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ON SEMIREGULAR PERMUTATIONS OF A FINITE SET

ALICE C. NIEMEYER, TOMASZ POPIEL, CHERYL E. PRAEGER,
AND ŞÜKRÜ YALÇINKAYA

Abstract. In this paper we establish upper and lower bounds for the pro-
portion of permutations in symmetric groups which power up to semiregular
permutations (permutations all of whose cycles have the same length). Pro-
vided that an integer n has a divisor at most d, we show that the proportion
of such elements in Sn is at least cn−1+1/2d for some constant c depending
only on d whereas the proportion of semiregular elements in Sn is less than
2n−1.

1. Introduction

A permutation of a finite set Δ is called semiregular if all of its cycles have the
same length, � say, and � > 1. In particular, semiregular elements have no fixed
points in Δ, that is to say, they are fixed point free. They play an important role
in graph theory (see Section 2). However, whereas the statistical distribution of
fixed point free permutations (also called derangements) in symmetric groups and
other groups has been widely studied for several hundred years, that of semiregular
and associated permutations is not so well understood. Indeed, the proportion of
derangements of a set of size n was obtained by P. R. de Montmort [17] in 1708. He
proved that this proportion approaches 1/e as n approaches infinity. By contrast
the proportion of semiregular permutations may be arbitrarily small. For example,
if |Δ| = n is a (large) prime, then the semiregular permutations are just the n-
cycles, and their proportion is 1/n. The aim of this paper is to study a sub-family
of derangements from which semiregular permutations may be constructed, and in
particular, to estimate the proportion of such permutations on a set of composite
cardinality.

Let b, n be natural numbers such that b ≥ 2 and b divides n, let Δ = {1, 2, . . . , n}
and let Sn denote the symmetric group consisting of all permutations of Δ. Then
each semiregular permutation of Δ of order b is a product of n/b cycles of length b.
All such permutations are conjugate, and the proportion of them in Sn, for fixed b
and large n, (using the Stirling approximation for (n/b)!) is

(1)
1

(n/b)! bn/b
≈

( e

n

)n/b 1√
2πn/b

.

As b ranges over all divisors of n, the largest contribution to the proportion of
semiregular elements comes from the n-cycles (taking b = n), which have proportion
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1/n, and estimating quite crudely we see that the total number of semiregular
elements is always less than n−1 + 4n−3/2; see Lemma 2.1.

The asymptotic estimate above implies that finding a semiregular element of
given order b by random selection in Sn requires roughly Θ(nn/b+1/2) selections of
independent, uniformly distributed random elements.1 Such a search is infeasible
when n is large. We propose to construct semiregular elements of a given order b by
using random selection to find in Sn an element some power of which is semiregular
of order b. We call an element g ∈ Sn pre-semiregular of order b if b divides the
order o(g) and go(g)/b is semiregular. For example, if b = pk with p a prime,
then the pre-semiregular elements of order b are the permutations with all cycle
lengths having the same p-part pm for some m ≥ k. The main result of this paper
determines the proportion of these elements in a more general setting.

Theorem 1.1. Let b, d,m be positive integers with b, d ≥ 2 and let tb,d(mb) denote
the proportion of elements of Smb such that all cycle lengths are divisible by b, and
no cycle has length divisible by db. Then, for any positive real number ε ≤ 1

2db ,
there exist positive functions A := A(b, d, ε) and B := B(b, d) such that

A

(mb)1−
1
b+

1
bd+ε

≤ tb,d(mb) ≤ B

(mb)1−
1
b+

1
bd

.

The purpose of this result is to estimate tb,d(mb) for symmetric groups with
degree mb large compared with b. However, the quantities A,B are such that the
result holds for all positive m. Setting b = pk and d = p, for p a prime, we obtain
the following corollary.

Corollary 1.2. Let p be a prime, let k and m be positive integers, and let 0 < ε ≤
(2pk+1)−1. Then the proportion of pre-semiregular permutations of order pk on a
set of size mpk is at least

tpk,p(mpk) ≥ A(pk, p, ε)/(mpk)
1− p−1

pk+1 +ε
,

where A(pk, p, ε) is as in Theorem 1.1.

Remark 1.3. (a) Definitions of the quantities A(b, d, ε) and B(b, d) are given in
Subsection 3.4.

(b) We emphasise that Corollary 1.2 provides asymptotic information for a fixed
prime power pk and increasing m, but A(pk, p, ε) is such that the result holds for
all m. In particular, the corollary applies where the set has prime size p. This is
the case k = m = 1. Here the pre-semiregular permutations are the same as the
semiregular permutations, namely the p-cycles. Their proportion is 1/p. The lower

bound given in Corollary 1.2 is A(p, p, ε)/p
1− 1

p+
1
p2

+ε
, which at first sight seems

too large. However (see Lemma 3.3 (ii)), A(p, p, ε) ≤ 1/p
1
p−

1
p2

−ε ≤ 1/p
1
p−

3
2p2 and

hence the lower bound given by Corollary 1.2 is less than or equal to the true value
1/p.

We also derive a consequence of these results for the proportion of pre-semiregular
permutations in Sn when n has some proper divisor of bounded size.

1For functions f and g on the natural numbers, we say that f = Ω(g) if there are constants
a > 0 and N such that, for all n ≥ N , f(n) ≥ ag(n). We also say that f = O(g) if g = Ω(f), and
f = Θ(g) if f = Ω(g) and g = Ω(f).
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Corollary 1.4. For d ≥ 4, there exists a function C(d) such that if an integer n
has a nontrivial divisor at most d, then the proportion of pre-semiregular elements

in Sn is at least C(d)/n1− 1
2d .

We show in Lemma 2.1 that the proportion of semiregular permutations in Sn lies
between n−1 and 2n−1. Thus, provided n has a divisor of bounded size, Corollary
1.4 implies that the proportion of pre-semiregular elements is asymptotically greater
than the proportion of semiregular elements. Moreover, if n has a divisor of size at
most d, then constructing a semiregular element by finding and ‘powering up’ a pre-
semiregular element requires at most O(n1−1/(2d)) independent random selections,
as compared to Θ(n) required to find a semiregular element purely by random
selection.

It would be interesting to know the exact asymptotics, as m increases, for the
proportions tb,d(mb) estimated in Theorem 1.1. We obtain a closed form for the
generating function for these quantities. Define tb,d(0) = 1 and

T (x) =
∑
m≥0

tb,d(mb)xm.

Theorem 1.5. Let b, d be integers with b, d ≥ 2. Then, for |x| < 1,

T (x) =
(1− xd)1/bd

(1− x)1/b
.

Despite obtaining in Proposition 5.1 an expression for tb,d(mb) as a sum in terms
of known quantities, we have been unable to find the exact asymptotic behaviour of
the tb,d(mb). We suspect that the correct asymptotic is given by the upper bound
in Theorem 1.1; see the discussion in Remark 3.4.

Organisation of the paper is as follows. In Section 2, we comment on the role of
semiregular permutations in graph theory and prove a result about the proportion
of semiregular elements in Sn. Proofs of Theorem 1.1 and its corollaries are given
in Section 3. We prove Theorem 1.5 in Section 4. We derive an expression for the
tb,d(mb) in Section 5. A general discussion about the true asymptotic behaviour
of the quantities tb,d(mb) is given in Remark 3.4, with computational evidence
presented in the final Section 6.

2. Semiregular permutations in graph theory

The existence of semiregular permutations is of importance in graph theory.
Marus̆ic̆ [15] and Jordan [11] independently conjectured that, for every finite vertex-
transitive graph, there should exist a semiregular edge-preserving permutation of its
vertex set. Such semiregular permutations give useful structural information about
the graph, as well as assisting with graph construction and enumeration (see for
example [13, Section 4]) and graph drawing (see for example [10]). The conjecture
was proved for cubic graphs [16] in 1998 and locally-quasiprimitive graphs [9] in 2007
(and hence, in particular, for all arc-transitive graphs of prime valency). In fact for
vertex-transitive cubic graphs it is known that the maximum size of a semiregular
subgroup (containing only semiregular automorphisms) is unbounded as the number
of vertices increases [4, 12]. In [2, Problem BCC15.12], Klin proposed a more general
form of this conjecture, known as the Polycirculant Conjecture, stating that every
transitive 2-closed permutation group contains a fixed point free element of prime
order. (A permutation groupG is called 2-closed if any permutation which preserves
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the orbits of G on ordered pairs belongs to G.) The transitive permutation groups
having no nontrivial semiregular subgroups are called elusive and studied in [3, 7, 8];
see also [6].

The following result gives a crude estimate for the proportion of semiregular
permutations in Sn.

Lemma 2.1. Let n ≥ 2 and semi(n) denote the proportion of semiregular elements
in Sn. Then n−1 ≤ semi(n) < n−1 + 4n−3/2, and semi(n) < 2n−1.

Proof. For each divisor b of n the proportion of semiregular elements in Sn of order
b is pb = 1

(n/b)!bn/b (see equation (1)). Thus semi(n) ≥ pn = n−1. If b < n, then

pb ≤ pn/2 = 2/n2 with equality only if b = n/2. For each divisor b of n, the integer

n/b also divides n, and at least one of b, n/b is less than or equal to
√
n. Thus the

number of divisors of n is at most 2
√
n. It follows that

semi(n) = pn +
∑
b<n

pb ≤ n−1 + 2
√
npn/2 = n−1 + 4n−3/2

where the sum is over the proper divisors b of n. Moreover, this inequality is never
sharp since either the number of divisors is strictly less than 2

√
n, or some proper

divisor b is less than n/2 so that pb < pn/2. If n ≥ 16, then this upper bound is at

most 2n−1. It is straightforward to check that semi(n) =
∑

b pb < 2n−1 also holds
for n < 16. �

3. Estimation of the proportions tb,d(mb)

In this section we prove Theorem 1.1. To do this we first prove a recursion for
the tb,d(mb). Recall that, for b, d ≥ 2 and m ≥ 1, tb,d(mb) is the proportion of
elements of Smb such that all cycles have length a multiple of b, and no cycle has
length divisible by db. We set tb,d(0) = 1.

3.1. Recursion. Let Tb,d(mb) be the set of elements g ∈ Smb such that all g-
cycles in Δ = {1, 2, . . . ,mb} have length a multiple of b, and no g-cycle has length
divisible by db. Note that tb,d(mb) = |Tb,d(mb)|/(mb)!, and by convention, we take
|Tb,d(0)| = 1. For m ≥ 1, let

Nd(m) = {j|1 ≤ j ≤ m, d does not divide j}.

For any j ∈ Nd(m), let T j
b,d(mb) denote the set of all permutations in Tb,d(mb)

where 1 lies in a cycle of length jb. Then Tb,d(mb) is the disjoint union of the

T j
b,d(mb) for j ∈ Nd(m).

Now we compute the size of T j
b,d(mb) for any j ∈ Nd(m). We do this by con-

structing the set. For each element in T j
b,d(mb), 1 is contained in a cycle of length

jb, and the number of ways to choose the remaining jb − 1 points of this cycle is(
mb−1
jb−1

)
. Moreover, for each choice of jb-subset, the number of ways to define a

jb-cycle on it is (jb− 1)!, and the action on the remaining (m− j)b points is one of
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|Tb,d(m− j)b| possibilities. Therefore, we have

|T j
b,d(mb)| =

(
mb− 1

jb− 1

)
(jb− 1)!|Tb,d((m− j)b)|

=
(mb− 1)!

(mb− jb)!
|Tb,d((m− j)b)|

=
(mb− 1)!

(mb− jb)!
(mb− jb)! tb,d((m− j)b)

= (mb− 1)! tb,d((m− j)b).

Thus |Tb,d(mb)| = (mb− 1)!
∑

j∈Nd(m) tb,d ((m− j)b), so

(2) mb tb,d(mb) =
∑

j∈Nd(m)

tb,d((m− j)b).

In particular, for any m < d we have

(3) mb tb,d(mb) =
m−1∑
j=0

tb,d(jb),

and for m = d we have Nd(d) = Nd(d− 1), so that

(4) db tb,d(db) =

d−1∑
j=1

tb,d(jb) = (db− b+ 1) tb,d((d− 1)b)− 1.

To derive a different form of the recursion for larger values of m, suppose that
m ≥ d + 1. Note that j ∈ Nd(m − d) if and only if 1 ≤ j ≤ m − d with j �≡ 0
(mod d), which holds if and only if d+ 1 ≤ j + d ≤ m with j �≡ 0 (mod d). Thus

Nd(m) = {j + d | j ∈ Nd(m− d)} ∪ {1, 2, . . . , d− 1}.
Considering equation (2) with m− d in place of m, we see that

(5) mb tb,d(mb) = (m− d)b tb,d((m− d)b) +

d−1∑
j=1

tb,d((m− j)b).

3.2. Small values of m. We provide expressions for tb,d(mb) for small values of
m. These illustrate the variability of the quantities. Notice that the values are
much smaller when m is divisible by d.

Case m = 1. Tb,d(b) is the set of b-cycles in Sb, and so tb,d(b) =
1
b .

Case m = 2. If d > 2, then Tb,d(2b) consists of all elements g ∈ S2b such that either
g is a 2b-cycle, or g is a product of two b-cycles. On the other hand, if d = 2, then
Tb,d(2b) consists only of the products of two b-cycles. Thus

tb,d(2b) =

{
1

2b2 if d = 2,
1
2b +

1
2b2 if d ≥ 3.

Case m = 3. A similar computation gives

tb,d(3b) =

⎧⎪⎨
⎪⎩

1
3b +

1
6b3 if d = 2,

1
2b2 + 1

6b3 if d = 3,
1
3b +

1
2b2 + 1

6b3 if d ≥ 4.
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Case m = 4. Similarly, we have

tb,d(4b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3b2 + 1

24b4 if d = 2,
1
4b +

1
8b2 + 1

4b3 + 1
24b4 if d = 3,

11
24b2 + 1

4b3 + 1
24b4 if d = 4,

1
4b +

11
24b2 + 1

4b3 + 1
24b4 if d ≥ 5.

3.3. A weak lower bound for tb,d(mb). In this section we obtain an explicit but
weak lower bound for tb,d(mb). We use this result in Lemma 3.3 to obtain a lower
bound for the quantity A(b, d, ε).

First we note that, if d does not divide m, then Tb,d(mb) contains all the (mb)-
cycles and consequently,

(6) tb,d(mb) ≥ 1

mb
if d does not divide m.

We use this simple lower bound together with equation (5) to prove that a similar
lower bound holds in all cases. In the proof and throughout the paper ‘log’ denotes
the natural logarithm.

Lemma 3.1. Let b, d,m be positive integers with b, d ≥ 2. Then

tb,d(mb) ≥

⎧⎪⎨
⎪⎩

b+logm
mb2 if m < d,

1
mb if d does not divide m,
1

mb2 if d divides m.

In particular, tb,d(mb) ≥ 1
mb2 .

Proof. By inequality (6), it remains to consider the cases where m < d and where
d divides m. Suppose first that m < d. Then by equation (3) and inequality (6),

(7) mb tb,d(mb) =

m−1∑
j=0

tb,d(jb) ≥ 1 +

m−1∑
j=1

1

jb
> 1 +

1

b

∫ m

1

dx

x
=

b+ logm

b

yielding tb,d(mb) ≥ (b+ logm)/(mb2), as asserted.
Next, if m = d, then by equation (4), and then (7),

db tb,d(db) = (d− 1)b tb,d((d− 1)b)− 1

> (d− 1)b

(
b+ log(d− 1)

(d− 1)b2

)
− 1

=
log(d− 1)

b
.

Thus tb,d(db) >
log(d−1)

db2 and this is at least the required lower bound 1
db2 provided

log(d − 1) ≥ 1, that is, provided d ≥ 4. The inequality tb,d(db) ≥ 1
db2 for d = 2, 3

follows from the exact values given in Section 3.2.
Finally, we prove by induction that tb,d(�db) ≥ 1

�db2 for all � ≥ 1. We have just

proved this for � = 1. Suppose that � ≥ 2 and that tb,d((�− 1)db) ≥ 1
(�−1)db2 . Then

by equation (5),

�db tb,d(�db) ≥ (�− 1)db tb,d((�− 1)db) ≥ 1

b

and the required lower bound follows by induction. �
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3.4. The functions A(b, d, ε) and B(b, d). In this section we define the functions
A(b, d, ε) and B(b, d) in Theorem 1.1. We also prove simple upper and lower bounds
for A(b, d, ε) and B(b, d).

Let b, d be integers with b, d ≥ 2. Set

(8) c(b, d) =
1

b
− 1

db
=

d− 1

db

and

(9) f = f(b, d) =
d− dc(b,d)

d− 1
− 1

b
.

Let ε be a positive real number satisfying ε ≤ 1
2db . Define

(10) J(b, d, ε) :=

(
(d− 1)

(
1 + 1

b

)
εdb

) db
(d−3/2)

.

Observe that c(b, d) < 1/2, and J(b, d, ε) ≥ 4 (see Lemma 3.2). We define

(11) A(b, d, ε) := min
1≤j≤J(b,d,ε)

{tb,d(jb)(jb)1−c(b,d)+ε}

and

(12) B(b, d) :=
1

f(b, d)bc(b,d)
.

Lemma 3.2. Let b, d be integers with b, d ≥ 2, let 0 < ε ≤ 1
2db and let J(b, d, ε) be

as defined in equation (10). Then

db ≤ J(b, d, ε) < 1/(4ε1/ε).

Proof. Let J = J(b, d, ε). Since d ≥ 2, we have d
d−3/2 ≤ 4 and (d − 1)/d < 1.

Therefore,

J <

(
1 + 1/b

εb

)4b

.

Since (1 + 1/b)b ≤ e for all b ≥ 2, where e is the base of the natural logarithm, we
have

J <
e4

b4bε4b
.

Since b ≥ 2, we have b4b ≥ 28. Moreover, e4/28 < 1/4. Thus J < 1/(4ε4b). Since
ε ≤ 1/(2db) and d ≥ 2, we have 4b ≤ 1/ε. Hence

J < 1/(4ε1/ε).

As d ≥ 2, we have d− 1 ≥ d/2. Moreover, db
d−3/2 > b. Therefore,

J >

(
1

2εb

)b

≥ db

since ε ≤ 1/(2db). �

Now we compute upper and lower bounds for A(b, d, ε) and B(b, d).
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Lemma 3.3. Let b, d be integers with b, d ≥ 2 and ε be a positive real number with
ε ≤ 1/(2db). Let c = c(b, d) as defined in equation (8). Then

(i) 1
bc ≤ B(b, d) ≤ 12

bc .

(ii) ε(c−ε)/ε

b1+c−ε < A(b, d, ε) ≤ 1
bc−ε .

Proof. (i) Observe that d−
√
d

d−1 ≤ d−dc

d−1 ≤ 1 since c ≤ 1/2. Since d−
√
d

d−1 is an increasing

function for d ≥ 2 we have 2 −
√
2 ≤ d−dc

d−1 ≤ 1. Now, since b ≥ 2, we have

1/12 < 3/2−
√
2 ≤ f(b, d) ≤ 1, (with f(b, d) as in (9)) and the result follows.

(ii) Let A = A(b, d, ε). By Lemma 3.1, tb,d(mb) ≥ 1
mb2 for all m ≥ 1, so

A ≥ min
1≤j≤J(b,d,ε)

{j−c+εb−1−c+ε},

and since c > ε, j−c+ε is decreasing as j increases. Thus, by Lemma 3.2, A ≥
(4ε1/ε)c−εb−1−c+ε. Since c− ε > 0, we have A > ε(c−ε)/εb−1−c+ε. Moreover, since
J(b, d, ε) ≥ 1, we have A ≤ tb,d(b)b

1−c+ε by the definition of A. As tb,d(b) = 1/b,
the result follows. �

Remark 3.4. The first computer experimentation with the quantities tb,d(mb) was
performed by Richard Crandall in December 2008. He was the first to observe ‘sud-
den downspikes’ in the values form a multiple of d. We made some further computer
simulations to observe the growth of the function gb,d,ε(j) = tb,d(jb)(jb)

1−c(b,d)+ε.
Representative results are given in Section 6. The results strongly suggest that the
minimal value of gb,d,ε(j) occurs at j = d and hence, by (11), A(b, d, ε) is equal to
gb,d,ε(d). If this observation were true for all integers b, d ≥ 2 and all positive real
numbers ε ≤ 1/(2db), then by Lemma 3.1, we would have

A ≥ (db)1−c+ε

(db2)
=

1

b(db)c−ε
>

1

b1+cdc
.

The bounds for tb,d(mb) presented in Theorem 1.1 would then become

1

b1+cdc
1

(mb)1−
1
b+

1
bd+ε

≤ tb,d(mb) ≤ 12

bc
1

(mb)1−
1
b+

1
bd

.

Since this lower bound would hold for any positive real number ε ≤ 1/(2db), we
could let ε tend to 0 and obtain a lower bound

tb,d(mb) ≥ 1

b1+cdc
1

(mb)1−
1
b+

1
bd

so that, indeed, tb,d(mb) = Ω(m−1+ 1
b−

1
bd ).

3.5. Proof of the upper bound in Theorem 1.1. We use the notation in Section
3.4. We need here and in the next subsection the following approximations; when
−1 < a < 0 and k ≥ 1,∫ k

1

xa dx ≤
k−1∑
l=1

la ≤ 1 +

∫ k−1

1

xa dx(13)

and ∫ �k�−1

0

(k − x)a dx ≤
�k�−1∑
l=1

(k − l)a ≤
∫ �k�−1

1

(k − x)a dx+ (k − 
k�+ 1)a.(14)
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We fix b, d ≥ 2 and set t(mb) = tb,d(mb) for simplicity. We prove by induction
on m that, for all m ≥ 1,

(15) t(mb) ≤ B (mb)−1+c,

where c = c(b, d) and B = B(b, d) are as defined in equations (8) and (12), respec-
tively.

By Lemma 3.3 (i), B ≥ b−c, so t(b) = 1
b ≤ Bb−1+c. Therefore, inequality (15)

holds for m = 1. Suppose inductively that m > 1 and that inequality (15) holds
for all j < m. We use equation (2) and apply the inductive hypothesis. Note that
m ∈ Nd(m) if and only if d does not divide m, and that t(0) = 1. Then equation (2)
and inequalities (13) and (14) give

mb t(mb) =
∑

j∈Nd(m)

t((m− j)b)

≤ 1 +
∑

j∈Nd(m), j<m

t((m− j)b)

≤ 1 +
∑

j∈Nd(m), j<m

B((m− j)b)−1+c

= 1 +B
m−1∑
�=1

(�b)−1+c −B

�m/d�−1∑
�=1

((m− �d)b)−1+c

≤ 1 +Bb−1+c

(∫ m−1

1

x−1+c dx+ 1

)

−B(db)−1+c

∫ �m/d�−1

0

(
m

d
− x)−1+c dx

= 1 +Bb−1+c

([
xc

c

]m−1

1

+ 1

)
+B(db)−1+c

[
(md − x)c

c

]�m/d�−1

0

.

Using m− 1 ≤ m, m
d − 
m

d �+ 1 ≤ 1, we obtain

mb t(mb) ≤ 1 +Bb−1+c

(
mc

c
− 1

c
+ 1

)
− B(db)−1+c

(
(m/d)c

c
− 1

c

)
,

and since 1
c − 1

dc = b, the right-hand side equals

1 +B(mb)c −Bb−1+c

(
1

c
− 1− d−1+c

c

)
.

We claim that 1
c − 1 − d−1+c

c ≥ b1−c

B . It follows from this inequality and the

above upper bound that t(mb) ≤ B(mb)−1+c, and thus inequality (15) is proved by
induction. It remains to prove the claim.

Substituting c = d−1
db where c occurs as a denominator, and dividing by b, we

see that the claimed inequality is equivalent to

1

Bbc
≤ d

d− 1
− 1

b
− dc

d− 1
=

d− dc

d− 1
− 1

b
= f(b, d),

and the truth of this inequality follows from the definition of B in equation (12).
This completes the proof of inequality (15).
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3.6. Proof of the lower bound in Theorem 1.1. We again use the notation in
Section 3.4. We keep b, d fixed, where b, d ≥ 2, and set t(mb) = tb,d(mb).

We prove by induction on m that, for all m ≥ 1,

(16) t(mb) ≥ A

(mb)1−
1
b+

1
db+ε

= A (mb)−1+c−ε

where c = c(b, d) and A = A(b, d, ε) are as defined in equations (8) and (11),
respectively, and 0 < ε ≤ 1/2db. Note that 1−c+ε > 1/2+ε > 0. By the definition
of A, inequality (16) holds if 1 ≤ m ≤ J(b, d, ε). Suppose that m > J(b, d, ε) and
that equation (16) holds for all j ≤ m− 1. Then, by equation (2) and inequalities
(13) and (14),

mb t(mb) =
∑

j∈Nd(m)

t((m− j)b) ≥
∑

j∈Nd(m)\{m}
A((m− j)b)−1+c−ε

= A

m−1∑
�=1

(�b)−1+c−ε −A

�m
d �−1∑
�=1

((m− �d)b)−1+c−ε

≥ Ab−1+c−ε

∫ m

1

x−1+c−εdx

−A(db)−1+c−ε

∫ �m
d �−1

1

(m
d

− x
)−1+c−ε

dx

−A(db)−1+c−ε
(m
d

− 
m
d
�+ 1

)−1+c−ε

=
A

b1−c+ε

([
xc−ε

c− ε

]m
1

+
1

d1−c+ε

[
(md − x)c−ε

c− ε

]�m
d �−1

1

)

− A

(bd)1−c+ε

(m
d

− 
m
d
�+ 1

)−1+c−ε

.

Using m
d − 
m

d �+ 1 ≥ 1
d and (md − 1) ≤ m

d , we have

mb t(mb) ≥ A

b1−c+ε

(mc−ε − 1)

c− ε
+

A

d(b)1−c+ε

1

c− ε

− A

(db)1−c+ε

(md )
c−ε

c− ε
− A

b1−c+ε
.

After rearranging the terms, we get

(17) mb t(mb) ≥ A

b1−c+ε

mc−ε

c− ε

(
1− 1

d

)
−
(
1− 1

d

)
A

b1−c+ε

1

c− ε
− A

b1−c+ε
.

Now, we claim that

A

b1−c+ε

mc−ε

c− ε

(
1− 1

d

)
−
(
1− 1

d

)
A

b1−c+ε

1

c− ε
− A

b1−c+ε
≥ A(mb)c−ε

or, equivalently, multiplying both sides by db1−c+ε(c−ε)
Amc−ε ,

(18) (d− 1)− d− 1

mc−ε
− d(c− ε)

mc−ε
≥ db(c− ε).
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It follows from inequality (17) and the proof of inequality (18) that t(mb) ≥
A(b, d, ε)(mb)−1+c−ε, and thus inequality (16) is proved by induction. It remains
to prove inequality (18).

By our assumptions m > J(b, d, ε), and so, by raising both sides of this inequality

to the power d−3/2
bd = 1

b − 3/2
db , and using (10), we have

m
1
b−

3/2
db ≥ d− 1

εdb

(
1 +

1

b

)
.

Hence

εdb ≥ 1

m
1
b−

3/2
db

(
d− 1 +

d− 1

b

)
.

Since ε ≤ 1
2db , we have 1

b − 1
db − ε ≥ 1

b − 3
2db , and hence

εdb ≥ 1

m
1
b−

1
db−ε

(
d− 1 +

d− 1− εdb

b

)
.(19)

Recall that c = 1
b −

1
db = d−1

db so d− 1− εbd = bd(c− ε) and εbd = d− 1− bd(c− ε).
Thus, substituting for these values in (19) and rearranging, we get

d− 1− d− 1

mc−ε
− d(c− ε)

mc−ε
≥ bd(c− ε)

and the claim is proved.

3.7. Proof of the corollaries. In this section we prove Corollaries 1.2 and 1.4.

Proof of Corollary 1.2. It follows from the definition of a pre-semiregular permuta-
tion that the proportion of the pre-semiregular elements of order pk on a set of size
pkm is at least tpk,p(p

km), and hence the result follows from Theorem 1.1. �

Proof of Corollary 1.4. Let d be an integer, d ≥ 4. Suppose that n has a nontrivial
divisor which is at most d. Then there is a prime p dividing n with p ≤ d. We apply
Corollary 1.2 with k = 1 and ε = 1/(2p2). Note that 1 − p−1

pk+1 + ε = 1 − 1
p + 3

2p2

and this is an increasing function of p for p ≥ 3, so if p is odd, this is at most
1− 1

d + 3
2d2 < 1− 1

2d since d ≥ 4. If p = 2, then 1− 1
p + 3

2p2 = 7/8 and since d ≥ 4,

we have 1−1/(2d) ≥ 7/8. Thus, by Corollary 1.2, the proportion of pre-semiregular

elements of order p is at least A(p, p, 1
2p2 )n

−1+ 1
2d . By defining C(d) as the minimum

of A(p, p, 1
2p2 ) over all prime divisors p of n such that p ≤ d, the result follows. �

4. A generating function for the tb,d(mb)

In this section we prove Theorem 1.5. Recall that

(20) T (x) =
∑
m≥0

tb,d(mb)xm

and tb,d(0) = 1.

Proof of Theorem 1.5. We have T ′(x) =
∑

m≥1 mtb,d(mb)xm−1. Write T ′(x) =

F1(x) + F2(x) where F1(x) =
∑d

m=1 mtb,d(mb)xm−1 and F2(x) = T ′(x) − F1(x).
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For |x| < 1, the recursion in equation (5) yields the following expression for F2(x):

F2(x) =
1

b

∑
m≥d+1

⎛
⎝(m− d)b tb,d((m− d)b) +

d−1∑
j=1

tb,d((m− j)b)

⎞
⎠xm−1

= xd
∑

m−d≥1

(m− d) tb,d((m− d)b)xm−d−1

+
1

b

d−1∑
j=1

xj−1

⎛
⎝ ∑

m−j≥d−j+1

tb,d((m− j)b)xm−j

⎞
⎠

= xd T ′(x) +
1

b

d−1∑
j=1

xj−1

(
T (x)−

d−j∑
k=0

tb,d(kb)x
k

)

= xd T ′(x) +
T (x)

b
· 1− xd−1

1− x
− F3(x)

where

F3(x) =
1

b

d−1∑
j=1

(
d−j∑
k=0

tb,d(kb)x
j+k−1

)
.

We obtain a different expression for F3(x). For 0 ≤ m ≤ d−1, the coefficient of xm

in F3(x) is 1
b

∑min{m+1,d−1}
j=1 tb,d((m − j + 1)b). If m = d − 1 this is

∑d−1
�=1 tb,d(�b)

while if 0 ≤ m ≤ d− 2 this is 1
b

∑m
j=0 tb,d(jb). Thus

F3(x) =
1

b

(
d−2∑
m=0

(
m∑
�=0

tb,d(�b)

)
xm +

d−1∑
�=1

tb,d(�b)x
d−1

)
.

Also, using equations (3) and (4) we obtain a new expression for F1(x):

F1(x) =

d∑
m=1

mtb,d(mb)xm−1

=

d−1∑
m=1

⎛
⎝1

b

m−1∑
j=0

tb,d(jb)

⎞
⎠xm−1 +

1

b

d−1∑
j=1

tb,d(jb)x
d−1

=
1

b

⎛
⎝ d−1∑

m=1

⎛
⎝m−1∑

j=0

tb,d(jb)

⎞
⎠xm−1 +

d−1∑
j=1

tb,d(jb)x
d−1

⎞
⎠

= F3(x).

Hence

T ′(x) = F1(x) + F2(x) = xdT ′(x) +
T (x)

b
· 1− xd−1

1− x
,

which implies that, for |x| < 1,

T ′(x)

T (x)
=

1− xd−1

b(1− x)
· 1

1− xd
=

1

b

(
1

1− x
− xd−1

1− xd

)
.
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Integrating both sides, we obtain

log(T (x)) =
1

b

(∫
dx

1− x
−
∫

xd−1dx

1− xd

)

=
1

b

(
− log(1− x) +

1

d
log(1− xd)

)
+ c

= log

(
(1− xd)1/bd

(1− x)1/b

)
+ c

and as T (0) = tb,d(0) = 1 we have c = 0. Thus

T (x) =
(1− xd)1/bd

(1− x)1/b
. �

5. An expression for the tb,d(mb)

In this section we derive the following expression for the tb,d(mb).

Proposition 5.1. Let m, b, d be integers with b, d ≥ 2 and m ≥ 1. Then

tb,d(mb) = s¬b̂(mb̂)− 1

db

	m
d 
∑

k=1

1

k
s¬b̂((m− dk)b̂)s¬db(dbk − 1)

where b̂ = b
b−1 , and for positive real numbers q, t with q > 1, s¬q(0) = 1 and

(21) s¬q(t) =

	t/q
∏
i=1

(
1− 1

qi

)
.

If q is an integer, q ≥ 2, then the quantity s¬q(n) has a combinatorial significance
for positive integers n, namely s¬q(n) is the proportion of elements in Sn with no
cycle lengths divisible by q (see for example [1, Theorem 2.3(a)]), an easy extension
of the proof in [5] for prime powers q. It was proved in [1, Theorem 2.3(b)] that
s¬q(n) = Θ(n−1/q) for an integer q ≥ 2. The same proof shows that s¬q(nq) =

Θ(n−1/q) for a real number q > 1.
For an integer k ≥ 2, let S¬k(x) be the ordinary generating function for s¬k(n),

that is,

S¬k(x) =
∑
n≥0

s¬k(n)x
n.

By the proof of Theorem 2.1 in [14], for |x| < 1, we have

(22) S¬k(x) =
(1− xk)1/k

1− x
.

Lemma 5.2. Let b, d be integers with b, d ≥ 2 and let T (x) be as in equation (20).
Then, for |x| < 1,

T (xb) =
S¬db(x)

S¬b(x)
.

Proof. This follows immediately from (22) and Theorem 1.5 by substituting xb for
x in T (x). �
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For a real number q > 1, let s¬q(0) = 1 and let Ŝ¬q(x) be the generating function

(23) Ŝ¬q(x) =
∑
m≥0

s¬q(qm)xm.

It turns out that the reciprocal 1/S¬k(x), for k a positive integer, is related to

Ŝ¬q(x) with q = k
k−1 = k̂.

Lemma 5.3. Let k be an integer with k ≥ 2, and set k̂ = k/(k − 1). Then, for
|x| < 1, we get:

(i) Ŝ¬k̂(x) = (1− x)−1/k.

(ii) 1
S¬k(x)

= (1− x)Ŝ¬k̂(x
k).

Proof. (i) For |x| < 1, by (22),

1

S¬k(x)
= (1− x)(1− xk)−1/k.

Consider the power series expansion (1 − x)−1/k =
∑∞

m=0 g(k,m)xm. Evaluating
at x = 0 yields g(k, 0) = 1 = s¬k̂(0). Using a ‘binomial type’ expansion, we have,
for m ≥ 1,

g(k,m) = (−1)m
1

m!

(
−1

k

)(
−1

k
− 1

)(
−1

k
− 2

)
· · ·

(
−1

k
−m+ 1

)

=
1

m!
· 1
k
·
(
1

k
+ 1

)
· · ·

(
1

k
+m− 1

)

=
1

mk

m−1∏
i=1

(1 +
1

ik
).

In particular, g(k, 1) = 1
k = s¬k̂(k̂). This yields a recursion for the g(k,m), namely,

for all m ≥ 2,

g(k,m) =
1

mk

m−1∏
i=1

(
1 +

1

ik

)

=
m− 1

m
g(k,m− 1)

(
1 +

1

(m− 1)k

)

= g(k,m− 1)

(
1− k − 1

mk

)

= g(k,m− 1)

(
1− 1

mk̂

)
.

We note that this relation also holds for m = 1, that is, g(k, 1) = 1
k = g(k, 0)(1− 1

k̂
).

An easy inductive proof gives, for m ≥ 1, that

g(k,m) =
m∏
j=1

(
1− 1

k̂j

)
= s¬k̂(k̂m).

Thus (1− x)−1/k = Ŝ¬k̂(x) proving part (i). Part (ii) follows immediately from (i)
in view of equation (22) for S¬k(x). �
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Proof of Proposition 5.1. Combining Corollary 5.2 and Lemma 5.3, we have

T (xb) =
S¬db(x)

S¬b(x)

=

(∑
�=0

s¬b̂(�b̂)x
�b

)
(1− x)

(∑
n=0

s¬db(n)x
n

)

=

(∑
�=0

s¬b̂(�b̂)x
�b

)(∑
n=0

s¬db(n)x
n

)

−
(∑

�=0

s¬b̂(�b̂)x
�b

)(∑
n=0

s¬db(n)x
n+1

)
.

Thus the coefficient tb,d(mb) of xmb in T (xb) is equal to

tb,d(mb) =

m∑
�=0

s¬b̂(�b̂)s¬db(mb− �b)−
m−1∑
�=0

s¬b̂(�b̂)s¬db(mb− �b− 1).

Separating out the term for � = m in the first summation, we get

(24) tb,d(mb) = s¬b̂(mb̂) +
m−1∑
�=0

s¬b̂(�b̂) (s¬db(mb− �b)− s¬db(mb− �b− 1)) .

If mb− �b = (m− �)b is not a multiple of db, then m− � is not a multiple of d and
s¬db(mb − �b) = s¬db(mb − �b − 1) by [1, Lemma 2.2]. Therefore, the only values
of � for which there is a nonzero contribution in the summation are those of the
form � = m− dk for some integer k such that 1 ≤ k ≤ �m

d 
. Then m = �+ dk, and
equation (24) becomes

tb,d(mb) = s¬b̂(mb̂) +

	m
d 
∑

k=1

s¬b̂((m− dk)b̂) (s¬db(dbk)− s¬db(dbk − 1)) .

It follows from equation (21) that s¬db(dbk)− s¬db(dbk − 1) = − 1
dbk s¬db(dbk − 1).

Hence we have

tb,d(mb) = s¬b̂(mb̂)− 1

db

	m
d 
∑

k=1

1

k
s¬b̂((m− dk)b̂)s¬db(dbk − 1). �

6. Computer simulations to estimate A(b, d, ε)

Recall that

A(b, d, ε) = min
1≤j≤J(b,d,ε)

gb,d,ε(j),

where gb,d,ε(j) = tb,d(jb)(jb)
1−c(b,d)+ε and J(b, d, ε) is given by (10).

We present some computer simulations which suggest that, in fact,

A(b, d, ε) = gb,d,ε(d),

as noted in Remark 3.4. In Figures 1, 2 and 3, we give three examples, one for
each of d = 2, 3, 4. In each case we present two plots, one showing only the first
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few values of j, and another showing a larger range of j. Note that it is impractical
to plot over the entire range 1 ≤ j ≤ J(b, d, ε), since J(b, d, ε) can be extremely
large and calculation of the tb,d(jb) (via Proposition 5.1) becomes computationally
intensive for large j.

.
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Figure 1. Plot of gb,d,ε(j) with b = 5, d = 2 and ε = 1/40 <
1/(2db), for 1 ≤ j ≤ 12 and 1 ≤ j ≤ 120 < J(b, d, ε) ≈ 4.2× 1013.

.

.
.

.
. .

. .
. .

....
.

. . . . . .

.

. . . . .

1

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14

.
.

...................................................................
..................................................................................................................................

.

1

0.8

0.6

0.4

0.2

50 100 150 200

Figure 2. Plot of gb,d,ε(j) with b = 2, d = 3 and ε = 1/80 <
1/(2db), for 1 ≤ j ≤ 14 and 1 ≤ j ≤ 200 < J(b, d, ε) ≈ 2.5× 106.
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Figure 3. Plot of gb,d,ε(j) with b = 10, d = 4 and ε = 1/100 <
1/(2db), for 1 ≤ j ≤ 20 and 1 ≤ j ≤ 250 < J(b, d, ε) ≈ 4.6× 1014.
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The plots — which seem to be representative (based on several other examples
which we have computed) — suggest that

(i) the value of gb,d,ε(j) depends on the congruence class of j modulo d, in the
sense that each class corresponds to one of d ‘curves’;

(ii) the lowest ‘curve’ in each plot corresponds to those j values which are
multiples of d, and gb,d,ε(�d) is strictly increasing in �;

(iii) the remaining ‘curve’ are bounded away from the lowest one (and, for fixed
k ∈ {1, . . . , d− 1}, gb,d,ε(�d+ k) is strictly decreasing in �).

In particular, the plots seem to confirm that gb,d,ε(j) attains its minimum value
when j = d.
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