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ON THE CONVERGENCE RATES

OF LEGENDRE APPROXIMATION

HAIYONG WANG AND SHUHUANG XIANG

Abstract. The problem of the rate of convergence of Legendre approxima-
tion is considered. We first establish the decay rates of the coefficients in the
Legendre series expansion and then derive error bounds of the truncated Le-
gendre series in the uniform norm. In addition, we consider Legendre approx-
imation with interpolation. In particular, we are interested in the barycentric
Lagrange formula at the Gauss-Legendre points. Explicit barycentric weights,
in terms of Gauss-Legendre points and corresponding quadrature weights, are
presented that allow a fast evaluation of the Legendre interpolation formula.
Error estimates for Legendre interpolation polynomials are also given.

1. Introduction

The Chebyshev and Legendre polynomials are two important sequences of or-
thogonal polynomials which have been extensively investigated and applied in in-
terpolation and approximation theory [8, 11, 25], numerical integration [10, 12, 33],
special function theory [27], the solution of the second- and fourth-order elliptic
equations [15, 29, 30], computational fluid dynamics, etc. They are not only pow-
erful tools for the approximation of functions that are difficult to compute, but also
essential ingredients of numerical integration and approximate solution of differen-
tial and integral equations. For example, the growing interest in spectral methods
is largely due to their superior approximation properties as compared with other
methods like finite difference methods, finite element methods, etc. In particular,
the Chebyshev and Legendre spectral methods have excellent error properties in the
approximation of a globally smooth function. Almost every spectral methods text-
book introduces the theoretical and numerical aspects of Chebyshev and Legendre
polynomials (see, for instance, [5, 7, 13, 19, 20, 21, 31, 36]).

The orthogonal polynomial expansion occurs in a wide range of practical prob-
lems and applications and plays an important role in many fields of mathematics
and physics. Let Tn(x) and Pn(x) denote the Chebyshev polynomial of the first
kind and the Legendre polynomial of degree n, respectively. If the function f(x)
satisfies a Dini-Lipschitz condition on [−1, 1], then it has the following uniformly

Received by the editor May 7, 2010 and, in revised form, February 17, 2011.
2010 Mathematics Subject Classification. Primary 65D05, 65D99, 41A25.
Key words and phrases. Legendre expansion, Chebyshev expansion, Bernstein ellipse, barycen-

tric Lagrange interpolation.
This work was supported by the NSF of China (No. 11071260).

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

861



862 HAIYONG WANG AND SHUHUANG XIANG

convergent Chebyshev series expansion [8, p. 129]

(1.1) f(x) =

∞∑
n=0

′cnTn(x),

where the prime denotes a summation whose first term is halved. The Chebyshev
coefficients cn are given by

(1.2) cn =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx, n = 0, 1, . . . .

It is well known that the computation of the Chebyshev coefficients can be carried
out by the fast Fourier transform (FFT); hence Chebyshev expansions are widely
used in numerical integration [9], approximation theory [8] and so on. If the function
f(x) belongs to a Lipschitz class of order greater than or equal to 1/2 on [−1, 1],
then it has the following uniformly convergent Legendre series expansion [32],

(1.3) f(x) =

∞∑
n=0

anPn(x),

where

(1.4) an = (n+
1

2
)

∫ 1

−1

f(x)Pn(x)dx, n = 0, 1, . . . .

The Legendre series expansion (1.3) is extensively applied in spherical harmon-
ics, signal processing, control systems, the computation of the spectra of highly
oscillatory Fredholm integral operators [6], the inverse polynomial reconstruction
method for the resolution of the Gibbs phenomenon [24] and so on. In the last
few years there has been an increasing interest in the computation of coefficients
in the Legendre series expansion and several efficient algorithms have been devel-
oped. For example, Piessens [26] proposed to substitute the Chebyshev expansion
(1.1) into the Legendre coefficients (1.4). Alpert and Rokhlin [3] have developed a
fast algorithm for converting a Chebyshev series to a Legendre series or vice versa.
Based on a hypergeometric transformation, Iserles [23] proposed a fast algorithm
to compute the Legendre coefficients by using the FFT if the function f is analytic
in a neighborhood of the interval [−1, 1]. These algorithms are efficient and cost
O(N log2 N) operations for the computation of the first N Legendre coefficients.
We refer the reader to [3, 23, 26] for more details.

In this paper, we shall devote our attention to the convergence rate of Legendre
approximation schemes, including the truncated series expansion and polynomial
interpolation approximation. For an excellent and comprehensive treatment of the
rate of convergence of Chebyshev approximation, we refer the reader to [35]. We
commence our analysis by establishing the decay rates of the coefficients in the
Legendre series expansion, and further, we derive error bounds of the truncated
Legendre series expansion. Moreover, we consider the case of Legendre interpolation
approximation, and especially we concentrate our attention on the barycentric form
of the Legendre interpolation formula. In recent years, the barycentric Lagrange
interpolation formula has attracted much attention owing to its stability and high
efficiency. We show that the barycentric weights for Gauss-Legendre points can be
expressed explicitly from the corresponding points and quadrature weights. Thus,
if we have precomputed the Gauss-Legendre points and corresponding quadrature
weights, then the barycentric Legendre formula can be evaluated inO(n) operations.
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Indeed, recent research has shown that the computation of the Gauss-Legendre
quadrature points and weights can be carried out in O(n) operations (see [17]).
Hence each evaluation of the barycentric Legendre formula can be carried out in
O(n) operations, and this is asymptotically the same work required to compute the
barycentric Chebyshev formulas.

This paper is organized as follows. In the next section, we discuss the decay rates
of the Legendre coefficients and derive error bounds of the truncated Legendre se-
ries expansion in the uniform norm. In Section 3 we explore the barycentric form
of the Legendre interpolation formula. The explicit form of the barycentric weights
for Gauss-Legendre points is presented, which provide a fast way for the imple-
mentation of the Legendre interpolation formula. Error estimates of the Legendre
interpolation polynomial are also given.

2. Decay rates of Legendre coefficients

In this section we shall establish the decay rates of the Legendre coefficients and
give error bounds of the truncated Legendre series expansion. For this purpose, let
‖ · ‖T be the Chebyshev-weighted seminorm defined by

‖u‖T =

∫ 1

−1

|u′(x)|√
1− x2

dx.

Theorem 2.1. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T
= Vk < ∞ for some k ≥ 1, then for each n > k + 1,

(2.1) |an| ≤
Vk

(n− 1
2 )(n− 3

2 ) · · · (n− 2k−1
2 )

√
π

2(n− k − 1)
.

If f is analytic inside and on the Bernstein ellipse E� with foci ±1 and major
semiaxis and minor semiaxis summing to � > 1, then for each n ≥ 0,

(2.2) |an| ≤
(2n+ 1)�(E�)M
π�n+1(1− �−2)

,

where M = maxz∈E�
|f(z)| and �(E�) denotes the length of the circumference of E�.

Proof. First let us consider the case when f is analytic inside and on E�. By
Cauchy’s integral formula, we can write

(2.3)

an = (n+
1

2
)

∫ 1

−1

f(x)Pn(x)dx

= (n+
1

2
)

∫ 1

−1

(
1

2πi

∮
E�

f(z)

z − x
dz

)
Pn(x)dx

= (n+
1

2
)
1

πi

∮
E�

f(z)Qn(z)dz,

where

Qn(z) =
1

2

∫ 1

−1

Pn(x)

z − x
dx, n = 0, 1, . . . ,

is the Legendre function of the second kind [1, p. 335] and E� denotes the Bernstein
ellipse in the complex plane

E� =

{
z ∈ C

∣∣∣∣z =
1

2

(
u+ u−1

)
, u = �eiθ,−π ≤ θ ≤ π

}
.
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From Davis [11, p. 311], we have

(2.4) Qn(z) =

∞∑
k=n+1

σn,k

uk(z)
, n = 0, 1, 2, . . . ,

where the coefficients σn,k are given by

σn,k =

∫ π

0

Pn(cos t) sin ktdt =

∫ 1

−1

Pn(t)Uk−1(t)dt, k ≥ n+ 1,

and Uk(t) is the Chebyshev polynomial of the second kind of degree k. By noting
the parity of the Legendre and Chebyshev polynomials, we have

(2.5) σn,n+2k = 0, k ≥ 1.

Combining equations (4.9.7), (4.9.8), (4.9.9) and (4.9.2) in [34], we have

(2.6) σn,n+2k−1 =
22n−2k+3(n!)2(n+ 1)k−1(2k − 2)!

(2n+ 1)!((k − 1)!)2(n+ 3
2 )k−1

,

where the Pochhammer symbol (a)k is defined as (a)0 = 1, (a)k = (a)k−1(a+k−1),
k ≥ 1. It is easy to obtain the following inequality from (2.6),

(2.7) |σn,n+2k−1| ≤ 2, n ≥ 0, k ≥ 1.

Substituting (2.4) and (2.5) into (2.3) yields

(2.8)

an = (n+
1

2
)
1

πi

∮
E�

f(z)Qn(z)dz

= (n+
1

2
)
1

πi

∞∑
k=n+1

σn,k

∮
E�

f(z)

u(z)k
dz

= (n+
1

2
)
1

πi

∞∑
j=1

σn,n+2j−1

∮
E�

f(z)

u(z)n+2j−1
dz.

By noting the inequality (2.7), the Legendre coefficients an can thus be bounded
by

(2.9)

|an| ≤ (n+
1

2
)
1

π

∞∑
j=1

|σn,n+2j−1|
∮
E�

∣∣∣∣ f(z)

u(z)n+2j−1

∣∣∣∣ |dz|
≤ (2n+ 1)

π
�(E�)M

∞∑
j=1

1

�n+2j−1

=
(2n+ 1)�(E�)M
π�n+1(1− �−2)

.

This completes the proof of the inequality (2.2).



ON THE CONVERGENCE RATES OF LEGENDRE APPROXIMATION 865

As for (2.1), we proceed by using the following relation [21, p. 254]

(2.10) Pn(x) =
1

2n+ 1
(P ′

n+1(x)− P ′
n−1(x)),

and the fact that

(2.11) Pn(±1) = ±1.

Applying integration by parts twice, we have

(2.12)

an =
1

2

(∫ 1

−1

f(x)P ′
n+1(x)dx−

∫ 1

−1

f(x)P ′
n−1(x)dx

)

=
1

2

([
f(x)Pn+1(x)− f(x)Pn−1(x)

]1
−1

+

∫ 1

−1

f ′(x)Pn−1(x)dx

−
∫ 1

−1

f ′(x)Pn+1(x)dx

)

=
1

2

(∫ 1

−1

f ′(x)Pn−1(x)dx−
∫ 1

−1

f ′(x)Pn+1(x)dx

)

=
1

2(2n− 1)

∫ 1

−1

f ′(x)

(
P ′
n(x)− P ′

n−2(x)

)
dx

− 1

2(2n+ 3)

∫ 1

−1

f ′(x)

(
P ′
n+2(x)− P ′

n(x)

)
dx

=
1

2n− 1

∫ 1

−1

f ′′(x)

[
Pn−2(x)

2
− Pn(x)

2

]
dx

− 1

2n+ 3

∫ 1

−1

f ′′(x)

[
Pn(x)

2
− Pn+2(x)

2

]
dx,

where the boundary terms vanish by noting (2.11). From Rainville [27, p. 173] we
know

(2.13) |Pn(x)| ≤
√

π

2n(1− x2)
, −1 < x < 1,

which implies

(2.14)

|an| ≤ 1

2n− 1

∫ 1

−1

|f ′′(x)|√
1− x2

(
1

2

√
π

2(n− 2)
+

1

2

√
π

2n

)
dx

+
1

2n+ 3

∫ 1

−1

|f ′′(x)|√
1− x2

(
1

2

√
π

2n
+

1

2

√
π

2(n+ 2)

)
dx

≤ 2

2n− 1

√
π

2(n− 2)
V1

=
V1

n− 1
2

√
π

2(n− 2)
.



866 HAIYONG WANG AND SHUHUANG XIANG

Thus we have proved the inequality (2.1) for the case k = 1. Similarly, using the
equation (2.10) and renewed integration by parts of (2.12), we have
(2.15)

an =
1

2n− 1

∫ 1

−1

f ′′(x)

[
P ′
n−1(x)− P ′

n−3(x)

2(2n− 3)
−

P ′
n+1(x)− P ′

n−1(x)

2(2n+ 1)

]
dx

− 1

2n+ 3

∫ 1

−1

f ′′(x)

[
P ′
n+1(x)− P ′

n−1(x)

2(2n+ 1)
−

P ′
n+3(x)− P ′

n+1(x)

2(2n+ 5)

]
dx

=
1

(2n− 1)(2n− 3)

∫ 1

−1

f ′′′(x)

[
Pn−3(x)

2
− Pn−1(x)

2

]
dx

− 1

(2n− 1)(2n+ 1)

∫ 1

−1

f ′′′(x)

[
Pn−1(x)

2
− Pn+1(x)

2

]
dx

− 1

(2n+ 3)(2n+ 1)

∫ 1

−1

f ′′′(x)

[
Pn−1(x)

2
− Pn+1(x)

2

]
dx

1

(2n+ 3)(2n+ 5)

∫ 1

−1

f ′′′(x)

[
Pn+1(x)

2
− Pn+3(x)

2

]
dx.

By using (2.13) again, we get
(2.16)

|an| ≤ 1

(2n− 3)(2n− 1)

∫ 1

−1

|f ′′′(x)|√
1− x2

(
1

2

√
π

2(n− 3)
+

1

2

√
π

2(n− 1)

)
dx

+
1

(2n− 1)(2n+ 1)

∫ 1

−1

|f ′′′(x)|√
1− x2

(
1

2

√
π

2(n− 1)
+

1

2

√
π

2(n+ 1)

)
dx

+
1

(2n+ 1)(2n+ 3)

∫ 1

−1

|f ′′′(x)|√
1− x2

(
1

2

√
π

2(n− 1)
+

1

2

√
π

2(n+ 1)

)
dx

+
1

(2n+ 3)(2n+ 5)

∫ 1

−1

|f ′′′(x)|√
1− x2

(
1

2

√
π

2(n+ 1)
+

1

2

√
π

2(n+ 3)

)
dx

≤ 4

(2n− 3)(2n− 1)

√
π

2(n− 3)
V2

=
V2

(n− 1
2 )(n− 3

2 )

√
π

2(n− 3)
.

The case k = 2 is proved. Repeated applications of integration by parts and (2.10),
(2.11), (2.13) bring in higher derivatives of f and corresponding higher variations
up to Vk. Hence we can obtain the desired result (2.1) but we omit the details. �

Remark 2.2. If f is analytic inside and on E�, the estimate for the Legendre coeffi-
cients is also given by [11, p. 313]

(2.17) |an| ≤
(2n+ 1)�(E�)M
2�n+1(1− �−1)

, n ≥ 0.

Comparing inequalities (2.2) and (2.17) we find that the ratio of the former to the

latter is equal to
2(1− �−1)
π(1− �−2)

. Thus the ratio is less than one for � > 1 and the

former is better.



ON THE CONVERGENCE RATES OF LEGENDRE APPROXIMATION 867

10−6

10 20 30 40 50 60

10−5

10−4

10−3

10−2

10−1

10−6

10 20 30 40 50 60

10−5

10−4

10−3

10−2

10−1

10−18
2 4 6 8 10 12 14 16 18 20

10−15

10−12

10−9

10−6

10−3

10−0

Figure 1. The absolute value of the n-th Chebyshev coefficient
(dots) and the n-th Legendre coefficient (circles) for the three func-
tions e2x (left), 1

1+16x2 (middle) and |x|3 (right).

Remark 2.3. Under the same assumption as in Remark 2.2, substituting z = 1
2 (u+

u−1) into (2.8) yields

an = (n+
1

2
)
1

πi

∞∑
j=1

σn,n+2j−1

∮
E�

f(z)

u(z)n+2j−1
dz

= (n+
1

2
)
1

2π

∞∑
j=1

σn,n+2j−1

∫ π

−π

f

(
1

2
(�eiθ + �−1e−iθ)

)
×(1− �−2e−2iθ)(�eiθ)−n−2j+2dθ.

Here the integrands on the right side of the last equality are periodic functions of
θ with period 2π. Hence the integrals can be computed efficiently by FFT. Thus
we have provided an alternative simple derivation of Iserles’ algorithm [23].

In [35] Trefethen has given the decay rates of the Chebyshev coefficients.

Lemma 2.4. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖ =
Vk < ∞ for some k ≥ 1, then for each n ≥ k + 1,

(2.18) |cn| ≤
2Vk

πn(n− 1) · · · (n− k)
.

If f is analytic inside and on E�, then for each n ≥ 0,

(2.19) |cn| ≤
2M

�n
,

where M is as in (2.2).

Comparing the decay rates of the Legendre and Chebyshev coefficients, one
can see that the estimates of the Chebyshev coefficients are smaller than those of
Legendre coefficients. If f is analytic in a neighborhood of the interval [−1, 1],
then both the Legendre and Chebyshev coefficients decay exponentially as can be
seen from (2.2) and (2.19). Figure 1 illustrates the decay rates of the two kinds
of coefficients for the three functions e2x, 1

1+16x2 , |x|3. The first test function
is analytic in the whole complex plane. As we can see, both coefficients decay
exponentially and the Chebyshev coefficients show a slightly faster decay than their
Legendre counterparts. The second test function is the Runge function which is
analytic except at the two poles ± 1

4 i. The last test function is not analytic in
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Figure 2. The ratio of the absolute value of the n-th Chebyshev
coefficient cn to the n-th Legendre coefficient an scaled by

√
n for

the three functions e2x (left), 1
1+16x2 (middle) and |x|3 (right).

the complex plane. Obviously, the decay rates of the Chebyshev coefficients of the
last two functions are always faster than those of Legendre coefficients. Figure 2
illustrates the ratio of the absolute value of the n-th Chebyshev coefficients cn to the
n-th Legendre coefficient an scaled by

√
n for the above three test functions. In fact,

Fox and Parker have compared both coefficients and asserted that the Chebyshev
coefficients decay a factor of

√
n faster than their Legendre counterparts [14, p. 17].

With the help of the decay rates of the Legendre coefficients, we next consider
the truncated Legendre series. Let fn(x) denote the truncated Legendre series
expansion of f(x),

fn(x) =

n∑
j=0

ajPj(x).

The following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.5. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and
‖f (k)‖T = Vk < ∞ for some k > 1, then for each n > k + 1,
(2.20)

|f(x)− fn(x)| ≤
Vk

(k − 1)(n− 1
2 )(n− 3

2 ) · · · (n− 2k−3
2 )

√
π

2(n− k)
, x ∈ [−1, 1].

If f is analytic inside and on E�, then for each n ≥ 0,

(2.21) |f(x)− fn(x)| ≤
(2n�+ 3�− 2n− 1)�(E�)M
π�n+1(�− 1)2(1− �−2)

, x ∈ [−1, 1].

Proof. The Legendre polynomials can be bounded by one, that is,

|Pn(x)| ≤ 1,

where x ∈ [−1, 1] and n ≥ 0. By virtue of the uniform convergence of the Legendre
series expansion (1.3), we can subtract the truncated Legendre expansion from the
infinite series and obtain

(2.22) |f(x)− fn(x)| =

∣∣∣∣∣∣
∞∑

j=n+1

ajPj(x)

∣∣∣∣∣∣ ≤
∞∑

j=n+1

|aj |.
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The inequality (2.20) follows from (2.22) and (2.1),

|f(x)− fn(x)| ≤
∞∑

j=n+1

Vk

(j − 1
2 )(j −

3
2 ) · · · (j −

2k−1
2 )

√
π

2(j − k − 1)

≤ Vk

√
π

2(n− k)

∞∑
j=n+1

1

(j − 1
2 )(j −

3
2 ) · · · (j −

2k−1
2 )

.

Therefore, we have for k > 1,

|f(x)− fn(x)| ≤ Vk

√
π

2(n− k)

∞∑
j=n+1

1

(j − 1
2 )(j −

3
2 ) · · · (j −

2k−1
2 )

= Vk

√
π

2(n− k)

1

k − 1

∞∑
j=n+1

[
1

(j − 3
2 ) · · · (j −

2k−1
2 )

− 1

(j − 1
2 ) · · · (j −

2k−3
2 )

]

=
Vk

(k − 1)(n− 1
2 )(n− 3

2 ) · · · (n− 2k−3
2 )

√
π

2(n− k)
.

Similarly, (2.21) follows from (2.22) and (2.2),

(2.23)

|f(x)− fn(x)| ≤
∞∑

j=n+1

(2j + 1)�(E�)M
π�j+1(1− �−2)

=
�(E�)M

π(1− �−2)

∞∑
j=n+1

2j + 1

�j+1

=
(2n�+ 3�− 2n− 1)�(E�)M
π�n+1(�− 1)2(1− �−2)

.

Hence we obtain the desired results and the proof is complete. �

3. Barycentric Legendre formula

In this section, we turn our attention to the problem of Legendre interpolation
approximation and present a fast algorithm for the efficient computation of the
interpolation formula using Gauss-Legendre points. Interpolation is one of the
most important tools of numerical analysis and almost every numerical analysis
textbook has a chapter to introduce it (see, for instance, [2, 10, 16, 33]). The
Lagrange interpolation polynomial qn(x) which interpolates the function f(x) at
the (n+ 1) points xj may be written as

(3.1) qn(x) =
n∑

j=0

f(xj)�j(x),

where

�j(x) =
n∏

k=0,k �=j

x− xk

xj − xk
, j = 0, 1, . . . , n,

are the Lagrange fundamental polynomials. The Lagrange form (3.1) is praised for
analytic utility and beauty but deplored for numerical practice [2]. In particular,
the computation of (3.1) is numerically unstable and requires O(n2) operations, and
every time a node xj is modified or added, all Lagrange fundamental polynomials
have to be recalculated.
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The barycentric formula, a variant of Lagrange interpolation, has received con-
siderable attention due to its attractive features such as low cost, stability and high
efficiency. The barycentric Lagrange interpolation formula has the form

(3.2) qn(x) =

n∑
j=0

λj

x− xj
f(xj)

n∑
j=0

λj

x− xj

,

where the barycentric weights λj are defined by

(3.3) λj =
1∏

k �=j

(xj − xk)
, j = 0, 1, . . . , n.

The barycentric formula (3.2) has a beautiful symmetric form and is eminently
suitable for machine computation [10, p. 370]. For certain particular sets of points,
such as equidistant points as well as Chebyshev points, the barycentric weights λj

can be computed analytically. For example, for Chebyshev points of the second
kind

(3.4) xj = cos
jπ

n
, j = 0, 1, . . . , n,

the barycentric weights are given up to a common factor by [4, 28]

λCH2
j = (−1)jδj , δj =

{
1/2, j = 0 or j = n,
1, otherwise.

For the barycentric weights of equidistant points and Chebyshev points of the first
kind, we refer the reader to [4]. With them each evaluation of the barycentric
Lagrange formula qn(x) for equidistant or Chebyshev points requires only O(n)
operations. Moreover, Higham has shown in [22] that the barycentric Lagrange
formula (3.2) is stable for any set of interpolating points with a small Lebesgue
constant, such as Chebyshev and Gauss-Legendre points, and ought to be the stan-
dard method of polynomial interpolation [4]. For an exhaustive discussion of the
theoretical advantage of the barycentric Lagrange formula, we refer the reader to
[4, 10, 16, 22].

If f(x) is continuous and of bounded variation on [−1, 1], then the Lagrange in-
terpolation polynomial qn(x) which interpolates f(x) at the Gauss-Legendre points
converges uniformly to f(x) on [−1, 1] [38]. The calculation of the barycentric in-
terpolation formula for Gauss-Legendre points, that is, when the xj are zeros of
Pn+1(x), has not been investigated as extensively in the literature as that of the
Chebyshev cases. Indeed, Berrut and Trefethen in [4] omitted the discussion of
the Legendre case and just mentioned that explicit barycentric weights λj are not
known for Gauss-Legendre points. In the following we shall derive the barycentric
weights for Gauss-Legendre points. For convenience, we assume throughout this
paper that the Gauss-Legendre points xj are monotonic.

Theorem 3.1. For Gauss-Legendre points, the barycentric weights are given by

(3.5) λGL
j = (−1)j

√
(1− x2

j)wj , j = 0, . . . , n,

where wj are the weights in the Gauss-Legendre quadrature formula.
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Proof. For Gauss-Legendre points, the Gauss quadrature weights are given by [7,
p. 76]

(3.6) wj =
2

(1− x2
j )[P

′
n+1(xj)]2

.

From equation (3.3), we have that the barycentric weights for Gauss-Legendre
points can be written as

(3.7) λj =
1∏

k �=j

(xj − xk)
=

dn+1

P ′
n+1(xj)

,

where dn+1 is the leading coefficient of xn+1 in Pn+1(x). Substituting (3.7) into
(3.6), we have

(3.8) wj =
2λ2

j

d2n+1(1− x2
j)
.

Consequently,

(3.9) λ2
j = d2n+1

wj(1− x2
j )

2
.

From equation (3.3) it is not difficult to show that the barycentric weights λj have
alternating signs. Thus,

(3.10) λj = σ(−1)j

√
d2n+1wj(1− x2

j )

2
,

where σ = ±1. Cancelling the common factors independent of j yields

λGL
j = (−1)j

√
(1− x2

j)wj .

This completes the proof of Theorem 3.1. �

Remark 3.2. Equation (3.5) shows a close connection between the barycentric
weights and the Gauss-Legendre quadrature points and weights. This idea can be
further extended to the Jacobi case. We shall show that for Gauss-Jacobi points,
the barycentric weights can also be expressed in terms of Gauss-Jacobi quadrature
points and weights [39].

The computation of the Gauss-Legendre points xj and corresponding quadrature
weights wj has been extensively investigated in the past decades. For quite some
time, it has been best to consider a symmetric tridiagonal matrix whose elements
are obtained from the three-term recurrence relation satisfied by the Legendre poly-
nomials [18]; this algorithm for the xj and wj costs O(n2) operations. Recently, a
fast algorithm, which costs only O(n) operations, has been developed by Glaser, Liu
and Rokhlin for computing the Gauss-Legendre points and corresponding quadra-
ture weights by using the Prüfer transform and the classical Taylor series method.
We refer the reader to [17] for a deeper treatment. Therefore, the barycentric Le-
gendre formula can be carried out in O(n) operations and this is asymptotically the
same required work for computing the barycentric Chebyshev formulas. Figure 3
illustrates the barycentric Lagrange interpolation of the function f(x) = | sin πx|−x
in 21 (thus n = 20) and 101 Gauss-Legendre points (n = 100) on [−1, 1]. For the
sake of simplicity, in this example we have precomputed the Gauss-Legendre points
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Figure 3. Barycentric Lagrange interpolation of the function
f(x) = | sin πx| − x for n = 20 (top) and n = 100 (bottom).
The dots denote the interpolated values f(xj).

xj and quadrature weights wj by using the Matlab code in [35] and computed the
barycentric weights λGL

j by (3.5). We remark that, since the barycentric weights

λGL
j can be evaluated efficiently, the Legendre interpolation formula can be obtained

in a fast way.
How good is the Legendre interpolation polynomial qn(x)? Our starting point

is the classical inequality [21, p. 100],

(3.11) |f(x)− qn(x)| ≤ (1 + Λn)‖f(x)− p∗(x)‖∞,

where p∗(x) is the best approximation of f(x) by polynomials of degree n or less,
and

(3.12) Λn = max
−1≤x≤1

n∑
j=0

|�j(x)|

is the Lebesgue constant for which the following estimate holds [13, p. 170]:

(3.13) Λn = O(
√
n).

It is well known that the truncated Chebyshev series expansion is very close to the
best polynomial approximation [8, p. 126]. Hence if f is analytic inside and on E�,
the error of the Legendre interpolation polynomial can be bounded approximately
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by

(3.14)

|f(x)− qn(x)| ≤ (1 + Λn)‖f(x)−
n∑

j=0

′cjTj(x)‖∞

≤ (1 + Λn)
2M

�n(�− 1)
.

Here we have made use of the Theorem 4.3 in [35]. By the same token, if f, f ′, . . . ,
f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T = Vk < ∞ for some k ≥ 1,
then for each n ≥ k + 1, by Lemma 2.4

(3.15)

|f(x)− qn(x)| ≤ (1 + Λn)‖f(x)−
n∑

j=0

′cjTj(x)‖∞

≤ (1 + Λn)

∞∑
j=n+1

2Vk

πj(j − 1) · · · (j − k)

= (1 + Λn)
2Vk

kπn(n− 1) · · · (n− k + 1)
.

For error bounds of the Chebyshev interpolation formula, we refer the reader to
[40].

We now give several numerical examples to demonstrate the convergence of the
barycentric interpolation formula. For each n, the maximum error of the barycentric
Legendre formula defined by

(3.16) max
x∈[−1,1]

|f(x)− qn(x)|,

is measured at 10000 equispaced points in [−1, 1]. The nodes and weights of the
Gauss-Legendre quadrature rule are computed in the chebfun system by the com-
mand legpts [37]. All computations in the following numerical examples have been
performed in double precision arithmetic. Figure 4 shows the convergence of the
barycentric interpolation formulas for Chebyshev points (3.4) and Gauss-Legendre
points for the two analytic functions f(x) = ex and f(x) = cos(2x+ 2). As we can
see, the convergence of both formulas is exponential and is almost indistinguish-
able. Figure 5 illustrates the convergence of the barycentric formulas for the two

0 2 4 6 8 10 12 14 16 18 20
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10−10

10−5

100

0 5 10 15 20
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Figure 4. Convergence of the barycentric Chebyshev (dots) and
Legendre (circles) interpolation formulas for the two functions
f(x) = ex (left) and f(x) = cos(2x+ 2) (right).
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Figure 5. Convergence of barycentric Chebyshev (dots) and Le-
gendre (circles) interpolation formulas for the functions f(x) =

1
1+25x2 (left) and f(x) = e−1/x2

(right).
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Figure 6. Convergence of barycentric Chebyshev (dots) and Le-
gendre (circles) interpolation formulas for the functions f(x) = |x|
(left) and f(x) = e|x+0.5| (right).

functions f(x) = 1
1+25x2 and f(x) = e−1/x2

and Figure 6 illustrates the conver-

gence of the barycentric formulas for the two non-analytic functions f(x) = |x| and
f(x) = e|x+0.5|. As we can see, both formulas are of approximately equal accuracy.

Remark 3.3. For small as well as moderate values of n, the barycentric weights
for Gauss-Legendre points can be computed stably and efficiently by using (3.5).
For large values of n, however, equation (3.5) is unstable because the first and last
Gauss-Legendre points are very close to ±1. Therefore, the computation of (3.5)
should be performed in extended precision at the moment.

In fact, the Gauss-Legendre and Chebyshev points (3.4) are distributed with the
same density

1

π
√
1− x2

,

that is, the grid points cluster quadratically near x = ±1. It is well known that grid
points with this distribution are optimal in various senses for polynomial approxi-
mation and typically lead to well-behaved Lagrange interpolation [36, Chap. 5]. For
a more detailed theoretical discussion of the accuracy of polynomial interpolation
from the point of view of complex analysis, we refer the reader to [10, 21, 36].
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4. Concluding remarks

In this paper, we have considered the decay rates of the Legendre coefficients.
Based on this result, the error bounds of the truncated Legendre series expansion
have been derived immediately. In addition, we considered the barycentric Le-
gendre formula and showed that the barycentric weights for the Gauss-Legendre
points can be expressed explicitly in terms of Gauss-Legendre points and corre-
sponding quadrature weights. Thus, as in the Chebyshev cases, the barycentric
Legendre interpolation formula can be carried out in a fast way. Numerical ex-
periments indicate that the barycentric Legendre and Chebyshev formulas are of
approximately equal accuracy.

In practice, both Chebyshev and Legendre interpolating polynomials are of-
ten used in numerical integration to derive quadrature rules. If the interpolating
nodes are Gauss-Legendre or Chebyshev points of the second kind, the correspond-
ing quadrature rules are Gauss-Legendre, respectively, Clenshaw-Curtis quadrature
formulas. As shown by Trefethen in [35], Gauss-Legendre and Clenshaw-Curtis
quadrature rules are of approximately equal accuracy for most integrands and both
rules should be regarded as equally valuable and fundamental, with the former
having an edge in elegance and the latter in simplicity [35].

For many other applications of the barycentric interpolation formula, such as
differentiation of polynomial interpolants, spectral methods for differential equa-
tions, estimation of the Lebesgue constant and fast multipole methods, we refer the
reader to [4].
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34. G. Szegö, Orthogonal Polynomials, Colloquium Publications 23, American Mathematical So-
ciety, Providence, Rhode Island, 1939. MR0000077 (1:14b)

35. L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Review., 50 (2008),
67-87. MR2403058 (2009c:65061)

36. L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000. MR1776072

(2001c:65001)
37. L. N. Trefethen, N. Hale, R. B. Platte, T. A. Driscoll and R. Pachón, Chebfun Version 3,

http://www.maths.ox.ac.uk/chebfun/, University of Oxford, 2009.
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