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SIEVE METHODS FOR ODD PERFECT NUMBERS

S. ADAM FLETCHER, PACE P. NIELSEN, AND PASCAL OCHEM

Abstract. Using a new factor chain argument, we show that 5 does not divide
an odd perfect number indivisible by a sixth power. Applying sieve techniques,
we also find an upper bound on the smallest prime divisor. Putting this
together we prove that an odd perfect number must be divisible by the sixth
power of a prime or its smallest prime factor lies in the range 108 < p < 101000.
These results are generalized to much broader situations.

1. Introduction

A positive integer of the form 2n−1 is called a Mersenne number. These numbers
can only be prime when n is prime. As it currently stands, there are forty-seven
known Mersenne primes. The largest is 243112609 − 1, which is also currently the
largest explicitly known prime, and the first such found with more than ten-million
digits. As observed by Euclid, a number of the form N = 2p−1(2p−1), where 2p−1
is a Mersenne prime, possesses the property that σ(N) = 2N , and Euler proved the
converse in the case when N is even. A positive integer N satisfying σ(N) = 2N is
called a perfect number. There are two questions, open since antiquity, concerning
perfect numbers.

Question 1. Are there infinitely many even perfect numbers?

Equivalently, one can ask if there are infinitely many Mersenne primes. Due to
heuristic arguments, and the fact that prime-hunters keep finding more of them at
about the right times, the widely held belief is that the answer to this question
is yes. However, little concrete progress has been made in formally answering the
question. A positive answer would give an answer to other difficult open questions,
such as whether or not the quadratic polynomial 2x2 − 1 is prime infinitely often.
Those wishing to look for Mersenne primes can participate in GIMPS (the Great
Internet Mersenne Prime Search) by downloading a free program that runs on spare
computer cycles from http://www.mersenne.org.

Question 2. Are there any odd perfect numbers?

The popular opinion is that the answer is no. Further, there are a number of
known limiting conditions. We give an updated version of the list provided in [24].

Write N =
∏k

i=1 p
ai
i where each pi is prime, p1 < p2 < . . . < pk, and k = ω(N) is

the number of distinct prime factors. Then:

• Eulerian Form: We have N = παm2 for some integers π, α,m ∈ Z>0, π � m,
with π ≡ α ≡ 1 (mod 4) and π prime. The prime π is called the special
prime of N .
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• Lower Bound: Brent, Cohen, and te Riele [2] using a computer search
found that N > 10300. As of this writing, the third named author has
completed the calculations which improve this bound to N > 101500, and
further progress is likely. William Lipp is helping coordinate this effort via
his website http://www.oddperfect.org.

• Upper Bound: Dickson [6] proved that there are finitely many odd perfect
numbers with a fixed number of distinct prime factors. Pomerance [26]
gave an effective bound in terms of k. This was improved in succession by

Heath-Brown [13], Cook [5], and finally by the second author to N < 24
k

.
Recently, Pollack [25] used these bounds to give an effective bound on the
number of odd perfect numbers in terms of k.

• Large Factors: Goto and Ohno [9] proved that pk > 108, and Iannucci
[14, 15] proved pk−1 > 104 and pk−2 > 102.

• Small Factors: The smallest prime factor satisfies p1 < 2
3k + 2 as proved

by Grün [11]. For 2 � i � 6, Kishore [20] showed that pi < 22
i−1

(k− i+1),
and this has been slightly improved by Cohen and Sorli [3].

• Number of Total Prime Factors: Hare [12] proved that the total number of
(not necessarily distinct) prime factors of N must be at least 75. The third
author is performing computations which increase this bound to 101.

• Number of Distinct Prime Factors: The second author [24] demonstrated
that ω(N) � 9 and if 3 � N then ω(N) � 12. In a work in progress these
bounds are increased further.

• The Exponents: Set d = gcdi(ai + 1), where the ai run over the exponents
on the non-special primes. McDaniel [23] proved that d �≡ 0 (mod 3). If
the exponents of the non-special primes are all equal (to d − 1), Yamada
[30] proved that there is an effective upper bound on N depending only on
d. In this case, a number of authors have demonstrated that certain values
of d are unacceptable.

The focus of this paper will be on the exponents of a purported odd perfect
number, the last of the bulleted points above. As above, let d = gcdi(ai+1), where
the ai run over the exponents on the non-special primes. With modern computing
power it is a simple matter to show that d �≡ 0 (mod 3); taking fewer than 30 cases
to check. We even provide such a proof later in the paper. If we replace 3 by a larger
prime, like 5, already the computation becomes much more difficult, and previously
had never been accomplished. Nonetheless, there is still a straightforward algorithm
to deal with this case; assuming you have a large amount of computational power
at hand. However, that leaves open what happens in the case d = gcdi(ai+1) = 1.
For example, it is known that the non-special primes cannot all have an exponent
of 2, nor can they all have exponent 4, but it is unknown what happens in the
mixed case when we allow both 2 and 4 to occur.

A new idea was developed by Yamada [29] in a preprint available at the math-
ematics preprint server http://arxiv.org since 2005. Using sieve methods, he
proved the following:

Yamada’s Theorem. Let n, d, b1, b2, . . . , bt be positive integers, where the bj be-

long to a finite set P. If N = pa1
1 · · · pas

s qb11 · · · qbtt is the prime factorization of
N and σ(N)/N = n/d, then N has a prime factor smaller than a constant C,
effectively computable in terms of n, s, and P.
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Yamada explicitly computed the constant C in the case that N is an odd perfect
number (i.e. n = 2 and d = 1) where the exponents of the non-special prime
factors are either 2 or 4 (so s ≤ 1 and P = {2, 4}). The constant he obtained was
exp(4.97401 · 1010) > 1020,000,000,000.

In this paper we strengthen Yamada’s theorem by weakening the condition “the
bj belong to a finite set” to “there is a finite set of primes so that bj+1 is divisible by
one of them.” Furthermore, we simplify the proof a great deal, and the computable
constant obtained is much smaller.

Applying our theorem, we arrive at the following:

Main Theorem. Let N be an odd perfect number such that if pa||N and p is not
the special prime, then either 3|(a + 1) or 5|(a + 1). The smallest prime factor of
N belongs to the range 108 < p < 101000.

In Sections 2-4 we develop the machinery necessary to establish an improved
version of Yamada’s theorem. Emphasis is given to simplifying the computations,
rather than optimizing constants. Sections 5 and 6 describe how the lower bound
of the main theorem is pushed to 108. The most difficult problem, and the real
heart of the paper, is dealing with the case when p = 5. In Sections 7–10 we finish
the proof of the upper bound in the main theorem. The last few sections focus on
open questions and possible future improvements.

2. Break-down of the main ideas

We begin with some standard notation. We define the function σ−1(a) =
σ(a)
a =∑

d|a d
−1 for positive integers a, and note that this function is multiplicative.

Clearly, an integer N is perfect if and only if σ−1(N) = 2. Given a prime p

we have σ−1(p
a) = pa+1−1

pa(p−1) which is increasing in a and lima→∞ σ−1(p
a) = p

p−1 .

An integer N > 1 is said to be n/d-perfect if σ−1(N) = n/d. Reducing if
necessary, we will always assume n and d are relatively prime positive integers. In
the case n = 2 and d = 1, we let π denote the special prime factor of N . We also
let Φm(x) denote the mth cyclotomic polynomial.

Hereafter, we fix an integer s ≥ 0 and a finite set of primes P. We will think
of the set P as limiting the exponents of all but s of the prime factors of N , but
to make this more formal we need further notations. We set P =

∏
p∈P p and let

Pmax denote the largest prime in P. We let N be an n/d-perfect number with a
prime factorization

N =

s∏
i=1

rai
i

t∏
j=1

q
bj
j

where for each 1 ≤ j ≤ t there is a prime pj ∈ P with pj |(bj +1). In particular, we

have Φpj
(qj)|σ(qbjj ), for any such prime pj ∈ P. For each p ∈ P we let Qp = {q :

qb||N and p|(b+ 1)}. Notice that prime factors of N may occur in more than one
of the sets Qp, but (by design) there are at most s prime factors of N which belong
to none of them. Without loss of generality, we also assume r1 < r2 < . . . < rs. We
speak of the primes qj as the constrained primes, as their exponents are constrained
to specific residue classes. The primes ri are unconstrained, but limited in number.

We will construct a constant, which we call C, that is an upper bound on the
smallest prime factor of N . The definition of C is done in three stages; we will
assume that C is the smallest constant satisfying the conditions given in each stage.
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For the first stage we simply assume C ≥ max{Pmax, n}+1. This takes care of the
case that one of n, d, or P shares a prime factor in common with N . Hereafter, we
will assume that N does not share such a factor. Noting that σ(N) is an integer, we
derive from the equation σ(N) = Nn/d that d|N , and hence we may now assume
d = 1.

The second stage is also straightforward, and yields a large improvement over
[29]. From the equation σ−1(N) = n we have

n =
s∏

i=1

σ−1(r
ai
i )

∏
j

σ−1(q
bj
j ) ≤

s∏
i=1

r1 + i− 1

r1 + i− 2

∏
p∈P

∏
q∈Qp

q

q − 1

=
r1 + s− 1

r1 − 1

∏
p∈P

∏
q∈Qp

q

q − 1
.

We wish to turn this inequality into a non-trivial lower-bound on the quantity∏
p∈P

∏
q∈Qp

q
q−1 . This occurs only when n > r1+s−1

r1−1 . Equivalently, we need

r1 > s+n−1
n−1 . For ease later, we define the following constants: C0 = s+n−1

n−1 and

C ′
0 =

n(r1 − 1)

s+ r1 − 1
≤

∏
p∈P

∏
q∈Qp

q

q − 1
.

Our second assumption is C ≥ C0 + 1. The observant reader will note that the
constant C ′

0 depends on more than just n, s, and P; namely the prime r1. However,
note that with the assumption C ≥ C0+1 in place we lose no generality by assuming
r1 > C0. Thus, we also have the inequality C ′

0 > 1, and C ′
0 is bounded away from

1 by a positive quantity only depending on n, s, and P.
The third stage, which is explained fully in the next two sections, relies on the

following idea: We wish to count the number of prime factors of N which are
congruent to 1 (mod P ). To this end, fix one of the constrained primes q ∈ Qp. If
q ≡ 1 (mod P ), then p|Φp(q)|σ(qb)|σ(N) = Nn. From our first assumption on C,
we know p � N , hence p|n. Thus there are at most vp(n) primes q ∈ Qp with q ≡
1 (mod P ), where vp denotes the p-adic valuation. In particular, there are at most
C1 = s+

∑
p∈P vp(n) distinct prime factors of N which are ≡ 1 (mod P ). We will

use the large sieve to show that this constraint implies that
∏

p∈P
∏

q∈Qp
q/(q− 1)

converges quickly. If this double product involves only sufficiently large primes,
then we can guarantee it is smaller than C ′

0, which yields a contradiction.

3. The large sieve

In this section we fix a prime p0 ∈ P and we let p represent an arbitrary prime.
To use the large sieve we first need to construct appropriate sieving sets. For
p ≡ 1 (mod P ) we set

Ωp = {0 (mod p)} ∪ {a (mod p) : a �≡ 1 (mod p), ap0 ≡ 1 (mod p)},
and for all other primes we set Ωp = {0 (mod p)}. We wish to estimate the size of
the set S = {n ≤ x : n /∈ Ωp for all p < u}, where x, u ∈ R>0.

To see why we want to bound the size of S consider the following argument.
Assume q ∈ Qp0

, q �≡ 1 (mod p), and qp0 ≡ 1 (mod p). From the definition of Qp0
,

this implies that p|N . If we further assume that C1 = 0, then there are no primes
p|N with p ≡ 1 (mod P ). Thus, under the assumptions above, q /∈ Ωp unless q = p.
In particular, we have the upper-bound |{q ∈ Qp0

: q < x}| ≤ |S|+ u. Since C1 is



SIEVE METHODS FOR ODD PERFECT NUMBERS 1757

not necessarily 0 a small corrective factor needs to be introduced, which we do at
the end of this section.

If p ≡ 1 (mod P ) we set κ(p) = p0. Otherwise we set κ(p) = 1. We extend κ
multiplicatively, and define it to be zero on non-square-free arguments. Note that
κ(p) = |Ωp|. We now describe how to give an effective bound on |S|.

Proposition 1 (The Large Sieve [16, Theorem 7.14]). We have

|S| ≤ x+ u2

G(u)

where G(u) =
∑

n≤u μ
2(n)

∏
p|n

(
κ(p)

p−κ(p)

)
.

Note that we are in the situation where “small sieves” would apply, and this
is the avenue Yamada explored. However, to avoid complications with error-term
estimates we prefer the large sieve. In the sieve we take u =

√
x, and thus we

need to find a lower-bound for G(
√
x). Set V (P (w)) =

∏
p<w

(
1− κ(p)

p

)
. One

can approximate G(u) from above and below by suitable multiples of V (P (w))−1,
choosing w appropriately in either case. We are concerned with the lower bound,
and thus appeal to the following proposition, which follows from a trick of Rankin.

Proposition 2 ([10, Theorem 1, p. 52]). Suppose there is a constant B > 1 so
that

1

log(z)

∑
p<z

κ(p) log(p)

p
< B

for some z ≥ 2. Writing z = x1/s, if s > 2B we have

G(
√
x) ≥ 1− e−C2(s)

V (P (x1/s))

where C2(s) =
s
2 log(s/2B)− s

2 +B.

So we first find an upper-bound of the form

1

log(z)

∑
p<z

κ(p) log(p)

p
< B.

An effective but simplistic upper-bound is easy to achieve. It is well known (e.g.,

see [28, Equation 3.24]) that 1
log(z)

∑
p<z

log(p)
p < 1. Since κ(p) ≤ p0 ≤ P we can

take B = P , and then take s = 2P + 1.
Next, we need to find an upper bound for V (P (w)), where w = x1/s. We begin

by noting

V (P (w)) ≤
∏
p<w

(
1− 1

p

)κ(p)

=
∏
p<w

(
1− 1

p

) ∏
p<w, p≡1 (mod P )

(
1− 1

p

)p0−1

=
∏
p<w

(
1− 1

p

)p0 ∏
p<w, p�≡1 (mod P )

(
1− 1

p

)−p0+1

.

Thus, it suffices to find an effective upper-bound for the Mertens’ product over the
arithmetic progression 1 (mod P ); or lower-bounds for the products over the other
arithmetic progressions modulo P . The bounds given in [1] suffice. (To apply the
results of that paper we may need to increase P so we have P ≥ 37, which can be
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done by adding primes to P if necessary.) We arrive at an effective inequality of
the form

V (P (w)) <
C3

log(w)1+
p0−1

ϕ(P )

where C3 > 0 depends only on P , and ϕ is the totient function.
At this point we still need to deal with the possibility that there might be prime

factors of N which are 1 (mod P ). Let T denote the set of all such prime factors,
if any. We redefine Ωp and κ, so that Ωp = {0 (mod P )} and κ(p) = 1 whenever
p ∈ T . Notice that we now truly do have the bound

|{q ∈ Qp0
: q < x}| ≤ |S|+ u.

One of the effects of this change in the definition of Ωp and κ is that the needed
constant B is no larger, so we use the same constant B = P as in our previous
computation. The upper-bound on V (P (w)) is changed by a constant which de-
pends only on the set T . Further, the worst case is when T consists of the first C1

primes which are 1 (mod P ). Letting T ′ consist of the first C1 primes which are
1 (mod P ), we have

V (P (w)) <
C ′

3

log(w)1+
p0

ϕ(P )

where

C ′
3 = C3

∏
p∈T ′

1− 1
p

1− p0

p

> 0

is still effectively computable. Note that at the cost of weaker bounds, we then
have

|{q ∈ Qp0
: q < x}| < C4x/ log(x)

1+1/ϕ(P )

where C4 > 0 depends on P, but is independent of p0.

4. Partial summation bound

We are now ready to estimate
∏

q∈Qp0

q
q−1 . Suppose that all the prime factors

of N are greater than some integer y > 1. By partial summation we have

log

⎛
⎝ ∏

q∈Qp0

q

q − 1

⎞
⎠ = −

∑
q∈Qp0

log(1− 1/q) =
∑

q∈Qp0

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞

y

C4

x log(x)1+1/ϕ(P )
dx+

∑
q>y

1

q(q − 1)
<

ϕ(P )C4

log(y)1/ϕ(P )
+

∑
n>y

1

n(n− 1)

=
ϕ(P )C4

log(y)1/ϕ(P )
+

1

y
.

We can incorporate 1/y into the main term (as the main term dominates), by
changing C4 to a new constant C5 > 0. Thus,

0 < log(C ′
0) ≤ log

⎛
⎝ ∏

p0∈P

∏
q∈Qp0

q

q − 1

⎞
⎠ <

|P|ϕ(P )C5

log(y)1/ϕ(P )
.
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Solving for y we have

y < exp

((
|P|ϕ(P )C5

log(C ′
0)

)ϕ(P )
)

and our third assumption on C is that it is larger than the quantity on the right.
We have thus proven:

Theorem 3. Let N > 1 be an odd integer with σ−1(N) = n/d. Let s ≥ 1 be a fixed
integer, and let P be a finite set of primes. Suppose the prime factorization of N

has the form N =
∏s

i=1 r
ai
i

∏t
j=1 q

bj
j , where for each j there is a prime pj ∈ P with

pj |(bj + 1). There exists a computable constant C, depending only on P, n, and s,
which gives an upper bound on the smallest prime factor of N .

5. Our special case, dealing with small primes p �= 5

In the remainder of the paper we specialize to the case when σ−1(N) = 2,
P = {3, 5}, and s = 1. We further assume that the one prime factor of N not
necessarily limited by P is the special prime, π. Note that while the exponent of π
is not limited by P we do know that the exponent is ≡ 1 (mod 4). In particular,
Φ2(π) = π+1 divides 2N . To abbreviate these assumptions, we refer to an integer
N satisfying the above conditions by the acronym R-OPN (a restricted odd perfect
number).

Let N be an R-OPN. Suppose for a moment that Q5 is empty, and so all of the
exponents of the non-special primes are ≡ 2 (mod 3). This implies that Φ3(q)|N
for all q|N , q �= π. We wish to show that 3 � N when N is an R-OPN, working by
contradiction. The next paragraph demonstrates how this is accomplished in one
special case.

If 3|N , then since π �= 3 we have 13 = Φ3(3)|N . In other words, starting
with the prime 3 we are forced to have 13 as another prime divisor of N . We
say that 3 contributes the prime factor 13. Since 13 ≡ 1 (mod 4) it might be
the special prime, and so we will first consider that case. With π = 13 we have
2 · 7 = π + 1 = Φ2(π)|2N . This implies that 7 ∈ Q3 (since 13 is already the special
prime, and we are assuming Q5 = ∅) and so 7 contributes the factors 3 · 19 = Φ3(7)
to N . Repeating this argument we have that 19 contributes 3 · 127 = Φ3(19),
which in turn contributes the factors 3 · 5419 = Φ3(127)|N , and finally we have
3 · 31 · 313 · 1009 = Φ3(5419). We could continue this process of obtaining more
and more factors of N , but pausing for a moment to collect our data we currently
have M = 34 · 72 · 131 · 192 · 312 · 1272 · 3132 · 10092 · 54192|N . On the other hand,
σ−1(M) > 2. Adding more prime factors to M , or increasing the exponents on
the factors we already have, only increases the size of σ−1(M), which contradicts
σ−1(N) = 2.

One calls an integer M > 1 for which σ−1(M) > 2 an abundant number. If M |N
and M is abundant, then N is abundant. Using this fact we were able to show that
the situation in the previous paragraph led to a contradiction. However, there are
more cases to consider; such as when 13 is not the special prime. The print-out
below covers all cases. Some explanation of the notation in the print-out may be
necessary. Every line is of the form “pa ⇒ Φa+1(p)”, where Φa+1(p) is completely
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factored to tell us which new primes are contributed. The exponent a is determined
by the case under consideration (we have a = 1 if p is the special prime, and a = 2
otherwise). Also note that the letter A tells us that the case under consideration
gives us an abundant number, which allows us to back-track to the next case. The
indentation tells us how far into a chain of factors we are, and also aids us in finding
the next case to consider.
3^2 => 13^1

13^1 => 2^1 7^1

7^2 => 3^1 19^1

19^2 => 3^1 127^1

127^2 => 3^1 5419^1

5419^2 => 3^1 31^1 313^1 1009^1 A

13^2 => 3^1 61^1

61^1 => 2^1 31^1

31^2 => 3^1 331^1

331^2 => 3^1 7^1 5233^1

7^2 => 3^1 19^1 A

61^2 => 3^1 13^1 97^1

97^1 => 3^1 7^2

7^2 => 3^1 19^1 A

97^2 => 3^1 3169^1

3169^1 => 2^1 5^1 317^1 A

3169^2 => 3^1 3348577^1

3348577^1 => 2^1 1674289^1

1674289^2 => 3^1 934415109937^1

934415109937^2 => 3^1 61^1 79^1 127^1 226903^1 2095837299571^1

79^2 => 3^1 7^2 43^1 A

3348577^2 => 3^1 3737657091169^1

3737657091169^1 => 2^1 5^1 443^1 843714919^1 A

3737657091169^2 => 3^1 181^1 26042690887^1 987900542491^1

181^1 => 2^1 7^1 13^1

7^2 => 3^1 19^1 A

181^2 => 3^1 79^1 139^1

79^2 => 3^1 7^2 43^1 A

Note that the line 331^2 => 3^1 7^1 5233^1 contributes the two primes 7 and
5233, either of which we could use to start the next line. We chose 7 simply because
it was the smallest prime we hadn’t used, and we make similar choices throughout
the chain. This algorithm above is often referred to as “creating a factor chain.”
Each possible chain of factors leads to a contradiction, i.e., the number must always
become abundant. We thus can conclude 3 � N .

At this point we might ask what happens if we disregard our assumption that
Q5 is empty. This allows one more branch for each prime factor since we do not
know whether we have Φ3(q)|N or Φ5(q)|N . For example, instead of just dealing
with 13 and 132, we also have chains involving 134. Surprisingly, the algorithm still
successfully finishes in just under 1000 steps. In particular, if N is an R-OPN, then
3 � N .
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We can try to repeat this process for the prime 5, but the number of factors
needed to achieve abundance increases dramatically. Even if we assume Q3 is
empty the number of cases to check is large; the chain must go to depths of about
80, 000 prime factors which is entirely unfeasible. We describe how to overcome
these difficulties in the next section. On the other hand, for any prime larger than
5 we quickly get a smaller prime (at least in practice) and thus reduce to a previous
case. For example, the following print-out shows that if 7|N , then a smaller odd
prime must divide N . When a smaller odd prime appears, we write S:
7^2 => 3^1 19^1 S

7^4 => 2801^1

2801^1 => 2^1 3^1 467^1 S

2801^2 => 37^1 43^1 4933^1

37^1 => 2^1 19^1

19^2 => 3^1 127^1 S

19^4 => 151^1 911^1

151^2 => 3^1 7^1 1093^1 S

151^4 => 5^1 104670301^1 S

37^2 => 3^1 7^1 67^1 S

37^4 => 11^1 41^1 4271^1

11^2 => 7^1 19^1

19^2 => 3^1 127^1 S

19^4 => 151^1 911^1

151^2 => 3^1 7^1 1093^1 S

151^4 => 5^1 104670301^1 S

11^4 => 5^1 3221^1 S

2801^4 => 5^1 1956611^1 6294091^1 S

Notice that we do not even need to involve abundance computations. Continu-
ing in this manner, one can prove that if 7 ≤ q < 108 is prime and q|N , then
a smaller odd prime divides N . Full print-outs (of these results, and the re-
sults of the next section) are available on the second author’s website. With
more effort, the upper bound on q can be improved slightly; but a large im-
provement is not possible without improved factorization techniques (which is, of
course, a very difficult problem!). Eventually the numbers we consider are too
large to factor in a reasonable amount of time. It is interesting to note that
Φ3(Φ5(x)) = (x2 − x + 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x + 3), which helps
factor some of the larger integers.

Computations suggest that any factor chain as above starting with a large prime
quickly yields a smaller prime. It is an open question whether one can create a
chain (using odd primes) which eventually yields no new prime factors.

6. Dealing with the prime 5

We still need to deal with the case q = 5, and then we can conclude that an
R-OPN N has no prime factors < 108. It should be noted that even if we assume
that N is not divisible by a sixth power the computation is difficult because chains
do not necessarily repeat prime factors. So we will continue to work with the
assumption that N is an R-OPN, even though our main interest lies in that special
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case. Keep in mind that we do know that 3 � N from our work in the previous
section.

The main difficulty in producing factor chains starting with the prime 5 is that
abundance is more difficult to achieve. When we started with the prime 3 it for-
tunately contributed more to the abundance computations which helped in ending
the chains quickly. To reach abundance when starting with 5 some cases will re-
quire hundreds of thousands of different primes. It should also be mentioned that
moving from the case P = {3} to the case P = {3, 5} increases the number of
chains exponentially.

The key insight is to notice that certain primes occur quickly on any chain one
considers. For example, we can always eventually get the prime 11 because of the
following factor chain:
5^1 => 3 S

5^2 => 31

31^2 => 3 S

31^4 => 11 X

5^4 => 11 X

Note: To save room we do not print the full factorization of Φa(p) to the right
of the arrow, which in some cases is difficult (or even impossible) to provide since
full factorization is time intensive. Instead, we merely print the single prime factor
we will use to continue the factor chain. So, for example, the last line tells us
that 11|Φ5(5) and that is all we need to know. Since we know 3 cannot divide N ,
hereafter we will drop all lines involving a 3.

Now that we know that the prime 11 must occur on any chain we can use it to
get other primes. A factor chain starting with the prime 11 which is seventy-two
lines long tells us that 31 must occur in any chain. The prime 31 quickly gives us
the prime 17351, and in turn we get 41 using the chain:
17351^2 => 21787

21787^4 => 41 X

17351^4 => 1648012040336791

1648012040336791^4 => 42751

42751^4 => 2223796173481

2223796173481^1 => 95239

95239^4 => 41 X

2223796173481^4 => 8431

8431^4 => 631

631^4 => 41 X

Note that we do not use the contradiction S when we have a prime smaller than
17351 (except on the dropped lines involving 3) since this chain is really a subchain
of a factor chain starting with 5.

In general, the only primes that we can capture in this way are all ≡ 1 (mod 5).
This has to do with the fact that if q|Φ5(p), then q = 5 or q ≡ 1 (mod 5). This
makes abundance computations more difficult (since we don’t always have small
primes like 7 and 13). However, it is possible to build a large list of primes that
must occur in all chains. The ultimate goal is to collect enough primes, that each
must occur in the chain, so that we reach abundance.
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Since we can ignore lines giving us 3, and since 3|Φ3(q) whenever q ≡ 1 (mod 3),
one strategy that is highly effective is to branch along primes which are 1 (mod 3)
as much as possible. This allows us to avoid having to start lines with q2. For ex-
ample, once we have the prime 104670301 we get the prime 191 using the following
factor chain:
104670301^1 => 109

109^4 => 191 X

104670301^4 => 17440542156505477796383741

17440542156505477796383741^1 => 9446713932985381771

9446713932985381771^4 => 1439771840164173734781595130764732621

1439771840164173734781595130764732621^4 => 2179291

2179291^4 => 43411

43411^4 => 6571

6571^4 => 152211901

152211901^4 => 4025521

4025521^4 => 2341

2341^4 => 191 X

17440542156505477796383741^4 => 28225...251 (big prime)

28225...251^4 => 191 X

This strategy is extremely useful in the “endgame” when there are a lot of primes
with which we can start chains.

The possibility that a prime can be the special prime has a quadratic effect on
the number of lines in a given factor chain. But the special prime is special precisely
because there is only one prime factor of N with its properties. We can exploit this
fact by creating two separate factor chains which involve distinct sets of possible
special primes. If the special prime occurs in the first chain, then it cannot appear
in the second chain and vice versa. Thus, we can write both chains without any
contributions from a special prime, and at least one of them gives us the prime we
need (since the special prime occurs in at most one of the two chains). To give an
explicit example, suppose we want to get the prime 1051 and we already have the
primes 241 and 104670301. Consider the two chains:
241^4 => 11106421

11106421^4 => 3263466811411

3263466811411^4 => 8821

8821^4 => 1051 X

and

104670301^4 => 17440542156505477796383741

17440542156505477796383741^4 => 1274458273681

1274458273681^4 => 111805142252581

111805142252581^4 => 49080432523124928361

49080432523124928361^4 => 662698623515864248531

662698623515864248531^4 => 43801

43801^4 => 1051 X

The only possible special primes which can appear in the first chain are 241, 8821
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or 11106421, since they are the only primes p ≡ 1 (mod 4). Thus, if the special
prime is not one of these three primes, then the first chain shows us that we ob-
tain 1051. On the other hand, if one of those three primes is the special prime, then
the first chain is insufficient but the second chain suffices since it does not contain
any of those possible special primes. This process reduces the quadratic effect of
the special prime to a doubling effect.

There is one final simplifying technique that we put into use. Although it takes
many primes to reach abundance, if a chain does ever involve the prime 7 (or other
combinations of small primes) it is much easier to reach abundance. Thus, once we
know that all chains eventually contain each of the first hundred primes congruent
to 1 (mod 5), we also know that if 7 occurs in a chain we have abundance. Hence,
after that point we may ignore any line containing 7. Similarly, with enough primes
we can start ignoring lines with 13, 17, and so forth. Even before we know we can
ignore 7, we know that we can ignore chains which give us both 7 and 13, or both 7
and 19. We put this into use when trying to obtain the prime 2531. We found two
chains (without duplicated possible special primes) that either give us 2531 or 7.
We then found two new chains (again without duplicated possible special primes)
that either give us 2531, 13, or 19. Since 7 and 13 cannot happen together, and
neither can 7 and 19, we see that we must get 2531.

After six months of running programs we wrote for Mathematica, we gathered
enough chains and primes to achieve abundance. This proves that R-OPNs are not
divisible by 5.

7. Minimizing the upper bound

Let N be an R-OPN, and let C be the upper bound we constructed for the
smallest prime factor of N . Recall that our first assumption on C was made to
prevent N from having prime factors in common with n, d, or P. Due to the
calculations above, we lose nothing in assuming C > 108, and we achieve the same
goal. It turns out this simple fact will greatly reduce a number of constants we deal
with. For example, in the case we are considering we have C0 = 2. Merely assuming
that C ≥ max{Pmax, n, C0} + 1 = 6 we have p1 ≥ 6 and so C ′

0 ≥ 5/3. But as we
have proven that C ≥ 108 we also have C ′

0 ≥ 99999999/50000000 = 1.99999998
which is a much better (indeed, nearly optimal) constant.

In all computations hereafter we will implicitly use the fact that N has no prime
factors less than 108, and we will take C ′

0 = 2(1− 10−8).

8. Working with Q3

8.1. Defining Ωp and κ. Our next job is to estimate
∏

q∈Q3

q
q−1 . As before, we

will use the large sieve. However, it turns out that we are able to improve our
sieving sets Ωp if we take into account the computations of the previous section.
Notice that with n = 2 we have v3(n) = v5(n) = 0, and hence C1 = 1. Thus, the
only possible prime factor of N congruent to 1 (mod 15) is π, and we know π > 108.

Let’s recall some standard notation. For a prime p, and an integer a ∈ Z with
p � a, we let op(a) denote the order of a modulo p. In other words, this is the

smallest positive integer for which aop(a) ≡ 1 (mod p). If r is a prime number and
r|(p− 1), then there are exactly r − 1 congruence classes mod p which have order
r.
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The abundance computations from the previous section were only useful for small
primes. The reasons are two-fold. Primarily, when working with large primes we
can end a chain much sooner by finding a smaller prime (which we will call the
smaller prime contradiction). Secondarily, since we are assuming the prime factors
of N are larger than 108 we would need an enormous number of primes to reach
abundance. Because of these two reasons we wish to encode into the definition of the
sets Ωp as much information as we can glean from the smaller prime contradiction,
and we can ignore abundance computations.

Fix q ∈ Q3. We then know Φ3(q)|N . The simplest possible chain would occur
if Φ3(q) is divisible by a prime p < 108. Such a prime is necessarily congruent to
1 (mod 3), or equal to 3, due to congruence restrictions on the possible prime factors
of Φ3(x); see [24, Lemma 1]. Thus, for all primes p < 108 with p ≡ 1 (mod 3), we
can sieve the two classes a (mod p) with op(a) = 3; and we can also sieve by the
class 1 (mod 3). This is a finite number of congruence classes, and we will see that
it only changes the bound given in the large sieve by a constant factor.

The next simplest chain occurs as follows: Suppose we have a prime p|Φ3(q). We
may as well assume q ≡ 2 (mod 3) and so p ≡ 1 (mod 3). We then have 3|Φ3(p), and
hence p /∈ Q3. Therefore, either p ∈ Q5 or p = π, and we can deal with the latter
contingency as we did in previous sections. In the case p ∈ Q5 the chain stops as
long as Φ5(p) is divisible by a prime r < 108. By congruence conditions, we either
have r = 5 or r ≡ 1 (mod 5). In that case either p ≡ 1 (mod 15), or or(p) = 5
and p belongs to one of the four congruence classes modulo r of order 5. Unlike the
previous case, this gives us an infinite set of congruence classes to sieve away. If one
has good estimates for Mertens’ products over arithmetic progressions, it would be
valuable to not only sieve by primes in the class 1 (mod 15) but in classes such as
1 (mod 3)∩ a (mod 11) where a = 3, 4, 5, 9. The best explicit bounds we are aware
of, that work for moduli that get increasingly large, are found in [1]. Unfortunately,
even in the case of reasonable sized moduli, such as k = 165, the bounds are too
large to be of value in the computations we will perform.

We could continue this process, defining Ωp to deal with chains of deeper depths.
Complications arise in this situation. For example, we still have to deal with the
possibility that one of the factors in the chain is the special prime. In practice we
will restrict ourselves to chains of depth one, or of depth two if they yield 3 or 5.
Further, note that since the upper bound we reach for the smallest prime is 101000

we may as well replace all instances of 108 by the upper bound we wish to obtain.
Due to technical conditions, we will work up to 10100.

We are now ready to define Ωp. Let U be the set of primes p ≡ 1 (mod 3) which
are either < 10100 or ≡ 1 (mod 15). As just mentioned, depending on what tools
are available, another choice of U may be appropriate. For an arbitrary prime p,
set

Ωp = {0 (mod p)} ∪

⎧⎪⎨
⎪⎩
{1 (mod 3)} if p = 3,

{a (mod p) : op(a) = 3} if p ∈ U ,
∅ otherwise.
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Define

κ(p) =

⎧⎪⎨
⎪⎩
2 if p = 3,

3 if p ∈ U ,
1 otherwise.

We have κ(p) = |Ωp| just as before.

8.2. Finding bounds on |θ(x; 15, 1) − x/8|. In the following we let θ(t; k, 	) =∑
p≤t, p≡� (mod k) log(p). We first need to find explicit bounds on the error term

for θ(x; 15, 1)− x/8. We begin with the following result found in [27], for values of
x that are small:

Lemma 4. For 1 ≤ x ≤ 1010 we have |θ(x; 15, 1)− x/8| ≤ 1.097307
√
x.

For slightly larger x we follow [27, Section 4]. In the notation of that paper,
taking R = 6.41 and C1(χ) = 1 due to work in [17] (which is also found in [19], and
slightly improved in the preprint [18]), we get bounds of the form

|θ(x; 15, 1)− x/8| < εx for all x > x0,

where ε depends on x0. We note that, without verifying the Riemann Hypothesis
to greater heights for the Dirichlet L-function modulo 15, these bounds are only
valid when x0 ≤ 10470. Here is a table of some of these values:

x0 ε
1010 0.00903538
1011 0.00811594
1012 0.00780339
1020 0.00741842
1050 0.00646773
10100 0.00496541
10200 0.00241077
10400 0.00030846

For large values of x, we turn to the methods employed in [8]. In the notation
of that paper, we take R = 9.645908801, H = 2500, and C1(χ) = 9.14. In [8,
Theorem 5], we have X4 = 10 and so the bounds we obtain are accurate only when√
log(x)/R ≥ X4, or in other words, x ≥ 8.251 · 10418. Putting it all together, we

have

|θ(x; 15, 1)− x/8| < 0.77101532
x log(x)1/4

e0.321979
√

log(x)

when x > 10420.

8.3. Bounding a Mertens type product. We seek an effective bound on∑
p≤x, p≡1 (mod 15)

1
p . By methods employed in [28], specifically in the derivation

of equation (4.15) using partial summation (see also [4, Lemma 1.3.1]), we have∑
p≤x

p≡1 (mod 15)

1

p
=

1

8
log(log(x)) +M(15, 1) +

θ(x; 15, 1)− x/8

x log(x)

−
∫ ∞

x

(θ(t; 15, 1)− t/8)
1 + log(t)

t2 log(t)2
dt
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where M(15, 1) = −0.1506 . . . is an explicit constant (see [21]). The work in the
previous section yields |θ(x; 15, 1)−x/8| < 1.32812x/ log(x) for all x ≥ 2. Plugging
this into the formula above, we then have∣∣∣∣∣∣∣∣

∑
p≤x

p≡1 (mod 15)

1

p
− 1

8
log(log(x))−M(15, 1)

∣∣∣∣∣∣∣∣
<

2

log(x)2
+

1.32812

log(x)
.

As it will become useful shortly, we develop a series of inequalities. We have

2

log(x)2
+

1.32812

log(x)
<

1.48

log(x)
when x ≥ 106.

We also have

exp(−1.48/ log(x)) > 1− 1.48

log(x)

for x ≥ 2, by a simple application of Taylor series remainders. Similarly,

exp(1.48/ log(x)) < 1 +
1.65

log(x)

for x ≥ 106. Next, we compute that∑
p>x, n≥2

p≡1 (mod 15)

1

npn
<

1

2

∑
p>x, n≥2

p≡1 (mod 15)

1

pn
=

1

2

∑
p>x

p≡1 (mod 15)

1

p(p− 1)

<
1

2

∑
n>x

1

n(n− 1)
<

1

2(x− 1)

and so,

exp

⎛
⎜⎜⎝ ∑

p>x, n≥2
p≡1 (mod 15)

1

npn

⎞
⎟⎟⎠ < exp(1/2(x− 1)) < 1 +

1.1

x
= α(x)

for x ≥ 106. Finally,

α(x)

(
1 +

1.65

log(x)

)
< 1 +

1.66

log(x)

when x ≥ 106.
Taking the logarithm of a product, expanding the Taylor series, and taking

exponentials we obtain

∏
p≤x

p≡1 (mod 15)

(
1− 1

p

)
= exp

⎡
⎢⎢⎣− ∑

p≤x
p≡1 (mod 15)

1

p
−

∑
n≥2

p≡1 (mod 15)

1

npn
+

∑
p>x, n≥2

p≡1 (mod 15)

1

npn

⎤
⎥⎥⎦ .

Using the bounds given above, we then have, for x ≥ 106,

C(15, 1)

log(x)1/8

(
1− 1.48

log(x)

)
<

∏
p≤x

p≡1 (mod 15)

(
1− 1

p

)
<

C(15, 1)

log(x)1/8

(
1 +

1.66

log(x)

)

where C(15, 1) = 1.1617 . . . according to [22].



1768 S. ADAM FLETCHER, PACE P. NIELSEN, AND PASCAL OCHEM

8.4. Bounding another Mertens type product. Again, using the methods em-
ployed in [28], we have∑

p≤x
p≡1 (mod 3)

1

p
=

1

2
log(log(x)) +M(3, 1) +

θ(x; 3, 1)− x/2

x log(x)

−
∫ ∞

x

(θ(t; 3, 1)− t/2)
1 + log(t)

t2 log(t)2
dt

where M(3, 1) = −0.35689 . . . is an explicit constant (again see [21]). By [8], we
have the bound |θ(t; 3, 1) − t/2| < 0.262 t

log(t) for t ≥ 1531. Repeat the process in

the last subsection to obtain∣∣∣∣∣∣∣∣
∑
p≤x

p≡1 (mod 3)

1

p
− 1

2
log(log(x))−M(3, 1)

∣∣∣∣∣∣∣∣
<

0.393

log(x)2
+

0.262

log(x)
.

For x ≥ 106 we have

0.393

log(x)2
+

0.262

log(x)
<

0.3

log(x)
.

Taylor series remainders prove that

exp(−0.3/ log(x)) > 1− 0.3

log(x)

and we also have

α(x) exp(0.3/ log(x)) < 1 +
0.31

log(x)
.

Thus, for x ≥ 106 we have

C(3, 1)

log(x)1/2

(
1− 0.3

log(x)

)
<

∏
p≤x

p≡1 (mod 3)

(
1− 1

p

)
<

C(3, 1)

log(x)1/2

(
1 +

0.31

log(x)

)

where C(3, 1) = 1.403477 . . . according to [22].

8.5. Estimating B. Now, consider the quantity

1

log(z)

∑
p<z

κ(p) log(p)

p
≤ 1

log(z)

⎛
⎜⎜⎝∑

p<z

log(p)

p
+

log(3)

3
+

∑
p<z

p≡1 (mod 3)

2 log(p)

p

⎞
⎟⎟⎠ .

A simple computation shows that the quantity on the right is smaller than 2 for
z ≤ 106. In the calculations below, we implicitly assume z > 106 unless otherwise
stated.

We first estimate the piece involving the arithmetic progression. Recall that
by [8], we have the bound |θ(t; 3, 1) − t/2| < 0.262 t

log(t) for t ≥ 1531. By partial

summation, we compute for integer values of z that∑
p≤z, p≡1 (mod 3)

log(p)

p
= θ(z; 3, 1)

1

z
+

∫ z

t=7

θ(t; 3, 1)
1

t2
dt

<
1

2
+ 0.262

1

log(z)
+

1

2
log(z) + 0.262 log(log(z))− 1.14,
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which is increasing in z. In particular,

1

log(z)

∑
p≤z, p≡1 (mod 3)

2 log(p)

p
≤ 1 + 0.524

log(log(z))

log(z)
− 1.2

log(z)

for all real z > 106. The function 0.524 log(log(z))
log(z) − 1.2

log(z) is bounded above by 0.02.

By equation (3.22) in [28], we have

∑
p≤z

log(p)

p
< log(z) + E +

1

2 log(z)

for z ≥ 319, where E = −1.33258 . . . is a constant. Putting all of this together, we
have

1

log(z)

∑
p<z

κ(p) log(p)

p
< 2.02

for all z ≥ 2. Hence, we take B = 2.02. Notice that this choice of B continues to
work with any of the other choices for U discussed above. Asymptotically, B = 2
would be the optimal constant when U consists of all primes p ≡ 1 (mod 3).

8.6. Estimating V (P (w)). Another result of Dusart [7] tells us that

e−γ

log(w)

(
1− 0.2

log(w)2

)
<

∏
p<w

(
1− 1

p

)
<

e−γ

log(w)

(
1 +

0.2

log(w)2

)
, for w > 2973.

Rewriting V (P (w)), for w ≥ 10100 we have

V (P (w)) =
1

2

∏
p≤w

(
1− 1

p

) ∏
p≤10100

p≡1 (mod 3)

(
1− 1

p

)2

∗
∏
p≤w

p≡1 (mod 15)

(
1− 1

p

)2 ∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)−2

∗
∏

p≤10100

p≡1 (mod 3)

(
1− 3

p

)
(
1− 1

p

)3

∏
p≤w

p≡1 (mod 15)

(
1− 3

p

)
(
1− 1

p

)3

∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)3

(
1− 3

p

) .

The first two products in the third line are both bounded above by 1. The third
product on the third line can be bounded by

∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)3

(
1− 3

p

) =
∏

p≤106

p≡1 (mod 15)

(
1− 1

p

)3

(
1− 3

p

) ∏
106<p≤10100

p≡1 (mod 15)

(
1− 1

p

)3

(
1− 3

p

)

<
∏

p≤106

p≡1 (mod 15)

(
1− 1

p

)3

(
1− 3

p

) ∏
106<n≤10100

(
1− 1

n

)3(
1− 3

n

) < 1.00482.
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The other products were bounded previously, so we have for w ≥ 10100 that

V (P (w)) <
1

2
(1.00482)

e−γ

log(w)

(
1 +

0.2

log(10100)2

)
C(3, 1)2

log(10100)

(
1 +

0.31

log(10100)

)2

∗C(15, 1)2

log(w)1/4

(
1 +

1.66

log(10100)

)2
log(10100)1/4

C(15, 1)2

(
1− 1.48

log(10100)

)−2

<
0.00969

log(w)5/4
.

Recall that we must deal with the possibility of a single element π ∈ T , which is
accomplished by multiplying our answer above by

(
1− 1

108

)
/
(
1− 3

108

)
, as π > 108.

This quantity changes our constants so little that with some forethought it can be
accounted for in previous computations.

8.7. Picking a value for s > 2B. We set w = x1/s, and assume w > 10100. By
Proposition 2, and the work in the previous section, we have

1

G(
√
x)

≤
((

1−e−C2(s)
)−1

V (P (x1/s))

)
< 0.00969

(
1−e−C2(s)

)−1

log(x)−5/4s5/4

with C2(s) =
s
2 log(s/2B)− s

2 +B and B = 2.02. This quantity is minimized when
s is a little smaller than 10. We take s = 10 and obtain

1

G(
√
x)

≤ 0.219

log(x)5/4
.

Notice that since w > 10100 we are also assuming x > 101000.

8.8. Measuring the size of Q3. In the large sieve, taking u =
√
x where x >

101000, we have

|{q ∈ Q3 : q < x}| ≤ 2x

G(
√
x)

+
√
x <

0.438x

log(x)5/4
.

Repeating the computation done in Section 4, for y ≥ 101000,

log

⎛
⎝ ∏

q∈Q3

q

q − 1

⎞
⎠ = −

∑
q∈Q3

log(1− 1/q) =
∑
q∈Q3

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞

y

0.438

x log(x)5/4
dx+

∑
q>y

1

q(q − 1)
<

1.752

log(y)1/4
+

∑
n>y

1

n(n− 1)
<

1.76

log(y)1/4
.

9. Working with Q5

We now turn our attention to the set Q5. As many of the same computations
and remarks that were made with regards to Q3 hold for the new set, we will
simply work quickly through the appropriate bounds. We will often continue our
assumption that w > 10100 (unless otherwise posited).
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9.1. Defining Ωp and κ. We take U to be the set of primes q ≡ 1 (mod 5) which
also either satisfy q < 10100 or q ≡ 1 (mod 15). Set

Ωp = {0 (mod p)} ∪

⎧⎪⎨
⎪⎩
{1 (mod 5)} if p = 5,

{a (mod p) : op(a) = 5} if p ∈ U ,
∅ otherwise

and define

κ(p) =

⎧⎪⎨
⎪⎩
2 if p = 5,

5 if p ∈ U ,
1 otherwise.

9.2. Estimating B. Computations suggest (just as before) that B = 2 is the
optimal value, asymptotically. We will get close to this value. We begin with the
following bounds found in [27].

Proposition 5. For t > 1010,∣∣∣∣θ(t; 5, 1)− t

4

∣∣∣∣ < 0.002785
t

4
.

For all 0 < t ≤ 1010, ∣∣∣∣θ(t; 5, 1)− t

4

∣∣∣∣ < 1.412480
√
t.

For integer values of z > 1010, we then have

∑
p≤z, p≡1 (mod 5)

log(p)

p
= θ(z; 5, 1)

1

z
+

∫ z

t=11

θ(t; 5, 1)
1

t2
dt

< 0.2507 log(z) + 0.5.

Combining this with work done in previous sections, we have

1

log(z)

∑
p<z

κ(p) log(p)

p
≤ 1

log(z)

⎛
⎜⎜⎝∑

p<z

log(p)

p
+

log(5)

5
+

∑
p<z

p≡1 (mod 5)

4 log(p)

p

⎞
⎟⎟⎠<2.05

for all real z > 1010.
For integer values in the range 105 < z < 1010, we have

∑
p≤z, p≡1 (mod 5)

log(p)

p
= θ(z; 5, 1)

1

z
+

∫ z

t=11

θ(t; 5, 1)
1

t2
dt

< 0.25 log(z) + 0.503− 1.41/
√
z.

In particular, 1
log(z)

∑
p<z

κ(p) log(p)
p ≤ 2.09 for all real z > 105. Finally, for z < 105

one checks directly that 2 works as an upper bound. We may then take B = 2.09.
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9.3. Finding bounds on |θ(x; 5, 1)− x/4|. We bound |θ(x; 5, 1)− x/4| using the
techniques of Section 8.2. By Proposition 5, for 1 ≤ x ≤ 1010 we have |θ(x; 15, 1)−
x/8| ≤ 1.097307

√
x. For slightly larger x we again follow [27, Section 4]. For very

large x we use [8]. Putting these computations together we have the bound

|θ(x; 15, 1)− x/8| < 0.6
x

log(x)

for all x ≥ 10.

9.4. Bounding a third Mertens type product. We have the equality∑
p≤x

p≡1 (mod 5)

1

p
=

1

4
log(log(x)) +M(5, 1) +

θ(x; 5, 1)− x/4

x log(x)

−
∫ ∞

x

(θ(t; 5, 1)− t/4)
1 + log(t)

t2 log(t)2
dt

where M(5, 1) = −0.2088344 . . . is a constant. Using the bound given in the last
subsection, we have for x ≥ 1010 that∣∣∣∣∣∣∣∣

∑
p≤x

p≡1 (mod 5)

1

p
− 1

4
log(log(x))−M(5, 1)

∣∣∣∣∣∣∣∣
<

0.9

log(x)2
+

0.6

log(x)
.

For x ≥ 106 we have
0.9

log(x)2
+

0.6

log(x)
<

0.67

log(x)
.

Letting x ≥ 106, Taylor remainders yield

exp(0.67/ log(x)) < 1 +
0.71

log(x)
,

and since by the previous computation we have

exp

⎛
⎜⎜⎝ ∑

p>x, n≥2
p≡1 (mod 5)

1

npn

⎞
⎟⎟⎠ < exp(1/2(x− 1)) < 1 +

1.1

x
= α(x)

we also have

α(x)

(
1 +

0.71

log(x)

)
< 1 +

0.72

log(x)
.

As

∏
p≤x

p≡1 (mod 5)

(
1− 1

p

)
= exp

⎡
⎢⎢⎣− ∑

p≤x
p≡1 (mod 5)

1

p
−

∑
n≥2

p≡1 (mod 5)

1

npn
+

∑
p>x, n≥2

p≡1 (mod 5)

1

npn

⎤
⎥⎥⎦ ,

we obtain ∏
p≤x

p≡1 (mod 5)

(
1− 1

p

)
<

C(5, 1)

log(x)1/4

(
1 +

0.72

log(x)

)

where C(5, 1) = 1.2252 . . . according to [22].
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9.5. Estimating V (P (w)). We have for w > 10100,

V (P (w)) <
3

4
(1.00482)

∏
p≤w

(
1− 1

p

) ∏
p≤10100

p≡1 (mod 5)

(
1− 1

p

)4

∗
∏
p≤w

p≡1 (mod 15)

(
1− 1

p

)4 ∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)−4

<
0.0673

log(w)3/2
.

9.6. Picking a value for s > 2B. We take s = 10 > 2B, and so x > 101000 as
before. We obtain

1

G(
√
x)

≤ 2.78

log(x)3/2
.

9.7. Measuring the size of Q5. In the large sieve, taking u =
√
x where x >

101000, we have

|{q ∈ Q5 : q < x}| ≤ 2x

G(
√
x)

+
√
x <

5.56x

log(x)3/2
.

Repeating the computation done in Section 4, for y ≥ 101000,

log

⎛
⎝ ∏

q∈Q5

q

q − 1

⎞
⎠ = −

∑
q∈Q5

log(1− 1/q) =
∑
q∈Q5

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞

y

5.56

x log(x)3/2
dx+

∑
q>y

1

q(q − 1)
<

11.12

log(y)1/2
+

∑
n>y

1

n(n− 1)
<

11.2

log(y)1/2
.

10. Putting it all together

Recall that C ′
0 = 2(1− 10−8). Our computations tell us that

log(C ′
0) >

1.76

log(y)1/4
+

11.2

log(y)1/2

for y ≥ 101000. Thus, y is larger than the smallest prime divisor of our purported
number, and this finishes the proof of the Main Theorem. This improves Yamada’s
result by seven orders of magnitude.

11. Idealization

One might wonder what bounds are possible if we idealize the situation slightly.
First, we may as well assume C0 = 2. Second, we will suppose that π has no
further effect on the computations. Third, let’s take U to be the set of all primes
p ≡ 1 (mod 3) when working with Q3, and take U to be the set of all primes
p ≡ 1 (mod 5) when working with Q5. While Rankin’s trick gives us effective
bounds, it is not tight. By methods in [16, Chapter 1] and [10, Theorem 2.2.2],
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one can find an asymptotic and effective bound on G(w). In fact, for Q3 we have
G(w) ∼ c3,g log(w)

2 where

c3,g =
e−2γ

Γ(1 + 2)
lim

w→∞

1

log(w)2V (P (w))
= 0.164 . . . .

Similarly, for Q5 we have G(w) ∼ c5,g log(w)
2 where

c5,g =
e−2γ

Γ(1 + 2)
lim

w→∞

1

log(w)2V (P (w))
= 0.145 . . . .

Fourth, let’s suppose we are in a sieving situation where |S| ≤ x/G(
√
x). Ignoring

error terms we have

log

⎛
⎝ ∏

q∈Q3

q

q − 1

⎞
⎠ ≈

∑
q∈Q3

1

q
≈

∫ ∞

y

6.1

x log(x)2
dx ≈ 6.1

log(y)

and similarly,

log

⎛
⎝ ∏

q∈Q5

q

q − 1

⎞
⎠ ≈ 6.9

log(y)
.

Solving the inequality

log(2) ≤ 13

log(y)

yields y � 1.4 · 108.
With a significant amount of work we could improve the lower bound in the

Main Theorem to 1010, or possibly to 1012 if the computation was distributed.
This would easily surpass the idealized bound we obtained above. However, that
bound is still not obtainable for two reasons. First, the choices for the sets U are
not realistic. Second, and more importantly, obtaining effective asymptotic bounds
for G(w) with current techniques seems to require w � 1010, and hence we are led
to something close to x � 1020, which is just too large.

12. Open questions and future directions

Let p be a prime and let q|Φ3(p) be a prime divisor. Either q = 3 or Φ3(q) is
divisible by 3. Similarly, if q|Φ5(p) is prime, then either q = 5 or Φ5(q) is divisible
by 5. Thus, if we consider factor chains where new primes arise only from either
factoring Φ3(p) or Φ5(p), and we can stop whenever 3 or 5 occurs, then the factor
chain simply bounces back and forth between applying Φ3 and Φ5. Eventually, we
expect one of the prime factors to be q ≡ 1 (mod 15), and then both Φ3(q) and
Φ5(q) terminate our factor chain.

In practice, such chains reach primes q ≡ 1 (mod 15) very quickly. It would be
interesting to prove that for all sufficiently large primes p, factor chains limited as
above always reach 3 or 5. Moreover, it would be interesting to prove (or disprove)
that there is a bound on the depth it takes to reach 3 or 5.

One can also ask: What happens if we expand our set of limited exponents to
P = {3, 5, 7}? In this case, each prime in a factor chain has three possible branches
(and possibly a fourth, if it is the special prime). Our technique for dealing with
the prime 5 is inadequate because no specific primes appears (at least quickly) in
every chain, although in principle one should still be able to deal with 3 because
abundance computations are less difficult in that case.
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de Lille I, U.F.R. de Mathématiques - Laboratoire A.G.A.T.-U.M.R. 8524.

20. Masao Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comp.
36 (1981), no. 154, 583–586. MR606516 (82h:10006)

21. A. Languasco and A. Zaccagnini, Computing the Mertens and Meissel-Mertens constants for
sums over arithmetic progressions, Experiment. Math. 19 (2010), no. 3, 279–284. MR2743571
(2011j:112247)

http://www.ams.org/mathscinet-getitem?mr=2164308
http://www.ams.org/mathscinet-getitem?mr=2164308
http://www.ams.org/mathscinet-getitem?mr=1094940
http://www.ams.org/mathscinet-getitem?mr=1094940
http://www.ams.org/mathscinet-getitem?mr=2016472
http://www.ams.org/mathscinet-getitem?mr=2016472
http://www.ams.org/mathscinet-getitem?mr=2200366
http://www.ams.org/mathscinet-getitem?mr=2200366
http://www.ams.org/mathscinet-getitem?mr=1684591
http://www.ams.org/mathscinet-getitem?mr=1684591
http://www.ams.org/mathscinet-getitem?mr=1506194
http://www.ams.org/mathscinet-getitem?mr=1697455
http://www.ams.org/mathscinet-getitem?mr=1697455
http://www.ams.org/mathscinet-getitem?mr=1898748
http://www.ams.org/mathscinet-getitem?mr=1898748
http://www.ams.org/mathscinet-getitem?mr=2398799
http://www.ams.org/mathscinet-getitem?mr=2398799
http://www.ams.org/mathscinet-getitem?mr=1836967
http://www.ams.org/mathscinet-getitem?mr=1836967
http://www.ams.org/mathscinet-getitem?mr=0053123
http://www.ams.org/mathscinet-getitem?mr=0053123
http://www.ams.org/mathscinet-getitem?mr=2336293
http://www.ams.org/mathscinet-getitem?mr=2336293
http://www.ams.org/mathscinet-getitem?mr=1277055
http://www.ams.org/mathscinet-getitem?mr=1277055
http://www.ams.org/mathscinet-getitem?mr=1651761
http://www.ams.org/mathscinet-getitem?mr=1651761
http://www.ams.org/mathscinet-getitem?mr=1651762
http://www.ams.org/mathscinet-getitem?mr=1651762
http://www.ams.org/mathscinet-getitem?mr=2061214
http://www.ams.org/mathscinet-getitem?mr=2061214
http://www.ams.org/mathscinet-getitem?mr=606516
http://www.ams.org/mathscinet-getitem?mr=606516
http://www.ams.org/mathscinet-getitem?mr=2743571
http://www.ams.org/mathscinet-getitem?mr=2743571


1776 S. ADAM FLETCHER, PACE P. NIELSEN, AND PASCAL OCHEM

22. , On the constant in the Mertens product for arithmetic progressions. II. Numerical
values, Math. Comp. 78 (2009), no. 265, 315–326. MR2448709 (2010g:11164)

23. Wayne L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math.
(Basel) 21 (1970), 52–53. MR0258723 (41:3369)

24. Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp.
76 (2007), no. 260, 2109–2126 (electronic). MR2336286 (2008g:11153)

25. Paul Pollack, On Dickson’s theorem concerning odd perfect number, American Math. Monthly

118 (2011), no. 2, 161–164.
26. Carl Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability,

Math. Ann. 226 (1977), no. 3, 195–206. MR0439730 (55:12616)
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