)||
B2(R2d)

≤ 3 exp(−λ t)||f0 −M||
B2(R2d)

,(16)

for f = f(t, x, v), the unique solution of equation (1). This is a direct consequence
of the decrease of the so-called relative entropy for any f0 > 0. That is,

0 ≤ H(f,M)(t) :=

∫ ∫
f(t, x, v) ln

f(t, x, v)

M(x, x)
dx dv(17)

≤ 3||f0 −M||
B2(R2d)

exp(−λ t) .



POSITIVITY-PRESERVING DISCONTINUOUS GALERKIN SCHEMES 161

We point out that, if the potential V satisfies the growth condition (13), the
following functional estimates hold for any function g ∈ B2(R2d),

(18) ‖g‖L2
m(R2d) =

∫
Rdx

∫
Rdv

|g|2(1 + |x|2 + |v|2)m/2 dx dv ≤ CV ‖g‖
B2(R2d)

,

where CV = CV (K1, R,m) and K1 and R are constants from (13).
Regarding Sobolev regularity results for perturbative states from equilibrium, a

broad work of C. Mouhot and N. Newman [38] was also done around the same period
of Herau’s and Ben Abdallah-Tayeb’s results from [33, 2] on existence and regularity
associated with the linear Vlasov-Boltzmann equation (1). The authors in [38] study
the existence, uniqueness regularity and decay rates for a large general class of linear
collisional kinetic models in the torus, including, in particular, the linear collisional
integral associated with the linearized Boltzmann equation for hard spheres, the
linearized Landau equation with hard and moderately soft potentials and the semi-
classical linearized fermionic and bosonic relaxation models. More specifically, they
showed explicit coercivity estimates on the associated integro-differential operators
for some modified Sobolev norms. They also obtained existence of classical solutions
near equilibrium for the full nonlinear models associated with explicit regularity
bounds and estimates on the rate of exponential convergence towards equilibrium
in the perturbative setting. Their proofs follow from the ideas of coercivity and
hypoellipticity as developed in [34, 32, 33, 50] into a characterization of existence,
uniqueness, regularity and decay rates for equilibrium perturbative solutions by a
study of linear transport equations based on a linear energy method. This method
is characterized by three properties, namely its mixing in velocity, the splitting of
the collisional terms in a coercive form and a regularizing part, and a relaxation
term towards an equilibrium (the so-called Maxwellian).

More specifically, following [38], the solution to the initial value problem asso-
ciated to (1), with periodic boundary conditions Boltzmann equation, propagates
Sobolev regularity and decay estimates. Namely, given the initial state f0 such that
for M(x, v) the unique stationary state from (12)

(19) ‖M−1/2(f0 −M)‖
Hk

≤ ε

for some k ≥ k0 and some 0 < ε ≤ ε0 where ε0 depends explicitly on the collision
operator (i.e., the scattering function σ, then there exists a unique global non-
negative solution f = f(t, x, v) ∈ C([0,∞), Hk) of the initial value problem, such
that

(20) ‖M−1/2(f(t, ·, ·)−M)‖
Hk

≤ C exp(−γt) for all t ≥ 0

with some constants C and γ > 0. that can be explicitly computed. In particular, C
is proportional to the initial ‖f0 −M‖Hk deviation from the equilibrium state M.
The conclusion still holds true when a repulsive self-consistent Poisson potential is
added (still with periodic boundary conditions).

Remark. While the cited Sobolev regularity results from [38] required some initial
closeness to the equilibrium state M, the one from [33] does not. It is not known up
to this point if the regularity results of [38] will hold for large data. Nevertheless, our
estimates are for large data, but the computational boundary in phase space is based
on the fact that for sufficiently confined potential associated to the field E(x, t) the
solution will decay to the unique equilibrium state M (see subsection immediately
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below). We also point out that our estimates are done for zero spatial incoming
boundary conditions but they are also valid for periodic boundary conditions as
well.

1.2. Selection of the computational domain for global in time estimates.
In order to fix the computational domain for our estimates, we proceed as follows.
First we notice that the equilibrium state associated to the steady state problem
with a linear collisional integral satisfies

(21) ‖M‖
B2(Ω)

= ‖M‖1/2
L1(Ω)

for any arbitrary set Ω and that, for any arbitrary ε > 0, there is an Ωε ∈ R
2d such

that

(22)

∫
Rd

x×Rd
v\Ωε

|M| < ε.

Essentially the set Ωε is not “very big” since f ∈ B2 means that f2 decays very fast
as it is integrable when multiplied by the inverse of the L1 integrable stationary
state M(x, v). In the particular case where M is given by (12), diam(Ωε) ≈ − log ε
for ε � 1.

Under the assumption that that there is a stationary state M ∈ L1(R2d), from
(16), for which it is possible to obtain a controlling inequality that yields a stable
decay estimate to the stationary state of the form ‖f(x, v, t)−M‖

L2
μ(R2d)

≤ g(t)‖f0−
M‖

B2(R2d)
for initial state f0 and a positive, bounded g(t) such that limt→∞ g(t) =

0. (In fact, due to [33, 38], one may take g(t) = e−λt, λ > 0 in the case of a
quadratically confined V (x).)

Now we consider the error made by working on the cut-off domain Ωε. Suppose
that the solution f(x, v, t) is uniformly controlled in time and stable with respect
to the initial state f0 for problem (1) in all of R+ × R

2d. Then, one can estimate
the B2(Ωε)-norm of the solution by

‖f‖
B2(Ωε)

≤ g(t) ‖f0 −M‖
B2(R2d)

+ ‖M‖1/2L1(Ωε)
≤ K,

where the constant K is uniform in time since g(t) is uniformly bounded in t.
Similarly,

‖f‖B2(R2d\Ωε) ≤ g(t) ‖f0 −M‖
B2(R2d)

+ ‖M‖1/2
L1(R2d\Ωε)

= Cg(t) + ε1/2 ,

uniformly in time, where C = ‖f0 −M‖
B2(R2d)

, and ‖M‖
L1(R2d\Ωε)

≤ ε1/2.

In particular, using that limt→∞ g(t) = 0 there exits a T ∗ sufficiently large
depending on the B2-norm distance between the initial and stationary states as well
as on the decay rate g(t), such that C|g(t)| = O(ε1/2) for any t ≥ T∗. Therefore,

(23) ‖f‖
B2(R2d)

(t) = ‖f‖
B2(Ωε)

(t) +O(ε1/2) ,

or equivalently,

(24) ‖f‖
B2(R2d\Ωε)

(t) = O(ε1/2) ,

uniformly, for any time t ≥ T∗. In particular, the amount of mass lost by working
in the cut-off domain can be controlled by reducing the distance between the initial
state and stationary states, or increasing the size of Ωε. Mass conservation in this
domain is also improved if the time decay rate of g(t) is high.
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Therefore, it is possible to choose the domain Ωε big enough, such that it con-
tains almost all of the total mass of the initial datum f0 and of the stationary
states M from (12). Then, at least computationally and well beyond machine
accuracy, the solution f of the Cauchy problem Ωε will take values at the bound-
ary of order O(ε1/2) in the B2-norm, and is well approximated by zero, with zero
derivatives, and consequently the associated evolution problem will essentially be
confined to the domain Ωε. Thus, choosing the computational domain Ωε yields
that all approximations will have a fixed error O(ε1/2) uniformly in time t > T∗, in
the B2(Ωε)-norm.

Furthermore, since the problem is conservative in L1(Ωε), extending the domain
such that the initial data itself, extended with zero values outside Ωε, is supported
at an O(1) distance from the new boundary, the solution will remain close to
the solution of the problem in all spaces. To the best of our knowledge, there is
no available analytical result at the present time to rigourously justify this last
statement, which is an assumption for the initial boundary value problem under
consideration and the corresponding one in all spaces.

We remind the reader that the above estimates do not provide a pointwise con-
trol of the solution to f outside the domain Ωε. However, we can obtain good
estimates in the L2-norm. It is important to note that this approach is intended
to heuristically justify the selection of the computational domain. However, the
calculation of error estimates in the following sections are with respect to the solu-
tion of the initial value problem in the bounded domain. Our error estimates are
done for zero spatial incoming boundary conditions which are also valid for periodic
boundary conditions. We also assume null phase space boundary conditions in the
cut-off domain.

2. Properties of the collisional operator

In this section we present some important properties of the linear Boltzmann
collision operator that are used in our subsequent analysis. As pointed out in
subsection 1.3, we have to implement numerical calculations on a finite domain in
the phase space. The collisional operator under this assumption which will be used
in the rest of the paper is

(25) Qσ(f)(t, x, v) =

∫
v′∈Dd

v

(σ(x, v, v′)f ′ − σ(x, v′, v)f)dv′.

The most crucial property of the characterization of the linear collisional operator
is related to the scattering function σ(x, v, v′). Its symmetry and integrability
properties determine the conservation and monotonicity properties of the collisional
integral, which implies the L1 propagation property of the associated Boltzmann
transport equation. In particular, this yields a unique positive solution existence
result for any transport equation [25]. We include these elementary proofs not
only for the sake of completeness, but also because we will extend them to a semi-
discrete version of mass conservation of the DG scheme, and in particular to the
monotonicity and positivity preservation properties of the first-order DG scheme.

Property 1 (Symmetry and integrability of the scattering transition probabilities).
The scattering rate function σ(x, v, v′), restricted to the computational domain
ΩD = Dd

x × Dd
v ⊆ R

d
x × R

d
v as defined in subsection 1.3, is assumed to be positive,
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to be x-space anisotropic, to satisfy the detailed balanced principle (3) and to be
integrable in v ∈ Dd

v . That is,

σ(x, v, v′) = k(x, v, v′)M(v), k(x, v′, v) = k(x, v, v′),

ν(x, v) =

∫
Dd

v′

σ(x, v′, v) dv′ < K, the collision frequency.

Next, we demonstrate a monotonicity property of any linear collision integral
Qσ(f) with σ(x, v, v′) any (v, v′)-space symmetric in Dd

v×Dd
v′ satisfying Property 1.

All of the following results are a trivial observation of the fact that solutions to the
initial value problem to the linear transport problem produce a monotone mass
preserving map. This presentation follows the original work of [25] on relationships
between non-expansive and order preserving mappings. This is a very natural
framework to deal with kinetic collisional transport equations.

Property 2 (Monotonicity). Let G(x) be any monotone non-decreasing real-valued
function defined on R. The following monotonicity formula holds:

(26)

∫
Dd

v

Qσ(f)G(
f

M
) dv ≤ 0, for all x ∈ Dd

x.

Proof. Denote M = M(v) and M ′ = M(v′). By the definition of the linear collision
integral and Property 1 on the positivity and symmetry of the scattering function,
we have that∫

Dd
v

Qσ(f)G(
f

M
) dv =

∫
Dd

v×Dd
v′

(
k(x, v, v′)Mf ′ − k(x, v′, v)M ′f

)
G( f

M
) dv′dv

=

∫
Dd

v×Dd
v′

k(x, v, v′)MM ′
(

f ′

M ′ −
f

M

)
G( f

M
) dv′dv

=

∫
Dd

v×Dd
v′

k(x, v′, v)M ′M

(
f

M
− f ′

M ′

)
G( f ′

M ′ ) dv
′dv

=
1

2

∫
Dd

v×Dd
v′

k(x, v, v′)MM ′
(

f ′

M ′ −
f

M

)
(G( f

M
)− G( f

′

M ′ )) dv
′dv

≤ 0

by the symmetry of k(x, v, v′) and by the monotonicity of G. �

An immediate consequence of the monotonicity Property 2 is conservation of
mass, which is obtained by taking the function G(x) = 1, and observing that the
above proof yields an identity.

Property 3 (Conservation). The collisional operator is mass conservative:∫
Dd

v

Qσ(f)dv = 0.

The next property is also a direct application of the monotonicity Property 2,
and in fact yields a classical type of so-called entropy or energy estimate for first-
order transport equations when multiplied by monotone non-decreasing functions
with convex antiderivatives. This is indeed also a consequence the non-expansive
measure preserving nature of the collisional integral as also shown in [25].
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Property 4 (L1-contraction). Assuming zero boundary conditions, the collisional
operator is L1-contractive in the sense that

d

dt
||f ||L1(Dd

v×Dd
x)

≤ 0.

Proof. Note that |f |t= ft sgn(f)= ft sgn(
f
M ), and ∇|f |=∇f sgn(f)=∇f sgn( f

M ).

Multiply equation (9) by G(f) = sgn( f
M ), which is a monotone increasing function

of its argument, and integrate over Rd
x × R

d
v to obtain

(27)

∫
Dd

x

∫
Dd

v

∂f

∂t
sgn(

f

M
) dv dx+

∫
Dd

x

∫
Dd

v

α · ∇f sgn(
f

M
) dvdx

=

∫
Dd

x

∫
Dd

v

Qσ(f) sgn(
f

M
) dv dx ≤ 0 ,

by Property 2, and

(28)

∫
Dd

x

∫
Dd

v

α · ∇f sgn(
f

M
) dvdx =

∫
Dd

x

∫
Dd

v

α · ∇|f |dvdx = 0,

and consequently,

(29)
d

dt

∫
Dd

x

∫
Dd

v

|f | dvdx =

∫
Dd

x

∫
Dd

v

∂f

∂t
sgn(

f

M
) dv dx ≤ 0,

thus concluding the proof. �

A natural corollary of the monotonicity Property 2 and mass preserving Property
3 is the positivity of the solution to the initial value problem.

Property 5 (Positivity of the solution to the initial value problem). Assuming
zero boundary conditions, the solution to the initial value problem (1) is positive
for all times if the initial probability f0 = f(0, x, v) is positive.

Proof. The proof is very similar to the one for Property 4 above. Here, choose G =
1
2 (sgn(

f
M )−1) = 1

2 (sgn(f)−1) as a test function for the linear Boltzmann equation.
Since the negative part of f , defined as f− = max{0,−f} is the antiderivative of
G, as in (27) and (28),

(30)
d

dt

∫
Dd

x

∫
Dd

v

f− dvdx =

∫
Dd

x

∫
Dd

v

Qσ(f)
sgn( f

M )− 1

2
dvdx ≤ 0 .

Thus one obtains that∫
Dd

x

∫
Dd

v

f− dvdx ≤
∫

Dd
x

∫
Dd

v

f−(0, x, v) dvdx(31)

=

∫
Dd

x

∫
Dd

v

max{0,−f0} dvdx = 0 ,
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since f0 is always taken positive. Since the integrand f− is a non-negative function
whose integral, computed in (31), was shown to be non-positive, then it must be
f−(t, x, v) = 0 for all t ≥ 0. Consequently, f(t, x, v) is positive for all t ≥ 0. �
Remark. In fact, the positivity and mass conservation properties immediately yield
conservation of the L1-norm, and thus L1-stability as well. Although the above
proof may be viewed as redundant, we have included it for completeness for our
numerical scheme properties. However, the resulting scheme is stable for any order
of the approximating polynomial space. Obviously, all of these estimates have an
error O(ε) with respect to the continuum solution in the whole space.

The next lemma will provide L
2

(ΩD) control estimates for the collision operator
under suitable assumptions on the growth of the scattering rate function σ(x, v, v′)
restricted to Dd

x × Dd
v × Dd

v′ . It is important for the stability and error estimates
for the DG scheme.

Lemma 6 (L
2

(ΩD) control of the collisional integral). Assume the scattering rate
function satisfies (26) and

(32) 0 ≤ σ(x, v, ·) ≤ C1 + C2(|x|+ |v|) .
Then for f and g ∈ L2(ΩD), the following estimate holds:

(33)

∫
ΩD

Qσ(f) g dx dv ≤ Cσ diam(ΩD) diam(Dd
v) ‖f‖L2(ΩD)

‖g‖
L2(ΩD)

.

These estimates are time dependent and and their parameters given by Cσ =
2max{C1, 2C2} depend on σ.

Remark. We note that the growth condition (32) can be taken as the same growth
of the advection vector α = (v,∇V ). That means the growth of the scattering
function σ as a function of x , or its corresponding collision frequency function ν,
can be of the same order as the growth of the gradient of the potential. In our
particular problem, due to condition (13), we assume at most linear growth in x.

Proof.∫
(x,v)∈ΩD

Qσ(f) g dvdx

=

∫
Dd

x

∫
Dd

v

∫
Dd

v

(σ(x, v, v′)f(x, v′)− σ(x, v′, v)f(x, v)) g(x, v) dv′dvdx

= A1 −A2,

where

A1 =

∫
Dd

x

∫
Dd

v

∫
Dd

v

σ(x, v, v′)f(x, v′) g(x, v) dv′dvdx

and

A2 =

∫
Dd

x

∫
Dd

v

∫
Dd

v

σ(x, v′, v)f(x, v) g(x, v) dv′dvdx.

Since σ(x, v, ·) ≤ C1 + C2(|x|+ |v|), we have

|A1| ≤
∫
Dd

x

∫
Dd

v

∫
Dd

v

(C1 + C2(|x|+ |v|)) |f(x, v′)| |g(x, v)| dv′dvdx

≤ Cσ

2
diam(ΩD)

∫
Dd

x

∫
Dd

v

∫
Dd

v

|f(x, v′)| |g(x, v)| dv′dvdx
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≤ Cσ

2
diam(ΩD) diam(Dd

v)

∫
Dd

x

||f(x, ·)||L2(Dd
v)

· ||g(x, ·)||L2(Dd
v)
dx

≤ Cσ

2
diam(ΩD) diam(Dd

v)||f ||L2(ΩD) · ||g||L2(ΩD).

By similar arguments,

|A2| ≤ Cσ

2
diam(ΩD) diam(Dd

v)||f ||L2(ΩD) · ||g||L2(ΩD),

so ∫
ΩD

Qσ(f) g dx dv ≤ Cσ diam(ΩD) diam(Dd
v) ||f ||L2(ΩD) · ||g||L2(ΩD). �

3. Formulation of the DG Scheme

In this section, and without loss of generality, we assume Dd
v = [−Vi, Vi]

d and
Dd

x = [0, Li]
d, for 0 < Vi, Li < ∞, i = 1 . . . d.

Let {Th} denote a family of a non-degenerate finite element subdivisions of ΩD
partitioned into open disjoint elements K with exterior boundary ∂ΩD. We denote
hK to be the diameter of element K, ρK to be the diameter of the biggest sphere
included inK, we impose the classical assumption of shape regularity [15], hK/ρK ≤
σ0, and let h = supK hK . Denote the set of all element edges associated to this
mesh as eh =

⋃
K∈Th

∂K. eh is defined to allow redundancy. For example, if an
edge e ∈ ∂K1 and e ∈ ∂K2, it will appear twice. This notation allows for the
hanging nodes in the mesh. Denote edges that belong to ΩD as

F 0− (F 0+) the set of faces located on ∂ΩD such that x = 0, v < 0(v > 0),

FL−
i (FL+

i ) the set of faces located on ∂ΩD such that x = Li, v < 0(v > 0),

F−Vi (F+Vi) the set of faces located on ∂ΩD such that v = −Vi(v = +Vi).

Define the inflow face as Γ− =
⋃

i{F 0+∪FL−
i }, and suppose fh = f in on Γ−. Define

Γ0 =
⋃

i{F−Vi ∪ F+Vi}. Since f is a probability distribution, it is reasonable to
enforce fh = 0 on Γ0 when Vi is large enough.

The finite element space is defined as

(34) V k
h = {φh ∈ L2(ΩD) : ∀K ∈ Th(ΩD), φh|K ∈ P k(K)}

where P k(K) is the set of polynomials of total degree at most k on the simplex K.

3.1. The semi-discrete DG scheme. The semi-discrete discontinuous Galerkin
discretization of (9) is given as follows: seek fh = fh(t, x, v) ∈ R

+
t × V k

h such that,
the equality below holds for all test functions wh ∈ V k

h ,

(35) (∂tfh, wh)Th
+A(fh, wh) = L(wh),

where

(36) A(fh, wh) ≡ −(fh, α · ∇wh)Th
+ 〈f̂h, wh α · n〉∂Th\Γ−\Γ0 − (Qσ(fh), wh)Th

and

(37) L(wh) ≡ −〈f in, wh α · n〉Γ− .

In the above equalities, we use the notations

(ζ, w)Th
≡

∑
K∈Th

∫
K

ζ wdxdv, 〈ζ, w α · n〉∂Th
≡

∑
K∈Th

∫
∂K

ζ(γ)w(γ)α(γ) · ndγ,
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and n denotes the outward unit normal vector to ∂K. For any edge e ∈ eh that is
not associated with a particular K, n can be defined as the unit normal in either

of the possible directions. f̂h is the monotone numerical flux, which is chosen as
the upwind flux in our case,

f̂h = f−
h ,

where f−
h (z) = limδ↓0 fh(z − δ α(z)), and α(·) is defined in (10).

The standard L2-projection for any function u is a function Pu ∈ V k
h , such that

(Pu− u,wh)Th
= 0,

for all wh ∈ V k
h . The initial condition is defined through the L2-projection fh(0, x, v)

= Pf(0, x, v).
In practice, the face and volume integrals in A(fh, φh), L(φh) need to be eval-

uated by certain numerical quadratures. One can choose to implement a very
high-order quadrature on those terms to guarantee the quadrature error is on the
order of machine precision. Furthermore, since the scheme is linear on fh, those
integrations only need to be performed on the basis functions and can be stored
before the time evolution starts. On the other hand, we can also use quadrature
formulas with a fixed number of points. In [18], it was proven that a quadrature
formula for face integrals that is exact for polynomials of degree (2k + 1) and el-
ement integrals that is exact for degree 2k polynomials can guarantee an error in
the || · ||∞ norm of order hk+1. This error is on the order of the distance of f to the
finite element space V k

h and will not deteriorate the quality of numerical solution.
For simplicity of discussion, from this point on, we shall assume the integrals are
evaluated exactly for the semi-discrete scheme.

3.2. Time discretization. We use total variation diminishing (TVD) high-order
Runge-Kutta methods [46] to solve the method of lines ODE resulting from the
semi-discrete scheme,

(38) (fh)t = R(fh).

Those time stepping methods are convex combinations of the Euler forward time
discretization. The commonly used third-order TVD Runge-Kutta method is given
by

f
(1)
h = fn

h +�tR(fn
h ),

f
(2)
h =

3

4
fn
h +

1

4
f
(1)
h +

1

4
�tR(f

(1)
h ),

fn+1
h =

1

3
fn
h +

2

3
f
(2)
h +

2

3
�tR(f

(2)
h ).(39)

A detailed description of the TVD Runge-Kutta method can be found in [46]; see
also [28], and [29] for the strong-stability-perserving method.

3.3. The limiter and positivity-preserving DG scheme. The scheme in sub-
section 3.1 conserves mass. Furthermore, it is monotone and thus positivity-
preserving for piecewise constant approximations under certain CFL conditions (cf.
Section 4). However, it is highly non-trivial how to preserve positivity of the solu-
tion for high-order discretizations. In [52], a limiter that preserves the maximum
principle of conservation laws is proposed. This limiter is uniformly high-order ac-
curate. Moreover, it does not change the cell average of the numerical solution. We
present the limiter below and defer the detailed analysis of the scheme to Section 5.



POSITIVITY-PRESERVING DISCONTINUOUS GALERKIN SCHEMES 169

In each of the forward Euler step of the time discretization, the following proce-
dures are performed:

• On each simplex K, evaluate TK = min(x,v)∈SK
fh(x, v), where SK denotes

the set of certain points on K that will be described in Section 5.
• Compute f̃h(x, v) = θ(fh(x, v) − (fh)K) + (fh)K , where (fh)K is the cell
average of fh on K, and θ = min{1, |(fh)K |/|TK − (fh)K |}. This limiter
has the effect of keeping the cell average and “squeezes” the function to be
positive at points in SK .

• Use f̃h instead of fh to compute the Euler forward step. A suitable CFL
condition will be derived in Section 5.

In [52], it was shown that this limiter is uniformly (k+1)-th order accurate. We
defer relevant analysis of the scheme to Section 5.

4. Analysis of the semi-discrete DG scheme

In this section, we will analyze the properties of the semi-discrete DG scheme
(35). For simplicity of discussion, we assume periodic boundary conditions on f
in all directions. The discussion also implies the case of f in = 0. The general
case will involve terms like ||f in||L2(Γ−) in the stability proof and will destroy mass
conservation. The proof is rather technical and we do not pursue it in this paper.

If periodic conditions are imposed, then the term A(fh, wh) and L(wh) are sim-
plified as

A(fh, wh) = −(fh, α · ∇wh)Th
+ 〈f−

h , wh α · n〉∂Th
− (Qσ(fh), wh)Th

and
L(wh) = 0.

4.1. Mass conservation. The following theorem implies the mass conservation
property of the semi-discrete DG scheme.

Theorem 7. The semi-discrete DG scheme conserves mass, i.e.,

(40)
d

dt

∫
ΩD

fhdvdx = 0.

Proof. Let wh = 1 in (35). (40) follows from Property 3 and 〈f−
h , 1α·n〉∂Th

= 0. �
4.2. L2-stability and error estimate for arbitrary order. Here we prove the
L2-stability and error estimate for (35) with arbitrary order of discretization. The
proof use heavily the properties of the operator Qσ(·) derived in Section 2.

4.2.1. The case when M(v) = constant. We first consider the simplified case of
M(v) = constant to illustrate the ideas of the proof. The general case will be
treated in subsection 4.2.2. When M(v) =constant, σ(x, v, v′) is symmetric about
v and v′ and Property 2 is reduced to∫

Dd
v

Qσ(f)G(f) dv ≤ 0, for all G that is a monotone non-decreasing function.

Theorem 8 (L2-stability when M(v) = constant). Consider the semi-discrete
discontinuous Galerkin solution fh in (35) to the linear Boltzmann equation (9)
with M(v) = constant, we have,

(41) ‖fh(t)‖L2(ΩD) ≤ ‖fh(0)‖L2(ΩD).
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Proof. Let the test function wh = fh in (35), then

(∂tfh, fh)Th
+A(fh, fh) = 0,

where

A(fh, fh) = −(fh, α · ∇fh)Th
+ 〈f−

h , fh α · n〉∂Th
− (Qσ(fh), fh)Th

= −1

2
〈fh, fh α · n〉∂Th

+ 〈f−
h , fh α · n〉∂Th

− (Qσ(fh), fh)Th

=
1

4
〈[fh], [fh] |α · n|〉eh − (Qσ(fh), fh)Th

=
1

4
||[fh]

√
|α · n| ||2L2(eh)

− (Qσ(fh), fh)Th
,

where the notation 〈ζ, w〉eh =
∑

e∈eh
〈ζ, w〉e, and [fh] = f+

h − f−
h denotes the jump.

Note that in the above equality, the factor is 1
4 not 1

2 due to the redundancy in the
notation eh. It holds true for the case of α as a variable, and allows α ·n to change
sign within a single edge. Because of Property 3 of Qσ, (Qσ(fh), fh)Th

≤ 0. Hence

A(fh, fh) ≥ 0,

and we are done. �

In order to prove L2 error estimates, we follow the classic work of [35] for constant
coefficient conservation laws. The main difficulty is that we are treating a variable
coefficient equation with a collisional integral. The averaging technique in the proof
of [17] will be adopted to take care of the variable coefficient α, while the collision
term will be bounded using Lemma 7. We remark that the accuracy order (k+ 1

2 )
obtained below is optimal under general meshes [41]. The error estimates could
be improved to (k + 1)th order, if special restrictions on the mesh and special
projections are used; see [45, 19, 16, 17] for related discussions, and we will not
pursue it in this paper.

Theorem 9 (L2 error estimate whenM(v) = constant). Consider the semi-discrete
discontinuous Galerkin solution fh in (35) to the linear Boltzmann equation (9) with
M(v) = constant, we have

(42) ||fh(t, ·, ·))− f(t, ·, ·)||L2(ΩD) ≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)) ,

where C = C(diam(ΩD), ||α||W{1,∞}(ΩD)) and C does not depend on h or t.

Proof. Since the exact solution f also satisfies the (35), we have

(∂tf, wh)Th
+A(f, wh) = L(wh),

for any test function wh ∈ V k
h . If we define the error as E = f − fh, then

(∂tE, wh)Th
+A(E, wh) = 0.

We use the L2-projection P to decompose E into two parts, namely E = E + Eh,
where E = f − Pf and Eh = Pf − fh. Clearly, Eh ∈ V k

h , thus

(∂tE, Eh)Th
+A(E, Eh) = 0,

which implies

(43) (∂tEh, Eh)Th
+A(Eh, Eh) = −(∂tE , Eh)Th

−A(E , Eh).
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Following the definition of L2-projection, we have (E , wh)Th
= 0 for any wh ∈ V k

h .
Hence (∂tE , wh)Th

= 0 for any wh ∈ V k
h , and

(44) (∂tE , Eh)Th
= 0.

Similar to the stability proof we have

(45) A(Eh, Eh) =
1

4
||[Eh]

√
|α · n| ||2L2(eh)

− (Qσ(Eh), Eh)Th
.

Plug (44) and (45) into (43), we get

(∂tEh, Eh)Th
+

1

4
||[Eh]

√
|α · n| ||2L2(eh)

= (Qσ(Eh), Eh)Th
−A(E , Eh) ≤ −A(E , Eh).

Next we will try to bound the right-hand side of the above inequality. Since

−A(E , Eh) = (E , α · ∇Eh)Th
− 〈E−, Eh α · n〉∂Th

+ (Qσ(E), Eh)Th
.

If we define

T1 = (E , α · ∇Eh)Th
,

T2 = 〈E−, Eh α · n〉∂Th
,

T3 = (Qσ(E), Eh)Th
,

then

−A(E , Eh) ≤ |T1|+ |T2|+ |T3|.
It remains to estimate the terms Ti, i = 1, 2, 3.

Estimate of T1: For term T1, if α is a constant, then T1 = 0 since α · ∇Eh ∈ V k
h .

However, this is not true when α depends on x and v. In this case, similar to [17],
we define an average of α on each simplex K as a constant vector α0, such that

〈(α− α0) · n, 1〉∂K = 0.

Then it follows that

T1 = (E , (α− α0) · ∇Eh)Th
,

which implies

|T1| ≤
∑

K∈Th

||E||L2(K) ||α− α0||L∞(K) ||∇Eh||L2(K).

By the inverse inequality, there exists a constant CK such that

||∇Eh||L2(K) ≤ CK ||Eh||L2(K)/hK .

Hence,

|T1| ≤
∑

K∈Th

CK ||E||L2(K) ||Eh||L2(K) {||α− α0||L∞(K)/hK}

≤ C max
K∈Th

{||α− α0||L∞(K)/hK}
∑

K∈Th

||E||L2(K) ||Eh||L2(K),

≤ C max
K∈Th

{||α− α0||L∞(K)/hK} ||E||L2(Th) ||Eh||L2(Th),

≤ C|α|W{1,∞}(Th)||E||L2(Th) ||Eh||L2(Th),

where the last inequality holds similar to [17]. Now, recall a standard estimate for
the L2-projection,

||E||L2(K) + h
1
2

K ||E||L2(∂K) + hK ||∇E||L2(K) ≤ Chk+1
K |f |Hk+1(K).
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Finally, we have

|T1| ≤ C|α|W{1,∞}(Th) |f |Hk+1(Th) h
k+1 ||Eh||L2(Th).

Estimate of T2:

|T2| = |〈E−, Eh α · n〉∂Th
| = |1

2
〈E−, (E−

h − E+
h ) |α · n|〉eh |

≤ 1

8
||[Eh]

√
|α · n| ||2L2(eh)

+
1

2
||E−√|α · n| ||2L2(eh)

≤ 1

8
||[Eh]

√
|α · n| ||2L2(eh)

+ C ||α||L∞(Th) ||E||2L2(eh)

≤ 1

8
||[Eh]

√
|α · n| ||2L2(eh)

+ C h2k+1 |f |2Hk+1(Th)
||α||L∞(Th).

Estimate of T3: It follows from Lemma 6 that

T3 = (Qσ(E), Eh)Th
=

∫
Dd

x

∫
Dd

v

Qσ(E)Eh dvdx

≤ C diam(ΩD) diam(Dd
v)||E||L2(ΩD) · ||Eh||L2(ΩD)

≤ C diam(ΩD) diam(Dd
v)|f |Hk+1(Th) h

k+1 ||Eh||L2(Th).

Combining the estimates of T1, T2 and T3, we have

(∂tEh, Eh)Th
+

1

4
||[Eh]

√
|α · n| ||2L2(eh)

≤ 1

8
||[Eh]

√
|α · n| ||2L2(eh)

+ C ||α||L∞(Th) h
2k+1 |f |2Hk+1(Th)

+C(|α|W{1,∞}(Th) + diam(ΩD) diam(Dd
v)) |f |Hk+1(Th) h

k+1 ||Eh||L2(Th).

In the case of quadratically confined electrostatic potentials, ||α||W{1,∞}(ΩD) ≤ C,
this implies

(∂tEh, Eh)Th
≤ C |f |2Hk+1(ΩD) h

2k+1 + C |f |Hk+1(ΩD) h
k+1||Eh||L2(Th),

where C = C(||α||W{1,∞}(ΩD)). Hence,

d

dt
||Eh||2L2(ΩD) ≤ C h2k+1 |f |2Hk+1(ΩD) + C h||Eh||2L2(ΩD).

Since Eh = 0 at t = 0, we have

||Eh||L2(ΩD) ≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)),

so

||E||L2(ΩD) ≤ C (
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)) + hk+1).

We remark that, if ||f(t = 0)||Hk+1(ΩD) ≤ C, then ||f(t)||Hk+1(ΩD) ≤ C, by the
regularity propagation property (20) (see [38] for detailed discussions). For the
practically relevant case of t ≥ Ch, i.e., after a few time steps, we obtain the L2

error estimates of the DG solution as

||E||L2(ΩD) ≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)). �
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4.2.2. The general case when M(v) is not a constant. In the case of general M(v),∫
Dd

v
Qσ(f) f dv ≤ 0 is no longer true. This will introduce some extra terms in the

proof. We can see from below that the L2-norm of the fh is no longer strictly
decaying.

Theorem 10 (L2-stability for general M(v)). Consider the semi-discrete discon-
tinuous Galerkin solution fh in (35) to the linear Boltzmann equation (9), we have,

(46) ‖fh(t)‖L2(ΩD) ≤ exp(C t)‖fh(0)‖L2(ΩD),

where C = C(diam(ΩD)).

Proof. The proof follows similar to that of Theorem 8. Let the test function wh = fh
in (35), then

(∂tfh, fh)Th
+A(fh, fh) = 0,

where

A(fh, fh) =
1

4
||[fh]

√
|α · n| ||2L2(eh)

− (Qσ(fh), fh)Th
.

Now (Qσ(fh), fh)Th
is not necessarily non-negative. Here we use Lemma 7 again,

and we have

1

2

d

dt
||fh||2L2(ΩD) = (∂tfh, fh)Th

≤ (Qσ(fh), fh)Th
≤ C ||fh||2L2(ΩD),

where C = C(diam(ΩD)). This implies

‖fh(t)‖L2(ΩD) ≤ exp(C t)‖fh(0)‖L2(ΩD),

and we are done. �

Remark. We can design a semi-discrete DG scheme for (9) to preserve the strict
decay of the B2 norm for fh, in fact if we seek fh = fh(t, x, v) ∈ R

+
t × V k

h such
that, the below equality holds for all for all test function wh ∈ V k

h ,

(∂tfh,
wh

M(x, v)
)Th

+A(fh,
wh

M(x, v)
) = L( wh

M(x, v)
),

then, by the same argument as in the proof of Theorem 9 and the fact that α ·
∇x,vM(x, v) = 0, we can easily deduce ‖fh(t)‖B2(ΩD) ≤ ‖fh(0)‖B2(ΩD). However,
we choose not to use this scheme because M will be near zero in a large portion of
the domain, which will cause difficulty in numerical implementation.

Theorem 11 (L2 error estimate for general M(v)). Consider the semi-discrete
discontinuous Galerkin solution fh in (35) to the linear Boltzmann equation (9),
we have

(47) ||fh(t, ·, ·)− f(t, ·, ·)||L2(ΩD) ≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)),

where C = C(diam(ΩD), ||α||W{1,∞}(ΩD)) and C does not depend on h or t.

Proof. The proof is very similar to those in Theorem 9. Using the same set of
notation, we have

(∂tEh, Eh)Th
+

1

4
||[Eh]

√
|α · n| ||2L2(eh)

= (Qσ(Eh), Eh)Th
−A(E , Eh),
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except the fact that (Qσ(Eh), Eh)Th
is not necessarily negative. Following the same

lines of proof to bound −A(E , Eh), we obtain

d

dt
||Eh||2L2(ΩD) ≤ C h2k+1 |f |2Hk+1(ΩD) + C h||Eh||2L2(ΩD) + (Qσ(Eh), Eh)Th

≤ C h2k+1 |f |2Hk+1(ΩD) + C h||Eh||2L2(ΩD) + C ||Eh||2L2(ΩD)

≤ C h2k+1 |f |2Hk+1(ΩD) + C ||Eh||2L2(ΩD).

Hence (47) follows using Eh(t = 0) = 0. �

The next theorem concerns the decay of numerical solution fh towards equilib-
rium. It is a direct consequence of the error estimates above.

Theorem 12 (L2 decay of numerical solution towards equilibrium). Consider the
semi-discrete discontinuous Galerkin solution fh in (35) to the linear Boltzmann
equation (9), we have

||fh(t, ·, ·)−M||L2(ΩD) ≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD))(48)

+ 3e−λt||f0 −M||B2(Rd),

where C = C(diam(ΩD), ||α||W{1,∞}(ΩD)).

Proof. From the error estimates (42) and also the analytical estimates (16) and
(18) from the discussion of Section 1.1,

||fh −M||L2(ΩD) ≤ ||fh − f ||L2(ΩD) + ||f −M||L2(ΩD)

≤ ||fh − f ||L2(ΩD) + ||f −M||L2(ΩD)

≤ ||fh − f ||L2(ΩD) + ||f −M||B2(Rd)

≤ C
√
t eCht hk+ 1

2 |f |L∞([0,t],Hk+1(ΩD)) + 3e−λt||f0 −M||B2(Rd),

where f0 is the initial condition. �

As the above theorem indicates, for a high-order discretization with not a large
terminal time, we will be able to observe exponential decay of fh towards equilib-
rium, which comes in as the term 3e−λt||f0 −M||B2(Rd).

4.3. The special case of V 0
h . In this subsection, we consider the special case

of piecewise constant discretization. We show the L1 stability and positivity-
preserving property of the numerical solution as an analog of the exact solution.
The following two results are an adaptation of the Crandall-Tartar lemma [25] to
low-order DG schemes, which states that any mass preserving, contracting linear
first-order operator is stable and monotone preserving.

Theorem 13 (L1-stability). Consider the semi-discrete discontinuous Galerkin
solution fh in (35) to the linear Boltzmann equation (9), in the case of piecewise
constant basis functions,

(49) ‖fh(t)‖L1(ΩD) ≤ ‖fh(0)‖L1(ΩD).
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Proof. Fix t > 0. Take wh = sgn( fhM ) = sgn(fh). This is a valid choice because

wh ∈ V 0
h , and sgn(·) is also a monotone function. Then we obtain

(∂tfh, sgn(fh))Th
+A(fh, sgn(

fh
M

)) = 0,

where

A(fh, sgn(
fh
M

)) = 〈f−
h , sgn(fh)α · n〉∂Th

− (Qσ(fh), sgn(
fh
M

))Th

= −1

2
〈f−

h , [sgn(fh)] |α · n|〉∂Th
− (Qσ(fh), sgn(

fh
M

))Th

= 〈|f−
h |, 1{[sgn(fh)] �=0}|α · n|〉∂Th

− (Qσ(fh), sgn(
fh
M

))Th
≥ 0.

Integrating over time, (49) follows because (∂tfh, sgn(fh))Th
= d

dt‖fh(t)‖L1(ΩD).
�

Theorem 14 (Semi-discrete positivity). Consider the semi-discrete piecewise con-
stant discontinuous Galerkin solution fh in (35) to the linear Boltzmann equation
(9), provided fh(t = 0) ≥ 0, the solution remains positive on ΩD:

fh(t, x, v) ≥ 0, for t ∈ [0, T ] for x, v ∈ ΩD.

Proof. The proof of this theorem is rather similar to the previous one and its contin-
uum counterpart. We take the test function wh = 1

2 (sgn(
fh
M )−1) = 1

2 (sgn(fh)−1).

This is a valid choice because wh ∈ V 0
h , and 1

2 (sgn(·) − 1) is also a monotone
function. Then

(∂tfh,
1

2
(sgn(fh)− 1))Th

+A(fh,
1

2
(sgn(fh)− 1)) = 0,

where

A(fh,
1

2
(sgn(fh)− 1))

= 〈f−
h ,

1

2
(sgn(fh)− 1)α · n〉∂Th

− (Qσ(fh),
1

2
(sgn(

fh
M

)− 1))Th

= −1

2
〈f−

h , [
1

2
(sgn(fh)− 1)] |α · n|〉∂Th

− (Qσ(fh),
1

2
(sgn(

fh
M

)− 1))Th

= −1

4
〈f−

h , [sgn(fh)] |α · n|〉∂Th
− (Qσ(fh),

1

2
(sgn(

fh
M

)− 1))Th

=
1

2
〈|f−

h |, 1{[sgn(fh)] �=0}|α · n|〉∂Th
− (Qσ(fh),

1

2
(sgn(

fh
M

)− 1))Th
≥ 0.

Let

β(w) =

{
0 if w ≥ 0,

−w if w < 0.

Then,

d

dt

∫
ΩD

β(fh)dvdx = (∂tfh,
1

2
(sgn(fh)− 1))Th

≤ 0.
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Since the initial condition is assumed to be non-negative,

β(fh(0)) = max{0,−fh(0, x, v)} = 0,

so that

(50) 0 ≤
∫
ΩD

β(fh(t)) ≤
∫
ΩD

β(fh(0)) = 0,

which implies the non-negativity of fh(t). �

5. Analysis of the positivity-preserving DG scheme

In this section, we analyze the positivity-preserving DG scheme proposed in
subsection 3.3. To simplify the discussion, we will only consider the equation with
1D in x and v space. Similar conclusions hold true for higher dimensions. We
present the results in the setting of rectangular meshes. Discussions about non-
cartesian meshes are provided after Theorem 15. The discussion below closely
follows those in [52], but with the collision term treated separately.

Suppose the partition of the computational domain is as follows: Dx =
⋃Nx

i=1 Ii,

Dv =
⋃Nv

j=1 Jj , where Ii = [xi− 1
2
, xi+ 1

2
], Jj = [vj− 1

2
, vj+ 1

2
]. We use �xi to denote

the length of Ii and �vj to denote the length of Jj . Denote an elementary cell Kij

as Ii × Jj . We denote by f̄n
ij the cell average of fh on Kij at time tn. We abuse

the notation and define f+
i− 1

2 ,j
(v), f−

i+ 1
2 ,j

(v), f+
i,j− 1

2

(x), f−
i,j+ 1

2

(x) as the traces of

fh on Kij on the four edges at time tn respectively. Here the + and − is no
longer associated with the wind direction α, but the direction of the growth of
x, v axis. For example, f+

i− 1
2 ,j

(v) = fh(xi− 1
2
, v) calculated from cell (i, j), and

f−
i− 1

2 ,j
(v) = fh(xi− 1

2
, v) calculated from cell (i− 1, j). We now consider the scheme

with forward Euler time discretization. TVD-RK methods are convex combinations
of Euler forward and are direct generalization of the result below.

We apply the test function wh = 1 on Ki,j and wh = 0 elsewhere. One step of
Euler forward time discretization of (35) will give:

f̄n+1
ij = f̄n

ij −
�t

�xi�vj

∫ v
j+1

2

v
j− 1

2

h1(f
−
i+ 1

2 ,j
(v), f+

i+ 1
2 ,j

(v), v)

− h1(f
−
i− 1

2 ,j
(v), f+

i− 1
2 ,j

(v), v)dv

− �t

�xi�vj

∫ x
i+1

2

x
i− 1

2

h2(f
−
i,j+ 1

2

(x), f+
i,j+ 1

2

(x), x)(51)

− h2(f
−
i,j− 1

2

(x), f+
i,j− 1

2

(x), x)dx

+
�t

�xi�vj

∫ x
i+1

2

x
i− 1

2

∫ v
j+1

2

v
j− 1

2

Qσ(fh)(x, v)dvdx.

In the above formula, h1(·, ·) and h2(·, ·) denote the upwind flux that we have
chosen. In particular,

h1(a, b, v) = v (a 1{v≥0} + b 1{v<0}),

h2(a, b, x) = − e

m
E(t, x) (a 1{E(t,x)<0} + b 1{E(t,x)≥0}).
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The integrals in (51) can be approximated by quadratures to sufficient accuracy;
see subsection 3.1 for related discussions. Suppose now we use a Gauss quadrature
rule with L points, which is exact for single variable polynomials of degree 2L− 1.
From [18], L ≥ k + 1 will be accurate enough in the sense that the L∞ norm of
error induced by quadrature will be smaller than Chk+1.

The set of Gauss quadrature points on Ii is defined as Sx
i = {xβ

i : β = 1, . . . , L}
and the Gauss quadrature points on Jj is Sv

j = {vβj : β = 1, . . . , L}. Let wβ be the

corresponding Gauss weight on the interval [− 1
2 ,

1
2 ], such that

∑
β wβ = 1. We use

subscript β to denote the function value at Gauss quadrature points, for instance,

f−
i+ 1

2 ,β
= f−

i+ 1
2 ,j

(vβj ), etc. Then (51) becomes

f̄n+1
ij = f̄n

ij −
�t

�xi�vj

L∑
β=1

[h1(f
−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )]wβ�vj

− �t

�xi�vj

L∑
β=1

[h2(f
−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )− h2(f

−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )]wβ�xi(52)

+
�t

�xi�vj

L∑
β=1

{
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv}wβ�xi.

Denote λ1 = 
t

xi

, λ2 = 
t

vj

, and the above equality becomes,

f̄n+1
ij = f̄n

ij − λ1

L∑
β=1

wβ [h1(f
−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )]

− λ2

L∑
β=1

wβ [h2(f
−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )− h2(f

−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )]

+ λ2

L∑
β=1

wβ{
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv}.(53)

Similar to [52], we write the cell average as

f̄n
ij =

L∑
β=1

wβ f̄
n
βj =

L∑
β=1

wβ f̄
n
iβ ,

where f̄n
βj = 1


vj

∫ v
j+1

2
v
j− 1

2

fh(x
β
i , v)dv, f̄n

iβ = 1

xi

∫ x
i+1

2
x
i− 1

2

fh(x, v
β
j )dx. Define a1 =

maxDD
v
|v|, a2 = maxDD

x
| emE(tn, x)|. Then (53) becomes

f̄n+1
ij =

a1λ1

a1λ1 + a2λ2
f̄n
ij − λ1

L∑
β=1

wβ [h1(f
−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )]

+
a2λ2

a1λ1 + a2λ2
f̄n
ij−λ2

L∑
β=1

wβ[h2(f
−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )−h2(f

−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )]

+ λ2

L∑
β=1

wβ{
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv}
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=
a1λ1

a1λ1 + a2λ2

L∑
β=1

wβ f̄
n
iβ − λ1

L∑
β=1

wβ [h1(f
−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )

− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )]

+
a2λ2

a1λ1 + a2λ2

L∑
β=1

wβ f̄
n
βj − λ2

L∑
β=1

wβ [h2(f
−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )

− h2(f
−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )]

+ λ2

L∑
β=1

wβ{
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv}

=
a1λ1

a1λ1 + a2λ2

L∑
β=1

wβ[f̄
n
iβ − a1λ1 + a2λ2

a1

(
h1(f

−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )

− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )
)
]

+
a2λ2

a1λ1 + a2λ2

L∑
β=1

wβ[f̄
n
βj −

a1λ1 + a2λ2

a2
(h2(f

−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )

− h2(f
−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )

−
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv)].

The above equality implies

f̄n+1
ij =

a1λ1

a1λ1 + a2λ2

L∑
β=1

wβH
i,β
x +

a2λ2

a1λ1 + a2λ2

L∑
β=1

wβH
β,j
v ,

where Hi,β
x , Hβ,j

v denote one-dimensional schemes as

Hi,β
x = f̄n

iβ − a1λ1 + a2λ2

a1
[h1(f

−
i+ 1

2 ,β
, f+

i+ 1
2 ,β

, vβj )− h1(f
−
i− 1

2 ,β
, f+

i− 1
2 ,β

, vβj )],

Hβ,j
v = f̄n

βj −
a1λ1 + a2λ2

a2
[h2(f

−
β,j+ 1

2

, f+
β,j+ 1

2

, xβ
i )− h2(f

−
β,j− 1

2

, f+
β,j− 1

2

, xβ
i )

−
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv].

To have the positivity of cell average at time tn+1, i.e., to ensure f̄n+1
ij ≥ 0, it suffices

to have Hi,β
x ≥ 0 and Hβ,j

v ≥ 0. We introduce the Gauss-Lobatto points at this
point. We use hats and subscript and superscript α to denote those points, namely,
Ŝx
i = {x̂α

i : α = 1, . . . , N} and Ŝv
j = {v̂αj : α = 1, . . . , N}. ŵα are the Gauss-

Lobatto weights on [− 1
2 ,

1
2 ] such that

∑
α ŵα = 1. The N point Gauss-Lobatto

quadrature rule will be exact for integrals of polynomials up to degree (2N − 3).
The number N should be chosen according to the accuracy of the scheme. For
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example, if 2N − 3 ≥ k, then the equality below is exact:

f̄n
iβ =

N∑
α=1

ŵαfh(x̂
α
i , v

β
j ).

Define Tα,β
i,j = fh(x̂

α
i , v

β
j ) for α = 1, . . . , N, β = 1, . . . , L and T 0,β

i,j = fh(x
−
i− 1

2

, vβj ) =

TN,β
i−1,j , T

N+1,β
i,j = fh(x

+
i+ 1

2

, vβj ) = T 1,β
i+1,j . Then,

Hi,β
x = f̄n

iβ − a1λ1 + a2λ2

a1
[h1(T

N,β
i,j , TN+1,β

i,j , vβj )− h1(T
0,β
i,j , T 1,β

i,j , vβj )]

=
N∑

α=1

ŵαT
α,β
i,j − a1λ1 + a2λ2

a1
[h1(T

N,β
i,j , TN+1,β

i,j , vβj )− h1(T
1,β
i,j , TN,β

i,j , vβj )

+h1(T
1,β
i,j , TN,β

i,j , vβj )− h1(T
0,β
i,j , T 1,β

i,j , vβj )]

=

N−1∑
α=2

ŵαT
α,β
i,j + ŵ1

[
T 1,β
i,j − a1λ1 + a2λ2

a1ŵ1
[h1(T

1,β
i,j , TN,β

i,j , vβj )

−h1(T
0,β
i,j , T 1,β

i,j , vβj )]

]

+ŵN

[
TN,β
i,j − a1λ1 + a2λ2

a1ŵN
[h1(T

N,β
i,j , TN+1,β

i,j , vβj )− h1(T
1,β
i,j , TN,β

i,j , vβj )]

]

We will show that if Tα,β
i,j ≥ 0 for all i ∈ [1, Nx], j ∈ [1, Nv], α ∈ [1, N ], β ∈

[1, L], and a1λ1 + a2λ2 ≤ min(ŵ1, ŵN ), then Hi,β
x ≥ 0. Define Qi,j = T 1,β

i,j −
a1λ1+a2λ2

a1ŵ1
[h1(T

1,β
i,j , TN,β

i,j , vβj ) − h1(T
0,β
i,j , T 1,β

i,j , vβj )], then this is a monotonically in-

creasing function for all of its variables T 0,β
i,j , T 1,β

i,j , TN,β
i,j , which can be verified by

computing its partial derivatives:

∂Qi,j

∂T 0,β
i,j

=
a1λ1 + a2λ2

a1ŵ1

∂h1(T
0,β
i,j , T 1,β

i,j , vβj )

∂T 0,β
i,j

=
a1λ1 + a2λ2

a1ŵ1
vβj 1{vβ

j ≥0} ≥ 0,

∂Qi,j

∂TN,β
i,j

= −a1λ1 + a2λ2

a1ŵ1

∂h1(T
1,β
i,j , TN,β

i,j , vβj )

∂TN,β
i,j

= −a1λ1 + a2λ2

a1ŵ1
vβj 1{vβ

j <0} ≥ 0,

∂Qi,j

∂T 1,β
i,j

= 1− a1λ1 + a2λ2

a1ŵ1

(
∂h1(T

1,β
i,j , TN,β

i,j , vβj )

∂T 1,β
i,j

−
∂h1(T

0,β
i,j , T 1,β

i,j , vβj )

∂T 1,β
i,j

)

= 1− a1λ1 + a2λ2

a1ŵ1

(
vβj 1{vβ

j ≥0} − vβj 1{vβ
j <0}

)
= 1− a1λ1 + a2λ2

a1ŵ1
|vβj | ≥ 1− a1λ1 + a2λ2

ŵ1
≥ 0.

The last line of the inequality is due to a1 = maxDv
|v| ≥ |vβj |. Since T 0,β

i,j ≥ 0,

T 1,β
i,j ≥ 0, TN,β

i,j ≥ 0,

Qi,j ≥ 0− a1λ1 + a2λ2

a1ŵα
[h1(0, 0, v

β
j )− h1(0, 0, v

β
j )] = 0.



180 YINGDA CHENG, IRENE M. GAMBA, AND JENNIFER PROFT

Similarly, we can deduce,

TN,β
i,j − a1λ1 + a2λ2

a1ŵN
[h1(T

N,β
i,j , TN+1,β

i,j , vβj )− h1(T
1,β
i,j , TN,β

i,j , vβj ) ≥ 0.

Hence, Hi,β
x ≥ 0.

In summary, we have proved that if Tα,β
i,j = fh(x̂

α
i , v

β
j ) ≥ 0 for all i ∈ [1, Nx], j ∈

[1, Nv], α ∈ [1, N ], β ∈ [1, L], and the CFL condition a1λ1 + a2λ2 ≤ min(ŵ1, ŵN ) is
satisfied, then Hi,β

x ≥ 0. In the derivation, we only require 2N − 3 ≥ k. One can
show easily that for the non-trivial case k ≥ 1, N = k + 1 satisfies this condition.
From this point on, we assume N = k + 1.

A similar argument will follow for Hβ,j
v , with the difference coming from the

collisional integral
∫ v

j+1
2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv. In fact,

∫ v
j+1

2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv

=

∫ v
j+1

2

v
j− 1

2

∫
Dv

(
σ(xβ

i , v, v
′)fh(x

β
i , v

′)− σ(xβ
i , v

′, v)fh(x
β
i , v)

)
dv′dv

Since fh(x
β
i , v) ∈ P k(v) on cell Jj , it can be expanded as a linear combination of

the basis functions

fh(x
β
i , v) =

N∑
α=1

fh(x
β
i , v̂

α
j )Lα(

v − vj
�vj

) on Jj ,

where Lα(·) are basis functions for Gauss-Lobatto points sα on the interval [− 1
2 ,

1
2 ]

such that Lα(sγ) = δαγ . Hence,∫ v
j+1

2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv

=

Nv∑
m=1

∫ v
j+1

2

v
j− 1

2

∫ v
m− 1

2

v
m− 1

2

σ(xβ
i , v, v

′)fh(x
β
i , v

′)− σ(xβ
i , v

′, v)fh(x
β
i , v) dv

′dv

=

Nv∑
m=1

N∑
α=1

∫ v
j+1

2

v
j− 1

2

∫ v
m− 1

2

v
m− 1

2

σ(xβ
i , v, v

′)fh(x
β
i , v̂

α
m)Lα(

v′ − vm
�vm

)

−σ(xβ
i , v

′, v)fh(x
β
i , v̂

α
j )Lα(

v − vj
�vj

) dv′dv

=
N∑

α=1

Nv∑
m=1

[fh(x
β
i , v̂

α
m)

∫ v
j+1

2

v
j− 1

2

∫ v
m− 1

2

v
m− 1

2

σ(xβ
i , v, v

′)Lα(
v′ − vm
�vm

) dv′dv

−fh(x
β
i , v̂

α
j )

∫ v
j+1

2

v
j− 1

2

∫ v
m− 1

2

v
m− 1

2

σ(xβ
i , v

′, v)Lα(
v − vj
�vj

) dv′dv]

If we define Aα,β
j,m =

∫ v
j+1

2
v
j− 1

2

∫ v
m− 1

2
v
m− 1

2

σ(xβ
i , v, v

′)Lα(
v′−vm

vm

) dv′dv, then it can be

verified that∫ v
j+1

2

v
j− 1

2

Qσ(fh)(x
β
i , v)dv =

N∑
α=1

Nv∑
m=1

{ fh(xβ
i , v̂

α
m)Aα,β

j,m − fh(x
β
i , v̂

α
j )A

α,β
m,j }.
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Here, Aα,β
j,m satisfies the following important properties.

(1) If we denote the bound for the basis functions as Lα(·) ≤ Ck on [− 1
2 ,

1
2 ],

where Ck is a constant that only depends on the polynomial order k, then

Nv∑
m=1

Aα,β
j,m =

∫ v
j+1

2

v
j− 1

2

∫
Dv

σ(xβ
i , v, v

′)Lα(
v′ − vm
�vm

) dv′dv

≤ Ck

∫ v
j+1

2

v
j− 1

2

∫
Dv

σ(xβ
i , v, v

′) dv′dv ≤ CkK�vj ,

where we have used Property 1 of the collision integral.
(2) For the piecewise linear case, i.e., when k = 1, since L1(·), L2(·), σ(·, ·, ·)

are always positive, we have Aα,β
j,m ≥ 0 for all i, j, α, β. For the general case of

k > 1, the positivity of Aα,β
j,m cannot be guaranteed. However, if we use the same

Gauss-Lobatto quadrature to evaluate the integration in the variable v′, we have

Aα,β
j,m ≈

∫ v
j+1

2

v
j− 1

2

σ(xβ
i , v, v̂

α
m)ŵα dv ≥ 0.

This quadrature corresponds to the requirement that when evaluating the collisional
integral term in the DG scheme, in the v and v′ variable we use a N = k+ 1 point
Gauss-Lobatto quadrature. This is a reasonable assumption, see for instance, the
discussion at the end of subsection 3.1. One can show that by doing this, an error of

at most order hk+ 1
2 will be introduced to the solution; see [18]. On the other hand,

in the very special case of relaxation models, which will be presented in Section 6,
this restriction can be lifted. Because σ(x, v, v′) = kM(v), and

Aα,β
j,m = k

∫ v
j+1

2

v
j− 1

2

M(v)dv ·
∫ v

m− 1
2

v
m− 1

2

Lα(
v′ − vm
�vm

) dv′ = k

∫ v
j+1

2

v
j− 1

2

M(v)dv ≥ 0.

From here on, we will assume Aα,β
j,m ≥ 0 for all i, j, α, β.

Now we return to Hβ,j
v , since

f̄n
βj =

N∑
α=1

ŵαfh(x
β
i , v̂

α
j ).

Define Sβ,α
i,j = fh(x

β
i , v̂

α
j ) for α = 1, . . . , N, β = 1, . . . , L and Sβ,0

i,j = fh(x
β
i , v

−
j− 1

2

) =

Sβ,N
i,j−1, S

β,N+1
i,j = fh(x

β
i , v

+
j+ 1

2

) = Sβ,1
i,j+1. Then,

Hβ,j
v = f̄n

βj −
a1λ1 + a2λ2

a2
[h2(S

β,N
i,j , Sβ,N+1

i,j , xβ
i )− h2(S

β,0
i,j , S

β,1
i,j , xβ

i )

−
N∑

α=1

Nv∑
m=1

(Sβ,α
i,mAα,β

j,m − Sβ,α
i,j Aα,β

m,j)] =
N−1∑
α=2

ŵαHβ,α
i,j + ŵ1Fi,j + ŵNGi,j ,

where

Fi,j = Sβ,1
i,j − a1λ1 + a2λ2

a2ŵ1
{h2(S

β,1
i,j , S

β,N
i,j , xβ

i )

−h2(S
β,0
i,j , S

β,1
i,j , xβ

i )−
Nv∑
m=1

(Sβ,1
i,mA1,β

j,m − Sβ,1
i,j A

1,β
m,j)},
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Gi,j = Sβ,N
i,j − a1λ1 + a2λ2

a2ŵN
{h2(S

β,N
i,j , Sβ,N+1

i,j , xβ
i )

−h2(S
β,1
i,j , S

β,N
i,j , xβ

i )−
Nv∑
m=1

(Sβ,N
i,m AN,β

j,m − Sβ,N
i,j AN,β

m,j )},

and

Hβ,α
i,j = Sβ,α

i,j +
a1λ1 + a2λ2

a2ŵα

Nv∑
m=1

(Sβ,α
i,mAα,β

j,m − Sβ,α
i,j Aα,β

m,j).

Similar to the argument before, to have Hβ,j
v ≥ 0, we only need Fi,j ≥ 0,

Gi,j ≥ 0, Hβ,α
i,j ≥ 0. We will prove that this will hold if Sβ,α

i,j = fh(x
β
i , v̂

α
j ) ≥ 0 for

all i ∈ [1, Nx], j ∈ [1, Nv], α ∈ [1, N ], β ∈ [1, L], and a proper CFL condition is true.
For simplicity, we will only prove for Fi,j ≥ 0. The other two terms follow under
a similar argument. In particular, we will show Fi,j is an increasing function of all
of its variables:

∂Fi,j

∂Sβ,0
i,j

=
a1λ1 + a2λ2

a2ŵ1

∂h2(S
β,0
i,j , S

β,1
i,j , xβ

i )

∂Sβ,0
i,j

=
a1λ1 + a2λ2

a2ŵ1
(− e

m
E(t, xβ

i )) 1{E(t,xβ
i )≤0} ≥ 0,

∂Fi,j

∂Sβ,N
i,j

= −a1λ1 + a2λ2

a2ŵ1

∂h2(S
β,1
i,j , S

β,N
i,j , xβ

i )

∂Sβ,N
i,j

=
a1λ1 + a2λ2

a2ŵ1

e

m
E(t, xβ

i ) 1{E(t,xβ
i )>0} ≥ 0,

∂Fi,j

∂Sβ,1
i,m

=
a1λ1 + a2λ2

a2ŵ1
A1,β

j,m ≥ 0 ifm �= j,

and
∂Fi,j

∂Sβ,1
i,j

= 1− a1λ1 + a2λ2

a2ŵ1

×
(
∂h2(S

β,1
i,j , S

β,N
i,j , xβ

i )

∂Sβ,1
i,j

−
∂h2(S

β,0
i,j , S

β,1
i,j , xβ

i )

∂Sβ,1
i,j

−A1,β
j,j +

Nv∑
m=1

A1,β
m,j

)

= 1− a1λ1 + a2λ2

a2ŵ1
[− e

m
E(t, xβ

i )1{E(t,xβ
i )≤0} +

e

m
E(t, xβ

i )1{E(t,xβ
i )>0}

−A1,β
j,j +

Nv∑
m=1

A1,β
m,j ]

= 1− a1λ1 + a2λ2

a2ŵ1
[ | e
m
E(t, xβ

i )| −A1,β
j,j +

Nv∑
m=1

A1,β
m,j ]

≥ 1− a1λ1 + a2λ2

a2ŵ1
[ a2 + CkK�vj ] ≥ 0.

For the last inequality to hold, we need a slightly more restrictive CFL condition,
i.e.,

a1λ1 + a2λ2 ≤ ŵ1

1 +
CkK maxj 
vj

a2

.
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The other CFL restrictions derived from Gi,j ≥ 0, Hβ,α
i,j ≥ 0 will be

a1λ1 + a2λ2 ≤ ŵN

1 +
CkK maxj 
vj

a2

and

a1λ1 + a2λ2 ≤ a2 minα=2,...,N−1 ŵα

CkKmaxj �vj
.

When maxj �vj → 0, the CFL condition approaches a1λ1+a2λ2 ≤ min(ŵ1, ŵN ).
For finite mesh size, we can assume, for example, when maxj �vj ≤ a2

sCkK
, where

s is a constant, it is enough to have a1λ1 + a2λ2 ≤ 1
2 min(ŵ1, ŵN ).

Our conclusion is, if Sβ,α
i,j = fh(x

β
i , v̂

α
j ) ≥ 0 for all i ∈ [1, Nx], j ∈ [1, Nv], α ∈

[1, N ], β ∈ [1, L], and the CFL condition a1λ1 + a2λ2 ≤ min(ŵ1, ŵN )/2 is satisfied,
then Hβ,j

v ≥ 0. Put these two parts together and we have our main theorem in this
section.

Theorem 15. Consider the semi-discrete DG scheme of piecewise P k polynomials
with forward Euler time stepping on a rectangular mesh that is refined enough, if
at time tn, we have fh(x, v) ≥ 0 on the set Si,j = (Sx

i ⊗ Ŝv
j ) ∪ (Ŝx

i ⊗ Sv
j ) for

all i, j, where S and Ŝ denote Gauss and Gauss-Lobatto quadrature points with
L ≥ k + 1 and N = k + 1 points respectively. Moreover, if the CFL condition
a1λ1 + a2λ2 ≤ min(ŵ1, ŵN )/2 is satisfied, then we have the cell average at the next
time step tn+1 will be positive, i.e.,

f̄n+1
ij ≥ 0 for all i, j.

If k > 1, then we require that N point Gauss-Lobatto quadrature rules when evalu-
ating the collision term. This restriction can be lifted for the relaxation model.

Remark. It is well known that for conservation laws, forward Euler time stepping
coupled with DG schemes of P k with k ≥ 1 under the CFL condition described in
the above theorem is unconditionally unstable [24]. We only use this theorem as
an intermediate step to the applications with TVD-RK time discretizations, which
are convex combinations of forward Euler schemes.

The positivity of the fh on set Si,j will be guaranteed by the limiter we proposed
in subsection 3.3. We repeat the definition here: before each forward Euler time
step in the TVD-RK scheme:

• On each cell Kij , evaluate Tij = min(x,v)∈Si,j
fh(x, v).

• Compute f̃h(x, v) = θ(fh(x, v)−f̄ij)+f̄ij , where θ = min{1, |f̄ij |/|Tij−f̄ij |}.
• Use f̃h instead of fh to compute the Euler forward step. A proper CFL
condition needs to be enforced as mentioned in Theorem 15.

Remark. The positivity-preserving DG scheme in this paper will ensure the the cell
averages of the numerical solutions fh is positive, and f̃h is positive on the set of
Si,j . However, it does not guarantee that fh, f̃h will be positive at every point
on the computational domain. For practical purposes, this type of positivity is
enough. A stronger limiter by using Tij = min(x,v)∈Ki,j

fh(x, v) can guarantee that

f̃h is positive on all points in ΩD [51]. If one chooses to use the strong limiter with
Tij = min(x,v)∈Ki,j

fh(x, v) at the last time step, one can also recover pointwise
positivity. We also want to remark if this type of limiter is enforced in place of
the one proposed in Theorem 15, then the restriction of using quadratures points
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to evaluate the collision term can be completely removed. This is because when
fh is pointwise positive, the gain term in the collision operator will be positive

automatically. Hence, in the proof, the requirement of Aα,β
j,m ≥ 0 is unnecessary.

We also remark that pointwise positivity together with mass conservation will imply
L1 stability of the fully-discrete scheme. In spite of the above facts, this limiter is
more difficult to implement for high-order schemes in high dimensions, because it
requires finding the minimum values of a function in each cell.

In [52], it is proven that this limiter will not destroy the accuracy of the scheme.
In particular, it only introduces error in the L∞-norm of order hk+1. There might
be some small accuracy loss due to the TVD-RK or SSP-RK time discretizations,
but it is not significant and can be overcome by using a SSP multi-step time step-
ping; see [52] for details. This limiter keeps the cell average of fh, so it will not
destroy mass conservation. The computational cost induced by the limiter is very
small and the CFL condition is on the same order of the one without the limiter.
Because of the reasons above, to have a physically-relevant solution, the limiters
and the positivity-preserving DG scheme in this section should be used to avoid
negative pdfs especially when the computations of quantities such as entropies are
desired. The implementation of this limiter on non-cartesian meshes is more in-
volved, especially in terms of the location of quadrature points and the treatment
of collision operator. A recent paper [54] has relevant discussions on this type of
issues. We will explore this aspect in our future work.

6. Numerical results

We present a numerical implementation and results for the one-dimensional in
physical and velocity space test problem for the relaxation model (5), in a suitable
cut-off rectangular domain ΩD = D1

x × D1
v = [−L,L] × [−V, V ]. In particular, we

consider
∂f

∂t
+ α · ∇f =

1

τ
(Mθ(v) ρ(t, x)− f) , (x, v) ∈ ΩD , t ∈ 
+

f(t,−L, v) = 0, for x = −L, 0 < v ≤ V,

f(t, L, v) = 0, for x = L, −V ≤ v < 0,(54)

f(t, x, v) = 0, for v = +V,−V, x ∈ D1
x,

f(0, x, v) = f0(x, v),

with constant collision frequency τ−1 = 1 and θ = 1. We take a cut-off domain
D1

v = [−V, V ] = [−5, 5], which is sufficiently large to assume homogeneous Dirichlet

boundary conditions for f , since ε = 1 −
∫ 5

−5
μ∞(x, v) ≈ e−20 for θ = 1 and

μ∞(±5) ≈ e−25, so setting f(t, x,±5) = 0 will not produce any mass loss larger
than ε for a quadratically confined potential V (x), in accordance with the long-
time behavior of the solution of the kinetic equation in the whole (x, v)-space.
Also, D1

x = [−L,L] = [−5, 5].

6.1. Comparison of the traditional RKDG scheme with the positivity-
preserving DG scheme. In this subsection, we will compare the traditional
RKDG scheme with the positivity-preserving DG scheme with special emphasis put
on accuracy and positivity of the numerical solution. In particular, we consider (54)
with potential V (x) = −x2/2 and initial condition f0 = 1

s sin(x
2/2)2 exp(−(x2 +

v2)/2), where s is the normalizing constant, such that
∫
Dv

∫
Dx

f0 dxdv = 1. Because
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of the lack of the exact solution, in Table 1, we present the difference of DG schemes
with and without the positivity-preserving limiter (not the real errors compared to
the exact solution). The computation is performed under the same number of mesh
points in all directions until the same final state for both methods. We observe the
order of convergence for the difference of two approaches is optimal despite the
degeneracy of accuracy for SSP-RK time discretization reported in [52].

Table 1. The difference of DG schemes with and without the
positivity-preserving limiter when using P 2 polynomials and third-
order RK time discretization until T = 0.1. CFL = 0.2

Mesh L1 difference L1 order L∞ difference L∞ order
25 X 25 1.98E-5 - 1.04E-3 -
50 X 50 1.14E-6 4.11 1.46E-4 2.82
100 X 100 8.95E-8 3.67 2.00E-5 2.87
200 X 200 3.40E-9 4.72 6.63E-7 4.91

In Figure 1, we plot for the DG scheme without the limiter, the evolution of the
number of cells with negative cell averages. We have verified that the positivity
preserving DG scheme does not produce any cells with negative averages or cell
center values at any time step after t = 0.

6.2. Comparisons of decay rates to equilibrium, measured by different
entropy functionals. In this subsection, we consider the decay rate of an initial
state to equilibrium. In particular, we consider

(55) Hlog(t) =

∫
ΩD

H logHM(x, v)dxdv ,

that measures (what we refer to as) f log f-decay in time and the quadratic H func-
tional

(56) H2(t) =

∫
ΩD

H2 Mdxdv .

Here M is the equilibrium distribution, and H(t, x, v) = fh(t, x, v)/M(x, v) is the
global relative entropy function. We remark that the computation of Hlog requires
the positivity of the function fh(t, x, v). This can be guaranteed by using the
positivity-preserving DG schemes coupled with the (k+1)th order accurate limiter
described in [51] and below.

Let TK = min(x,v)∈K fh(x, v) and compute f̃h(x, v) = θ(fh(x, v) − f̄K) + f̄K ,

where θ = min{1, |f̄K |/|TK − f̄K |}. Then f̃h(x, v) ≥ 0 everywhere.
Our numerical examples and simulations are computed under the same initial

condition and potential as the previous subsection. In Figure 2, we plot the two
decay rates. In Figure 3, we show the evolution of pdf towards the equilibrium
distribution.
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Figure 1. The number of cells (out of 2500 cells) with negative
cell averages (left figure) and negative cell center values (right fig-
ure) as a function of time for the traditional DG scheme. The
computation is performed on a 50 × 50 mesh with piecewise qua-
dratic polynomials and third-order Runge-Kutta time stepping.
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preserving DG scheme computed on a 50×50 mesh with piecewise
quadratic polynomials and third-order Runge-Kutta time stepping.
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7. Conclusions

In this paper, we develop a high-order positivity-preserving DG scheme for linear
Vlasov-Boltzmann transport equations (BTE) under the action of quadratically
confined electrostatic potentials. Future work includes generalization of the solver
to higher dimensions on arbitrary triangulations, and to non-linear Boltzmann-
Poisson system in semiconductor device simulations, especially for electron-hole
transport.
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