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CONFORMAL WASSERSTEIN DISTANCE:

II. COMPUTATIONAL ASPECTS AND EXTENSIONS

Y. LIPMAN, J. PUENTE, AND I. DAUBECHIES

Abstract. This paper is a companion paper to [Yaron Lipman and Ingrid
Daubechies, Conformal Wasserstein distances: Comparing surfaces in poly-
nomial time, Adv. in Math. (ELS), 227 (2011), no. 3, 1047–1077, (2011)]. We
provide numerical procedures and algorithms for computing the alignment of
and distance between two disk-type surfaces. We provide a convergence analy-
sis of the discrete approximation to the arising mass-transportation problems.
We furthermore generalize the framework to support sphere-type surfaces, and
prove a result connecting this distance to local geodesic distortion. Finally, we
perform numerical experiments on several surface datasets and compare them
to state-of-the-art methods.

Nomenclature

c The union of the interior of the set c and the set c
(used for circles).

C The collection of circles endowed with orientation in
Ĉ.

D Unit disk {z | |z| < 1}
δzi Dirac measure concentrated at point zi.

Ĉ The extended complex plane, Ĉ = C ∪ {∞}.
Γμ (Γν) The smooth interpolant of the discrete conformal fac-

tors.
M (N ) Differentiable surfaces homeomorphic to a disk or a

sphere (will be clear from the context).
dA(M,N ) The distance between sphere-type (or disk-type) sur-

faces M and N , based on neighborhoods with area
A

dR(M,N ) The distance between disk-type surfaces M and N ,
based on neighborhoods with hyperbolic radius R.

lengthM(c) The length of a curve c w.r.t. the metric of surface M.
MD The Möbius subgroup that preserves the unit disk.
M = (V,E,F) (N) The mid-edge mesh.
μ (ν) We use μ (ν) either to represent the density μH (νH)

or the measure volM (volN ). (The meaning will be
clear from the context.)

μE(z) (νE(w)) The conformal factor of surface M (N ) w.r.t. the Eu-
clidean metric in the unit disk.
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μH (νH) The surface conformal factor w.r.t. the hyperbolic
metric in the unit disk.

μZ (νW ) The discrete measures that approximate μ (ν) defined
by the discrete set of points Z (W ).

ωf (·) The modulus of continuity of the function f .
Ωz0,R The hyperbolic geodesic disk of radius R centered at

z0 ∈ D.
Φ The discrete uniformization map taking vertices of the

mid-edge mesh V → D.
φ The uniformization map taking the surface M confor-

mally to its canonical domain, the unit disk D.
Π(μ, ν) The collection of probability measures on D ×D with

marginals μ and ν (resp.)
ϕg(Z) The fill distance of the point set Z = {zi} w.r.t. metric

tensor g.
volM (volN ) The area measure of surface M (N ).
volE The standard Lebesque (Euclidean) measure in D.
volH Hyperbolic area measure in D.

g̃ (h̃) The metric of surface M (N ) pushed forward by the

uniformization map to the D, that is g̃ = φ∗g (h̃ =
φ∗h).

Ξi (Υj) Voronoi cells on D based on the point samples Z (W )
and the metric of the surface M (N ).

Bg(z, r) Geodesic open ball w.r.t. metric tensor g, centered at
z and of radius r.

dRμ,ν(z, w) The cost function on D × D, dependent on measures
μ, ν and scale R. Used in the surface transportation
framework.

dg(z1, z2) The geodesic distance between z1 and z2 based on the
metric g.

g (h) The metric tensor of the surface M (N ).
M = (V,E, F ) (N) Mesh approximating surface M (N) with vertices V ,

edges E, and faces F .
m∗μ(z) (m∗μ(w)) The pull-back (push-forward) of the measure μ by the

map m.
TR
d (μ, ν) Optimal transportation cost between the densities μ, ν

with the measure-dependent dRμ,ν(z, w) cost function.
Z (W ) The discrete sets of points used to discretize the mea-

sures μ (ν).
z = x1 + ix2 (w = y1 + iy2) The coordinates in uniformization space for surface

M(N ).

1. Introduction and background

Alignment of surfaces plays a role in a wide range of scientific disciplines. It is
a standard problem in comparing different scans of manufactured objects; various
algorithms have been proposed for this purpose in the computer graphics literature.
It is often also a crucial step in a variety of problems in medicine and biology; in
these cases the surfaces tend to be more complex, and the alignment problem may
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be harder. For instance, neuroscientists studying brain function through functional
Magnetic Resonance Imaging (fMRI) typically observe several people performing
identical tasks, obtaining readings for the corresponding activity in the brain cortex
of each subject. In a first approximation, the cortex can be viewed as a highly
convoluted 2-dimensional surface. Because different cortices are folded in very
different ways, a synthesis of the observations from different subjects must be based
on appropriate mappings between pairs of brain cortex surfaces, which reduces to
a family of surface alignment problems [9, 28]. In another example, paleontologists
studying molar teeth of mammals rely on detailed comparisons of the geometrical
features of the tooth surfaces to distinguish species or to determine similarities or
differences in diet [2].

Mathematically, the problem of surface alignment can be described as follows:
given two 2-surfaces M and N , find a mapping f : M → N that preserves, as best
possible, “important properties” of the surfaces. The nature of the “important
properties” depends on the problem at hand. In this paper, we concentrate on
preserving the geometry, i.e., we would like the map f to preserve intrinsic distances,
to the extent possible. In terms of the examples listed above, this is the criterion
traditionally selected in the computer graphics literature; it also corresponds to the
point of view of paleontologists studying tooth surfaces. To align cortical surfaces,
one typically uses the Talairach method [18] (which relies on geometrically defined
landmarks and is thus geometric in nature as well), although alignment based on
functional correspondences has been proposed more recently [28].

In [19] a novel procedure between disk-type surfaces was proposed, based on
uniformization theory and optimal mass transportation. In a nutshell, the method
maps two surfaces M,N to densities μ, ν (interpreted as mass densities) defined
on the hyperbolic disk D = {z | |z| < 1} , their canonical uniformization space.
(Apart from simplifying the description of the surface, this also removes any effect
of global translations and rotations on the description of each individual surface.)
The alignment problem can then be studied in the framework of Kantorovich mass-
transportation [15] between these metric densities. Mass-transportation seeks to
minimize the “average distance” over which mass needs to be “moved” (in the most
efficient such moving procedure) to transform one mass density μ into another, ν:

(1.1) Tc(μ, ν) = inf
π∈Π(μ,ν)

∫
D×D

c(z, w)dπ(z, w),

where c(z, w) ≥ 0 is a cost function, and Π(μ, ν) is the collection of probability
measures on D × D with marginals μ and ν (resp.), that is, for A ⊂ D, B ⊂ D,
π(A×D) = μ(A) and π(D ×B) = ν(B).

In our case the uniformizing metric density (or conformal factor) corresponding
to an initial surface is not unique, but is defined only up to a Möbius transformation.
Because a näıve application of mass-transportation on the hyperbolic disk would not
possess the requisite invariance under Möbius transformations, we generalize the
mass-transportation framework, and replace the cost function d(z, w) traditionally
used in defining the “average displacement distance” by a cost that depends on μ
and ν, dRμ,ν(z, w), measuring the dissimilarity between the two metric densities on
R-neighborhoods of z and w (where R is a parameter that controls the size of the
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neighborhoods):

(1.2) TR
d (μ, ν) = inf

π∈Π(μ,ν)

∫
D×D

dRμ,ν(z, w)dπ(z, w).

Introducing neighborhoods also makes the definition less sensitive to noise in prac-
tical applications. The optimal way of transporting mass in this generalized frame-
work defines a corresponding optimal way of aligning the surfaces. This approach
also allows us to define a new distance, dR(M,N ), between surfaces; the average
distance over which mass needs transporting (to transform one metric density into
the other) quantifies the extent to which the two surfaces differ.

This paper contains three contributions that complement and extend [19]. The
first of these is to provide an algorithm for approximating dR(M,N ) and to prove
a convergence result for this algorithm. In order to state this goal more precisely,
we introduce some technicalities and notations now.

1.1. Uniformization. Uniformization theory for Riemann surfaces [31, 16] allows
conformally flattening disk-type surfaces onto the unit disk φ : M → D in C, where
φ is the conformal flattening map, D = {z | |z| < 1} is the unit disk, and the disk
coordinate system is denoted by z = x1 + ix2. The surface’s Riemannian metric g
is then pushed-forward to a diagonal metric tensor

g̃ = φ∗g = μE(z) δij dx
i ⊗ dxj ,

where μE(z) > 0, Einstein summation convention is used, and the subscript ∗
denotes the “push-forward” action; the superscript E stands for Euclidean. The
function μE can also be viewed as the density function of the measure volM induced
by the Riemann volume element: for (measurable) A ⊂ M,

(1.3) volM(A) =

∫
φ(A)

μE(z) dvolE(z),

where dvolE(z) = dx1 ∧ dx2 is the Euclidean area element. For a second surface
N with Riemannian metric h we will denote its pushed-forward metric on the

uniformization disk D by h̃ = φ∗h = νE(w) δij dy
i ⊗ dyj , where the coordinates in

the unit disk are w = y1 + iy2.
We use the hyperbolic metric on the unit disk (1− |z|2)−2δijdx

i ⊗ dxj as a ref-
erence metric; the surface density w.r.t. the hyperbolic metric (conformal scaling)
is

(1.4) μH(z) := (1− |z|2)2 μE(z) ,

where the superscript H stands for hyperbolic.
We shall often drop this superscript: unless otherwise stated μ = μH , and ν = νH

in what follows. The density function μ = μH satisfies

volM(A) =

∫
φ(A)

μ(z) dvolH(z) ,

where dvolH(z) = (1 − |z|2)−2 dvolE(z). We will use the notations μ, ν also to
represent the measures volM, volN (resp.), where the exact meaning will be clear
from the context.

The conformal mappings of D to itself are the disk-preserving Möbius transfor-
mations, they constitute the group MD of isometries of the hyperbolic disk. An
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arbitrary element m ∈ MD is characterized by three real parameters:

(1.5) m(z) = eiθ
z − a

1− āz
, a ∈ D, θ ∈ [0, 2π).

The pull-back m∗μ(z) and the push-forward m∗μ(w) of the density μ by the
Möbius transformation m are given by the formulas

(1.6) m∗μ(z) = μ(m(z))

and

(1.7) m∗μ(w) = μ(m−1(w)),

respectively.
It follows that checking whether or not two surfaces M and N are isometric, or

searching for isometries between M and N , is greatly simplified by considering the
conformal mappings from M, N to D; once the (hyperbolic) density functions μ
and ν are known, it suffices to identify m ∈ MD such that ν(m(z)) equals μ(z) (or
“nearly” equals, in a sense to be made precise).

1.2. Optimal volume transportation for surfaces. To adapt the optimal trans-
portation framework to the alignment of surfaces, we use an isometry invariant cost
function dRμ,ν(z, w) that is plugged into the transportation framework (1.1). This

special cost function dRμ,ν(z, w) indicates the extent to which a neighborhood of the
point z in (D, μ), the (conformal representation of the) first surface, is isometric
with a neighborhood of the point w in (D, ν), the (conformal representation of the)
second surface. Two definitions are in order: 1) the neighborhoods we will use, and
2) how we characterize the (dis)similarity of two neighborhoods, equipped with
different metrics.

For the neighborhoods, we take the hyperbolic geodesic disks Ωz0,R of radius
R, where we let z0 range over D, but keep the radius R > 0 fixed. The following
gives an easy procedure to construct these disks. If z0 = 0, then the hyperbolic
geodesic disks centered at z0 = 0 are also “standard” (i.e. Euclidean) disks cen-
tered at 0: Ω0,R = {z ; |z| ≤ rR}, where rR = tanh(R). The hyperbolic disks
around other centers are images of these central disks under Möbius transformations
(= hyperbolic isometries); setting m(z) = (z − z0)(1− zz̄0)

−1, we have

(1.8) Ωz0,R = m−1(Ω0,R) .

Next, the (dis)similarity of the pairs (Ωz0,R , μ ) and (Ωw0,R , ν ) is defined via
pull-back of ν and using the standard induced norm (see [19] for more details). The
final cost function is achieved by taking the infimum over all Möbius transformations
m such that m(z) = w:

(1.9) dRμ,ν(z0, w0) := inf
m∈MD , m(z0)=w0

∫
Ωz0,R

|μ(z)− (m∗ν)(z) | dvolH(z),

where dvolH(z) = (1− |z|2)−2 dx1 ∧ dx2 is the volume form for the hyperbolic disk.

As proved in [19] dRμ,ν(·, ·) is a metric on D and as a consequence

(1.10) dR(M,N ) = TR
d (μ, ν)

(with TR
d (μ, ν) as defined in 1.2) defines a semi-metric in the space of disk-type

surfaces. To ensure that this is a metric rather than only a semi-metric, we add
an extra assumption, namely that no (orientation-preserving) self-isometries exist
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within each of the compared surfaces. For discussion and more detail we refer the
reader to [19].

1.3. Overview. We can now formulate a precise overview of the algorithm for
approximating dR(M,N ), and discuss its convergence properties.

In a nutshell, the key steps of the algorithm are: 1) approximate uniformization
for piecewise linear surface representations, 2) discretize the continuous measures
μ, ν based on discrete sample sets Z = {zi}ni=1 ,W = {wj}pj=1, obtaining discrete

measures by μZ , νW (resp.), 3) approximate the measure-dependent cost function

d̆Rμ,ν(z, w) ≈ dRμ,ν(z, w), and 4) calculate the discrete optimal transportation cost

TR
d̆
(μZ , νW ) between the discrete measures μZ , νW based on the approximated cost

function d̆Rμ,ν(z, w).

In the heart of our analysis we prove the convergence TR
d̆
(μZ , νW ) → dR(M,N )

as the “mesh size” of the samplings used in steps 2, 3 and 4, tend to zero. More
precisely, we define the fill distance ϕg(Z) for the metric tensor g and the sample
set Z as

(1.11) ϕg(Z) := sup {r > 0
∣∣ z ∈ M : Bg(z, r) ∩ Z = ∅},

where Bg(z, r) is the geodesic open ball of radius r centered at z. That is, ϕg(Z) is
the radius of the largest geodesic ball that can be fitted on the surface M without
including any point of Z. The smaller ϕg(Z), the finer the sampling set. We prove
the following theorem:

Theorem 1.1. Let μ, ν be Lipschitz continuous probability densities (w.r.t. the
hyperbolic measure) defined over D. Let M,N be the disk-type surfaces defined by
the metric tensors g = μ(z) (1−|z|2)−2δijdx

i⊗dxj , h = ν(w) (1−|w|2)−2δijdy
i⊗dyj

(resp.), let Z,W be discrete sample sets on M,N (resp.), {pk} samples in D used
for numerical integration, and let L be the number of uniformly spaced points on
the circle used to define TR

d̆
(see below). Then∣∣∣dR(M,N )− TR

d̆
(μZ , νW )

∣∣∣ = ∣∣∣TR
d̆
(μ, ν)− TR

d̆
(μZ , νW )

∣∣∣
≤ ωdR

μ,ν
(2max (ϕg(Z), ϕh(W ))) + C1ϕE ({pk}) + C2 L

−1 + εunif,

where

ωdR
μ,ν

(t) = sup
dM(z,z′)+dN (w,w′)<t

∣∣dRμ,ν(z, w)− dRμ,ν(z
′, w′)

∣∣
denotes the modulus of continuity of the cost function dRμ,ν , and C1, C2 are constants
that depend only upon μ, ν,R.

Here ϕE ({pk}) and L−1 are two algorithm parameters that can be made ar-
bitrarily small. The error term εunif concerns only the approximations made in
the discrete uniformizations for each of the two surfaces, separately; we will come
back to it below—suffice it to say here that it is much smaller than the other error
terms, in practice. Finally, it was proved in [19] that the cost function dRμ,ν(z, w) is

uniformly continuous on D×D and therefore ωdR
μ,ν

(2max (ϕg(Z), ϕh(W ))) → 0 as

the fill-distances of the sets Z,W go to zero.
Two comments are in order: first, we believe that the cost function dRμ,ν(z, w) is

Lipschitz rather than just uniformly continuous. If this is the case, then our anal-
ysis guarantees linear convergence of the algorithm (leaving aside the εunif term).
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We leave checking the precise regularity of the cost function to future work. Sec-
ond, we should discuss in more detail εunif, containing the errors produced from
the discrete uniformization. One typically starts from a piecewise flat approxima-
tion of the surfaces M,N , given by triangle meshes with a very fine mesh size,
providing much finer sampling than the Z or W used in steps 2 through 4. (For
instance, in our numerical computations, the parameter L and the sample sets Z,W
were chosen so that L−1, ϕg(Z), ϕh(W ) had magnitude .02, .06, .06 (resp.); the
mesh size in the original triangulation of M, N is of order .01.) How to construct
discrete approximations of the uniformization of the surfaces, starting from these
approximations to M, N , is a research area in its own right, and several different
methods have been proposed [12, 26, 30]; in our work we adopt the approach of
[26, 20]. The error εunif contributed by this component of our algorithm is governed
by the difference between the “true” μ, ν and the μapprox, νapprox stemming from
the discrete triangulation approximation, followed by the discrete uniformization,
and is bounded by (using the triangle inequality proved in Theorem 3.11 in [19])

εunif ≤ TR
d (μ, μapprox) + TR

d (ν, νapprox).

We expect this difference to be proportional to the triangulation mesh size, and
to be negligible compared to the errors we analyze explicitly in this paper. Since
the convergence analysis of discrete uniformization has not settled yet into its final
form, and given the much smaller size of this component of the error (both expected
and borne out by numerical experiments), we have opted here to view the discrete
uniformization as a “black box”, the analysis of which is outside the scope of this
paper, and to neglect this part of the error. We concern ourselves here with the
error made by our algorithm in the approximation to TR

d (μapprox, νapprox), namely
with ∣∣∣TR

d (μapprox, νapprox)− TR
d (μZ , νW )

∣∣∣ .
We now turn to the other contributions made by this paper. In an earlier version

of the paper, Theorem 1.1 was the main result. Interesting questions and challenges
by the reviewers led us to investigate extensions and further mathematical proper-
ties of our construction; the results are formulated as two further contributions.

The first of these is a generalization of the framework above to other types of
surfaces. We show how a similar distance dA(M,N ) can be defined for genus-
zero, or sphere-type surfaces. This involves some new ideas, since the absence of
a distance function on the sphere S2 that would be invariant under all conformal
maps from S2 to itself, implies that the definitions of the neighborhoods Ωz0,R

cannot simply be copied from the case for disk-type surfaces.
The final contribution of this paper concerns possible connections between the

distance dR(M,N ) and the notion of geodesic distortion. Although there is cer-
tainly much more to be said upon this topic than we do here, we do present a
first result, showing that if the distance dR(M,N ) between two disk-like surfaces
is small, then the two surfaces are locally near-isometric. More precisely, we prove
the following:

Theorem 1.2. Let M and N be differentiable disk-like surfaces. If dR(M,N ) is
sufficiently small, then we can cover M (minus an arbitrarily small boundary layer)
with patches Ωz0,R and define mappings fz0 : M → N (Möbius transformations)
such that for all z1, z2 ∈ M (not very close to the boundary) with geodesic distance
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dg(z1, z2) ≤ r(R), r(R) > 0, there exists a patch Ωz0,R such that z1, z2 ∈ Ωz0,R,
and (

1− C2d
R(M,N )1/3

)
dg(z1, z2)

≤ dh(f
z0(z1), f

z0(z2)) ≤
(
1 + C1d

R(M,N )1/3
)
dg(z1, z2),

(1.12)

where dg(z1, z2), dh(w1, w2) are the geodesic distances of z1, z2 ∈ M and w1, w2 ∈
N , respectively, and C1, C2 > 0 are constants independent of the choice of z1, z2.

1.4. Related work. The approach taken in this paper is related to the computer
graphics constructions in [20], which rely on the representation of isometries be-
tween topologically equivalent simply-connected surfaces by Möbius transforma-
tions between their uniformization spaces, and which exploit that: 1) the Möbius
group has small dimensionality (e.g. 3 for disk-type surfaces and 6 for sphere-type)
and 2) changing the metric in one piece of a surface has little influence on the
uniformization of distant parts. These two observations lead, in [20], to fast and
effective algorithms to identify near-isometries between differently deformed ver-
sions of a surface. In our present context, these same observations lead to a simple
algorithm for surface alignment, reducing it to a linear programming problem.

Other distances between surfaces have been used recently for several applications
[21]. A prominent mathematical approach to define distances between surfaces
considers the surfaces as special cases of metric spaces, and uses then the Gromov-
Hausdorff (GH) distance between metric spaces [11]. The GH distance between
metric spaces X and Y is defined through examining all the isometric embedding
of X and Y into (other) metric spaces; although this distance possesses many at-
tractive mathematical properties, it is inherently hard computationally [22, 1]. For
instance, computing the GH distance is equivalent to a nonconvex quadratic pro-
gramming problem; solving this directly for correspondences is equivalent to integer
quadratic assignment, and is thus NP-hard [6]. In addition, the nonconvexity im-
plies that the solution found in practice may be a local instead of a global minimum,
and is therefore not guaranteed to give the correct answer for the GH distance. The
distance between surfaces as we define in [19] does not have these shortcomings be-
cause the computation of the distance between surfaces using this approach can
be recast as a linear program, and can therefore be implemented using efficient
polynomial algorithms that are, moreover, guaranteed to converge to the correct
solution.

In [21], the GH distance of [22] is generalized by introducing a quadratic mass
transportation scheme to be applied to metric spaces equipped with a measure
(mm spaces); the computation of this Gromov-Wasserstein distance for mm spaces
is somewhat easier and more stable to implement than the original GH distance
[21]. A crucial aspect in which our work differs from [21] is that, in contrast to
the (continuous) quadratic programming method proposed in [21] to compute the
Gromov-Wasserstein distance between mm spaces, our conformal approach leads
to a convex (even linear) problem, solvable via a linear programming method.

It is worth mentioning that optimal mass transportation has been used in the
engineering literature as well, to define interesting metrics between images; in this
context the metric is often called the Wasserstein distance. The seminal work for
this image analysis approach is the paper by Rubner et al. [27], in which images are
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viewed as discrete measures, and the distance is called appropriately the “Earth
Mover’s Distance”.

Another related method is presented in the papers of Zeng et al. [33, 34], which
also use the uniformization space to match surfaces. Our work differs from that
of Zeng et al. in that they use prescribed feature points (defined either by the
user or by extra texture information) to calculate an interpolating harmonic map
between the uniformization spaces, and then define the final correspondence as
a composition of the uniformization maps and this harmonic interpolant. This
procedure is highly dependent on the prescribed feature points, provided as extra
data or obtained from non-geometric information. In contrast, our work does not
use any prescribed feature points or external data, and makes use of only the
geometry of the surface; in particular, we utilize the conformal structure itself to
define deviation from (local) isometry.

1.5. Organization. Section 2 presents the main steps for the discretization of
the continuous case and provides algorithmic aspects for the alignment procedure.
Section 3 generalizes the method to sphere-type surfaces. Section 4 provides a the-
oretical result connecting our distance directly to local geodesic distortion. Section
5 presents experimental validation of the algorithms and concludes; in particu-
lar, we report results of the method applied to various benchmark data sets and
provide a comparison to a state-of-the-art method. This paper also contains four
appendices: A) contains few approximation results used by our algorithm, B) con-
tains background on the discrete conformal mapping we use, C) contains proofs of
some properties of the linear program solution, and D) contains the approximation
analysis of the discrete optimal transport cost to its continuous counterpart.

2. Algorithm for comparing disk-type surfaces and analysis

Transforming the theoretical framework discussed above into an algorithm re-
quires several steps of approximation. Our general plan is to recast the transporta-
tion equation (1.2) as a linear programming problem between discrete measures.
The steps of our algorithm are as follows:

Preprocess: approximating the surfaces’ uniformization,
Step 1: discretizing the resulting continuous measures,
Step 2: approximating the cost function dRμ,ν(·, ·),
Step 3: solving a linear programming problem to achieve the final approximation

of the distance, and the optimal transportation plan (correspondences).
Step 4 (optional): extract a consistent set of correspondences.
In the following we describe in detail each of these steps; we also provide a con-

vergence analysis for steps 1–3, but not for the preprocess step. (As explained in the
introduction the convergence of the approximated uniformization is not the focus
of this paper, and we consider it as a “black box”.) For the sake of completeness,
and as a guide to readers who would like to implement the algorithm, we include a
description of this part in Appendix B.

2.1. Step 1 : Discretizing continuous measures. In this subsection we indicate
how to construct the discrete measures μZ , νW used in further steps.

Given the measure μ = volM on D, we discretize it by first distributing n points
Z = {zi}ni=1 “uniformly w.r.t. μ”. Details on the particular algorithm we used for
sampling are provided in Appendix B (we use the same technique for the sets Z,W
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described there). For i = 1, . . . , n, we define the sets {Ξi}ni=1 to be the Voronoi
cells corresponding to zi ∈ Z defined by the metric of M; this gives a partition of
D into disjoint sets, D =

⋃n
i=1 Ξi. For a more detailed definition of Voronoi cells

as well as properties of the discrete measures see Appendix D. Next, define the
discrete measure μZ as a superposition of delta measures localized in the points of
Z, with weights given by the areas of Ξi, i.e.,

(2.1) μZ =

n∑
i=1

μiδzi ,

with μi := volM(Ξi) =
∫
Ξi

μ(z)dvolH . Similarly, we denote by W = {wj}pj=1,

{Υj}pj=1, νW , and νj := volN (Υj) the corresponding quantities for the measure

ν = volN .
We shall always assume that the surfaces M and N have the same area, which,

for convenience, we can take to be 1. It then follows that the discrete measures
μZ and νW have equal total mass (regardless of whether n = p or not). The
approximation algorithm will compute optimal transport for the discrete measures
μZ and νW ; the corresponding discrete approximation to the distance between M
and N is then given by TR

d (μZ , νW ).
The convergence analysis we present will be in terms of the fill distance

ϕg(Z), ϕh(W ) defined in the introduction. Note that our analysis will work with
any point sample sets as long as their fill distances converge to zero.

2.2. Step 2 : Approximating the cost function dRμ,ν . In order to approximate

TR
d (μZ , νW ) we need to approximate the cost function dRμ,ν(z, w) between pairs of

points (zi, wj) ∈ Z ×W .
Applying (1.9) to the points zi, wj we have:

(2.2) dRμ,ν(zi, wj) = min
m(zi)=wj

∫
Ωzi,R

∣∣∣μ(z)− ν(m(z))
∣∣∣dvolH .

To obtain dRμ,ν(zi, wj) we will thus need to approximate integrals over hyperbolic
disks of radius R, which is done via a separate approximation procedure, set up
once and for all in a preprocessing step at the start of the algorithm.

By using a Möbius transformation m̃ such that m̃(0) = z0, and the identity∫
Ωz0,R

∣∣∣μ(z)− ν(m(z))
∣∣∣dvolH(z) =

∫
Ω0,R

∣∣∣μ(m̃(u))− ν(m ◦ m̃(u))
∣∣∣ dvolH(u) ,

we can reduce the integrals over the hyperbolic disks Ωzi,R to integrals over a
hyperbolic disk Ω0,R centered around zero.

To approximate the integral of a continuous function f over Ω0,R we then use a
rectangle-type quadrature,∫

Ω0

f(z) dvolH(z) ≈
∑
k

αkf(pk),

where pk ∈ Ω0,R, αk ∈ R, k = 1 . . .K, are the centers and coefficients (resp.) of the
quadrature. The coefficients αk are defined as the hyperbolic area of the Euclidean
Voronoi cells Δk corresponding to the centers pk.
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We thus have the following approximation:

dRμ,ν(zi, wj) = min
m(zi)=wj

∫
Ωzi,R

∣∣∣μ(z)− ν(m(z))
∣∣∣dvolH(z)

= min
m(zi)=wj

∫
Ω0,R

∣∣∣μ(m̃i(z))− ν(m(m̃i(z)))
∣∣∣ dvolH(z)

≈ min
m(zi)=wj

∑
k

αk

∣∣∣μ(m̃i(pk))− ν(m(m̃i(pk)))
∣∣∣ ,(2.3)

where the Möbius transformations m̃i, mapping 0 to zi, are selected as soon as the
zi themselves have been picked, and remain the same throughout the remainder of
the algorithm.

Let us denote this approximation by

d̂Rμ,ν(zi, wj) = min
m(zi)=wj

∑
k

αk |μ(m̃i(pk))− ν(m(m̃i(pk))) | .

It can be shown that picking a set of centers {pk} with Euclidean fill-distance
ϕE({pk}) = h > 0 (that is, we use the Euclidean metric to define the fill-distance
of the set {pk}) leads to an O(h) approximation; in Appendix A we prove:

Theorem 2.1. For Lipschitz continuous μ, ν,∣∣∣dRμ,ν(zi, wj)− d̂Rμ,ν(zi, wj)
∣∣∣ ≤ C ϕE ({pk}),

where the constant C depends only on μ, ν,R.

In practice, the minimization overMD,zi,wj
(the set of all Möbius transformations

that map zi to wk) in the computation of d̂Rμ,ν is discretized as well: instead of
minimizing over all MD,zi,wj

, we minimize over only the Möbius transformations(
mzi,wj ,2π�/L

)
�=0,1,..,L−1

, defined by

(2.4) mzi,wj ,2π�/L = m̃j ◦R� ◦ m̃−1
i ,

with m̃i as defined above, R�(z) = ei2π�/Lz , L a parameter that reflects how many
points we use to discretize [0, 2π), and m̃j ∈ MD an arbitrary but fixed Möbius
map that takes 0 to wj .

Taking this into account as well, we have thus

dRμ,ν(zi, wj) ≈ d̆Rμ,ν(zi, wj)(2.5)

:= min
�=1...L

∑
k

αk

∣∣∣μ(m̃i(pk))− ν(mzi,wj ,2π�/L(m̃i(pk)))
∣∣∣ ;

as we prove in Appendix A the error made in approximation (2.5) is

Theorem 2.2. For Lipschitz continuous μ, ν,∣∣∣ dRμ,ν(zi, wj)− d̆Rμ,ν(zi, wj)
∣∣∣ ≤ C1 ϕE ({pk}) + C2L

−1 ,

where the constants C1, C2 depends only on μ, ν,R.
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2.3. Step 3 : Solving a linear program. We now have in place all the ingre-
dients to formulate the final linear programming problem, the solution of which
approximates the distance dR(M,N ). The final step is to solve a discrete opti-
mal transportation problem between the discrete measures μZ and νW with the

approximated cost function d̆Rμ,ν(zi, wj):∑
i,j

d̆Rijπij → min,(2.6) ⎧⎨⎩
∑

i πij = νj ,∑
j πij = μi,

πij ≥ 0,
(2.7)

where μi = μ(Ξi) and νj = ν(Υj), and d̆Rij = d̆Rμ,ν(zi, wj).
The optimal transportation plan π∗ then furnishes our final approximation:

Td̆(μZ , νW ) =
∑

ij d̆
R
ijπ

∗
ij . The approximation result will be expressed in terms

of the modulus of continuity of our cost function: ωdR
μ,ν

. Our result will use the

following regularity theorem of mass transportation, proved in Appendix D.

Theorem 2.3. Suppose c : X × Y −→ R+ is a continuous function, with X ,Y
compact complete separable metric spaces, S and T are sample sets in X ,Y (resp.),
μ, ν are probability measures on X ,Y.

(A) If c is uniformly continuous, then

Tc(μS , νT ) → Tc(μ, ν), as h → 0.

(B) If c is Lipschitz continuous with a constant λ, then

|Tc(μ, ν)− Tc(μS, νT )| < 2λh,

where, h = max {ϕX (S), ϕY(T )}, and μS , νT are as defined similarly to (2.1). (See
Appendix D for a precise definition.)

Our main approximation result is as follows:

Theorem 2.4. Let μ, ν be Lipschitz continuous probability densities (w.r.t. the
hyperbolic measure) defined over D. Let M,N be the disk-type surfaces defined by
the metric tensors g = μ(z) (1−|z|2)−2δijdx

i⊗dxj , h = ν(w) (1−|w|2)−2δijdy
i⊗dyj

(resp.). Let π∗ be the minimizer of the linear program defined by (2.6)-(2.7), then∣∣∣dR(M,N )−Td̆(μZ , νW )
∣∣∣ ≤ ωdR

μ,ν
(2max (ϕg(Z), ϕh(W )))+C1ϕE ({pk})+C2 L

−1,

where ωdR
μ,ν

denotes the modulus of continuity of the function dRμ,ν , C1, C2 are con-

stants dependent only upon μ, ν,R.

Proof. First, ∣∣∣dR(M,N )− Td̆(μZ , νW )
∣∣∣ ≤ ∣∣∣dR(M,N )− Td(μZ , νW )

∣∣∣
+
∣∣∣Td(μZ , νW )− Td̆(μZ , νW )

∣∣∣ = I + II,

where Td(μZ , νW ) is the optimal transport cost between the discrete measures
μz, νW using the exact cost function dRμ,ν(zi, wj).

In Appendix D (Theorem D.4) we prove that

I ≤ ωdR
μ,ν

(2max {ϕg(Z), ϕh(W )});
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the result is proved in the more general context of compact complete separable
metric spaces; we believe this result may be useful, independently of the remainder
of this paper, to approximate optimal transport cost in more general contexts (see
Appendix D for more details).

To bound II, denote by π′
ij the optimal plan in Td̆(μZ , νW ), then,

Td(μZ , νW )− Td̆(μZ , νW ) = inf
π

∑
i,j

πi,jd
R
i,j −

∑
i,j

π′
i,j d̆

R
i,j

≤
∑
i,j

π′
i,j

(
dRi,j − d̆Ri,j

)
≤ C1 ϕE({pk}) + C2 L

−1,

where in the last inequality we used Theorem 2.2. The symmetric inequality can
be achieved similarly. This completes the proof. �

It is proved in [19] that dRμ,ν(·, ·) is uniformly continuous on D × D. Therefore,
the above theorem implies convergence of our discrete approximation. More specif-
ically, our approximation will converge like the modulus of continuity of dRμ,ν(·, ·);
remember that for uniformly continuous functions f , the modulus of continuity sat-
isfies limr→0 ωf (r) = 0. As mentioned in the introduction, we believe that dRμ,ν(·, ·)
is actually Lipschitz continuous, in that case the above theorem actually implies lin-
ear convergence rate. We leave the question of higher regularity of the cost function
dRμ,ν to future work.

In the remaining part of this subsection we discuss some variations and properties
of the linear program formulation equation (2.6)-(2.7). In practice, surfaces are
often only partially isometric. Furthermore, the sampled points may also fail to
have a good one-to-one and onto correspondence (i.e. there typically are some
points in both Z and W that do not correspond well to any point in the other set).
In these cases it is desirable to allow the algorithm to consider transportation plans
π with marginals smaller than or equal to μ and ν. Intuitively this means that we
allow that only some fraction of the mass is transported and that the remainder
can be “thrown away”. This leads to the following formulation:∑

i,j

dijπij → min,(2.8)

⎧⎪⎪⎨⎪⎪⎩
∑

i πij ≤ νj ,∑
j πij ≤ μi,∑
i,j πij = Q,

πij ≥ 0,

(2.9)

where 0 < Q ≤ 1 is a parameter set by the user that indicates how much mass must
be transported in total.

Since these equations and constraints are all linear, we have the following theo-
rem:

Theorem 2.5. The equations (2.6)-(2.7) and (2.8)-(2.9) admit a global minimizer
that can be computed in polynomial time, using standard linear-programming tech-
niques.

When correspondences between surfaces are sought, i.e., when one surface is
viewed as being transformed into the other, one is interested in restricting π to the
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class of permutation matrices instead of allowing all bistochastic matrices. (This
means that each entry πij is either 0 or 1.) In this case the number of centers
zi must equal that of wj , i.e., n = N = p, and it is best to pick the centers so
that μi =

1
N = νj , for all i, j. It turns out that these restrictions are sufficient to

guarantee (without restricting the choice of π in any way) that the minimizing π is
a permutation:

Theorem 2.6. If n = N = p and μi =
1
N = νj, then:

(1) There exists a global minimizer of (2.6) that is a permutation matrix.
(2) If, furthermore, Q = M

N , where M < N is an integer, then there exists a
global minimizer of (2.8) π such that πij ∈ {0, 1} for each i, j.

Remark 2.7. In the second case, where πij ∈ {0, 1} for each i, j, and
∑N

i,j=1 πij =
M , π can still be viewed as a permutation of M objects, “filled up with zeros”.
That is, if the zero rows and columns of π (which must exist, by the pigeon hole
principle) are removed, then the remaining M ×M matrix is a permutation.

Proof. We first note that in both cases, we can simply renormalize each μi and νj
by N , leading to the rescaled systems:

(2.10)

⎧⎨⎩
∑

i πij = 1,∑
j πij = 1,

πij ≥ 0,

⎧⎪⎪⎨⎪⎪⎩
∑

i πij ≤ 1,∑
j πij ≤ 1,∑

i,j πij = M,

πij ≥ 0.

To prove the first part, we note that the left system in (2.10) defines a convex
polytope in the vector space of matrices that is exactly the Birkhoff polytope of bis-
tochastic matrices. By the Birkhoff–Von Neumann Theorem [17] every bistochastic
matrix is a convex combination of the permutation matrices, i.e., each π satisfying
the left system in (2.10) must be of the form

∑
k ckτ

k, where the τk are the N !
permutation matrices for N objects, and

∑
k ck = 1, with ck ≥ 0. The minimizing

π in this polytope for the linear functional (2.6) must then be of this form as well.
It follows that at least one τk must also minimize (2.6), since otherwise we would
obtain the contradiction

(2.11)
∑
ij

dijπij =
∑
k

ck

(∑
ij

dijτ
k
ij

)
≥ min

k

{∑
ij

dijτ
k
ij

}
>
∑
i,j

dij πij .

The second part can be proved along similar steps: the right system in (2.10)
defines a convex polytope in the vector space of matrices; it follows that every ma-
trix that satisfies the system of constraints is a convex combination of the extremal
points of this polytope. It suffices to prove that these extreme points are exactly
those matrices that satisfy the constraints and have entries that are either 0 or 1
(this is the analog of the Birkhoff–von Neumann theorem for this case; we prove
this generalization in a lemma in Appendix C); the same argument as above then
shows that there must be at least one extremal point where the linear functional
(2.6) attains its minimum. �

When we seek correspondences between two surfaces, there is thus no need to
impose the (very nonlinear) constraint on π that it be a permutation matrix; one
can simply use a (standard) linear program and Theorem 2.6 then guarantees that
the minimizer for the “relaxed” problem (2.6)-(2.7) or (2.8)–(2.9) is of the desired
type if n = N = p and μi =

1
N = νj .
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2.4. Consistency. In our schemes to compute the surface transportation distance,
for example, by solving (2.8), we have so far not included any constraints on the
regularity of the resulting optimal transportation plan π∗. When computing the
distance between a surface and a reasonable deformation of the same surface, one
does indeed find, in practice, that the minimizing π∗ is fairly smooth, because
neighboring points have similar neighborhoods. There is no guarantee, however,
that this has to happen. Moreover, we will be interested in comparing surfaces
that are far from (almost) isometric, given by noisy datasets. Under such circum-
stances, the minimizing π∗ may well “jump around”. In this subsection we propose
a regularization procedure to avoid such behavior.

Computing how two surfaces best correspond makes use of the values of the
“distances in similarity” dRμ,ν(zi, wj) between pairs of points that “start” on one
surface and “end” on the other; computing these values relies on finding a mini-
mizing Möbius transformation for the functional (1.9). We can keep track of these
minimizing Möbius transformations mij for the pairs of points (zi, wj) proposed
for optimal correspondence by the optimal transport algorithm described above.
Correspondence pairs (i, j) that truly participate in some close-to-isometry map
will typically have Möbius transformations mij that are very similar. This suggests
a method of filtering out possibly mismatched pairs, by retaining only the set of
correspondences (i, j) that cluster together within the Möbius group.

There exist many ways to find clusters. In our applications, we gauge how far
each Möbius transformation mij is from the others by computing a type of 
1
variance:

(2.12) EV (i, j) =
∑
(k,�)

‖mij −mk�‖ ,

where the norm is the Frobenius norm (also called the Hilbert-Schmidt norm) of the
2× 2 complex matrices representing the Möbius transformations, after normalizing
them to have determinant one. We then use EV (i, j) as a consistency measure of
the corresponding pair (i, j).

3. Generalization to sphere-type surfaces

So far we have restricted ourselves to disk-type surfaces, which is somewhat
limiting in practice. It is fairly straightforward to generalize the ideas presented in
[19] to other types of surfaces; in this part of the paper we show how this can be
done. We choose to concentrate on the common case of sphere-type surfaces, that
is, genus zero surfaces. We will start by making the necessary theoretical changes,
and then we will present the numerical algorithm; an example will be given in
Section 5, alongside examples for disk-type surfaces.

3.1. Generalization of the distance function. The uniformization theory for
sphere-type surfaces ensures a conformal one-to-one and onto mapping of the surface

to the 2-sphere or equivalently to the extended complex plane Ĉ = C ∪ {∞}, the
Stone-Čeck compactification of C. The group of automorphisms of the extended

plane are the Möbius transformations m : Ĉ → Ĉ, given by

(3.1) m(z) =
az + b

cz + d
,
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where a, b, c, d ∈ C and ad−bc �= 0. In other words, any bijective conformal mapping
taking the extended plane to itself is a Möbius transformation, and vice-versa any
Möbius transformation is a bijective conformal map of the extended plane.

The key to successful generalization to this case is choosing the neighborhoods
Ωz0,R for a point z0 in a Möbius-invariant way. In contrast to the situation on the
disk, where the hyperbolic distance is invariant under the group MD, the extended

complex plane Ĉ does not posses a distance invariant under the full Möbius group
M

̂C
. This can be understood by noting that there is no nonconstant continuous

two-argument function f(z, w) such that f(m(z),m(w)) = f(z, w) for all Möbius

transformations m ∈ M
̂C
and all z, w ∈ Ĉ. Therefore, the neighborhoods must be

constricted in a different way.
We tackle this problem by starting with the most basic invariant of Möbius

geometry, namely (generalized) circles. The neighborhood of a point z0 will then
be defined as the interior of a particular circle in the extended plane.

Let us first define the collection of circles in Ĉ plane with prescribed orientation
by C. The role of the orientation attached to circles will become clear momentarily.

Definition 3.1.

(1) A circle c ∈ C is defined as the set of complex numbers satisfying an equa-
tion of the type

Azz̄ +Bz +Bz +D = 0,

where A,D ∈ R and B ∈ C. Note that we define ∞ ∈ c if ∞ is an
accumulation point of c (in the extended complex plane topology).

(2) The orientation of a circle c ∈ C is defined by labeling the “inside” and

“outside” connected parts of Ĉ \ c.

Note that this definition of a “circle” includes straight lines that can be thought
of as circles through infinity (which is a legitimate point in the extended complex
plane), and also “empty circles” that are empty sets (e.g. if A = D = 1, B = 1).

The candidate neighborhoods, needed to generalize the definition of dRμ,ν(·, ·), will
be defined by selecting particular oriented circles in C; since Möbius transformations
already take circles to circles, we need to ensure only that our selection criterion
is invariant under Möbius transformations as well. We shall of course pick the

neighborhood of z0 ∈ Ĉ from the collection of oriented circles C that contain z0. In
addition, the choice should be: 1) isometry-invariant (i.e., if M,N are isometric
sphere-type surfaces, and z0, w0 ∈ D are corresponding points under the isometry

on their uniformizations on Ĉ, then the Möbius transformation m that corresponds
to that isometry should map the neighborhood Ωz0,A around z0 to the neighborhood
Ωw0,A around w0), 2) robust to noise, and 3) characterized by a “size” parameter
similar to R in the disk-type surfaces.

The key idea is to single out from the collection of circles C a single or discrete
number of circles using the surface’s metric tensor. We will outline one possible
construction as an example but other constructions are certainly possible.

To characterize “size” we shall use area: we consider circles such that their area
(w.r.t. the surface’s metric) is of prescribed magnitude A, that is, {c | volM(c) = A},
where c denotes the union of the interior of the circle c (defined by its orientation)
and the set c. Since we assume our surfaces have unit area, A ∈ (0, 1].
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The neighborhood Ωz0,A is then defined by

Ωz0,A =argmin
c∈Cz0,A

lengthM(c),

where(3.2)

Cz0,A = {c ∈ C | volM(c) = A and z0 ∈ c} , and

where lengthM(c) denotes the length of the curve c based on the metric of surface
M.

A few remarks are in order. Let us consider the collection of circles c ∈ C
such that volM(c) = A. We can use the Riemann sphere model which can be
thought of as the standard S2 ⊂ R

3. Each circle c ∈ C is either s standard circle
on S2 or a point or an empty set. For every point p ∈ S2 there is a one di-
mensional family of circles cp,t defined by cp,t =

{
q ∈ S2 | 〈q, p〉 = 1− t

}
, where

t ∈ (0, 2): the interior is taken to be the part that contains the point p, so that
cp,t =

{
q ∈ S2 | 〈q, p〉 ≥ 1− t

}
. Obviously, v : t �→ volM(cp,t) is a monotone func-

tion, and limt→0 v(t) = 0, limt→1 v(t) = 1. Finally, v(t) is a continuous function and
therefore there exists a unique value tA (depending on p) such that v(tA) = A. This
means that for every point p ∈ S2 we can find a unique circle from the concentric
family {cp,t}p∈S2,t∈(0,2) that has area A. Since every nonempty and nonpoint circle

in C can be identified as cp,t for some point p ∈ S2 and some t ∈ (0, 2), the collec-
tion cp,tA(p), p ∈ S2 is a parametrization of the collection {c ∈ C | volM(c) = A}.
Now, the extra restriction z0 ∈ c defines a subset of S2 in the sense that we consider
only p ∈ S2 such that z0 ∈ cp,tA . Since tA is continuous as a function of p this
restriction defines a compact subset of S2, which in turn implies that the minimum
in equation (3.2) is achieved. Last, on this two-dimensional manifold we consider
the function c �→ lengthM(c) which is a smooth function and in the generic case
has a unique global minimum. We will henceforth assume that (3.2) has a unique
minimizer.

Since the neighborhoods Ωz0,A are chosen from the circle collection, using only in-
trinsic properties they are invariant to Möbius changes of coordinates of the metric;
in other words, if two isometric surfaces M,N are compared at a pair of isometric
points z0, w0 (w0 is the image of z0 under the isometry), then the isometry mapping
M to N is a Möbius transformation taking not only z0 to w0 but also Ωz0,A to
Ωw0,A.

Once the neighborhoods are set, the definition of dAμ,ν(z0, w0) is straightforward:

denote by MA
z0,w0

the collection of Möbius transformations m that take the interior
of the circle Ωz0,A to the interior of Ωw0,A, and for which m(z0) = w0. This is again
a one-parameter subgroup parameterized over the unit circle (angle) θ ∈ [0, 2π), as
in the disk-type surface case we then define

(3.3) dAμ,ν(z0, w0) := inf
m∈MA

z0,w0

∫
Ωz0,A

∣∣∣ 1− ν((m(z)) |m′(z)|2

μ(z)

∣∣∣ dvolM (z).

This is indeed the analog to (1.9) for disk-type surfaces since both integrals can be
written in the invariant form∫

Ωz0,A

∥∥∥g̃(z)− (m∗h̃
)
(z)
∥∥∥
g̃
dvolM(z),
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where g̃ (resp. h̃) is the push-forward metric of M (resp. N ) on Ĉ, and the
norm ‖·‖g̃ is the standard one, induced by g̃: for a tensor tijdx

i ⊗ dxj , we denote

g̃ = g̃ijdx
i ⊗ dxj , then ‖t‖2g̃ = tijtk�g̃

ikg̃j�.
This area-based definition of the neighborhoods could also be used in the disk-

type case; this would yield a unified definition for both cases. The difference be-
tween the new definition (above) and the old definition (hyperbolic geodesic disk)
in the case of disk-type surfaces is that the old definition provides smaller neigh-
borhoods near the boundary for disk-type surfaces, while the new definition will
maintain constant area neighborhoods even arbitrarily close to the surface’s bound-
ary; depending on the application and data properties, one or the other selection
may be preferable.

3.2. Numerical details. The algorithm for the sphere-type case is basically the
same as for the disk-type; That is, we first sample N = n = p equally distributed
points (as described in Section 2) Z,W on the surfaces M,N (respectively). Sec-
ond, the cost function dAμ,ν(zi, wj) is computed between every pair of sample points
(zi, wj) ∈ Z × W , and finally, a discrete mass-transportation problem is solved
between the discrete measures μZ and νW to output the distance and the corre-
spondences. A few adjustments need to be made to this algorithm for the sphere-
type case: 1) precomputing (approximating) the neighborhoods Ωzi,A, zi ∈ Z, and
Ωwj ,A, wj ∈ W , which involves more computation than for the disk-type surfaces
case, 2) representing the conformal density on the extended complex plane rather
than the unit disk, and approximating the local distance dRμ,ν(zi, wj), and 3) calcu-
lating the optimal transport between the discrete densities. Next we describe these
adjustments in more detail.

Computing the neighborhoods Ωzi,A. We describe the construction of neigh-
borhoods Ωzi,A for every sample point zi ∈ Z in M. The construction in N is
identical. We want to find the neighborhood Ωzi,A (assumed unique) based on the
definition (3.2). That is, Ωzi,A is the interior of a conformal circle, has surface area
A, and has minimal circumference compared to all other such circles. A circle (on

S2 or equivalently on Ĉ) is defined by a triplet of points zj , zk, z� in the usual way.
Adding the orientation, each triplet provides us with two choices of conformal cir-
cle neighborhoods. In our implementation we considered all 2

(
N
3

)
circles generated

by the sample set Z. For each such circle (endowed with orientation) we estimate
the surface area inscribed in it. If it is ε-close to the prescribed amount A, we
estimate its circumference on the surface. We define Ωzi,A the one with smallest
circumference that contains zi.

Approximating dRμ,ν(zi, wj). The second issue that arises when generalizing to
sphere-type surfaces is the representation of the conformal density μ(z), ν(w). One
option is to use a spherical interpolation scheme and repeat the steps as described
in Appendix B. However, one can also pick a different path that is very simple and
offers an alternative to the smooth TPS approximation described in Appendix B.
The idea is to represent the conformal density by keeping track of a set of equally

spread points Q̃ = {q̃�}L�=1 ⊂ M on the surface (similarly to Z), where each point
represents a surface patch (Voronoi cell) of size 1

L . In our implementation for sphere-
type surfaces, we use this latter choice. We usually take a set of size L ≈ 1000.

The discrete density is then represented on the extended plane as Q = {q�}L�=1 =
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Φ(Q̃) ⊂ Ĉ. It can be shown that given a domain Ω ⊂ Ĉ we have the approximation:

(3.4)

∣∣∣∣∣∣ 1L
∑
qi∈Ω

1−
∫
Ω

dvolM

∣∣∣∣∣∣ ≤ Cϕ({q̃�}).

To justify this approximation result let us denote by Vi the Voronoi cells of the

set Q̃ based on the metric of surface M. Lemma D.2 (proved in Appendix D)

then implies that 1
L
∑

qi∈Ω 1 = volM(∪Vi) ≤ volM

(⋃
p∈M Bg(p, 2ϕg(Q̃) + ε)

)
, for

arbitrary ε > 0, and it is not hard to see that for domains Ω with regular boundary

curves
∣∣∣volM (⋃

p∈M Bg(p, 2ϕg(Q̃) + ε)
)
− volM(Ω)

∣∣∣ ≤ Cϕ({q̃�}).
Note that the above arguments do not use the uniform property of Q̃, and will

work also when the sampling is not uniform, as long as the fill distance ϕg(Q̃) → 0.
Figure 1 shows the density points spread on a cat model and on its uniformization

sphere, as well as the neighborhood (in red) of a single point on the cat’s front leg.

Denote by P = {p�}L�=1 ⊂ Ĉ the density points for surface N . To approximate
dAμ,ν(z0, w0) as defined in (3.3) we follow the following steps: first, we map Q∩Ωz0,R

to the unit disk D via a Möbius transformation that is defined by taking z0 to the
origin and Ωz0,A to the unit disk D. Denote the resulting unit disk points by Qz0 .
Similarly, we map P ∩Ωw0,A to the unit disk (taking w0 to the origin). We denote
the resulting set by Pw0

. Second, for each θ ∈
{
0, 2π

L , 2 2π
L , ..., (L− 1) 2πL

}
we rotate

Qz0 by θ around the origin, eiθQz0 , and compare to the second density Pw0
. The

way we compare the two densities is justified by (3.4), that is, we subdivide the
unit disk (actually the entire square [−1, 1]2) into bins and count, for each of the

two densities eiθQz0 , Pw0
the number of points in each bin. Then, we can sum

the absolute value of the difference to achieve our approximation to dAμ,ν(z0, w0).
To smoothen the approximation, it is useful to convolve the bins’ structure with
some kernel (this is analog to the smoothing splines used in the disk case). In our
experiments (presented in Section 5) we used a 30×30 bin structure and convolved
with the kernel 1

9 (1, 1, 1)⊗ (1, 1, 1).

Figure 1. Sampling of the sphere-type cat surface (third from the left),
and the sampling shown on the uniformization sphere (left). Note the
zoom-in inset of the cat’s head. We also show the neighborhood (marked
with a circular curve on the sphere) for A = 0.3 of a point (marked with
a light ball on the sphere) on the cat’s front leg (the model is taken from
the Nonrigid World data-set [5]). On the right we show the correspond-
ing neighborhood on the original cat surface model (fourth from the right)
and on a few other surfaces from the same class (the neighborhoods were
computed independently in each surface). Note the invariance of this neigh-
borhood under nearly-isometric deformations.
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Solving the linear programming for spheres. Once we have defined Z =

{zi}ni=1 ,W = {wj}pj=1, μZ , νW and d̆Aμ,ν(zi, wj) we can go ahead and calculate

Td̆(μZ , νW ) as explained in Section 2.3. Since our analysis in Appendix D is for
general compact separable and complete metric spaces it will hold also for the

sphere case. Hence, once the approximation error of d̆A(zi, wj) ≈ dAμ,ν(zi, wj) is set
(as outlined above), Theorem 1.1 can be applied to yield the convergence result.

4. Stability

In this section we prove Theorem 1.2; this is a first result connecting the new
distance with local geodesic distortion. We will prove it for the disk case, but
similar arguments can be used for the sphere case.

Proof of Theorem 1.2. We will use three different metrics on D: the metrics of

M,N represented by the tensors g̃, h̃ (resp.), and the hyperbolic metric dH(·, ·).
The main idea of the proof is to use that a small value for dR(M,N ) means

that there exists a π ∈ Π(μ, ν) with respect to which the integral (1.2) of the cost
function dRμ,ν(z, w) is small as well; by the definition (1.9) of this cost function there
must therefore be many corresponding neighborhoods Ωz0,R and Ωw0,R in M and
N , respectively, that are very similar; we shall use these similarities to build local
isometries.

Denote dR(M,N ) = ε. Fix K ⊂ D to be a hyperbolic disk centered at the
origin with an arbitrarily large (but finite) radius, K = Ω0,L. (Note: we could
equally well have picked K to be an arbitrary set that is compact in the hyperbolic
metric; this particular choice alleviates notations.) Because Ω0,L+R is a compact
subset of D, there exists a constant C = C(L) < ∞ such that dH(z, z′) ≤ Cdg(z, z

′)
for all z, z′ ∈ Ω0,L+R. Similarly, there exist positive constants C ′ = C ′(L), C1 =
C1(L) < ∞ such that μ(z) ≥ 1

C′ for all z ∈ Ω0,L+R and volM(Ωz,R/2) ≥ 2
C1

for all
z ∈ Ω0,L = K.

Now set r < R/2C. We will prove the desired bounds for arbitrary points
z1, z2 ∈ K such that dg(z1, z2) < r. Let us pick such an arbitrary pair, which we
shall keep fixed for the moment. We immediately note that dH(z1, z2) < R/2.

Now let γz1,z2 be the minimal-length geodesic curve connecting z1 and z2 (in
terms of the metric corresponding to surface M); by taking r > 0 sufficiently
small we can ensure that this geodesic is unique. Since dg(z1, ξ) < r and thus
dH(z1, ξ) < R/2 for all ξ ∈ γz1,z2 , it follows that γz1,z2 ⊂ Ωz1,R/2. Morever, by a
simple application of the triangle inequality, we have γz1,z2 ⊂ Ωz0,R for all z0 such
that dH(z1, z0) < R/2), i.e., for all z0 ∈ Ωz1,R/2. It follows that

Ωz1,R/2 ⊂ B := {z0 | γz1,z2 ⊂ Ωz0,R} .

On the other hand, volM(Ωz1,R/2) ≥ infz∈K volM(Ωz,R/2) = minz∈K volM(Ωz,R/2)

> 2
C1

. This implies that the volume of B on the surface M can be bounded from
below by

volM(B) ≥ volM(Ωz1,R/2) ≥
2

C1
.

We can use this lower bound to show that there must be points z0 in B, and
corresponding points w0 in D, for which dRμ,ν(z0, w0) is small. Indeed, let π∗ be an
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optimal transportation plan realizing the minimal transportation cost, then

ε =

∫
D×D

dRμ,ν(z, w)dπ
∗(z, w) ≥

∫
B×D

dRμ,ν(z, w)dπ
∗(z, w)

≥ inf
(z,w)∈B×D

[
dRμ,ν(z, w)

] ∫
B×D

dπ∗(z, w) = inf
(z,w)∈B×D

[
dRμ,ν(z, w)

]
volM(B).

There thus exists some point (z0, w0) ∈ B ×D such that

dRμ,ν(z0, w0) ≤
2 ε

volM(B)
≤ C1 ε.

Next, we note that dRμ,ν can be written as (see [19], and (1.9))

dRμ,ν(z0, w0) = inf
m∈MD,m(z0)=w0

∫
Ωz0,R

∥∥∥g̃ −m∗h̃
∥∥∥
g̃(z)

dvolM(z)

=

∫
Ωz0,R

|μ(z)− ν(m(z))| dvolH(z),

where ‖ · ‖g̃(z) is the norm in the relevant tensor space as defined in Section 3 (and
in [19]). The m ∈ MD that satisfy m(z0) = w0 constitute a one-parameter compact
family, so that the infimum is achieved; let us call fz0 this minimizing Möbius
transformation from Ωz0,R to Ωw0,R. We thus have∫

Ωz0,R

∥∥∥g̃ − (fz0)∗ h̃
∥∥∥
g̃(z)

dvolM(z) =

∫
Ωz0,R

|μ(z)− ν(fz0(z))| dvolH(z) ≤ C1 ε .

Now

s(z) = |μ(z)− ν(fz0(z))|
is Lipschitz as a function of the argument z, since μ, ν are Lipschitz on Ω0,L+2R ⊂ D,
and fz0 is analytic; moreover, by observing that Ωz0,R ⊂ Ω0,L+2R, we can bound
the Lipschitz constant for s independently of the particular choices made so far,
i.e., for all z, z′ ∈ Ωz0,R,

|s(z)− s(z′)| ≤ κ |z − z′| .
Now, take any u in Ωz0,R, and set S = s(u). Then

C1 ε ≥
∫
Ωz0,R

max(0, S − κ|u− z|) dvolH(z) ≥ C ′′ S3 ,

where C ′′ > 0 can be chosen independently of the location of u within Ωz0,R, and

uniformly for z0 ∈ Ω0,L+R. It follows that S ≤ C2 ε
1/3. This shows that

(4.1) max
z∈Ωz0,R

∥∥∥g̃ −m∗h̃
∥∥∥
g̃(z)

≤ C2 ε
1/3 ,

for some constant C2 that does not depend on ε or z1, z2.
Given arbitrary z1, z2 in K, we have thus found Ωz0,R that contains the full

geodesic γz1,z2 and a Möbius map fz0 from Ωz0,R to a corresponding Ωw0,R that,
within to a small error controlled by the small quantity dR(M,N ), maps the local
geometry in M to that in N .

To alleviate notations in what follows, we drop the superscript z0 on fz0 . Our
plan is to use the minimizing geodesic path γz1,z2(t) : [0, 1] → M between the
points γz1,z2(0) = z1, and γz1,z2(1) = z2 to compute bounds on dh(f(z1), f(z2)).
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Using the differential [Df ] of the map f , which is a linear map between the tangent

spaces TzM (with the metric g̃) and TwN (with the metric h̃), we have

dh(f(z1), f(z2)) ≤
∫ 1

0

∥∥∥∥ d

dt
f(γz1,z2(t))

∥∥∥∥
h

dt

≤
∫ 1

0

‖[Df ]‖ ‖γ̇z1,z2(t)‖g dt

≤ max
z∈γz1,z2

‖[Df(z)]‖ dg(z1, z2) ,(4.2)

which shows that an upper bound on maxz∈γz1,z2
‖[Df(z)]‖ will give us one of the

desired inequalities.
The second inequality is achieved using that

dg(f
−1(f(z1)), f

−1(f(z2))) =

∫ 1

0

∥∥∥∥ d

dt
f−1(γf(z1),f(z2)(t))

∥∥∥∥
g

dt

≤
∫ 1

0

∥∥[Df−1]
∥∥ ∥∥γ̇f(z1),f(z2)(t)∥∥h dt

≤ max
w∈γf(z1),f(z2)

∥∥[Df(w)]−1
∥∥ dh(f(z1), f(z2)).(4.3)

To use this, we need to upper bound maxw∈γf(z1),f(z2)

∥∥[Df(w)]−1
∥∥.

In the remainder of this proof, we show how bounds on maxz∈γz1,z2
‖[Df(z)]‖

and maxw∈γf(z1),f(z2)

∥∥[Df(w)]−1
∥∥ can be derived from (4.1).

First, we take an orthonormal basis E = {e1, e2} ⊂ TzM. That is,

(4.4) eike
j
�gij = eike

j
�μ̃(z)δi,j = δk,�.

Similarly, we take orthonormal basis B = {b1, b2} ⊂ TwN .
We will denote the matrix [Df ] = [Dfz] representing the differential Dfz of f

at the point z, in the bases E,B. The norm of Dfz is the induced norm

‖Dfz‖ = max
ξ∈TzM,ξ �=0

‖Df(ξ)‖
˜h(f(z))

‖ξ‖g̃(z)
.

Writing the tensor g̃ in the basis E we get the Euclidean form g̃(z) = de1⊗de1+

de2⊗de2, and the tensor h̃ in the basis B will have the same form h̃(w) = db1⊗db1+

db1 ⊗ db2. The pull-back f∗h̃(z) will have the form f∗h̃(z) = ([Dfz]
t[Dfz])ij dei ⊗

dej . Therefore in the basis E we have∥∥∥g̃ − f∗h̃
∥∥∥
g̃(z)

=
∥∥Id− [Df ]t[Df ]

∥∥
F
,

where Id is the 2× 2 identity matrix, and ‖·‖F denotes the Frobenius norm.
Writing the singular value decomposition of [Df ] we have

[Df ] = Q diag (σ1(z), σ2(z))R
T ,
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where Q,R are orthogonal and σ1 ≤ σ2 are the respective singular values. Then
we have

‖μ̃− f∗ν̃‖2g(z) =
∥∥Id− [Df ]T [Df ]

∥∥2
F

=

∥∥∥∥R(Id− ( (σ1(z))
2 0

0 (σ2(z))
2

))
RT

∥∥∥∥2
F

= (1− σ1(z)
2)2 + (1− σ2(z)

2)2,

(4.5)

Using (4.1), (4.5) we get ∣∣1− σ2(z)
2
∣∣ ≤ C2ε

1/3.

From this last bound on σ2(z) for z ∈ Ωz0,R there exists a constant C3 > 0 such
that

0 ≤ σ2(z) ≤ 1 + C3ε
1/3.

Since ‖[Df ]‖ = σ2, this is the desired estimate for the first inequality.
For the second inequality, we need to bound

∥∥[Df ]−1
∥∥ = σ−1

1 . The computation
(4.5) shows that ∣∣1− σ1(z)

2
∣∣ ≤ C2ε

1/3 ,

from which we obtain

0 ≤ 1

σ1(z)
≤ 1 + C4ε

1/3 ,

which concludes our argument. �

5. Experimental validation and comments

In this section we perform experimental validation of our algorithms. We have
tested and experimented with our algorithms on four different data-sets:

(1) Non-rigid World data-set [5]. This data-set was distributed by Bronstein,
Bronstein and Kimmel and was specifically constructed for evaluating shape
comparison algorithms in the scenario of non-rigid shapes; it contains
meshes of different objects (cats, dogs, wolves, humans, etc.) in different
poses. We compare our results on this data-set to the Gromov-Hausdorff
algorithm suggested in [1, 5].

(2) SHREC 2007 Watertight Benchmark [10]. This data-set contains meshes
of several objects within a given semantic class for several different classes,
such as chairs, 4-legged animals, humans, etc. It is more challenging for
isometric-invariant matching algorithms since most of the objects are far
from isometric to the objects in the same semantic class, for example, the
4-legged animals class contains a giraffe and a dog.

(3) Synthetic. We constructed this data-set to test the effect of the “size”
parameter R on the distance behavior.

(4) Primate molar teeth. This data-set originates from a real biological prob-
lem/application; it consists of molar teeth surface for different primates.
It was communicated to us by biologists who compare these shapes for
characterization and classification of mammals.

Remark 5.1. For all data-sets, we scaled the meshes to have unit area, because our
goal is to compare surfaces solely based on shape, regardless of size.
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Non-rigid World data-set and comparison to Gromov-Hausdorff-type
distance. In the first experiment we ran our sphere-type algorithm to determine
conformal Wasserstein distances for all pairs in the Non-rigid World data-set, dis-
tributed by Bronstein, Bronstein and Kimmel [1, 5, 4]; we compare the results to
those obtained using the code for the (symmetrized) partial embedding Gromov-
Hausdorff (speGH) distance distributed by the same authors. The speGH distance
has been used with great success in surface comparison [1, 5, 4] and can handle
situations beyond the scope of our, more limited algorithm, it can e.g., compare
surfaces of different genus. We therefore consider it as a state-of-the-art algorithm.
In order to compare our Conformal Wasserstein distance with speGH for applica-
tions of interest to us, we use both algorithms on Non-rigid World data-set where
all the surfaces are scaled to have unit area and where 100 sample points are chosen
on each surface.

The Non-rigid World data-set contains meshes of different poses of the following
articulated objects: a centaur, a cat, a dog, a horse, a human female, and two
human males (“Michael” and “David”).

The two resulting dissimilarity matrices are shown in Figure 2 (a,d). The dis-
similarity matrices are both normalized by translating the minimal value to zero
and scaling the maximal value to one. The color scheme is Matlab’s “Jet”. The
sphere-type algorithm used A = 0.3, and a 30 × 30 bins discretization with the
convolution kernel (1, 1, 1) ⊗ (1, 1, 1) (all the sphere-type examples use these bin
settings) to obtain the discretizations of the conformal density. The timing for
running one comparison dA(M,N ) was 90 seconds on a 2.2GHz AMD Opteron
processor. Figure 2 (b-c) and (e-f) shows two nearest neighbors classifications tests
where a white square inside a dark area means success and white square on black
area is a failure.

The structure of the dissimilarity matrix is illustrated in the two plots in Figure 3.
Figure 3 (a) shows the classification rates as a function of the number K of nearest
neighbors, where for each fixed K we calculated the classification rate as follows.
For each object we counted how many from its K-nearest neighbors are of the same
class. We summed all these numbers and divided by the total number of possible
correct classifications. The upper curve shows the analysis of the dissimilarity
matrix output by our distance algorithm and the lower curve by the speGH distance
code. In (b) we show the ROC curve where for every K = 1, 2, .., 10 we plot the
True Positive Rate (TPR), that is, the number of true positives divided by the
number of positives, as a function of the False Positive Rate (FPR), that is, the
number of false positives divided by the number of negatives.

SHREC 2007 Watertight Benchmark [10]. Our next experiment deals with
a data-set with larger in-class variations; SHREC 2007 contains 20 categories of
models with 20 meshes for each category (400 meshes in total) the categories are,
e.g., chairs, 4-legged animals, humans, planes, tables, etc.

For our experiment, we restricted ourselves to all the meshes of 8 categories that
contained only surfaces of genus zero (since our current algorithm does not support
surfaces of higher genus) and that seemed intrinsically similar; these categories were:
humans, 4-legged animals, ants, hands, airplanes, teddy-bears, pliers, Armadillos.
We ran our sphere-type algorithm to compute the distance between all pairs. We
tested the “size” parameters A = 0.3, 0.4, 0.5. The bin was the same as for the
previous data-set. However, to achieve faster running times (we had about 25,000
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Figure 2. The dissimilarity matrices for the unit area scaled Non-rigid World
data-set [1, 5] calculated with the conformal Wasserstein (CW) distance given
by our algorithm (a) and the symmetric partial-embedding Gromov-Hausdorff
(speGH) distance [1, 5] (d). In the second column (b,e) we show the ground
truth classification matrix (dark blocks) and the first nearest neighbor (white)
according to the CW (in b) and to the speGH (in e) distance for each row.
The third column (c,f) shows the five nearest neighbors (when there are fewer
than five in some category we simply limit ourselves to the number in that
category). Note that white squares should be in the dark regions to indicate
correct classification. Note that with only 100 sampling points, “Michael” and
“David” are not distinguishable, so if a pose of Michael is among the nearest
neighbors of a pose of David, we still count it as a correct classification.

comparisons...) we took only 50 sample points. The running time for one pair of
objects was around 15 seconds.

Figure 4 shows the dissimilarity matrices (top row) using the three different
values if A: 0.3, 0.4, 0.5, and the dissimilarity matrix resulting from combining
them:

Td(μ, ν) = T 0.3
d (μ, ν) · T 0.4

d (μ, ν) · T 0.5
d (μ, ν).

Note that Td(μ, ν) is also a metric and suggests a way to remove the influence of the
size parameter if desired. The combined distance produced the best classification
results as seen in the bottom row of Figure 4, where for each row the white square
shows the nearest neighbor to that object. The dark areas represent the different
categories. The combined distance reached the very high classification rate of 95%
on this challenging data-set. Figure 5 shows for one object in each category its four
closest neighbors. Note the non-rigid nature of some of the objects (e.g., humans,
hands), and the substantial deviation from perfect isometry within class (e.g., 4-
legged animals). Figure 6 demonstrates a partial failure case where although the
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Figure 3. Correct Classification Rate and ROC curves for the
dissimilarity matrices produces by our method and Gromov-
Hausdorff-type metric. See the text for details.

first two nearest neighbors to the giraffe are within the 4-legged animals category,
the third nearest neighbor is the one-armed armadillo, which belongs to a different
category (remember that the algorithm is size invariant).

Figure 4. Dissimilarity matrices (top row) for the SHREC 2007 Watertight
Benchmark [10] with a different size parameter: R = 0.3, 0.4, 0.5 and their com-
bination (see text for details). The bottom row shows the first nearest neighbor
classification test where white squares denote the nearest neighbor of that row’s
object and the dark area represent correct category classification.

Synthetic data-set. This experiment was designed to test the influence of the
size parameter R on the behavior of the distance. The surfaces we compared are
shown in the top row of Figure 7, they each have three small bumps, in different
positions. At first sight, one might think that for small R, the distance dR(M,N )
based on comparing neighborhoods of “size” R, would have trouble distinguishing
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Figure 5. SHREC 2007 Watertight Benchmark [10]: we show the
four closest neighbors to each of the objects on the left side (we
show one example from each category).

these objects from each other. However, one should keep in mind that the uni-
formization process is a global one: changing the metric in one region of the surface
would effect the uniformization of other regions (but influence would decay appro-
priately like Green’s function). Figure 7 plots the distance of disk-type model A
to the four others, for different R values. We also show hyperbolic neighborhoods
corresponding to the three different size parameters. We scaled the distances to
have a maximum of one (since smaller R results naturally in smaller distances).
Note that even the smallest size value R = 0.25 already distinguishes between the
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Figure 6. SHREC 2007 Watertight Benchmark [10]: a partial failure
case where the giraffe has correct two nearest neighbors; however, its
3rd nearest neighbor is a one-armed armadillo. Remember that our
matching is scale invariant.

Figure 7. Testing influence of the size parameter R to seperate
identical models with small features. We compare the distances of
the disk model marked with A to all other models A − E using
three different size parameters: R = 0.25, 0.5, 0.75. We also show
examples of hyperbolic disks of these radii as used by our disk-type
algorithm.

different models. Further, note that larger size parameters such as R = 0.75 result
in slightly more intuitive linear distance behaviors. Overall, the size parameter R
does affect the distance, but not in a very significant way.

Primate molar teeth. Finally, we present a few experimental results related to
a biological application; in a case study of the use of our approach to the characteri-
zation of mammals by the surfaces of their molars, we compare high resolution scans
of the masticating surfaces of molars of several lemurs, which are small primates
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Figure 8. Calculation of the local distance dRμ,ν(·, ·) between pairs
of points on two different surfaces (each row shows a different pair
of points; the two surfaces are the same in the top and bottom
rows). The first row shows a “good” pair of points together with
the alignment of the conformal densities μ,m∗ν based on the best
Möbius transformation m minimizing dRμ,ν . The plot of this latter
integral as a function of m (parameterized by σ ∈ [0, 2π), see (1.5))
is shown in the right-most column. The second row shows a “bad”
correspondence which indeed leads to a higher local distance dRμ,ν .

living in Madagascar. Traditionally, biologists specializing in this area carefully
determine landmarks on the tooth surfaces, and measure characteristic distances
and angles involving these landmarks. A first stage of comparing different tooth
surfaces is to identify correspondences between landmarks. Figure 8 illustrates how
dRμ,ν(z, w) (disk-type) can be used to find corresponding pairs of points on two
surfaces by showing both a “good” and a “bad” corresponding pair. The left two
columns of the figure show the pair of points in each case; the two middle columns
show the best fit after applying the minimizing Möbius on the corresponding disk
representations; the rightmost column plots

∫
Ωz0,R

|μ(z)−(m∗
z0,w0,σν)(z) | dvolH(z),

the value of the “error”, as a function of parameter σ, parameterizing the Möbius
transformations that map a given point z0 to another given point w0 (they are
parameterized over S1, see Lemma 3.5 in [19] ). The “best” corresponding point
w0 for a given z0 is the one that produces the lowest minimal value for the error,
i.e., the lowest dRμ,ν(z0, w0).

Figure 9 show the top 120 most consistent corresponding pairs (in groups of
20) for two molars belonging to lemurs of different species. Corresponding pairs
are indicated by highlighted points of the same color. These correspondences have
surprised the biologists from whom we obtained the data sets; their experimen-
tal measuring work, which incorporates finely balanced judgment calls, has defied
earlier automatization attempts.
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Once the differences and similarities between molars from different animals have
been quantified, they can be used (as part of an approach) to classify the different
individuals. Figure 10 illustrates a preliminary result that illustrates the possibility
of such classifications based on the distance operator between surfaces introduced
in this paper. The figure illustrates the pairwise distance matrix for eight molars,
coming from individuals in four different species (indicated by color). The clustering
was based on only the distances between the molar surfaces; it clearly agrees with
the clustering by species, as communicated to us by the biologists from whom we
obtained the data sets.

We make one final comment regarding the computational complexity of our
method. There are two main parts: the preparation of the distance matrix dij and
the linear programming optimization. For the linear programming part we used a
Matlab interior point implementation with N2 unknowns, where N is the number
of points spread on the surfaces. In our experiments, the optimization typically
terminated after 15 − 20 iterations for N = 150 − 200 points, which took about
2-3 seconds. The computation of the similarity distance dij took longer, and was
the bottleneck in our experiments. We separate the disk-type and the sphere-type
algorithms.

For the sphere-type algorithm if we use N = L sample points (Q) on each sur-
face (see Section 3), then for each pair we compare the difference (using fixed size
bin structure) of the discrete conformal densities for fixed number of Möbius trans-
formations. This results in O(N3) algorithm for computing the distance matrix
dij . In our experiments the total distance computation time (including linear pro-
gramming optimization) was around 15 seconds for N = L = 50 (in the SHREC
2007 data-set), to 90 seconds per comparison for N = L = 100 (in the non-rigid
world data-set). In the sphere-type examples we have used 2.2GHz AMD Opteron
processor. The sphere-type algorithm was coded completely in Matlab and was not
optimized.

For the disk-type algorithm, if we spread N points on each surface, and use them
all to interpolate the conformal factors Γμ,Γν , if we use P points in the integration
rule, and take L points in the Möbius discretization (see Section 2 for details), then
each approximation of dRμ,ν(zi, wj) by (2.5) requires O(L · P · N) calculations, as
each evaluation of Γμ,Γν (we use Thin-Plate Spline approximation to interpolate
the conformal densities, described in Appendix B) takes O(N) and we need L · P
of those. Since we have O(N2) distances to compute, the computation complexity
for calculating the similarity distance matrix dij is O(L · P · N3). This step was
coded in C++ (and therefore the time difference to the sphere-type case) and took
3.5 seconds for N = 50, 51 seconds for N = 100, under 5 minutes for N = 150
and two hours for N = 300 (in these examples we took P ≈ N). However, also in
this case we have not optimized the algorithm and we believe these times can be
reduced significantly. The disk-type algorithm ran on Intel Xeon (X5650) 2.67GHz
processor.
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Figure 9. The top 120 most consistent corresponding pairs be-
tween two molar teeth models.
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Figure 10. Embedding of the distance graph of eight teeth mod-
els using multi-dimensional scaling. Different shades represent dif-
ferent lemur species. The graph suggests that the geometry of the
teeth might suffice to classify species.

Appendix A

We prove Theorem 2.1. We start with a simple lemma showing that all Möbius
transformations restricted to Ω0,T , T < ∞, are Lipschitz with a universal constant,
for which we provide an upper bound.

Lemma A.1. A Möbius transformation m ∈ MD restricted to Ω0,T , T < ∞ is

Lipschitz continuous with Lipschitz constant Cm ≤ 1−|a|2
(1−rT |a|)2 , where a = m−1(0)

and rT = tanh(T ).

Proof. Denote m(z) = eiθ z−a
1−za . Then, for z, w ∈ Ω0,T we have∣∣∣m(z)−m(w)

∣∣∣ ≤ ∣∣∣eiθ z − a

1− za
− eiθ

w − a

1− wa

∣∣∣ ≤ ∣∣∣ (z − a)(1− wa)− (w − a)(1− za)

(1− za)(1− wa)

∣∣∣
≤
∣∣∣ (z − w)(1− |a|2)
(1− za)(1− wa)

∣∣∣ ≤ |z − w| 1− |a|2

(1− rT |a|)2 . �

Next we prove:
Theorem 2.1. For Lipschitz continuous μ, ν,∣∣∣∣∣ dRμ,ν(zi, wj)− min

m(zi)=wj

∑
k

αk |μ(m̃i(pk))− ν(m(m̃i(pk))) |
∣∣∣∣∣ ≤ C ϕE ({pk}) ,

where the constant C depends only on μ, ν,R.
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Proof. First, denote f(z) =
∣∣∣μ(m̃i(z))− ν(m(m̃i(z)))

∣∣∣. Then,
∣∣∣ ∫

Ω0,R

f(z)dvolH(z)− min
m(zi)=wj

∑
k

αkf(pk)
∣∣∣ ≤∑

k

∫
Δk

∣∣∣f(z)− f(pk)
∣∣∣dvolH(z)

≤ ω
Ω0,R

f (ϕE ({pk}))
∫
Ω0,R

dvolH ,

(A.1)

where Δk are the intersections of Ω0,R with the Euclidean-Voronoi cells defined by

the centers pk, and the modulus of continuity ω
Ω0,R

f (h) = sup|z−w|<h;z,w∈Ω0,R
|f(z)

−f(w)| is used. Note that

(A.2) ω
Ω0,R

f ≤ ω
Ω0,R

μ◦m̃i
+ ω

Ω0,R

ν◦m◦m̃i
.

Denote the Lipschitz constants of μ, ν by Cμ, Cν , respectively. From Lemma A.1
we see that, for z, w ∈ Ω0,R,∣∣∣μ(m̃i(z))− μ(m̃i(w))

∣∣∣ ≤ Cμ

∣∣∣m̃i(z)− m̃i(w)
∣∣∣ ≤ Cμ

1− |a|2
(1− rR|a|)2

|z − w|

≤ Cμ
1

(1− rR)2
|z − w| ,

which is independent of m̃i. Similarly,∣∣∣ν(m(m̃i(z)))−ν(m(m̃i(w)))
∣∣∣ ≤ Cν

∣∣∣m(m̃i(z))−m(m̃i(w))
∣∣∣ ≤ Cν

1

(1− rR)2
|z − w| ,

which is independent of m, m̃i. Combining these with (A.1)-(A.2) we get

∣∣∣ ∫
Ω0,R

f(z)dvolH(z)− min
m(zi)=wj

∑
k

αkf(pk)
∣∣∣ ≤ (Cμ + Cν)

∫
Ω0,R

dvolH

(1− rR)2
ϕE ({pk}) ,

which finishes the proof. �

Finally, we prove:

Theorem 2.2. For Lipschitz continuous μ, ν,∣∣∣ dRμ,ν(zi, wj)− d̆Rμ,ν(zi, wj)
∣∣∣ ≤ C1 ϕE ({pk}) + C2 L

−1 ,

where the constants C1, C2 depend only on μ, ν,R.

Proof. In view of Theorem 2.1 it is sufficient to prove that∣∣∣d̂Rμ,ν(zi, wj)− d̆Rμ,ν(zi, wj)
∣∣∣ ≤ C L−1,
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for an appropriate constant C depending only upon μ, ν,R. Denote by mi,j the

minimizer of d̂Rμ,ν(zi, wj). Then∣∣∣d̂rμ,ν(zi, wj)− d̆rμ,ν(zi, wj)
∣∣∣

= min
�=1...L

∣∣∣∣∣∑
k

αk

[
|μ(m̃i(pk))− ν(mi,j(m̃i(pk)))|

− |μ(m̃i(pk)) − ν(mzi,wj ,2π�/L(m̃i(pk)))|
] ∣∣∣∣∣

≤ min
�=1...L

∑
k

αk

∣∣∣ν(mi,j(m̃i(pk)))− ν(mzi,wj ,2π�/L(m̃i(pk)))
∣∣∣

≤ Cν min
�=1...L

∑
k

αk

∣∣∣mi,j(m̃i(pk))−mzi,wj ,2π�/L(m̃i(pk))
∣∣∣

≤ Cν

(1− rR)2
min

�=1...L

∑
k

αk

∣∣∣m̃−1
j (mi,j(m̃i(pk)))− m̃−1

j (mzi,wj ,2π�/L(m̃i(pk)))
∣∣∣

where, as in the previous theorem, we denote by Cν the Lipschitz constant of ν in
D, and in the last inequality we have used Lemma A.1 while taking m̃−1

j as defined

in Section 2. From (2.4) we have that∣∣∣d̂rμ,ν(zi, wj)− d̆rμ,ν(zi, wj)
∣∣∣

≤ Cν

(1− rR)2
min

�=1...L

∑
k

αk

∣∣∣m̃−1
j (mi,j(m̃i(pk)))−ei2π�/Lpk

∣∣∣.
Now note that m̃−1

j ◦ mi,j ◦ m̃i ∈ MD also fixes the origin; it follows that m̃−1
j ◦

mi,j ◦ m̃i(z) = eiθz for some θ ∈ [0, 2π). We therefore have∣∣∣d̂rμ,ν(zi, wj)− d̆rμ,ν(zi, wj)
∣∣∣ ≤ Cν

(1− rR)2
min

�=1...L

∑
k

αk

∣∣∣eiθpk − ei2π�/Lpk

∣∣∣
≤ rR Cν

(1− rR)2
min

�=1...L

∑
k

αk

∣∣∣eiθ − ei2π�/L
∣∣∣

≤ rR Cν

(1− rR)2

(∑
k

αk

)
min

�=1...L

∣∣∣eiθ − ei2π�/L
∣∣∣

≤ rR Cν 2π

L(1− rR)2

∫
Ω0,R

dvolH . �

Appendix B

In this appendix we review a few basic notions such as the representation of (ap-
proximations to) surfaces by faceted, piecewise flat approximations, called meshes,
and discrete conformal mappings; the conventions we describe here are the same as
adopted in [20].

We denote a triangular mesh by the triple M = (V,E, F ), where V = {vi}mi=1 ⊂
R

3 is the set of vertices, E = {ei,j} the set of edges, and F = {fi,j,k} the set of
faces (oriented i → j → k). When dealing with a second surface, we shall denote
its mesh by N . In this appendix, we assume our mesh is homeomorphic to a disk.
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Next, we introduce “conformal mappings” of a mesh to the unit disk. Natural
candidates for discrete conformal mappings are not immediately obvious. In par-
ticular, it is not possible to use a continuous piecewise-affine map the restriction of
which, to each triangle, would be a (positively oriented) similarity transformation:
continuity would force the similarity transformations of any two adjacent trian-
gles to coincide, meaning such a map would be globally a similarity. A different
approach uses the notion of discrete harmonic and discrete conjugate harmonic
functions due to Pinkall and Polthier [24, 26] to define a discrete conformal map-
ping on the mid-edge mesh. The mid-edge mesh M = (V,E,F) of a given mesh
M = (V,E, F ) is defined as follows. For the vertices vr ∈ V, we pick the mid-points
of the edges of the mesh M ; we call these the mid-edge points of M . There is thus
a vr ∈ V corresponding to each edge ei,j ∈ E. If vs and vr are the mid-points of
edges in E that share a vertex in M , then there is an edge es,r ∈ E that connects
them. It follows that for each face fi,j,k ∈ F we can define a corresponding face
fr,s,t ∈ F, the vertices of which are the mid-edge points of (the edges of) fi,j,k;
this face has the same orientation as fi,j,k. Note that the mid-edge mesh is not a
manifold mesh, as illustrated by the mid-edge mesh in Figure 11, shown together
with its “parent” mesh: in M each edge “belongs” to only one face F, as opposed to
a manifold mesh, in which most edges (the edges on the boundary are exceptions)
function as a hinge between two faces. This “lace” structure makes a mid-edge
mesh more flexible: it turns out that it is possible to define a piecewise linear map
that makes each face in F undergo a pure scaling (i.e., all its edges are shrunk or
extended by the same factor) and that simultaneously flattens the whole mid-edge
mesh (we provide more details on this flattening below). By extending this back to
the original mesh, we thus obtain a map from each triangular face to a similar tri-
angle in the plane; these individual similarities can be “knitted together” through
the mid-edge points, which continue to coincide (unlike most of the vertices of the
original triangles).

We have thus relaxed the problem, and we define a map via a similarity on
each triangle, with continuity for the complete map at only one point of each edge,
namely the mid-point. This procedure was also used in [20]; for additional imple-
mentation details we refer the interested reader (or programmer) to that paper,
which includes a pseudo-code.

This flattening procedure maps the boundary of the mesh onto a region with a
straight horizontal slit (see Figure 12, where the boundary points are marked in
red) [20]. We can assume, without loss of generality, that this slit coincides with the
interval [−2, 2] ⊂ C. Now applying the inverse of the holomorphic map z = w + 1

w
maps C \ [−2, 2] conformally to the disk D, with the slit at [−2, 2] mapped to the
boundary of the disk. It follows that when this map is applied to our flattened
mid-edge mesh, its image is a mid-edge mesh in the unit disk, with the boundary
of the disk corresponding to the boundary of our (disk-like) surface. (See Figure
12.) We shall denote by Φ : V → C the composition of these different conformal
and discrete-conformal maps, from the original mid-edge mesh to the corresponding
mid-edge mesh in the unit disk.

Next, we define the Euclidean discrete conformal factors, defined as the density,
w.r.t. the Euclidean metric, of the mid-edge triangles (faces), i.e.,

μE
fr,s,t =

volR3(fr,s,t)
vol(Φ(fr,s,t))

.



366 Y. LIPMAN, J. PUENTE, AND I. DAUBECHIES

Figure 11. A mammalian tooth surface mesh, with the corre-
sponding mid-edge mesh. In the mid-edge mesh, the faces are the
smaller triangles within the faces of the surface mesh.

Note that according to this definition, we have∫
Φ(fr,s,t)

μE
fr,s,t dvolE =

volR3(fr,s,t)
volE (Φ(fr,s,t))

volE (Φ(fr,s,t)) = volR3(fr,s,t),

where volE denotes the standard Lebesgue (Euclidean) volume element in D, and
volR3(f) stands for the area of f as induced by the standard Euclidean volume element
in R3. The discrete Euclidean conformal factor at a mid-edge vertex vr is then
defined as the average of the conformal factors for the two faces fr,s,t and fr,s′,t′
that touch in vr, i.e.,

μE
vr

=
1

2

(
μE

fr,s,t + μE
fr,s′,t′

)
.

Figure 12 illustrates the values of the Euclidean conformal factor for the mammalian
tooth surface of earlier figures. The discrete hyperbolic conformal factors are defined
according to the following equation, consistent with the convention adopted in
Section 1,

(B.1) μH
vr

= μE
vr

(
1− |Φ(vr)|2

)2
.

As before, we shall often drop the superscript H: unless otherwise stated, μ = μH ,
and ν = νH .

The (approximately) conformal mapping of the original mesh to the disk is com-
pleted by constructing a smooth interpolant Γμ : D → R, that interpolates the
discrete conformal factor so far defined only at the vertices in Φ(V); Γν is con-
structed in the same way. In practice we use Thin-Plate Splines, i.e., functions of
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Figure 12. The discrete conformal transform to the unit disk for
the surface of Figure 11, and the interpolation of the correspond-
ing discrete conformal factors (plotted with the JET color map in
Matlab). The points in the top row’s images show the boundary
points of the surface.

the type

(B.2) Γμ(z) = p1(z) +
∑
i

bi ψ(|z − zi|) ,

where ψ(r) = r2 log(r2), p1(z) is a linear polynomial in x1, x2, and bi ∈ C; p1 and
the bi are determined by the data that need to be interpolated. Similarly, Γν(w) =
q1(w) +

∑
j cj ψ(|w − wj |) for some constants cj ∈ C and a linear polynomial

q1(w) in y1, y2. We use as interpolation centers two point sets Z = {zi}ni=1 and
W = {wj}pj=1 that are uniformly distributed over the surfaces M and N (resp.),

they are (relatively small) subsets of the mid-edge mesh vertex sets. In practice
we calculate these (sub) sample sets by starting from an initial random seed on
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the surface (which will itself not be included in the set), and take the geodesic
furthest point in V (we approximate geodesic distances with Dijkstra’s algorithm)
from the seed as the initial point of the sample set. One then keeps repeating this
procedure, selecting at each iteration the point that lies at the furthest geodesic
distance from the set of points already selected. This algorithm is known as the
Farthest Point Algorithm (FPS) [8]. An example of the output of this algorithm,
using geodesic distances on a disk-type surface, is shown in Figure 13. Further
discussion of practical aspects of Voronoi sampling of a surface can be found in [4].

Figure 13. Sampling of the surface of Figure 11 obtained by the
Farthest Point Algorithm.

Once the sample sets Z and W are determined we project them to the uni-
formization space using Φ. The bottom-right part of Figure 12 shows the result of
the interpolation based on the centers Z,W (shown as black points).

To compute the explicit Thin-Plate Splines (B.2), we use a standard smoothing
Thin-Plate Spline procedure:

Γμ(z) = argmin
γ

{
λ

∑
r

|μvr − γ(Φ(vr))}2 + (1− λ)

∫
D

(
∂2γ

(∂x1)2

)2

+

(
∂2γ

∂x1∂x2

∣∣∣∣
2

+

(
∂2γ

(∂x2)2

)2

dx1 ∧ dx2

)
,

where the minimization is over all γ in the appropriate Sobolev space and where
we picked the values 0.95− 0.99 manually (it was fixed per data set of surfaces) for
the smoothing factor λ to avoid over-fitting the data. We noticed that λ does not
have a large effect on the results.

In our implementation we assumed we have a smooth representation of the con-
formal factors μ(z) = Γμ(z), ν(w) = Γν(w) and we simply use the notation μ, ν for
these approximations.

To conclude this whirlwind description of the algorithm and ideas we use for
discrete uniformization, we provide a short exposition on discrete and conjugate
discrete harmonic functions on triangular meshes as in [7, 24, 25, 26], and show
how we use them to conformally flatten disk-type (or even just simply connected)
triangular meshes.

Discrete harmonic functions are defined using a variational principle in the space
of continuous piecewise linear functions defined over the mesh PLM ([7]), as follows.
Let us denote by φi(z), i = 1, . . . ,m, the scalar functions that satisfy φj(vi) = δi,j
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and are affine on each triangle fi,j,k ∈ F . Then, the (linear) space of continuous
piecewise-linear function on M can be written in this basis:

PLM =

{
m∑
i=1

uiφi(z) | (u1, ..., um)T ∈ R
m

}
.

Next, the following quadratic form is defined over PLM :

(B.3) EDir(u) =
∑
f∈F

∫
f

〈∇u,∇u〉 dvolR3 ,

where 〈·〉 = 〈·〉
R3 denotes the inner-product induced by the ambient Euclidean

space, and dvolR3 is the induced volume element on f . This quadratic functional,
the Dirichlet energy, can be written as follows:

EDir

(∑
i

uiφi

)
=

m∑
i,j=1

uiuj

⎡⎣∑
f∈F

∫
f

〈∇φi,∇φj〉

⎤⎦ dvolR3

=
m∑

i,j=1

uiuj

∫
M

〈∇φi,∇φj〉 dvolR3 .

(B.4)

The discrete harmonic functions are then defined as the functions u ∈ PLM that
are critical for EDir(u), subject to some constraints on the boundary of M . The
linear equations for discrete harmonic function u ∈ PLM are derived by partial
derivatives of EDir, (B.4) w.r.t. ui, i = 1, . . . ,m:

∂EDir(u)

∂uk
= 2

m∑
i=1

ui

⎡⎣∑
f∈F

∫
f

〈∇φi,∇φk〉

⎤⎦ dvolR3 = 2

∫
M

〈∇u,∇φk〉 dvolR3

= 2

∫
Rk

〈∇u,∇φk〉 dvolR3 ,

(B.5)

where Rk ⊂ M is the 1-ring neighborhood of vertex vk. The last equality uses that
φk is supported on Rk.

Now, let u =
∑

i uiφi be a discrete harmonic function. Pinkall and Polthier
observed that conjugating the piecewise-constant gradient field ∇u (constant on
each triangle f ∈ F ), i.e., rotating the gradient ∇u in each triangle f by π/2 in
the positive (= counterclockwise) sense (we assume M is orientable), results in
a new vector field ∗du = Jdu with the special property that its integrals along
(closed) paths that cross edges only at their mid-points are systematically zero (see
for example [26]). This means, in particular, that we can define a piecewise-linear
function ∗u such that its gradient satisfies d ∗ u = ∗du and that is furthermore
continuous through the mid-edges v ∈ V. The space of piecewise-linear functions
on meshes that are continuous through the mid-edges is well-known in the finite-
element literature, where it is called ncPLM , the space of nonconforming finite
elements [3]. The Dirichlet form (B.3) is defined over the space of nonconforming
elements ncPLM as well; the nonconforming discrete harmonic functions are defined
to be the functions v ∈ ncPLM that are critical for EDir and that satisfy some
constraints on the mid-edges of the boundary of the mesh. Polthier [26] shows that
if u ∈ PLM is a discrete harmonic function, then ∗u ∈ ncPLM is also discrete
harmonic, with the same Dirichlet energy, and vice-versa. Solving for the discrete
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harmonic function after fixing values at the boundaries amounts to solving a sparse
linear system which is explicitly given in [26].

This theory can be used to define discrete conformal mappings, and used to
flatten a mesh in a “discrete conformal” manner, as follows. The flattening is
done by constructing a pair of conjugate piecewise-linear functions (u, ∗u) where
u ∈ PLM , ∗u ∈ ncPLM , and the flattening map Φ : M → C is given by

(B.6) Φ = u+ i ∗ u.

Since d∗u = Jdu, Φ is a similarity transformation on each triangle f ∈ F . Further-
more, Φ is continuous through the mid-edge points vr ∈ V; Φ is thus well-defined
on the points in V and maps them to the complex plane.

The function u is defined by choosing an arbitrary triangle fout ∈ F , excising
it from the mesh, setting the values of u at two of fout’s vertices ui1 , ui2 to 0 and
1, respectively, and then solving for the discrete harmonic u that satisfies these
constraints. See, for example, Figure 12 (top left); the “missing mid-edge face”
corresponding to the excised face fout would have connected the three mid-edge
vertices that have a only one mid-edge face touching them. The conjugate function
∗u is constructed by a simple conjugation (and integration) process as described in
[26] and [20].

A surprising property of the discrete uniformization Φ as it is defined above,
which nicely imitates the continuous theory (see [31]) is that it takes the boundaries
of M to horizontal slits; see Figure 12, top row (boundary vertices colored in
red). This property allows us to easily construct a closed form analytic map (with
“analytic” in its standard complex analytic sense) that will further bijectively map
the entire complex plane C minus the slit to the open unit disk, completing our
uniformization procedure.

The proof of this property is similar to that for Proposition 35 in [26]; see also
[20]. More precisely:

Theorem B.1. Let Φ : M → C be the flattening map from the mid-edge mesh M of
a mesh M with boundary, using a discrete harmonic and conjugate harmonic pair
as described above. Then, for each connected component of the boundary of M, the
mid-edge vertices of boundary edges are all mapped onto one line segment parallel
to the real axis.

Proof. Suppose u =
∑

i uiφi(·) is a discrete harmonic, piecewise linear and con-
tinuous function, defined at each vertex vi ∈ V , excluding the two vertices of the
excised triangle for which values are prescribed; then we have, by (B.5),

(B.7)

∫
Ri

〈∇φi,∇u〉dvolR3 = 0,

Next, consider a boundary vertex vj of the mesh M. Denote by vr, vs the mid-edge
vertices on the two boundary edges touching vertex vj . We will show that ∗u(vr) =
∗u(vs); this will imply the theorem, since ∗u gives the imaginary coordinate for the
images of the mid-edge vertices under the flattening map (see (B.6)). Observe that
on the triangle fi,j,k,

(B.8) ∇φj =
J(vi − vk)

2 volR3(fi,j,k)
.
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Recalling that ∇ ∗ u = J∇u, using (B.8), and JT = −J , we obtain

∗ u(vr)− ∗u(vs) =

∫
γ

d ∗ u =

∫
γ

∗du =
∑

fi,j,k�vj

〈
J∇u |fi,j,k ,

1

2
(vi − vk)

〉

=
∑

fi,j,k�vj

〈
∇u |fi,j,k ,

1

2
JT (vi − vk)

〉
=

∑
fi,j,k�vj

〈
∇u |fi,j,k ,−∇φj |f

〉
volR3(f)

= −
∫
M

〈∇u,∇φj〉 dvolR3 = 0,

where γ is the piecewise-linear path starting at vr and passing through the mid-
edge vertices of the 1-ring neighborhood of vj ending at vs. The last equality is
due to (B.5). �

A natural question, when dealing with any type of finite-element approximation,
concerns convergence as the mesh is refined: convergence in what sense, and at what
rate? For discrete harmonic functions over meshes, this convergence is discussed
in [14, 25]. These convergence results are in the weak sense; this motivated our
defining the discrete conformal factors μf via integrated quantities (volumes) in
Section 2.

Finally, we note that the method presented here for discrete uniformization is
just one option among several; other authors have suggested other techniques; for
example [12]. Typically, this part of the complete algorithm described in this paper
could be viewed as a “black box”: the remainder of the algorithm would not change
if one method of discrete uniformization is replaced by another.

Appendix C

In this appendix we prove a lemma used in the proof of Theorem 2.6.

Lemma. The N ×N matrices π satisfying

(C.1)

⎧⎪⎪⎨⎪⎪⎩
∑

i πij ≤ 1,∑
j πij ≤ 1,

πij ≥ 0,∑
i,j πij = M < N,

constitute a convex polytope P of which the extremal points are exactly those π that
satisfy all these constraints, and that have all entries equal to either 0 or 1.

Remark. Note that the matrices π ∈ P with all entries in {0, 1} have exactly
M entries equal to 1, and all other entries equal to zero; if one removes from these
matrices all rows and columns that consist of only zeros, what remains is an M×M
permutation matrix.

Proof. P can be considered as a subset of RN2

, with all entries nonnegative, sum-
ming to M . The two inequalities in (C.1) imply that the entries of any π ∈ P are
bounded by 1. These inequalities can also be rewritten as the constraint that every

entry of AP − b ∈ R2N is nonpositive, where A is a R2N × RN2

matrix, and b is a

vector in R2N . It follows that P is a (bounded) convex polytope in RN2

.

If π ∈ P ⊂ RN2

has entries equal to only 0 or 1, then π must be an extremal
point of P by the following argument. If π� = 1, and π is a nontrivial convex
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combination of π1 and π2 in P, then

π = λπ1 + (1− λ) π2 with λ ∈ (0, 1) =⇒ 1 = λπ1
� + (1− λ) π2

� with π1
� , π

2
� ≥ 0

=⇒ π1
� = π2

� = 1 .

A similar argument can be applied for the entries of π that are 0. It follows that
we must have π1 = π = π2, proving that π is extremal.

It thus remains to prove only that P has no other extremal points. To achieve
this, it suffices to prove that the extremal points of P are all integer vectors, i.e.,
vectors of all entries which are integers – once this is established, the Lemma is
proved, since the only integer vectors in P are those with all entries in {0, 1}.

To prove that the extremal points of P are all integer vectors, we invoke the
Hoffman-Kruskal theorem (see [17], Theorem 7C.1), which states that, given an L×
K matrix M, with all entries in {−1, 0, 1}, and a vector b ∈ RL with integer entries,
the vertices of the polytope defined by {x ∈ R

K ; (Mx)� ≤ b� for 
 = 1, . . . , L} are
all integer vectors in RK if and only if the matrix M is totally unimodular, i.e., if
and only if every square submatrix of M has determinant 1, 0 or −1.

We first note that (C.1) can indeed be written in this special form. The equality∑
i,j πij = M can be recast as the two inequalities

∑
i,j πij ≤ M and −

∑
i,j πij ≤

−M . The full system (C.1) can then be written as (Mπ)� ≤ b� for 
 = 1, . . . , L,
where M is a (2N + 2+N2)×N2 matrix constructed as follows. Its first 2N rows
correspond to the constraints on the sums over rows and columns; the entries of
the next row are all 1, and of the row after that, all −1—these two rows correspond
to the constraint

∑
i,j πij = M ; the final N2 × N2 block is diagonal, with all its

diagonal entries equal to −1. The first 2N entries of b are 1; the next 2 entries are
M and −M ; its final N2 entries are 0. By the Hoffman-Kruskal theorem it thus
suffices to show that M is totally unimodular.

Because the last N2 rows, the bottom rows of M, have only one nonzero entry,
which equals −1, we can disregard them. Indeed, if we take a square submatrix of
M that includes (part of) one of these bottom rows, then the determinant of the
submatrix is 0 if only zero entries of the bottom row ended up in the submatrix;
if the one −1 entry of the bottom row is an entry in the submatrix, then the
determinant is, possibly up to a sign change, the same as if that row and the
column of the −1 entry are removed. By this argument, we can remove all the rows
of the submatrix partaking of the bottom rows of M.

We thus have to check unimodularity only for M′, the submatrix of M given by
its first 2N +2 rows. If any submatrix contains (parts of) both the (2N +1)st and
the (2N + 2)nd row, then the determinant is automatically zero, since the second
of these two rows equals the first one, multiplied by −1. This reduces the problem
to checking that M′′, the submatrix of M given by its first 2N + 1 rows, is totally
unimodular.

We now examine the top 2N rows of M′′ more closely. A little scrutiny reveals
that it is, in fact, the adjacency matrix G of the complete bipartite graph with N
vertices in each part1. It is well-known (see e.g. Theorem 8.3 in [29]) that this

1The adjacency matrix A for a graph G has as many columns as G has edges, and as many
rows as G has vertices; if we label the rows and columns of A accordingly, then Ave = 1 if the
vertex v is an end point of the edge e; otherwise Ave = 0. An adjacency matrix thus has exactly
two nonzero entries (both equal to 1) in each column. The number of nonzero entries in the row
with index v is the degree of v in the graph.
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adjacency matrix is totally unimodular, so any square submatrix of M′′ that does
not involve the (2N +1)st row of M′′ is already known to have determinant 0, 1 or
−1. We thus have to check only submatrices that involve the last row, i.e., matrices
that consist of a (n−1)×n submatrix of G, with an added nth row with all entries
equal to 1. We will denote such submatrices by G′.

We can then use a simple induction argument on n to finish the proof. The case
n = 2 is trivial. In proving the induction step for n = m, we can assume that each
of the top m−1 rows of our m×m submatrix G′ contains at least two entries equal
to 1, since otherwise the determinant of G′ would automatically be 0, 1 or −1 by
induction.

The first m − 1 rows of G′ correspond to vertices in the bipartite graph, and
can thus be partitioned into two sets S1 and S2, based on which of the two parts
of N vertices in the graph they pertain to. Let us call S the larger of S1 and S2;
S consists of at least �m−1

2 � rows. Let us examine the (#S) × m submatrix G′′

constructed from exactly these rows. We know that each column of G′′ has exactly
one entry 1, since all the rows of G′′ correspond to the same group of vertices in
the bipartite graph. Therefore, summing all the rows of G′′ gives a vector v of only
zeros and ones; since each row in G

′′ contains at least two entries equal to 1, the
sum of all entries in v is at least 2

(
�m−1

2 �
)
≥ m − 1. The vector v has thus at

least m− 1 entries equal to 1; the remaining mth entry of this linear combination
of the top m − 1 rows of G′ is either 1 or 0. In the first case, the determinant of
G

′ vanishes, since its last row also consists of only ones. In the second case, we can
subtract v from the last row of G′ without changing the value of the determinant;
the resulting last row has all entries but one equal to 0, with a remaining entry
equal to 1. The determinant is then given by the minor of this remaining entry,
and is thus 0, 1 or −1 by the unimodularity of G. �

Appendix D

In this appendix we provide a constructive procedure and convergence analysis
for approximating the optimal transport cost between general separable complete
compact metric spaces (X , dX ), (Y , dY) each equipped with a probability measure
μ ∈ P (X ), ν ∈ P (Y), where P (X ) (P (Y)) denotes the set of probability measures on
X (Y). In the context of the algorithm previously described X ,Y are the two given
surfaces, dX , dY the corresponding geodesic distance metric functions, and μ, ν
the area measures of the surfaces induced from the metric tensors, respectively.
Since R, μ, ν are kept fixed through this discussion, we will denote, for brevity,
c(x, y) = dRμ,ν(x, y).

The Kantorovich optimal transportation cost of the measures μ, ν is defined as

(D.1) Tc(μ, ν) = inf
π∈Π(μ,ν)

∫
X×Y

c(x, y)dπ(x, y),

where Π(μ, ν) ⊂ P (X×Y) is the set of probability measures on X×Y with marginals
μ, ν, that is, π ∈ Π(μ, ν) ⇒ π(A×Y) = μ(A) and π(X ×A′) = ν(A′), for all Borel
A ⊂ X , A′ ⊂ Y .

The main goal of this section is to present an approximation result for Tc(μ, ν)
in this general framework. In particular, this result will assure the convergence of
our algorithm.

To our knowledge, the only related result talks merely about convergence of the
optimal cost (e.g., [32], Theorem 5.20). However, for practical applications it is
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important to control the rate of convergence, and therefore to be able to compute
error-bounded approximations.

In the specific case of c(x, y) = ‖x− y‖2 there are good approximation techniques
that rely on the polar decomposition of Brenier, for example, the work of Haker
and collaborators [13]. However, as far as we are aware no approximation result is
known in the general metric case as required here.

We will show that solving discrete mass-transportation between two sets of dis-
crete measures μS , νT , based on Voronoi diagrams of two collections of points
S = {si} ⊂ X , T = {tj} ⊂ Y , achieve linear approximation order to the continuous
limit mass-transport cost Tc(μ, ν):∣∣∣Tc(μ, ν)− Tc(μS , νT )

∣∣∣ ≤ ωc (2h) ,

where ωc(α) is the modulus of continuity of c defined by

ωc(α) = sup
dX (x,x′)+dY (y,y′)<α

|c(x, y)− c(x′, y′)| ,

and h = max{η(S), η(T )}, where the fill distances ϕX (S), ϕY(T ) are defined as
before by

(D.2) ϕX (S) = sup
{
r ∈ R

∣∣∣ ∃x ∈ X s.t. BX (x, r) ∩ S = ∅
}
,

where BX (x, r) = {q ∈ X | dX (x, q) < r} (and similarly for ϕY(T )).
In particular, for Lipschitz cost function c with Lipschitz constant λ, we have

the following bound for the error in the approximation:

(D.3)
∣∣∣Tc(μ, ν)− Tc(μS, νT )

∣∣∣ ≤ 2λh.

In turn, this result suggests an algorithm for approximating Tc(μ, ν): simply
spread points S ⊂ X and T ⊂ Y such that no big empty space is left uncovered,
then compute Tc(μS , νT ) using linear-programming solver.

D.1. Voronoi cells and discrete measures. Let (X , dX , μ), (Y , dY , ν) be two
compact, complete, separable metric spaces with probability measures defined over
the Borel sets.

The discrete measures will based on discrete sets of points S = {si}mi=1 ⊂ X ,T =
{ti}ni=1 ⊂ Y and the coarseness of the sets will be measured by means of the so-
called fill-distance ϕX (S), ϕY(T ) of the sets S, T . The fill-distance of S ⊂ X is
defined in (D.2). The sets get “finer” as max {ϕX (S), ϕY(T )} → 0.

Definition D.1. For the set of points S = {si}mi=1 ⊂ X we define

(D.4) OS
i =

{
x ∈ X

∣∣∣ dX (x, si) < min
j �=i

dX (x, sj)
}
,

(D.5) CS
i =

{
x ∈ X

∣∣∣ dX (x, si) ≤ min
j �=i

dX (x, sj)
}
.

Then, Voronoi cells for the point set S is any collection of sets {Vi}mi=1 satisfying

(1)
⋃m

i=1 Vi = X .
(2) Vi ∩ Vj = ∅ for i �= j.
(3) OS

i ⊂ Vi ⊂ CS
i , for all i = 1, . . . ,m.

We will prove now a simple lemma, for later use, connecting the fill-distance
with the geometry of the Voronoi cells.
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Lemma D.2. Let S = {si}mi=1 ⊂ X . If {Vi}mi=1 is a collection of Voronoi cells
corresponding to S, then for all ε > 0,

Vi ⊂ B(si, ϕX (S) + ε), i = 1, . . . ,m

Proof. Take x /∈ B(si, ϕY(S) + ε).
By the definition of the fill-distance we have that

B
(
x, ϕX (S) +

ε

2

)
∩ S �= ∅.

That is, there exists sk ∈ S, k �= i, such that

dX (x, sk) < ϕX (S) +
ε

2
.

However,

dX (x, si) ≥ ϕX (S) + ε > dX (x, sk).

Hence from the definition of the Voronoi cells

x ∈ X \ CS
i ⊂ X \ Vi,

that is, x /∈ Vi. �

Given a set of points and a Voronoi cell collection S, {Vi}mi=1 we define a discrete
measure μS by

(D.6) μS =
m∑
i=1

μ(Vi)δsi ,

where δsi is the dirac measure centered at si. That is,∫
X
f dμS =

m∑
i=1

μ(Vi)f(si).

Similarly, we define Voronoi cell collection {Wj}nj=1 for point set T ⊂ Y , and
corresponding discrete measure νT .

Let us prove that the discrete measures μS , νT converge in the weak sense to
μ, ν. By weak convergence μS → μ of measure we mean (see for example [23]) that
for every continuous bounded function f : X → R there exists∫

X
f dμS −→

∫
X
f dμ , as ϕX (S) → 0.

Theorem D.3. limϕX (S)→0

∫
X f dμS =

∫
X f dμ, for all f : X → R bounded and

continuous.

Proof. X is compact therefore f is uniformly continuous. Take arbitrary ε > 0, let
δ(ε) > 0 be such that

x, x′ ∈ X , dX (x, x′) < δ(ε) ⇒ |f(x)− f(x′)| < ε.

For S with ϕX (S) < δ(ε) we have∣∣∣∣∫
X
f dμ−

∫
X
f dμS

∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

∫
Vi

(f(x)− f(si)) dμ

∣∣∣∣∣
≤

m∑
i=1

∫
Vi

|f(x)− f(si)| dμ ≤
m∑
i=1

εμ(Vi) = ε,
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where in the second to last transition we used the fact that Vi ⊂ B(si, δ(ε)), which
we know is the case from Lemma D.2. �

Finally, we will denote by Π(μS, νT ) ⊂ P (S × T ) the subset of probability mea-
sures on the discrete product space S × T with marginals μS , νT .

D.2. Approximation of optimal cost. In this subsection we prove the main
result of this appendix. Namely, that the optimal transport cost Tc(μS , νT ) of
the discrete measures μS , νT is an ε−approximation to the optimal transport cost
Tc(μ, ν) of μ, ν if the fill-distance h = max{ϕX (S), ϕY(T )} < 1

2δ(ε), where δ(ε) is
the uniform continuity constant of c.

Actually, we will prove a slightly stronger result: denote the sets

(D.7) A =
{∫

X×Y
c dπ

∣∣∣ π ∈ Π(μ, ν)
}

, B =
{∫

X×Y
c dπ

∣∣∣ π ∈ Π(μS, νT )
}
.

We will show that the Hausdorff distance dH(A,B) → 0 as h → 0. Where by
Hausdorff distance of two sets A,B ⊂ R we mean

dH(A,B) = inf
{
r
∣∣∣ B ⊂ U(A, r) , A ⊂ U(B, r)

}
,

where U(A, r) =
⋃

a∈A B(a, r) and B(a, r) is the open ball of radius r centered at
a. Moreover, we will provide a linear (in h) bound controlling the convergence rate,
for Lipschitz cost function c.

Theorem D.4. If c : X × Y −→ R+ is a continuous function, X ,Y compact
complete separable metric spaces. Let h = max {ϕX (S), ϕY(T )} then,

dH(A,B) ≤ ωc(2h),

where A,B are defined in (D.7). In particular,∣∣∣Tc(μ, ν)− Tc(μS , νT )
∣∣∣ ≤ ωc(2h).

Proof. Take arbitrary S = {si}mi=1 ⊂ X , T = {ti}nj=1 ⊂ Y . Choose collections of
Voronoi cells {Vi}mi=1, {Wj}nj=1 for S, T , respectively.

Now take π ∈ Π(μ, ν).
Set

Λ =

m∑
i=1

n∑
j=1

π(Vi ×Wj)δsi,tj .

Then,

Λ(A× Y) =

m∑
i=1

n∑
j=1

π(Vi ×Wj)δsi(A)

=
m∑
i=1

π(Vi × Y)δsi(A) =
m∑
i=1

μ(Vi)δsi(A) = μS(A).

Similarly,

Λ(X ×A′) = νT (A
′).

Therefore,

Λ ∈ Π(μS, νT ).
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Moreover,∣∣∣ ∫
X×Y

c dπ −
∫
X×Y

c dΛ
∣∣∣ = ∣∣∣ m∑

i=1

n∑
j=1

∫
Vi×Wj

[
c(x, y)− c(si, tj)

]
dπ
∣∣∣

≤
m∑
i=1

n∑
j=1

∫
Vi×Wj

∣∣c(x, y)− c(si, tj)
∣∣ dπ.

For (x, y) ∈ Vi ×Wj , we have dX (x, si) ≤ ϕX (S), dY(y, tj) ≤ ϕY(T ) which implies

(D.8) |c(x, y)− c(si, tj)| ≤ ωc (ϕX (S) + ϕY(T )) ≤ ωc(2h).

So we have∣∣∣∣∫
X×Y

c dπ −
∫
X×Y

c dΛ

∣∣∣∣ ≤ ωc(2h)
n∑

i=1

n∑
j=1

π(Vi ×Wj) = ωc(2h),

since {Vi ×Wj}n,mi,j=1,1 form a partition of X × Y . So we proved that

A ⊂ U(B, ωc(2h)).

We now prove the other direction. Take Λ ∈ Π(μS, νT ).
Denote by μ×ν

∣∣
Vi×Wj

the product measure μ×ν restricted to Vi×Wj ⊂ X ×Y .

That is,

μ× ν
∣∣
Vi×Wj

(A×A′) = μ× ν ((Vi ×Wj) ∩ (A×A′)) = μ(Vi ∩A)ν(Wj ∩ A′).

Now pick

π =

m∑
i=1

n∑
j=1

Λ(Vi ×Wj)

μ(Vi)ν(Wj)
μ× ν

∣∣
Vi×Wj

.

Then,

π(A× Y) =
m∑
i=1

n∑
j=1

Λ(Vi ×Wj)

μ(Vi)ν(Wj)
μ(Vi ∩A)ν(Wj ∩ Y)

=
m∑
i=1

n∑
j=1

Λ(Vi ×Wj)

μ(Vi)
μ (Vi ∩ A)

=
m∑
i=1

μ(Vi ∩A)

μ(Vi)

⎡⎣ n∑
j=1

Λ (Vi ×Wj)

⎤⎦
=

m∑
i=1

μ(Vi ∩A)

μ(Vi)
Λ (Vi × Y)

=
m∑
i=1

μ(Vi ∩A)

μ(Vi)
μ(Vi)

m∑
i=1

μ(Vi ∩A) = μ(X ∩ A) = μ(A).

Similarly,
π(X ×A′) = ν(A′).

Therefore,
π ∈ Π(μ, ν).
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Now, ∣∣∣∣∫
X×Y

c dπ −
∫
X×Y

c dΛ

∣∣∣∣
=

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

Λ (Vi ×Wj)

μ(Vi)ν(Wj)

∫
Vi×Wj

c d (μ× ν)−
m∑
i=1

n∑
j=1

c(si, tj)Λ(Vi ×Wj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

[
Λ (Vi ×Wj)

μ(Vi)ν(Wj)

∫
Vi×Wj

c d (μ× ν)

− Λ (Vi ×Wj)

μ(Vi)ν(Wj)

∫
Vi×Wj

c(si, tj) d (μ× ν)

]∣∣∣∣∣
≤

m∑
i=1

n∑
j=1

Λ (Vi ×Wj)

μ(Vi)ν(Wj)

∫
Vi×Wj

|c(x, y)− c(si, tj)| d (μ× ν) .

As before, for (x, y) ∈ Vi × Wj , we have dX (x, si) ≤ ϕY(S), dY(y, tj) ≤ ϕY(T );
therefore,

|c(x, y)− c(si, tj)| ≤ ωc (ϕX (S) + ϕY(T )) ≤ ωc(2h),

and therefore∣∣∣∣∫
X×Y

c dπ −
∫
X×Y

c dΛ

∣∣∣∣ ≤ ωc(2h)
m∑
i=1

n∑
j=1

Λ (Vi ×Wj)

μ(Vi)ν(Wj)
μ(Vi)ν(Wj)

= ωc(2h)

m∑
i=1

n∑
j=1

Λ (Vi ×Wj) = ωc(2h).

So we proved

B ⊂ U(A, ωc(2h))

and
dH(A,B) ≤ ωc(2h).

In particular, this means that∣∣∣Tc(μ, ν)− Tc(μS , νT )
∣∣∣ = ∣∣∣ inf(A)− inf(B)

∣∣∣ ≤ ωc(2h). �

We will call c : X × Y −→ R+ Lipschitz continuous with a constant λ if

|c(x, y)− c(x′, y′)| ≤ λ (dX (x, x′) + dY(y, y
′)) , ∀x, x′ ∈ X , y, y′ ∈ Y .

Theorem 2.3. Suppose c : X × Y −→ R+ is a continuous function, with X ,Y
compact complete separable metric spaces, S and T are sample sets in X ,Y (resp.),
μ, ν are probability measures on X ,Y.

(A) if c is uniformly continuous, then

Tc(μS , νT ) → Tc(μ, ν), as h → 0,

(B) if c is Lipschitz continuous with a constant λ, then

|Tc(μ, ν)− Tc(μS, νT )| < 2λh,

where, h = max {ϕX (S), ϕY(T )}, and μS , νT are as defined in (D.6).

Proof. The result follow from the fact that for uniformly continuous c, ωc(t) → 0
as t → 0, and that for Lipschitz c with constant λ, ωc(t) ≤ λt. �
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Therefore, a simple generalization to the noncompact case, that is, when X ,Y are
complete separable metric spaces, can be achieved by requiring that c : X×Y → R+

is uniformly continuous on X × Y .

Corollary D.5. For X ,Y complete, separable metric spaces, and c : X ×Y → R+

uniformly continuous
Tc(μS , νT ) −→ Tc(μ, ν).

Moreover, for Lipschitz c with Lipschitz constant λ,

|Tc(μ, ν)− Tc(μS, νT )| < 2λh,

where, as before, h = max {ϕX (S), ϕY(T )}.

Note that our argument used only one specific property of Voronoi cells, namely
that each is contained in an h-size closed ball. Many other ways to partition X and
Y can be considered. The next lemma uses a property of the Voronoi cells to show
that the proposed discretization with Voronoi cells is in some sense optimal.

Lemma D.6. Let c : X × Y → R+ be Lipschitz with constant λ, and let S =
{si}mi=1 ⊂ X , T = {tj}nj=1 ⊂ Y be given point sets. Then, among all the choices

of subdividing X and Y, X =
⋃m

i=1 Qi, and Y =
⋃n

j=1 Rj, the Voronoi cells Qi =
Vi, Rj = Wj minimize a bound on the error term:∣∣∣∣∫

X×Y
c dπ −

∫
X×Y

c dΛ

∣∣∣∣ .
Proof. ∣∣∣∣∫

X×Y
c dπ −

∫
X×Y

c dΛ

∣∣∣∣ ≤ m∑
i=1

n∑
j=1

∫
Qi×Rj

|c(x, y)− c(si, tj)| dπ

≤
m∑
i=1

n∑
j=1

∫
Qi×Rj

λ [dX (x, si) + dY(y, tj)] dπ

= λ

m∑
i=1

∫
Qi×Y

dX (x, si)dπ + λ

n∑
j=1

∫
X×Rj

dX (y, tj)dπ

= λ
m∑
i=1

∫
Qi

dX (x, si)dν + λ
n∑

j=1

∫
Rj

dX (y, tj)dμ,

and it is not hard to see that the choices of Ri, Qj that minimize this last error
bound are the Voronoi cells Ri = Vi and Qj = Wj , where {Vi} , {Wj} are the
Voronoi cells corresponding to S, T , respectively. �
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