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SPARSE TENSOR MULTI-LEVEL MONTE CARLO FINITE

VOLUME METHODS FOR HYPERBOLIC CONSERVATION

LAWS WITH RANDOM INITIAL DATA

S. MISHRA AND CH. SCHWAB

Abstract. We consider scalar hyperbolic conservation laws in spatial dimen-
sion d ≥ 1 with stochastic initial data. We prove existence and uniqueness
of a random-entropy solution and give sufficient conditions on the initial data
that ensure the existence of statistical moments of any order k of this ran-
dom entropy solution. We present a class of numerical schemes of multi-level
Monte Carlo Finite Volume (MLMC-FVM) type for the approximation of the
ensemble average of the random entropy solutions as well as of their k-point
space-time correlation functions. These schemes are shown to obey the same
accuracy vs. work estimate as a single application of the finite volume solver for
the corresponding deterministic problem. Numerical experiments demonstrat-
ing the efficiency of these schemes are presented. In certain cases, statistical
moments of discontinuous solutions are found to be more regular than pathwise
solutions.

1. Introduction

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation laws. The Cauchy problem for such systems takes the form

(1.1)
Ut +

d∑
j=1

∂

∂xj
(Fj(U)) = 0, x = (x1, . . . , xd) ∈ Rd, t > 0,

U(x, 0) = U0(x), x ∈ Rd.

Here, U : Rd �→ Rm is the vector of unknowns and Fj : Rm �→ Rm is the flux vector
for the j-th direction with m being a positive integer.

Examples include the Shallow Water Equations of hydrology, the Euler Equations
for inviscid, compressible flow and the Magnetohydrodynamic (MHD) equations of
plasma physics; see, e.g. [5, 9]. An illustrative model for (1.1) is provided by taking
m = 1 and obtaining the so-called scalar conservation law.

It is well known that solutions of (1.1) develop discontinuities in finite time
even when the initial data is smooth. This holds true even for the scalar case and
solutions to (1.1) are sought in the weak sense. Furthermore, weak solutions are
augmented by additional admissibility criteriaor entropy conditions ([5]) in order to
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ensure uniqueness. Well-posedness of entropy solutions in the scalar case (even for
several space dimensions) was obtained by Kruzkhov. Some local well-posedness
results for systems in one space dimension exist but no global well-posedness results
for systems of conservation laws are available in several space dimensions.

Numerical methods for approximating entropy solutions of systems of conserva-
tion laws have undergone extensive development and many efficient methods are
available; see [9, 17]. In particular, finite volume methods are frequently employed
for approximating (1.1).

This classical paradigm for designing efficient numerical schemes assumes that
the initial data U0 in (1.1) is known exactly. However, in many situations of
practical interest, it is not possible to obtain the initial data exactly due to inherent
uncertainty in measurements. Then, the initial data are known only up to certain
statistical quantities of interest like the mean, variance, higher moments and in
some cases, the law of the stochastic initial data; in such cases, a mathematical
formulation of (1.1) is required which allows for random initial data.

The first aim of this paper is to develop an appropriate mathematical framework
of random entropy solutions for conservation laws. As the theory for determinis-
tic initial data is only well developed in the scalar case, we focus here on a scalar
conservation law in spatial dimension d ≥ 1 with random initial data. We define
random entropy solutions and provide an existence and uniqueness result, general-
izing the classical well-posedness results of Kruzkhov to the case of uncertain initial
data. Furthermore, we prove the existence of statistical quantities of the random
entropy solution like the statistical mean and two and k-point spatial and temporal
correlation functions under suitable regularity assumptions on the initial data. In
particular, we show that if the initial data has finite statistical moments of order
k in L1(Rd), the random entropy solution also possesses finite moments of order k
as well, for any k. We remark that randomness in the initial data is just one of the
many available mechanisms for introducing uncertainty in the solutions of (1.1).
One could consider also random boundary data (if we consider (1.1) in a bounded
domain D ⊂ Rd) or random source terms added to (1.1). Let us mention that
hyperbolic conservation laws with various types of random data were considered in
the literature (see, e.g., [14, 15, 6] and the references there).

The second aim of this paper is to design fast and robust numerical algorithms for
computing random entropy solutions. In particular, we focus on statistical sampling
techniques of the Monte Carlo (MC) type. MC methods consist of sampling the
probability space and solving the deterministic version of the underlying PDE for
each sample. As we will show, MC methods are “nonintrusive”, very easy to code
and to parallelize and well suited for random solutions with low spatial regularity as
in conservation laws where discontinuities are generic. However, as we shall prove,
MC methods converge only at rate of 1/2 as the number M of MC samples increases
thereby requiring a large number of samples in order to obtain low statistical errors.
This slow convergence entails high computational costs for MC type methods.

In order to deal with the aforementioned issues, we device a novel multi-level
Monte Carlo (MLMC) algorithm based on finite volume schemes for the determin-
istic version of the conservation law. This family of methods was introduced by
S. Heinrich for numerical quadrature ([12]) and by M. Giles in the context of path
simulations for stochastic ordinary differential equations ([7, 8]). More recently,
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MLMC finite element methods for elliptic problems with stochastic coefficients
were introduced by Barth, Schwab and Zollinger in [2].

In the current paper, the first analysis of the MLMC finite volume method
(MLMC-FVM) is presented in the context of a scalar conservation law in several
space dimensions. In particular, the MLMC-FVM is shown to converge. Further-
more, our convergence analysis yields an optimal strategy for choosing MC samples
depending on the spatial and temporal meshwidth. This allows us to prove for
MLMC-FVM an accuracy vs. work estimate that equals, in two and three spa-
tial dimensions and for first and second order schemes, the corresponding estimate
for the FVM solution of a single, deterministic problem (1.1). This contrasts very
sharply with the accuracy vs. work estimate of the single level MC method. In
particular, our mathematical convergence analysis and the extensive numerical ex-
periments in the present paper show that the MLMC-FVM algorithm provides a
fast, robust, non-intrusive and highly parallelizable recipe for computing random
entropy solutions of conservation laws with uncertainty. We also introduce a sparse
tensor formalism that allows us to approximate higher statistical moments of the
random entropy solutions of (1.1) with (up to logarithmic factors of the mesh width
and the time step) the same error vs. work as a single, deterministic FVM solve
for (1.1).

At this juncture, we would like to remark that statistical MC type methods for
random conservation laws have not been as widely studied as stochastic Galerkin
methods based on generalized Polynomial Chaos (gPC for short). An incomplete
list of references for gPC methods for uncertainty quantification in hyperbolic con-
servation laws includes [1, 3, 19, 27, 22, 28] and other references therein. Despite
some advantages, these gPC methods are more intrusive, harder to implement and
more difficult to parallelize than MC methods. Hence, in the present paper, we
focus on the design, the mathematical analysis and the numerical implementation
of MLMC-FVM methods.

The remainder of this paper is organized as follows: in Section 2, we introduce
some preliminary notions from probability theory and functional analysis. The
concept of random entropy solutions is introduced and the scalar hyperbolic con-
servation law (i.e., (1.1) with m = 1) with random initial data is shown to be
well-posed in Section 3. The MLMC-FVM schemes are designed and analyzed in
Section 4 and extensive numerical experiments are presented in Section 5.

2. Preliminaries from probability

Our mathematical formulation of scalar conservation laws with random data
will use the concept of random variables taking values in function spaces. We
recapitulate basic concepts from Chapter 1 of [4]. Let (Ω,F) be a measurable
space, with Ω denoting the set of all elementary events, and F a σ-algebra of all
possible events in our probability model. If (E,G) denotes a second measurable
space, then an E-valued random variable (or random variable taking values in E)
is any mapping X : Ω → E such that the set {ω ∈ Ω: X(ω) ∈ A} = {X ∈ A} ∈ F
for any A ∈ G, i.e., such that X is a G-measurable mapping from Ω into E.

Assume now that E is a metric space; with the Borel σ-field B(E), (E,B(E))
is a measurable space and we shall always assume that E-valued random variables
X : Ω → E will be (F ,B(E)) measurable. If E is a separable Banach space with
norm ‖ ◦ ‖E and (topological) dual E∗, then B(E) is the smallest σ-field of subsets
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of E containing all sets

(2.1) {x ∈ E : ϕ(x) ≤ α}, ϕ ∈ E∗, α ∈ R .

Hence if E is a separable Banach space, X : Ω → E is an E-valued random variable
iff for every ϕ ∈ E∗, ω �−→ ϕ(X(ω)) ∈ R1 is an R1-valued random variable.
Moreover, we have

Lemma 2.1. Let E be a separable Banach space and let X : Ω → E be an E-
valued random variable on (Ω,F). Then the mapping Ω 
 ω �−→ ‖X(ω)‖E ∈ R1 is
measurable.

Proof. Since E is separable, there exists a sequence {ϕn} ⊂ E∗ such that for all
x ∈ E it holds that

(2.2) ‖x‖E = sup
n∈N

|ϕn(x)| .

Hence we find

(2.3) ∀ω ∈ Ω : ‖X(ω)‖E = sup
n∈N

|ϕn(X(ω))|

which implies that ω �−→ ‖X(ω)‖E is an R1-valued random variable. �

The random variable X : Ω → E is called Bochner integrable if, for any proba-
bility measure P on the measurable space (Ω,F),

(2.4)

∫
Ω

‖X(ω)‖E P(dω) < ∞ .

A probability measure P on (Ω,F) is any σ-additive set function from Ω into
[0, 1] such that P(Ω) = 1, and the measure space (Ω,F ,P) is called probability
space. We shall always assume, unless explicitly stated, that (Ω,F ,P) is complete.

If X : (Ω,F) → (E, E) is a random variable, L(X) denotes the law of X under
P, i.e.,

(2.5) L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}) ∀A ∈ E .

The image measure μX = L(X) on (E, E) is called law or distribution of X.
A random variable taking values in E is called simple if it can take only finitely

many values, i.e., if it has the explicit form (with χA the indicator function of
A ∈ F)

(2.6) X =

N∑
i=1

xi χAi
, Ai ∈ F , xi ∈ E, N < ∞ .

We set, for simple random variables X taking values in E and for any B ∈ F ,

(2.7)

∫
B

X(ω)P(dω) =

∫
B

XdP :=

N∑
i=1

xi P(Ai ∩B) .

By density, for such X(·), and all B ∈ F ,

(2.8)
∥∥∥ ∫

B

X(ω)P(dω)
∥∥∥
E
≤
∫
B

‖X(ω)‖E P(dω) .
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For any random variable X : Ω → E which is Bochner integrable, there exists a
sequence {Xm}m∈N of simple random variables such that, for all ω ∈ Ω, ‖X(ω) −
Xm(ω)‖E → 0 as m → ∞. Therefore, (2.7) and (2.8) extend in the usual fashion
by continuity to any E-valued random variable. We denote the integral

(2.9)

∫
Ω

X(ω)P(dω) = lim
m→∞

∫
Ω

Xm(ω)P(dω) ∈ E

by E[X] (“expectation” of X).
We shall use operators that act on random variables to generate random vari-

ables. The following result is obtained by approximating with simple random vari-
ables.

Lemma 2.2. Assume that E,F are separable Banach spaces, and that E = B(E),
F = B(F ). Assume further that A : D(A) ⊂ E → F is a closed operator such that
the domain D(A) of A satisfies D(A) ∈ B(E). If X : Ω → E is a random variable
such that X(ω) ∈ D(A) P-a.s., then it holds that P-a.s.,

(2.10)

∣∣∣∣ X is a D(A)-valued random variable, P-a.s., and
AX is an F -valued random variable, P-a.s.

Moreover, if

(2.11)

∫
Ω

‖AX(ω)‖F P(dω) < ∞ ,

then it holds in F that

(2.12) A

∫
Ω

X(ω)P(dω) =

∫
Ω

AX(ω)P(dω) .

We shall require for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables
X taking values in the Banach-space E. By L1(Ω,F ,P;E) we denote the set of all
(equivalence classes of) integrable, E-valued random variables X. We equip it with
the norm

(2.13) ‖X‖L1(Ω;E) := E(‖X‖E) =

∫
Ω

‖X(ω)‖E P(dω) .

More generally, for 1 ≤ p < ∞, we define Lp(Ω,F ,P;E) as the set of p-summable
random variables taking values E and equip it with the norm

(2.14) ‖X‖Lp(Ω;E) := (E(‖X‖pE))1/p, 1 ≤ p < ∞ .

For p = ∞, we denote by L∞(Ω,F ,P;E) the set of all E-valued random variables
which are essentially bounded. This set is a Banach space equipped with the norm

(2.15) ‖X‖L∞(Ω;E) := ess sup
ω∈Ω

‖X(ω)‖E .

If T < ∞ and Ω = [0, T ], F = B([0, T ]), we write Lp([0, T ];E). Note that for
any separable Banach space E, and for any r ≥ p ≥ 1,

(2.16) Lr(0, T ;E), C0([0, T ];E) ∈ B(Lp(0, T ;E)) .
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3. Hyperbolic conservation laws with random data

3.1. Scalar hyperbolic conservation laws. We consider the Cauchy problem
for scalar conservation laws (SCL) by setting m = 1 in (1.1) and obtaining

(3.1)
∂u

∂t
+

d∑
j=1

∂

∂xj
(fj(u)) = 0, x = (x1, . . . , xd) ∈ Rd, t > 0 .

Here the unknown is u : Rd �→ R. Introducing the flux function f(u),

(3.2) f(u) = (f1(u), . . . , fd(u)) ∈ C1(R,Rd) , div f(u) =
d∑

j=1

∂

∂xj
fj(u) ,

we may rewrite (3.1) succinctly as

(3.3)
∂u

∂t
+ div (f(u)) = 0 in Rd × R+ .

We supply the SCL (3.3) with initial condition

(3.4) u(x, 0) = u0(x), x ∈ Rd .

3.2. Entropy solution. The Cauchy problem (3.3), (3.4) admits, for each u0 ∈
L∞(Rd), a unique entropy solution (see, e.g., [9, 25, 5]). Moreover, for every t > 0,
u(·, t) ∈ L1(Rd) and the (nonlinear) data-to-solution operator

(3.5) S : u0 �−→ u(·, t) = S(t) u0, t > 0

has several properties which will be crucial for our subsequent development. To
state the properties of {S(t)}t≥0, we introduce some additional notation: for a
Banach space E with norm ‖ ◦ ‖E , and for 0 < T ≤ +∞, denote by Cb(0, T ;E) the
space of bounded and continuous functions from [0, T ] into E, and by Lp(0, T ;E),
1 ≤ p ≤ +∞, the space of strongly measurable functions from (0, T ) to E such that
for 1 ≤ p < +∞,

(3.6) ‖v‖Lp(0,T ;E) =
(∫ T

0

‖v(t)‖pE dt
) 1

p

,

respectively, if p = ∞, then

(3.7) ‖v‖L∞(0,T ;E) = ess sup
0≤t≤T

‖v(t)‖E

are finite. The following result summarizes the classical results on existence and
uniqueness of an entropy weak solution of the SCL (3.1)-(3.4) (we refer to, e.g.,
[9, 10, 16, 11, 17]).

Theorem 3.1.

1) For every u0 ∈ L∞(Rd), (3.1)-(3.4) admits a unique entropy solution u ∈
L∞(Rd × (0, T )) := L∞(0, T ;L∞(Rd)).

2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t) u0

satisfies
i) S(t) : L1(Rd) → L1(Rd) is a (contractive) Lipschitz map, i.e.,

(3.8) ‖S(t)u0 − S(t)v0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) .
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ii) S(t) maps (L1 ∩BV )(Rd) into (L1 ∩BV )(Rd) and

(3.9) TV (S(t)u0) ≤ TV (u0) ∀u0 ∈ (L1 ∩BV )(Rd) .

iii) For every u0 ∈ (L∞ ∩ L1)(Rd),

‖S(t)u0‖L∞(Rd) ≤ ‖u0‖L∞(Rd) ;(3.10)

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .(3.11)

iv) The mapping S(t) is a uniformly continuous mapping from L1(Rd)
into Cb(0,∞;L1(Rd)), and

(3.12) ‖S(·)u0‖C(0,T ;L1(Rd)) = max
0≤t≤T

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .

3.3. Random initial data and random entropy solution. Based on Theorem
3.1, we will now formulate (3.1)-(3.4) for random initial data. To this end, we
denote (Ω,F ,P) a probability space, and assume we are given as u0 a L1(Rd)-
valued random variable, i.e., a L1(Rd) measurable map

(3.13) u0 : (Ω,F) �−→
(
L1(Rd), B(L1(Rd))

)
.

We assume further that

(3.14) u0(·, ω) ∈ L∞(Rd) ∩BV (Rd) P-a.s.,

which is to say that

(3.15) P({ω ∈ Ω : u0(·, ω) ∈ (L∞ ∩BV )(Rd)}) = 1 .

Since L1(Rd) is separable, (3.13) is well defined and we may impose for k ∈ N

the k-th moment condition

(3.16) ‖u0‖Lk(Ω;L1(Rd)) < ∞ ,

where the Bochner spaces with respect to the probability measure are defined in
Section 2. With these preliminaries in hand, we have the following definition.

Definition 3.2. A random field u : Ω 
 ω → u(x, t;ω), i.e., a measurable mapping
from (Ω,F) to C([0, T ];L1(Rd)), is said to be a random entropy solution if it satisfies
the following:

(i) Weak solution: For P-a.e. ω ∈ Ω, u satisfies the following integral identity,

∞∫
0

∫
Rd

⎛⎝u(x, t, ω)ϕt(x, t) +
d∑

j=1

fj(u(x, t, ω))
∂

∂xj
ϕ(x, t)

⎞⎠dxdt(3.17)

+

∫
Rd

u0(x, ω)ϕ(x, 0)dx = 0,

for all test functions ϕ ∈ C1
0 (Rd × [0,∞)).

(ii) Entropy condition: For any entropy-entropy flux pair i.e., η,Qj with j =
1, 2, . . . , d are smooth functions such that η is convex and Q′

j = η′f ′
j for all

j, and for P-a.e. ω ∈ Ω, u satisfies the following integral identity,

(3.18)

∞∫
0

∫
Rd

⎛⎝η(u(x, t, ω))ϕt(x, t) +

d∑
j=1

Qj(u(x, t, ω))
∂

∂xj
ϕ(x, t)

⎞⎠ dxdt ≥ 0,

for all test functions 0 ≤ ϕ ∈ C1
0 (Rd × (0,∞)).
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We then have from Theorem 3.1 the following result:

Theorem 3.3. Consider the scalar conservation law (3.1)-(3.4) with random initial
data u0 : Ω → L1(Rd) satisfying (3.14), (3.15) and the k-th moment condition (3.16)
for some k ∈ N. Then there exists a unique random entropy solution u : Ω 
 ω →
Cb(0, T ;L1(Rd)) given by

(3.19) u(·, t;ω) = S(t)u0(·, ω) , t > 0, ω ∈ Ω

such that for every k ≥ m ≥ 1 and for every 0 ≤ t ≤ T < ∞ it holds that P-a.s.,

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω;L1(Rd)) ,(3.20)

‖S(t) u0(·, ω)‖(L1∩L∞)(Rd) ≤ ‖u0(·, ω)‖(L1∩L∞)(Rd)(3.21)

and such that we have

(3.22) TV (S(t)u0(·, ω)) ≤ TV (u0(·, ω)),

P-a.s.
Proof.

i) For ω ∈ Ω, we define, motivated by Theorem 3.1, for P-a.e. ω ∈ Ω a random
function u(t, x;ω) by

(3.23) u(·;ω) = S(t) u0(·, ω) .

By the properties of the solution mapping (S(t))t≥0, the random field de-
fined in (3.23) is well-defined; for P-a.e. ω ∈ Ω, u(·;ω) is a weak entropy
solution of the SCL (3.1)-(3.4).

ii) From Theorem 3.1, we obtain that for P-a.s., all bounds (3.9)-(3.12) hold.
We proceed to check measurability of the mapping Ω 
 ω → u(· ;ω) =
S(t)u0(· ;ω).

iii) We have to show that for every 0 ≤ t ≤ T , the mapping Ω 
 ω �−→
u(·, t;ω) = S(t) u0(·;ω) is measurable, as an L1(Rd)-valued random vari-
able. This, however, is a consequence of the fact that L1(Rd) is separable
and that L1(Rd)∗ ∼= L∞(Rd). Thus B(L1(Rd)) is the smallest σ-algebra
containing all subsets of L1(Rd) of the form

{v ∈ L1(Rd) : ϕ(v) ≤ α} : ϕ ∈ L∞(Rd), α ∈ R .

Let now α ∈ R, ϕ ∈ L∞(Rd) = L1(Rd)∗ and t > 0. Consider then

(3.24) {u(·, t;ω) : ϕ(u(·, t;ω)) ≤ α} = {S(t)u0(·;ω) : ϕ(S(t)u0(·;ω)) ≤ α} .
By continuity (3.11) of S(t) in L1(Rd), for every 0 < t ≤ T < ∞, S(t)
maps open balls of L1(Rd) into open balls of L1(Rd). Since B(L1(Rd)) is
the smallest σ-field on L1(Rd) containing all subsets of the form (3.24), and
since the random initial data u0 is a measurable map from Ω into L2(Rd),
i.e., u0 ∈ L0(Ω,F ,P;L1(Rd)), we have for every 0 < t ≤ T < ∞ that

u(·, t; ·) = S(t)u0(·; ·) ∈ L0(Ω,F ,P;L1(Rd)) .

iv) To show (3.20), assume u0 ∈ Lk(Ω,F ,P;L1(Rd)) for some k ∈ N. Then,
for every 0 ≤ t ≤ T < ∞, we have∫

Ω

‖u(·, t;ω)‖kL1(Rd)P(dω) =

∫
Ω

‖S(t)u0(·;ω)‖kL1(Rd) P(dω)

(3.11)
≤

∫
Ω

‖u0(·;ω)‖kL1(Rd)P(dω) = ‖u0‖kLk(Ω,F ,P;L1(Rd)) .
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Hence

‖u0‖kLk(Ω,F ,P;C(0,T ;L1(Rd))) =

∫
Ω

(
max
0≤t≤T

‖S(t)u0(·, ω)‖L1(Rd)

)k
P(dω)

=

∫
Ω

{
max
0≤t≤T

(
‖S(t)u0(·, ω)‖kL1(Rd)

)}
P(dω)

≤
∫
Ω

‖u0(·, ω)‖kL1(Rd) P(dω) = ‖u0‖kLk(Ω;L1(Rd)) .

This implies (3.20). (3.21) and (3.22) follow from (3.9), (3.10), (3.11). �

Theorem 3.3 ensures the existence of k-th moments of the random entropy so-
lution u(x, t;ω) provided that u0 ∈ Lk(Ω,F ,P;L1(Rd)). We next discuss the ex-
istence of the (deterministic) k-th moments, respectively, of k-point correlation
functions of u.

3.4. Tensor products of Banach spaces. We have seen in Theorem 3.3 that for
initial data u0 ∈ Lk(Ω,F ,P;L1(Rd)) of (3.1)-(3.4), the (unique) random entropy
solution u ∈ Lk(Ω;C(0, T ;L1(Rd))) for any T < ∞ and the same k ∈ N. To
investigate the existence of the (deterministic) k-th moment (or k-point correlation
function) for random entropy solutions, we require facts on tensor products of
Banach spaces; we shall now briefly recapitulate these from [18], Chapter 1, in the
form which is best suited for application in the present context.

Let x, y ∈ Rd, and let f(x, y): Rd × Rd → R be integrable: f ∈ L1(Rd × Rd;R).
Then, by Fubini’s Theorem, L1(Rd × Rd;R) ∼= L1(Rd;L1(Rd;R)) and

‖f‖L1(Rd×Rd,dx⊗dy) =

∫
(x,y)∈Rd×Rd

|f(x, y)|dxdy

=

∫
x∈Rd

‖f(x, ·)‖L1(Rd,dy)dx =

∫
y∈Rd

‖f(·, y)‖L1(Rd,dx)dy

=
∥∥ ‖f(x, y)‖L1(Rd,dy)

∥∥
L1(Rd,dx)

=
∥∥ ‖f(x, y)‖L1(Rd,dx)

∥∥
L1(Rd,dy)

.

For S, T ⊆ Rd, we identify for 1 ≤ p < ∞ the Bochner space Lp(S, ds; Lp(T, dt))
with Lp(S × T, ds ⊗ dt) and, moreover, we use that for 1 ≤ p < ∞ these Bochner
spaces are isomorphic to tensor product spaces ([18], Chapter 1):

(3.25) Lp(S) ⊗αp
Lp(T ) ∼= Lp(S × T ), 1 ≤ p < ∞ .

Here, αp indicates the so-called p-nuclear norm on the tensor product X ⊗ Y of
Banach spaces (see [18], Def. 1.45). In (3.25), we specialize to X = Lp(S), Y =
Lp(T ) and use [18], Cor. 1.52. In (3.25), ⊗αp

denotes the tensor product space
equipped with the p-nuclear norm. We use in the following (3.25) with p = 1 and
denote the tensor product ⊗α1

by ⊗. We also remark that (3.25) becomes false for
p = ∞, in general. The p-nuclear norm (3.25) is a cross norm: the norm of simple
tensor products (“dyads”) x⊗ y, x ∈ Lp(S), y ∈ Lp(T ) satisfies for 1 ≤ p < ∞,

‖x⊗ y‖Lp(S)⊗αp Lp(T ) = ‖x‖Lp(S)‖y‖Lp(T ) ∀x ∈ Lp(S), y ∈ Lp(T ) .(3.26)



1988 SIDDHARTHA MISHRA AND CH. SCHWAB

For k ∈ N and separable Banach space X, we denote by

X(k) = X ⊗ · · · ⊗X︸ ︷︷ ︸
k times

the k-fold tensor product of k copies of X. Throughout the following, we shall
assume the k-fold tensor product of the Banach space X with itself, i.e., X(k), to
be equipped with a cross norm ‖ ◦ ‖X(k) which satisfies, analogous to (3.26),

(3.27) ‖u1 ⊗ · · · ⊗ uk‖X(k) = ‖u1‖X . . . ‖uk‖X .

In particular, for X = Lp(Rd), 1 ≤ p < ∞, we get the isomorphism

(3.28) Lp(Rd)(k) ∼= Lp(Rkd) .

3.5. k-th moments. For u ∈ Lk(Ω;X), we consider the random field (u)(k) defined
by u(ω) ⊗ · · · ⊗ u(ω)︸ ︷︷ ︸

k−times

. Then

(3.29) (u)(k) = u⊗ · · · ⊗ u ∈ L1(Ω;X(k))

and, by (3.27), we have

(3.30) ‖(u)(k)‖L1(Ω;X(k)) =

∫
Ω

‖u(·, ω)‖kX P(dω) = ‖u‖kLk(Ω,X) < ∞ .

Therefore, (u)(k) ∈ L1(Ω, X(k)) and the k-th moment (or k-point correlation func-
tion of u)

(3.31) Mku := E[(u)(k)] ∈ X(k)

is well-defined for u ∈ Lk(Ω;X). With those definitions, we obtain from Theorem
3.3 the following result.

Theorem 3.4. Consider the scalar conservation law (3.1)-(3.4) with random initial
data u0 : Ω → L1(Rd) satisfying (3.14), (3.15). Assume further that for some k ∈ N

and for some real number r ≥ 1,

(3.32) u0 ∈ Lrk(Ω;L1(Rd)) .

Then, for every 0 < T < ∞ and every

(3.33) 0 < t1, t2, . . . , tk ≤ T < ∞
the spatial k-point correlation function

(3.34) u(x1, t1;ω) ⊗ · · · ⊗ u(xk, tk;ω)

is well-defined as an element of Lr(Ω;L1(Rkd)). In particular, the k-th moment

(3.35) (Mku)(t1, . . . , tk) := E[u(·, t1;ω) ⊗ · · · ⊗ u(·, tk;ω)]

is well-defined for any choice of tj as in (3.33) as an element of L1(Rkd), and it
satisfies

(3.36)

∥∥∥ (Mku
)
(t1, ..., tk)

∥∥∥
(L1(Rd))(k)

≤
∥∥∥ k⊗

j=1

u(·, tj ; ·)
∥∥∥
L1(Ω;(L1(Rd))(k))

≤ ‖u0‖kLk(Ω;L1(Rd)) .
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Proof. Assume first that r = 1. Then by Theorem 3.3 we find from (3.32) that

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω;L1(Rd)) .

Since 1 ≤ k < ∞, we find from (3.29), that for P-a.e. ω ∈ Ω and for every
0 < t1, . . . , tk < T it holds that

(3.37) u(·, t1;ω) ⊗ · · · ⊗ u(·, tk;ω) ∈ L1(Ω;L1(Rd)(k)) ∼= L1(Ω;L1(Rkd)),

which is (3.34). In particular then the k-th moment

(3.38) (Mku)(t1, . . . , tk) =

∫
Ω

k⊗
j=1

u(·, tj ;ω)P(dω)

is well-defined and it satisfies, using the cross-norm property (3.27) and the a priori
bound (3.20) the bounds

‖(Mku)(t1, . . . , tk)‖L1(Rkd) =
∥∥∥ ∫

Ω

k⊗
j=1

u(·, tj ;ω)P(dω)
∥∥∥
L1(Rkd)

≤
∫
Ω

∥∥∥ k⊗
j=1

u(·, tj ;ω)
∥∥∥
L1(Rkd)

P(dω)

=

∫
Ω

k∏
j=1

‖u(·, tj ;ω)‖L1(Rd) P(dω)

≤
∫
Ω

‖u0(·;ω)‖kL1(Rd) P(dω)

= ‖u0‖kLk(Ω;L1(Rd)) < ∞

by (3.32). Hence (3.38) is well-defined as element in (L1(Rd))(k) ∼= L1(Rkd), and
the estimate (3.36) follows for any k ≥ 1. The r-summability of the k-th point
correlation function of u in (3.34) in the case 1 < r < ∞. �

4. Multi-level Monte Carlo finite volume method

4.1. Monte Carlo method. We view the Monte Carlo method as a “discretiza-
tion” of the hyperbolic IVP (3.1)-(3.4) with random initial data u0(x;ω) as in
(3.13)-(3.15) with respect to ω. We also assume (3.16), i.e., the existence of k-th
moments of u0 for some k ∈ N, to be specified later. We shall be interested in the
statistical estimation of the first and higher moments of u i.e, Mk(u) ∈ (L1(Rd))(k).
For k = 1, M1(u) = E[u]. The MC approximation of E[u] is defined as follows:
given M independent, identically distributed samples ûi

0, i = 1, . . . ,M , of initial
data, the MC estimate of E[u(·, t; ·)] at time t is given by

(4.1) EM [u(·, t)] :=
1

M

M∑
i=1

ûi(·, t)

where ûi(·, t) denotes the M unique entropy solutions of the M Cauchy Problems
(3.1)-(3.4) with initial data ûi

0. We observe that by

(4.2) ûi(·, t) = S(t) ûi
0
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we have from (3.9)-(3.11) for every M and for every 0 < t < ∞, by (3.11),

‖EM [u(·, t;ω)]‖L1(Rd) =
∥∥∥ 1

M

M∑
i=1

S(t) ûi
0(·;ω)

∥∥∥
L1(Rd)

≤ 1

M

M∑
i=1

∥∥S(t) ûi
0(·;ω)

∥∥
L1(Rd)

≤ 1

M

M∑
i=1

‖ûi
0(·;ω)‖L1(Rd) .

(4.3)

Using the i.i.d. property of the samples {ûi
0}Mi=1 of the random initial data u0,

Lemma 2.1 and the linearity of the expectation E[·], we obtain the bound

(4.4) E
[
‖EM [u(·, t)]‖L1(Rd)

]
≤ E

[
‖u0‖L1(Rd)

]
= ‖u0‖L1(Ω;L1(Rd)) < ∞ .

As M → ∞, the MC estimates (4.1) converge and we obtain the following conver-
gence result.

Theorem 4.1. Assume that in (3.1)-(3.4) the random initial data u0 satisfies

(4.5) u0 ∈ L2(Ω;L1(Rd))

and that (3.14), (3.15) hold. Then the MC estimates EM [u(·, t)] in (4.1) converge
as M → ∞, to M1(u(·, t)) = E[u(·, t)] and, for any M ∈ N, 0 < t < ∞, there holds
the error bound

(4.6) ‖E[u(·, t)] − EM [u(·, t)]‖L2(Ω;L1(Rd)) ≤ 2M− 1
2 ‖u0‖L2(Ω;L1(Rd)) .

Proof. As is customary in the convergence analysis of MC methods, we interpret
the M samples {ûi

0}Mi=1 as realizations of M independent “copies” of u0 on the
probability space (Ω,F ,P), i.e., {ûi

0}Mi=1 are M i.i.d. copies of u0 ∈ L2(Ω;L1(Rd)).
The corresponding unique random entropy solutions ûi(·, t;ω) = S(t) ûi

0(·;ω), i =
1, . . . ,M are then also independent in L2(Ω;C(0, T ;L1(Rd))) by (3.21): the images
of any two i.i.d. realizations of u0(x;ω) under the (deterministic, nonlinear ) solution
map S(t) are, for any fixed t > 0, strongly measurable as L1(Rd)-valued functions
by the L1(Rd) contractivity (3.8). By Lemma 2.1 and by the continuity (3.11), for
every 0 < t < ∞, the mapping Ω 
 ω → ‖u(·, t;ω)‖L1(Rd) is P-measurable. Since

sup
0≤t≤T

∫
Ω

‖u(·, t;ω)‖2L1(Rd) P(dω) ≤
∫
Ω

sup
0≤t≤T

‖u(·, t;ω)‖2L1(Rd) P(dω)

= ‖u‖2L2(Ω;C(0,T ;L1(Rd))) < ∞ ,

(4.7)

also u ∈ C([0, T ]; L2(Ω;L1(Rd))). Next, we calculate for 0 < t < ∞ and any M ∈ N

with (4.2) and (3.19) and with the notation ū(·, t) = M1[u(·, t)] = E[u(·, t;ω)],

(4.8) E
[
‖ū(·, t) − EM [u]‖2L1(Rd)

]
= E

[ 1

M2

∥∥∥ M∑
i=1

(ū(·, t) − ûi(·, t;ω))
∥∥∥2
L1(Rd)

]
.

Since L1(Rd) is separable, and since (L1(Rd))∗ ∼= L∞(Rd), for i = 1, . . . ,M , every
0 < t < ∞ and for every ω ∈ Ω exist unique ϕi(·, t;ω) ∈ L∞(Rd), i = 1, ...,M , such
that

(4.9)
‖ϕi(·, t;ω)‖L∞(Rd) = 1,

‖(ū(·, t) − ûi(·, t;ω))‖L1(Rd) =
〈
ϕi(·, t;ω), (ū(·, t) − ûi(·, t;ω))

〉
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where 〈·, ·〉 denotes the (L∞(Rd), L1(Rd)) duality pairing. We expand the square
in (4.8) to get

E
[
‖ū(·, t) − EM [u](·, t;ω)‖2L1(Rd)

]
=

1

M2
E

[( M∑
i=1

〈
ϕi(·, t;ω), (ū(·, t) − ûi(·, t;ω))

〉)2]

=
1

M2
E

[ M∑
i,j=1

〈
ϕi(·, t;ω), (ū(·, t) − ûi(·, t;ω))

〉 〈
ϕj(·, t;ω), (ū(·, t) − ûj(·, t;ω))

〉]
.

Using the linearity of the expectation E[·], and the fact that independence of the
samples ûi

0(·, ω) ∈ L1(Rd) implies independence of the associated random entropy
solutions ûi(·, t;ω) = S(t)ûi

0(·, ω), we infer that also the representers ϕi(·, t;ω) ∈
L∞(Rd) are independent. We get with (4.9) that M2 times the last expression
equals

E

[ M∑
i=1

∣∣〈ϕi(·, t;ω), (ū(·, t) − ûi(·, t;ω))
〉∣∣2] = E

[ M∑
i=1

‖ū(·, t) − ûi(·, t;ω)‖2L1(Rd)

]
.

Using that u0 ∈ L2(Ω;L1(Rd)) and that the ûi
0 are identically distributed to u0, we

obtain with the elementary inequality ‖x − y‖2 ≤ 2(‖x‖2 + ‖y‖2) and the a priori
estimate (3.21) in Theorem 3.3 the bound

E
[
‖ū(·, t) − EM [u](·, t;ω)‖2L1(Rd)

]
≤ 2

M2

( M∑
i=1

(
‖ū(·, t)‖2L1(Rd) + E

[
‖ûi(·, t;ω)‖2L1(Rd)

]))
.

Using here (3.36) with k = 1 and (3.11) gives

‖ū(·, t)‖2L1(Rd) = ‖E[u(·, t;ω)]‖L1(Rd) ≤ E

[
‖u(·, t;ω)‖L1(Rd)

]
= E

[
‖S(t)u0(·;ω)‖L1(Rd)

]
≤ E

[
‖u0(·;ω)‖L1(Rd)

]
and we arrive at

E
[
‖ū(·, t) − EM [u](·, t;ω)‖2L1(Rd)

]
≤ 4M−1 E

[
‖u0(·, ω)‖2L1(Rd)

]
which implies (4.6) upon taking square roots. �

So far, we have addressed the MC estimation of the mean field or first moment.
A similar result holds for the MC sample averages of the k-th moment Mku :=
E[(u)(k)] ∈ (L1(Rd))(k).

Theorem 4.2. Consider the scalar conservation law (3.1)-(3.4) with random initial
data u0 : Ω → L1(Rd) satisfying (3.14), (3.15). Assume further that for some k ∈ N

it holds that u0 ∈ L2k(Ω;L1(Rd)) . Then, as M → ∞, the MC sample averages

(4.10) EM [(u(·, t)(k)] :=
1

M

M∑
i=1

(ûi(·, t))(k)
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with the M i.i.d samples ûi(·, t), i = 1, 2, ..., converge to the k-th moment (or spatial
k-point correlation function) (Mku)(t) defined in (3.38). Moreover, there holds the
error bound

(4.11) ‖(Mku)(t) − EM [(u(·, t;ω))(k)]‖L2(Ω;L1(Rkd)) ≤ 2M−1/2‖u0‖kL2k(Ω;L1(Rd)) .

Proof. The assumption that u0 ∈ L2k(Ω;L1(Rd)) implies in (3.36) of Theorem
3.4 (with r = 2) and (3.28) with p = 1 that, for any choice of time instances
0 < t1, ..., tk < ∞ and for P-a.e. ω ∈ Ω, the spatial k-point correlation

k⊗
j=1

u(·, tj ;ω) ∈ (L1(Rd))k

of the random entropy solution u(x, t;ω) is well-defined in L2(Ω;L1(Rkd)). Hence
the proof of Theorem 3.4 directly applies to (u(·, t;ω))(k) implying (4.11). �

4.2. Finite volume method (FVM). So far, we considered the MCM under the
assumption that the entropy solutions ûi(x, t;ω) = S(t) ûi

0(x;ω) for the Cauchy
problem (3.1)-(3.4) with the initial data samples ûi

0 are available exactly. In prac-
tice, however, numerical approximations of S(t)ûi

0 must be computed by FVM. We
analyze the error of the combined MC-FVM approximations. In order to simplify
the exposition, we consider only first-order FVM in this section.

We assume given a time step Δt > 0 and a triangulation T of the spatial domain
D ⊂ Rd of interest. Here, a triangulation T will be understood as a set of open,
convex polyhedra K ⊂ Rd with plane faces such that the following conditions hold:
the triangulation T is shape regular; if K ∈ T denotes a generic volume, we define
the volume parameter

(4.12) ρK = ρ(K) = max{diam(Br) : Br ⊂ K}

i.e., the maximum diameter of balls Br of radius r > 0 that can be inscribed into
volume K ∈ T and define, in addition, for a generic mesh T , the shape regularity
constants (where ΔxK := diamK)

(4.13) κ(T ) := sup{ΔxK/ρ(K) : K ∈ T }, T ∈ M .

We also denote by Δx(T ) := max{ΔxK : K ∈ T } the mesh width of T . For any
volume K ∈ T , we define the set N (K) of neighboring volumes

(4.14) N (K) := {K ′ ∈ T : K ′ �= K ∧ measd−1(K ∩K ′) > 0} .

We assume that the triangulation T is regular in the sense that there exists an
absolute constant B > 0 independent of Δx(T ) such that the support size of the
FV “stencil” at element K ∈ T is uniformly bounded

(4.15) σ(T ) := sup
K∈T

#(N (K)) ≤ B .

We define the CFL-constant by

(4.16) λ = Δt/Δx(T ) ,

where we implied a uniform discretization in time with time step Δt. The CFL
constant λ is determined by a standard CFL condition (see e.g. [9]) based on the
maximum wave speed.
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To approximate (3.1), we use a time-explicit, first-order FV scheme on T . It has
the generic form

(4.17) vn+1
K = H({vnK′ : K ′ ∈ N (K) ∪K}), K ∈ T

where H : R(2k+1)d → R is continuous and where vnK denotes an approximation to
the cell average of u at time tn = nΔt.

In our subsequent developments, we write the FVM in operator form. To this
end, we introduce the operator HT (v) which maps a sequence v = (vK)K∈T into
HT ((vK)K∈T ). Then the FVM (4.17) takes the abstract form

(4.18) vn+1 = HT (vn), n = 0, 1, 2, . . . .

For the ensuing convergence analysis, we shall assume and use several properties of
the FV scheme (4.18); these properties are satisfied by many commonly used FVM
of the form (4.18), on regular or irregular meshes T in Rd.

To state the assumptions, we introduce further notation: for any initial data
u0(x) ∈ L1(Rd), we define the FVM approximation (v0K)K∈T by the cell averages

(4.19) v0K =
1

|K|

∫
K

u0(x) dx, where K ∈ T .

With a vector v = (vK)K∈T ∈ R#T , we associate the piecewise constant function
vT (x, t) defined a.e. in Rd × (0,∞) by

(4.20) vT (x, t)
∣∣
K

:= vK , K ∈ T .

We denote space of all piecewise constant functions on T (i.e., the “simple” or “step”
functions on T ) by S(T ). Given any vT ∈ S(T ), we define the (mesh-dependent)
norms:

‖v‖L1(T ) =
∑
K∈T

|K||vK | = ‖vT ‖L1(Rd) ,(4.21)

‖v‖L∞(T ) = sup
K∈T

|vK | = ‖vT ‖L∞(Rd) .(4.22)

For any function v ∈ L1(Rd) and any triangulation T , the linear mapping v → vT
induced by (4.19), (4.20) is denoted by PT :

(4.23) vT = PT v, PT : L1(Rd) → S(T ).

Then P 2
T v = PT v and

(4.24)
∀v ∈ (L1 ∩ L∞)(Rd) : ‖PT v‖L1(Rd) ≤ ‖v‖L1(Rd), ‖PT v‖L∞(Rd) ≤ ‖v‖L∞(Rd) .

We also have for every v ∈ W s,1(Rd) for some 0 ≤ s ≤ 1 the approximation property

(4.25) ‖v − PT v‖L1(Rd) ≤ C(Δx(T ))s|v|W s,1(Rd),

where

(4.26) Δx(T ) = sup{diam(K) : K ∈ T }

denotes the mesh width of T . We shall assume the following properties of the FVM
schemes used in the MC-FVM algorithms.
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Assumption 4.3. We shall assume that the abstract FV scheme (4.18) satisfies

1. Stability: ∀t ≥ 0,

‖vT (·, t)‖L∞(Rd) ≤ ‖vT (·, 0)‖L∞(Rd),(4.27)

‖vT (·, t)‖L1(Rd) ≤ ‖vT (·, 0)‖L1(Rd),(4.28)

TV (vT (·, t)) ≤ TV (vT (·, 0)),(4.29)

2. Lipschitz continuity: For any two sequences v = (vK)K∈T , w = (wK)K∈T
we have

(4.30) ‖HT (v) −HT (w)‖L1(T ) ≤ ‖v − w‖L1(T )

or, equivalently,

(4.31) ‖HT (vT ) −HT (wT )‖L1(Rd) ≤ ‖vT − wT ‖L1(Rd) .

3. Convergence: If the CFL bound λ = Δt/Δx is kept constant, as Δx → 0, the
approximate solution vΔ(x, t) generated by (4.17)-(4.20) converges to the unique
entropy solution u of the scalar conservation laws (3.1)-(3.4) at rate 0 < s ≤ 1, i.e.,
there exists C > 0 independent of Δx such that, as Δx → 0, for every t such that,
for (Δt)s ≤ t ≤ T , it holds that

(4.32) ‖u(·, t) − vT (·, t)‖L1(Rd) ≤ ‖u0 − v0T ‖L1(Rd) + C tTV (u0) Δts .

Let us mention that Assumption 4.3 is satisfied for many standard FVM-schemes;
we refer to [9, 10, 17] and the references there for further details. Let us also mention
that the work for the realization of scheme (4.17)-(4.20) on a bounded domain
D ⊂ Rd as (using the CFL stability condition (4.16), i.e. Δt/Δx ≤ λ = const.)

(4.33) WorkT = O(Δt−1 Δx−d) = O(Δx−(d+1)) .

The convergence estimate (4.32) is known to hold for first-order FVM by results of
Kusznetsov (see, e.g. [11]) with s = 1/2.

In the Monte Carlo Finite Volume Methods (MC-FVMs), we combine MC sam-
pling of the random initial data with the FVM (4.18). In the convergence analysis
of these schemes, we shall require the application of the FVM (4.18) to random ini-
tial data u0 ∈ L∞(Ω;L1(Rd)). Given a draw u0(x;ω) of u0, the FVM (4.18)-(4.20)
defines a family vT (x, t;ω) of grid functions. There holds

Proposition 4.4. Consider the FVM (4.18)-(4.20) for the approximation of the
entropy solution corresponding to the draw u0(x;ω) of the random initial data.

Then, if the FVM satisfies Assumption 4.3, the random grid functions Ω 
 ω �−→
vT (x, t;ω) defined by (4.16)-(4.20) satisfy, for every 0 < t < ∞, 0 < Δx < 1, and
every k ∈ N ∪ {∞} the stability bounds:

(4.34) ‖vT (·, t; ·)‖Lk(Ω;L∞(Rd)) ≤ ‖u0‖Lk(Ω;L∞(Rd)) ,

(4.35) ‖vT (·, t; ·)‖Lk(Ω;L1(Rd)) ≤ ‖u0‖Lk(Ω;L1(Rd)) .

There also holds the error bound

(4.36)
‖u(·, t;ω) − vT (·, t;ω)‖Lk(Ω;L1(Rd))

≤ ‖u0(·;ω) − v0T (·;ω)‖Lk(Ω;L1(Rd)) + CtΔts ‖TV (u0(·;ω)‖Lk(Ω,dP) .
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4.3. MC-FVM scheme. We next define and analyze the MC-FVM scheme. It is
based on the straightforward idea of generating, possibly in parallel, independent
samples of the random initial data and then, for each sample of the random initial
data, to perform one FV simulation. The error of this procedure is bound by two
contributions: a (statistical) sampling error and a (deterministic) discretization er-
ror. We express the asymptotic efficiency of this approach (in terms of overall error
versus work). It will be seen that the efficiency of the MC-FVM is, in general, infe-
rior to that of the deterministic scheme (4.18). The present analysis will constitute
a key technical tool in our subsequent development and analysis of the multilevel
MC-FVM (“MLMC-FVM” for short) which does not suffer from this drawback.

4.3.1. Definition of the MC-FVM scheme. We consider once more the initial value
problem (3.1)-(3.4) with random initial data u0 satisfying (3.13)-(3.16) for suffi-
ciently large k ∈ N (to be specified in the convergence analysis). The MC-FVM
scheme for the MC estimation of the mean of the random entropy solutions then
consists of the following:

Definition 4.5 (MC-FVM Scheme). Given M ∈ N, generate M i.i.d. samples
{ûi

0}Mi=1 of initial data. Let {ûi(·, t)}Mi=1 denote the unique entropy solutions of the
scalar conservation laws (3.1)-(3.4) for these data samples, i.e.,

(4.37) ûi(·, t) = S(t) ûi
0(·), i = 1, . . . ,M .

Let HT (·) be a FVM scheme (4.17)-(4.20) satisfying Assumption 4.3. Then the
MC-FVM approximations of Mk(u(·, t)) are defined as statistical estimates from
the ensemble

(4.38) {v̂iT (·, t)}Mi=1

obtained by (4.18) from the FV approximations v̂iT (·, 0) of the initial data {ûi
0(x)}Mi=1

samples by (4.19); specifically, the first moment of the random solution u(·, t;ω) at
time t > 0, is estimated as

(4.39) M1(u(·, t)) ≈ EM [vT (·, t)] :=
1

M

M∑
i=1

v̂iT (·, t) ,

and, for k > 1, the k-th moment (or k-point correlation function) Mk(u(·, t)) =
E[(u(·, t))(k)] defined in (3.35) is estimated by

(4.40) E
(k)
M [vT (·, t)] :=

1

M

M∑
i=1

(v̂iT ⊗ · · · ⊗ v̂iT )︸ ︷︷ ︸
k−times

(·, t) .

More generally, for k > 1, we consider time instances t1, . . . , tk ∈ (0, T ], T < ∞,
and define the statistical FVM estimate of Mk(u)(t1, ..., tk) by

(4.41) E
(k)
M [vT ] (t1, . . . , tk) :=

1

M

M∑
i=1

(v̂iT (·, t1) ⊗ · · · ⊗ v̂iT (·, tk))︸ ︷︷ ︸
k−times

.
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4.3.2. Convergence analysis of MC-FVM. We next address the convergence of
EM [vT ] to the mean E(u).

Theorem 4.6. Assume that

(4.42) u0 ∈ L∞(Ω, L1(Rd))

and that (3.13)-(3.15) hold. Assume further that we are given a FVM (4.17)-
(4.20) such that (4.16) holds and such that Assumption 4.3 is satisfied; in par-
ticular, assume that the deterministic FVM scheme converges at rate s > 0 in
L∞([0, T ];L1(Rd)) for every 0 < T < ∞. Then the MC estimate EM [vT (·, t)]
defined in (4.39) satisfies, for every M , the error bound

(4.43)

‖E[u(·, t)] − EM [vT (·, t;ω)]‖L2(Ω;L1(Rd))

≤
{
M− 1

2 ‖u0‖L2(Ω;L1(Rd)) + ‖u0 − v0T ‖L∞(Ω;L1(Rd))

+ tΔts ‖TV (u0(·, ω))‖L∞(Ω;dP)

}
where C > 0 is independent of M and of Δt as M → ∞ and as λΔx = Δt ↓ 0.
The convergence rate Δxs > 0 is as in (4.32).

Proof. We estimate, for arbitrary t > 0,

‖E[u(·, t)] − EM [vT (·, t)]‖L2(Ω;L1(Rd)) ≤ ‖E[u(·, t)] − EM [u(·, t)]‖L2(Ω;L1(Rd))

+ ‖EM [u(·, t)] − EM [vT (·, t)]‖L2(Ω;L1(Rd))

=: I + II.

Term I is bounded by (4.6). For Term II, we note that, by (4.42) and by (3.9) -
(3.12) and Assumption 4.3 with the notation ū(·, t) = E[u(·, t;ω)], by the triangle
inequality that

II = ‖EM [u(·, t;ω) − vT (·, t)]‖L2(Ω;L1(Rd))

≤ 1

M

M∑
j=1

‖ûj(·, t;ω) − v̂jT (·, t;ω)‖L2(Ω;L1(Rd))

≤ ess sup
ω∈Ω

‖u(·, t;ω) − vT (·, t;w)‖L1(Rd)

≤ C
{
‖u0 − v0T ‖L∞(Ω;L1(Rd)) + tΔts‖TV (u0(·, w))‖L∞(Ω;dP)

}
. �

4.3.3. Work estimates. For computational purposes, we have to assume that the
computational domain D ⊂ Rd is bounded and suitable boundary conditions are
specified on ∂D. Noting that in a bounded domain D, the work for one time step
(4.17), (4.18) is of order O(Δx−d), (with O(·) depending on the size of the domain),
we find from the CFL condition (4.16) that the total computational work to obtain
{vT (·, t)}0<t≤T in D is by (4.33)

(4.44) Work(T ) = O(Δx−d−1), λΔx = Δt ↓ 0

which implies that the work for the computation of the MC estimate EM [vT (·, t)]
is

(4.45) Work(M, T ) = O(MΔx−d−1), as Δt = λΔx ↓ 0 ,

so that we obtain from (4.43) the convergence order in terms of work: to this end
we equilibrate in (4.43) the two bounds by choosing M−1/2 ∼ Δts, i.e., M = Δt−2s.
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Inserting in (4.45) yields

(4.46) Work(T ) = O(Δt−2s Δx−(d+1))
(4.16)

= O(Δx−(d+1)−2s)

so that we obtain from (4.43)

(4.47) ‖E[u(·, t)] − EM [vT (·, t)]‖L2(Ω;L1(Rd)) ≤ CΔts ≤ C(Work(T ))−s/(d+1+2s) .

We sum up the foregoing considerations.

Remark 4.7 (Work vs. accuracy of MC-FVM). Let us add some comments on the
exponent in (4.47). In the deterministic FV scheme, we obtain

Work(T ) = O(Δt−1 Δx−d)
(4.16)

= O(Δx−(d+1)),

and the error in terms of work bound (4.32) becomes

(4.48) ‖u(·, t)−vT (·, t)‖L1(Rd) ≤ ‖u0−v0T ‖L1(Rd)+CtTV (u0) (Work(T ))−s/(d+1) .

Assuming exact representation of the initial data, we obtain the exponent
−s/(d + 1) for the deterministic FVM as compared to −s/(d + 1 + 2s) for the
MC-FVM. We see, in particular, in the (typical) situation of low order s of conver-
gence and space dimension d = 2, 3 a considerably reduced rate of convergence of
the MC-FVM, in terms of accuracy vs. work, is obtained. On the other hand, for
high-order schemes (i.e. when s >> d+ 1) the MC error dominates and we recover
in (4.48) the rate 1/2 in terms of work which is typical of MC methods.

4.4. Multilevel MC-FVM. We next present and analyze a scheme that allows us
to achieve almost the accuracy versus work bound (4.48) of the deterministic FVM
also for the stochastic initial data u0, rather than the single level MC-FVM error
bound (4.47). The key ingredient in the Multi-level Monte Carlo Finite Volume
(MLMC-FVM) scheme is simultaneous MC sampling on different levels of resolution
of the FVM, with level dependent numbers M� of MC samples. To define these, we
introduce some notation.

4.4.1. Notation. The MLMC-FVM is defined as a multi-level discretization in x
and t with level dependent numbers M� of samples. To this end, we assume we are
given a family {T�}∞�=0 of nested triangulations of Rd such that the mesh width

(4.49) Δx� = Δx(T�) = sup{diam(K) : K ∈ T�} = O(2−�Δx0), � ∈ N0

where K denotes a generic finite volume cell K ∈ T . We also assume the family
M = {T�}∞�=0 of meshes to be shape regular; if K ∈ T� denotes a generic cell, we
recall, for a generic mesh T ∈ M, the shape regularity constants κ(T ) defined in
(4.13). We say that the family M of meshes is κ-shape regular, if there exists a
constant κ(M) < ∞ such that with ρK denoting the diameter of the largest ball
inscribed into K, we get

(4.50) κ(M) = sup
T ∈M

κ(T ) = sup
T ∈M

sup
K∈T

diam(K)

ρK
.

We recall from (4.23) the definition of the cell-average projections PT onto S(T ).
For a mesh hierarchy M = {T�}∞�=0, we denote

(4.51) S� := S(T�), P� := PT�
, T� ∈ M, � = 0, 1, ... .
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4.4.2. Derivation of MLMC-FVM. As in plain MC-FVM, our aim is to estimate,
for 0 < t < ∞, the expectation (or “ensemble average”) E[u(·, t)] of the random
entropy solution of the SCL (3.1)-(3.4) with random initial data u0(·, ω), ω ∈ Ω,
satisfying (3.13)-(3.16) for sufficiently large values of k (to be specified in the sequel).
As in the previous section, E[u(·, t)] will be estimated by replacing u(·, t) by a FVM
approximation. For � ∈ N0, we denote in the present section the FV approximation
vT by v�(·, t) on mesh T� ∈ M, where we assume that the CFL condition (4.16)
takes the form

(4.52) Δt� ≤ λΔx�, � = 0, 1, 2, . . . ,

with a constant λ > 0 which is independent of �.
By the stability of the FVM scheme, we generate a sequence of stable approx-

imations, {v�(·, t)}∞�=0 on triangulation T� for time steps of sizes Δt� ensuring the
CFL condition (4.52) with respect to the grid T� ∈ M. In what follows, we set
v−1(·, t) := 0. Then, given a target level L ∈ N of spatial resolution, we may write
by the linearity of the expectation operator,

(4.53) E[vL(·, t)] = E

[ L∑
�=0

(v�(·, t) − v�−1(·, t))
]
.

We next estimate each term in (4.53) statistically by a MCM with a level-dependent
number of samples, M�; this gives the MLMC-FVM estimator

(4.54) EL[u(·, t)] =

L∑
�=0

EM�
[v�(·, t) − v�−1(·, t)]

where EM [vΔ(·, t)] is as in (4.39), and where v�(·, t) is computed on T� assuming
(4.52), i.e., that the time steps Δt� are chosen subject to the CFL constraint (4.16).

Statistical moments Mk(u)(t1, ..., tk) of order k ≥ 2 (resp. the k-th order space-
time correlation functions) in (3.35) of the random entropy solution u can be es-
timated in the same way: based on (4.40) in Definition 4.5, the straightforward
generalization along the lines of the MLMC estimate (4.54) of the MC estimate
(4.41) for Mk(u)(t) leads to the definition of the MLMC-FVM estimator

(4.55) EL,(k)[u(·, t)] :=

L∑
�=0

EM�
[(v�(·, t))(k) − (v�−1(·, t))(k)] , 0 < t < ∞ .

This generalizes (4.54) to moments Mk(u)(t) of order k > 1.1

4.4.3. Convergence analysis. We first analyze the MLMC-FVM mean field error

(4.56)
∥∥E[u(·, t)] − EL[u(·, t)]

∥∥
L2(Ω;L1(Rd))

for 0 < t < ∞ and L ∈ N. In particular, we are interested in the choice of the
sample sizes {M�}∞�=0 such that, for every L ∈ N, the MLMC error (4.56) is of order
(ΔtL)s, where s is the order of convergence in the Kusznetsov type error bound
(4.32). The principal issue in the design of MLMC-FVM is the optimal choice of

1We assume here for notational convenience that t1 = t2 = ... = tk = t. This implies that
our k-th moment estimate only requires access to the FVM solutions at time t. The following
developments directly generalize to the analysis of k-point temporal correlation functions of the
random entropy solution as well; in this case, however, access to the full history of FVM solutions
v�(·, t) for 0 ≤ t ≤ T < ∞ is required.
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{M�}∞�=0 such that, for each L, an error (4.56) is achieved with minimal total work
given by (based on (4.45))

(4.57) WorkL =
L∑

�=0

M�O(Δx−d−1
� ) = O

(
L∑

�=0

M�Δx−d−1
�

)
.

To estimate (4.56), we write (recall that v−1 := 0) using the triangle inequality,
the linearity of the mathematical expectation E[·] and the definition (4.54) of the
MLMC estimator

‖E[u(·, t)] − EL[u(·, t)]‖L2(Ω;L1(Rd))

≤ ‖E[u(·, t)] − E[vL(·, t)]‖L2(Ω;L1(Rd))

+
∥∥E[vL(·, t)] − EL[u(·, t)]

∥∥
L2(Ω;L1(Rd))

= ‖E[u(·, t)] − E[vL(·, t)]‖L2(Ω;L1(Rd))

+

∥∥∥∥∥
L∑

�=0

E[v� − v�−1] − EM�
[v� − v�−1]

∥∥∥∥∥
L2(Ω;L1(Rd))

=: I + II.

We estimate terms I and II separately. By linearity of the expection, term I equals

I = ‖E[u(·, t) − vL(·, t)]‖L1(Rd) = ‖u(·, t) − vL(·, t)‖L1(Ω;L1(Rd))

which can be bounded by (4.36) with k = 1 and with the approximation property
(4.25). We hence focus on term II and estimate further as follows:

II ≤
L∑

�=0

‖E[(v� − v�−1)(·, t)] − EM�
[(v� − v�−1)(·, t)]‖L2(Ω;L1(Rd))

(4.6)
≤

L∑
�=0

M
− 1

2

�

(∫
Ω

‖v�(·, t;ω) − v�−1(·, t;ω)‖2L1(Rd) dP(ω)
) 1

2

=

L∑
�=0

M
− 1

2

� ‖v�(·, t) − v�−1(·, t)‖L2(Ω;L1(Rd)) .

We estimate for every � ≥ 0 the size of the detail v� − v�−1 with the triangle
inequality

‖v�(·, t) − v�−1(·, t)‖L2(Ω;L1(Rd)) ≤ ‖u(·, t) − v�(·, t)‖L2(Ω;L1(Rd))

+ ‖u(·, t) − v�−1(·, t)‖L2(Ω;L1(Rd)) .

Using here (4.36) with t = t, k = 2 and (4.52), we obtain for every � ∈ N the
estimate

‖(v� − v�−1)(·, t)‖L2(Ω;L1(Rd)) ≤ ‖u0 − v0� ‖L2(Ω;L1(Rd)) + ‖u0 − v0�−1‖L2(Ω;L1(Rd))

+ CtΔxs
� ‖TV (u0)‖L2(Ω;dP) .

Using that for 0 ≤ s ≤ 1, the cell-averages v0� satisfy, for every k ∈ N and for every
1 ≤ q ≤ ∞,

‖u0 − v0� ‖Lk(Ω;Lq(Rd)) ≤ CΔxs
�‖u0‖Lk(Ω;W s,q(Rd)) ,
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we arrive at the error bound

‖(v�(·, t)−v�−1)(·, t)‖L2(Ω;L1(Rd))≤C
{
t ‖TV (u0)‖L2(Ω;dP)+Δxs

� ‖u0‖L2(Ω;W s,1(Rd))

}
.

Summing this error bound over all discretization levels � = 0, ..., L, we have proved
the main result of the present paper.

Theorem 4.8. Assume (3.1)-(3.4), (3.13)-(3.16) and (4.50)-(4.52). Then, for any
sequence {M�}∞�=0 of sample sizes at mesh level �, we have for the MLMC-FVM
estimate EL[u(·, t)] in (4.54) the error bound

(4.58)

‖E[u(·, t)] − EL[u(·, t)]‖L2(Ω;L1(Rd))

≤ C
{
tΔxs

L‖TV (u0)‖L1(Ω,dP) + Δxs
L‖u0‖L∞(Ω;W s,1(Rd))

}
+C

{ L∑
�=0

M
− 1

2

� Δxs
�

}{
‖u0‖L2(Ω;W s,1(Rd)) + t ‖TV (u0)‖L2(Ω;dP)

}
.

Theorem 4.8 is the basis for an optimization of the numbers M� of MC samples
across the mesh levels. Our selection of the level dependent Monte Carlo sample
sizes M� will be based on the last term in the error bound (4.58): we select in (4.58)
the M� such that as Δt ↓ 0, all terms equal the Kusznetsov bound ΔtsL in (4.32) at
the finest level L. This motivates choosing M� according to

(4.59) M
− 1

2

� Δxs
l = ĈΔxs

L, � = 0, . . . , L− 1 .

Here, Ĉ is some integer constant that is independent of l, L. Using that

Δx� = O(2−�), � = 0, 1, 2, . . .

we find M� = ĈΔx2s
� Δx−2s

L = O(22(L−�)s). This implies in (4.58) the bound

(4.60) ‖E[u(·, t)] − EL[u(·, t)]‖L1(Rd) ≤ C(t)Δxs
L ,

while the total cost is, by (4.57), bounded by

WorkL =

L∑
�=0

M� O(Δx
−(d+1)
� ) ≤ C

L∑
�=0

22(L−�)s+�(d+1)

= C 22Ls
L∑

�=0

2(d+1−2s)� = C 22Ls+[(d+1)−2s]L

= C 2(d+1)L = O(Δx
−(d+1)
L )

(4.61)

provided that the order s of the FVM satisfies

(4.62) 0 ≤ s < (d + 1)/2 .

We compare this bound with the work for a single level MC-FVM: by (4.45), we
have the error bound (4.13) with total work

(4.63) Work(ML; TL) = O(ML Δx
−(d+1)
L )

(4.46)
= O(Δx

−(d+1+2s)
L ) .

Inserting (4.61) into the asymptotic error bound (4.60), we obtain the following
error estimate in terms of work:

(4.64) ‖E[u(·, t)] − EL[u(·, t)]‖L1(Rd) ≤ C(Work(ML; TL))−s/(d+1) .

We observe that under the provision (4.62) the MLMC-FVM (4.61) behaves, in
terms of accuracy versus work, as L → ∞, exactly as the deterministic FVM where
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the error vs. work was estimated in (4.33). We also observe that for high order
schemes, specifically when the condition (4.62) is violated, i.e., when 2s ≥ d + 1,
the complexity of the MLMC-FVM increases above that of one deterministic FVM
solve of the same order, but is superior compared to the standard MCM. In this
case, more sophisticated “polynomial chaos” type discretizations with respect to
the stochastic variable ω are required (see, e.g. [20] for details on this) to achieve
optimal efficiency.

4.5. Sparse tensor MLMC-FVM. The work to form a single tensor product in
the estimates (4.41), (4.55) over a finite spatial domain D ⊂ Rd grows as O(Δx−kd)
which may entail a computational effort that is, for moment orders k ≥ 2, prohibi-
tive. To reduce the complexity of k-th moment estimation, we introduce a strategy,
similar to the strategy for high-order moment approximation in elliptic problems
with random data presented in [23, 2]

4.5.1. Sparse tensorization of FV solutions. Since the linear mappings P� : L1(Rd)
→ S� defined in (4.51), (4.23) are onto, we may define the linear space of increment
or details of FV functions between successive meshes in the grid hierarchy M =
{T�}∞�=0 by

(4.65) W� := (P� − P�−1)S�, � ≥ 0

where P−1 := 0 so that W0 = S0. Then, for any L ∈ N0, we have the multi-level
decomposition

(4.66) SL = W0 ⊕ ...⊕WL =

L⊕
�=0

W�

and the k-point correlation functions (vL(·, t))(k) of the FV solutions on mesh TL
at time t > 0 take values in the tensor product space

(4.67) (SL)(k) := SL ⊗ ...⊗ SL︸ ︷︷ ︸
k times

=
∑

|�|∞≤L

S�1 ⊗ ...⊗ S�k =
⊕

|�|∞≤L

k⊗
j=1

W�j .

Then, the full tensor projections

(4.68) P
(k)
L v := PL ⊗ ...⊗ PL︸ ︷︷ ︸

k times

: L1(Rkd) → (SL)(k)

are bounded, linear and onto. Here, |�|∞ := max{�1, ..., �k} and the last sum in
(4.67) is a direct one. Obviously, if NL := dimSL < ∞ (as is the case when, e.g., the
spaces S� are only defined on a bounded domain D ⊂ Rd), then dim((SL)(k)) = Nk

L,

which is prohibitive. Sparse tensor approximations of k-point correlations (v(·, t))(k)
will be approximations in tensor products of spaces of piecewise constant functions
on meshes on coarser levels which are defined similarly to (4.67) by

(4.69) (̂SL)
(k)

:=
⊕

|�|1≤L

k⊗
j=1

W�j

where now |�|1 := �1 + ... + �k. If the mesh family M is generated by recursive
dyadic refinements of the initial triangulation T0, when NL = dimSL < ∞ (as is
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the case, e.g., on bounded domains D ⊂ Rd) it holds that

(4.70) dim(̂SL)
(k)

= O(NL(log2 NL)k−1) .

With (̂SL)
(k)

in (4.69), we also define the sparse tensor projection

(4.71) (̂PL)
(k)

:=
⊕

|�|1≤L

k⊗
j=1

(P�j − P�j−1) : L1(Rkd) → (̂SL)
(k)

.

The approximation properties of the sparse tensor projection are as follows (cf. the
Appendix): for any function U(x1, ..., xk) which belongs to (W s,1(Rd))(k), it holds
that

(4.72) ‖U − (̂PL)
(k)

U‖L1(Rkd) ≤ C(ΔxL)s| log ΔxL|k−1‖U‖(W s,1(Rd))(k)

where C > 0 depends only on k, d and on the shape regularity of the family M of
triangulations, but is independent of Δx.

4.5.2. Definition of the sparse tensor MLMC-FVM estimate. With the above no-
tions in hand, we proceed to the definition of the sparse tensor MLMC-FVM es-
timator of M(k)(u(·, t)). To this end, we modify the full tensor product MLMC
estimator (4.55) as follows (recall from (4.39) that EM [·] denotes the MC estimate
based on M samples): for a given sequence {M�}L�=0 of MC samples at level �, the
sparse tensor MLMC estimate of Mk[u(·, t)] is, for 0 < t < ∞, defined by

(4.73) ÊL,(k)[u(·, t)] :=

L∑
�=0

EM�
[P̂�

(k)
(v�(·, t))(k) − P̂�−1

(k)
(v�−1(·, t))(k)] .

We observe that (4.73) is identical to (4.55) except for the sparse formation of the
k-point correlation functions of the FV solutions corresponding to the initial data
samples ûi

0. In bounded domains, this reduces the work for the formation of the
k-point correlation function from Nk

L to O(NL(log2 NL)k−1) per sample at mesh
level L. As our convergence analysis ahead will show, use of sparse rather than full
tensor products will not entail any reduction in the order of convergence of the k-th
moment estimates.

4.5.3. Error and complexity analysis of the sparse tensor MLMC-FVM. We now
generalize Theorems 4.2, 4.6 and 4.8.

Theorem 4.9. Assume that (4.42) and that (3.13)-(3.15) hold. Assume further that
we are given a FVM (4.17)-(4.20) such that (4.16) holds and such that Assumption
4.3 is satisfied; in particular, assume that the deterministic FVM scheme converges

at rate s > 0 in L∞([0,∞];L1(Rd)). Then the MLMC-FVM estimate ÊL,(k)[u(·, t)]
defined in (4.73) satisfies, for every sequence {M�}L�=0 of MC samples, the error
bound

‖Mku(·, t) − ÊL,(k)[u(·, t;ω)]‖L2(Ω;L1(Rkd))

� (1 ∨ t)Δxs
L| log ΔxL|k−1

{
‖TV(u0(·, ω))‖kLk(Ω;dP) + ‖u0(· ;ω)‖kL∞(Ω;W s,1(Rd))

}
+

{∑L
�=0

Δxs
� | logΔx�|k−1

M
1/2
�

}{
‖u0(· ;ω)‖kL2k(Ω;W s,1(Rd))+t‖TV(u0(· ;ω))‖kL2k(Ω;dP)

}
.
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The total work to compute the MLMC estimates ÊL,(k)[u(· ; t)] on compact domains
D ⊂ Rd is therefore (with O(·) depending on the size of D)

(4.74) Ŵork
MLMC

L = O

(
L∑

�=0

M�Δx
−(d+1)
� | log Δx|k−1

)
.

Based on Theorem 4.9, we infer that the choice (4.59) of numbers M� of MC
samples at level � should also be used in the MLMC estimation of moments of
order k > 1 of the random entropy solution, provided the order s of the underlying
deterministic FVM scheme (4.17)-(4.19) satisfies the bound (4.62). The conversion
of the FVM approximations of the draws ûi(· , t;ω) of the random solution at time
t > 0 into a multi-level basis and the sparse tensor product formation in the MLMC
estimator (4.73) increases the work bounds (4.63) for the first moments only by a
logarithmic factor, so that, in terms of the computational work, we have with the
choices (4.59) of MC samples M�, the following error bound in terms of work in a
bounded domain D ⊂⊂ Rd:

(4.75) ‖Mku(·, t) − ÊL,(k)[u(·, t;ω)]‖L2(Ω;L1(Dk)) ≤ C(Ŵork
MLMC

L )−s′/(d+1)

for any 0 < s′ < s with the constant depending on D and growing as 0 < s′ → s ≤ 1.

5. Numerical examples

In this section, we present several numerical experiments to compare the stan-
dard MC-FVM and the MLMC-FVM. Both schemes are based on a underlying
finite volume deterministic solver. The aim is to compare the performance of both
schemes and corroborate the analysis presented in the previous section.

5.1. Burgers’ equation. We consider Burgers’ equation,

(5.1) ut(x, t, ω) +

(
u2(x, t, ω)

2

)
x

= 0, x ∈ [0, 1], t > 0, and ω ∈ Ω .

For simplicity, we discretize the computational domain uniformly in space and use
a monotone numerical scheme,

(5.2) un+1
j = un

j − Δt

Δx

(
F (un

j , u
n
j+1) − F (un

j−1, u
n
j )
)
.

Here, Δt and Δx are the time step and mesh size respectively and are related to
each other by the CFL condition (4.16). We denote

un
j ≈ 1

Δx

∫ xj+1/2

xj−1/2

u(x, tn)dx

and the numerical flux was chosen as the Rusanov flux,

(5.3)
F (un

j , u
n
j+1) =

1

2

(
f(un

j ) + f(un
j+1)

−max{|f ′(un
j )|, |f ′(un

j+1)|}(un
j+1 − un

j )
)
,

with flux f(u) = 1
2u

2. Note that the Rusanov flux results in the scheme (5.2) being
monotone, consistent and conservative, [9]. Hence the above scheme satisfies the
conditions of Assumption 4.3 and converges with rate 1/2 in the deterministic case.
Transparent Neumann type boundary conditions (i.e, ∂νu = 0 on the boundary ∂D
of the computational domain, with ν being the unit outward normal) were used in
all numerical experiments.
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5.2. Initial data with uncertain amplitude. In this experiment, we consider
the random Burgers’ equation with parametric initial data,

(5.4) u0(x, ω) = Y (ω) sin(2πx).

Here, Y (ω) is a uniformly distributed random variable taking values in (0, 1), i.e,
Y ∼ U(0, 1). The Burgers’ equation with the above initial data is solved with both
the MC-FVM and the MLMC-FVM based on the deterministic scheme (5.2). In
order to assess discretization and sampling errors, a numerical reference solution was
computed with M = 10000 samples on a uniform mesh of 212 = 4096 points. The
initial conditions and the reference solution at time t = 0.4 are shown in Figure 1.
As shown in Figure 1, the initial data is smooth but uncertain. As expected, the
smooth data evolves into discontinuities in the physical space and a shock has
formed near x = 0.5 at time t = 0.4. We compute the mean reference solution and
its standard deviation from the estimated second moment of the reference solution.
As is apparent from Figure 1, the random entropy solution’s mean field is also
discontinuous in space.
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(a) t = 0 (b) t = 0.4

Figure 1. Reference solution for the stochastic Burgers’ equation
(5.1) with uncertain initial amplitude (5.4). The graphs depict
estimated mean and estimated mean ± estimated standard devia-
tion.

We implemented the MC-FVM and the MLMC-FVM. Results for both methods
are shown in Figure 2. Both schemes are compared on a finest mesh of NL = 128
points. For the MC-FVM, we choose M = 128 MC samples as the formula M =
(Δx)−2s in (4.46) reduces to M = N (N being the number of mesh points) since the
convergence rate is s = 1

2 for the “first-order” scheme (5.2). The MLMC-FVM is

based on L = 5 consecutive levels with maximum level consisting of NL = 27 = 128
cells and minimum level L0 consisting of N0 = 23 mesh points. The number Ml of
MC samples at the mesh Tl are chosen according to formula (4.59) realized in this
particular case as Ml = 2L−lML with L being the maximum resolution. We choose
ML = 8 in this case. The estimated mean and variance of the random solution are
computed from the corresponding estimators and shown in Figure 2. Figure 2 shows
that solutions computed with MC and MLMC schemes are comparable. The MC
solutions appear to be slightly more accurate for both the mean and the variance.
In order to quantify the errors, we compute the relative error in the mean and in the
variance (details of how this error is computed will be described later in this section)
and present the error vs. mesh resolution in Figure 3. The results are plotted in
a log-log format with relative error in the y-axis and the number of mesh points
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Figure 2. Computed solutions for the stochastic Burgers’ equa-
tion (5.1) with uncertain initial amplitude (5.4). The graphs depict
estimated mean and estimated variance at time t = 0.4 computed
with the MC-FVM and MLMC-FVM, respectively.
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Figure 3. A log-log plot for the relative error (y-axis) vs. reso-
lution (x-axis) for the stochastic Burgers’ equation (5.1) with un-
certain initial amplitude (5.4). MC-FVM and MLMC-FVM are
compared.

in the x-axis. The number of samples at each resolution is fixed by the formulas
described before. In particular, we take 8 different levels for the MLMC scheme
with the finest resolution consisting of 210 mesh points. The number of samples
for the finest resolution of the MLMC-FVM is fixed at ML = 8. The results show
that both, MC-FVM and MLMC-FVM converge in the mean and variance at a
rate slightly better than the expected rate of 0.5. The differences in error between
both methods is minor for the mean, whereas the MC-FVM has consistently lower
errors in the variance. The analysis in the previous section suggests that the MC-
FVM and the MLMC-FVM will be comparable in accuracy at the same resolution
of physical space. The principal difference between the two methods lies in their
efficiency, measured in terms of work or computational time. Hence, we measure
the runtime (in seconds) for each scheme and present the error vs. runtime in
Figure 4. The results are plotted in log-log and show that there is a consistent
gain in efficiency with the MLMC-FVM. For the mean, the speedup achieved with
the MLMC-FVM is of at least two orders of magnitude (a factor of about 100) as
compared to the MC-FVM. This considerable gain in efficiency achieved by MLMC-
FVM allows accurate numerical solution of realistic hyperbolic conservation laws
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Figure 4. A log-log plot for the relative error (y-axis) vs. runtime
(x-axis) for the stochastic Burgers’ equation (5.1) with uncertain
initial amplitude (5.4). MC-FVM and MLMC-FVM are compared.
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Figure 5. A log-log plot for the relative error (y-axis) vs. runtime
(x-axis) for the stochastic Burgers’ equation (5.1) with uncertain
initial amplitude (5.4). The MC-FVM and MLMC-FVMs are com-
pared and the sensitivity of the results to ML, number of samples
at the finest resolution of the MLMC methods is evaluated. We
choose ML = 4, 8, 16 in the above simulations.

in several spatial dimensions with random initial data which were hitherto beyond
the scope of numerical schemes. The speedup with respect to errors in variance is
more modest but still at least an order of magnitude, on this problem.

5.3. Effect of minimum number of samples on MLMC-FVM. One of the
free parameters in the above simulation was the choice of the number ML of samples
at the finest resolution of the MLMC-FVM. By the formula Ml = ML2L−l, we see
that the number of samples at the finest resolution might have a significant bearing
on the results. In order to investigate this issue, we choose three different values of
ML i.e, ML = 4, 8, 16 and present the relative error vs. runtime results in Figure 5.
The results show that the speedup is at least asymptotically independent of ML.
For the computed resolutions, ML = 16 appears to be a good choice as the speedup
with respect to mean error is a factor of 130 and with respect of variance is a factor
of 20. However, the choice ML = 4 (observe that the slope of MLMC with ML = 4
in Figure 5 is steeper) appears to be the most efficient asymptotically implying that
very few samples need to be chosen at the finest resolution.
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Figure 6. Reference solution for the stochastic Burgers’ equation
(5.1) with uncertain initial phase (5.5). The graphs depict esti-
mated mean and estimated mean ± estimated standard deviation.
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Figure 7. Computed solutions for the stochastic Burgers’ equa-
tion (5.1) with uncertain initial phase (5.5). The graphs depict
estimated mean and variance at time t = 0.4 estimated with the
MC and MLMC methods, respectively.

5.4. Initial data with uncertain phase. In this experiment, we consider the
random Burgers’ equation with the parametric random initial data,

(5.5) u0(x, ω) = sin(2π(x + 0.1Y (ω)).

Here, Y (ω) ∼ U(0, 1). The Burgers’ equation with above initial data is solved
with both the MC and MLMC methods based on the deterministic scheme (5.2).
In order to compute errors, we computed a reference solution with M = 10000
samples on a refined mesh of 212 = 4096 points. The initial conditions and the
reference solution at time t = 0.4 are shown in Figure 6. As shown in Figure 6,
the mean field in this case is no longer discontinuous (compare with Figure 1) but is
Lipschitz continuous. This rather surprising smoothness is generic for problems with
uncertain shock locations (as in this case) and will be explained in a forthcoming
paper [24]. Furthermore, the variance in this case is concentrated at the shocks.
We show results computed with the MC and MLMC methods for a resolution of
128 mesh points (5 different levels in the MLMC method) in analogy with the
previous experiment. The results of Figure 7 show that both the MC and MLMC
methods approximate the reference solution reasonably well. In this case, the error
of the MLMC-FVM appears to be larger than that of the MC-FVM. Note that
the variance computed by the MLMC method, shown in Figure 7(b), has a small
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negative value in front of the shock. This is due to the fact that the MLMC
estimator may not satisfy maximum principles due to its definition as a telescopic
sum. Hence, we might end up with small undershoots on unresolved meshes as is
the case for the solution computed on a fairly coarse mesh of 128 points on the finest
level. Further discussion of this phenomenon is provided in [21]. The quantitative
comparison of both methods is shown in Figures 8 and 9. In Figure 8, we show a
log-log plot for the relative error (in both mean and variance) vis a vis the number
of mesh points. The MLMC method uses ML = 16 as the minimum number of
samples. The results show that the expected rates of convergence are realized. For
a fixed mesh resolution, the MC method is more accurate than the MLMC method.
However, the MLMC method is much faster as shown in Figure 9 where the error vs.
runtime is plotted. As before, the MLMC method displays a speedup of two orders
of magnitude with respect to the mean and an order of magnitude with respect
to the variance. As in the previous experiment, the asymptotic results were not
sensitive to the number of samples at the finest resolution of the MLMC method.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log(Number of mesh points)

lo
g
(e

rr
o
r)

 

 

MC

MLMC

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

log(Number of mesh points)

lo
g
(e

rr
o
r)

 

 

MC

MLMC

(a) mean (b) variance

Figure 8. A log-log plot for the relative error (y-axis) vs. resolu-
tion (x-axis) for the stochastic Burgers’ equation (5.1) with uncer-
tain initial phase (5.5). MC-FVM and MLMC-FVM are compared.
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Figure 9. A log-log plot for the relative error (y-axis) vs. runtime
(x-axis) for the stochastic Burgers’ equation (5.1) with uncertain
initial phase (5.5). MC-FVM and MLMC-FVM are compared.
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5.4.1. Computation of the error. The error estimates (4.43) for the MC-FVM and
(4.58) for the MLMC-FVM are based on the norm L2(Ω;L1(Rd)). In order to
compute the error in this norm, we fix an index k and compute the following
relative error,

REm,v
k = 100 ×

‖Um,v
ref − Um,v

k ‖l1
‖Um,v

ref ‖l1
.

Here, m, v refer to the mean and the variance respectively and Uref denotes the
reference solution. The computed solution for index k is denoted by Um,v

k . The
index k refers to independent multiple runs of the schemes and is varied in order
to obtain different realizations of the probability space. Then, the error is summed
over k according to

REm,v =

√√√√ K∑
k=1

(REm,v
k )2.

The free parameter at our disposal is the number K of independent runs for each
scheme. We investigate the sensitivity of the error with respect to this parameter in
the following. In Figure 10, we plot the relative error (described above) for different
values of K and for two different mesh resolutions consisting of 64 and 256 points
respectively. We see from Figure 10 that there is some variation in the error for
small values of K but they settle down to an approximate constant for moderate
values of K ( K ≈ 30 in this example). Furthermore, the dependence with respect
to K becomes even less pronounced when the mesh resolution is increased. The
statistics for the error dependence with respect to the number of runs is shown
by plotting empirical histograms in Figures 11 and 12 respectively. The results
indicate that certain runs will lead to outliers in terms of either small but mostly
large relative errors. Hence, one should use a moderate number of runs to compute
the error, particularly on coarse mesh resolutions. Interestingly, the number of
outliers as well as their spread seems to be more pronounced for the MC method
compared to the MLMC method.
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Figure 10. The relative mean error vs. maximum run parameter
K for the stochastic Burgers’ equation (5.1) with uncertain initial
phase (5.5). MC-FVM and MLMC-FVM are compared.
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Figure 11. Histograms showing the relative error in the mean for
each run of the MC and MLMC method for different values of max-
imum run parameter K = 5, 30, 180, 1080. The mesh resolution is
64 points
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Figure 12. Histograms showing the relative error in the mean
for each run of the MC and MLMC method for different values of
maximum run parameter K = 5, 30, 180. The mesh resolution is
256 points

5.5. Euler equations. The theory for the MC-FVM and MLMC-FVM has been
presented in the case of scalar conservation laws in this paper. However, most of the
interesting examples of conservation laws involve systems. We are constrained in
our efforts to obtain rigorous convergence results for systems by the lack of rigorous
error estimates or convergence results for the deterministic FVM for systems of
equations. However, we can readily extend the algorithms for systems and evaluate
the performance of the MC-FVM and MLMC-FVM numerically. We will do so
in this section (we refer the reader also to [21] for more detailed and larger scale
numerical experiments).

Another limitation of the MLMC method as suggested by the error vs. work
estimate in Section 4 is order condition (4.62). In one space dimension, this bound
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implies that the MLMC method will have the same error vs. work estimate as
the deterministic finite volume scheme only if the convergence rate of the under-
lying finite volume scheme is less than 1. This condition is satisfied by first-order
schemes and the numerical results in the preceding section corroborated the ex-
pected speedup of the MLMC method when compared to the MC method.

First-order schemes are rarely employed for practical computations as they are
too diffusive. High resolution schemes based non-oscillatory limiter based recon-
struction procedures are frequently used. We seek to investigate whether the MLMC
method together with a high resolution formally second-order scheme will still be
faster and more efficient than the standard MC method with the same underlying
scheme. This evaluation is performed below.

We consider the Euler equations of gas dynamics in one space dimension,

(5.6)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + ((E + p)u)x = 0.

Here, ρ is the density, u is the velocity, p is pressure and E is the total energy. The
variables are related by an ideal gas equation of state:

E =
p

γ − 1
+

ρu2

2
,

with γ being the gas constant. The Euler equations are approximated by a standard
first-order (in space and time) scheme of the form,

(5.7) Un+1
j = Un

j − Δt

Δx

(
F(Un

j ,U
n
j+1) − F(Un

j−1,U
n
j )
)
.

Here, Δt and Δx are the time step and mesh size respectively for a uniform dis-
cretization. The vector of unknowns is denoted by U = {ρ, ρu,E} and the flux
vector by f = {ρu, ρu2 + p, (E + p)u}. For convenience, we consider the Rusanov
flux:

F(Un
j ,U

n
j+1) =

1

2

(
f(Un

j ) + f(Un
j+1)

− max{|un
j | + cnj , |un

j+1| + cnj+1}ID3×3(U
n
j+1 −Un

j )
)
.

(5.8)

Here, c denotes the sound speed c =
√

γp
ρ .

The scheme can be readily generalized to second-order of accuracy by using a
piecewise linear reconstruction based on the minmod limiter and a strong stability
preserving Runge-Kutta method, [17]. We use this scheme as the second-order
scheme in our subsequent simulations.

5.5.1. Sod shock tube with uncertain shock location. In this experiment, we consider
the Euler equations (5.6) with Riemann initial data,

(5.9) {ρ0(x, ω), u0(x, ω), p0(x, ω)} =

{
{3.0, 0.0, 3.0}, if x < 0.1Y (ω),

{1.0, 0.0, 1.0}, if x > 0.1Y (ω).

Here, Y (ω) ∼ U(0, 1). Note that the above initial data is a random version of the
standard Sod shock tube with an uncertain initial shock location.

The initial conditions and a reference solution (computed with a second-order
MC scheme on a mesh of 2048 points with 10000 samples) are shown in Figure 13.
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Figure 13. Reference solution for the stochastic Euler equations
with uncertain initial shock location (5.9). The graphs depict es-
timated mean and estimated mean ± standard deviation.
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Figure 14. Computed solutions for the stochastic Euler equations
with uncertain initial shock location (5.9). The graphs depict es-
timated mean and estimated variance at time t = 0.5 with the
MC(2) and MLMC(2) methods.

The results show that the initial mean and variance break into three waves—one
corresponding to the rarefaction wave, one to a contact and the right most wave
to a shock in the deterministic case. However, the mean representations of the
contact and shock are Lipschitz continuous. This is very similar to the results
obtained for the scalar case (see Figure 6) where the mean field was also Lipschitz
for the uncertain shock location case. In this case, the random solution’s variance is
concentrated at the contact discontinuity. We denote the MC scheme with a first-
order FVM as MC and the MC scheme with a second-order FVM as the MC(2)
scheme. The corresponding combination of the MLMC with first- and second-order
FVM are termed as MLMC and MLMC(2), respectively. A qualitative comparison
of all the four schemes is shown in Figure 14, where we compare the MC(2) and
MLMC(2) schemes on a mesh of 128 points. The MLMC schemes include 5 levels
of resolution with the finest resolution consisting of 128 points and the coarsest of
8 points. The number of samples for the MC and MC(2) scheme are set to 128,
in analogy with the scalar case. For the MLMC scheme, the number of samples
are chosen by the formula, Ml = ML2L−l with ML = 8. The MLMC(2) scheme
requires samples chosen by Ml = ML22(L−l), based on the heuristic argument that
the formally second-order schemes will converge twice as fast as the first-order
scheme and the formula (4.59). The results suggest that the schemes are more
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Figure 15. Computed solutions for the stochastic Euler equations
with uncertain initial shock location (5.9). We show log of mean
error at time t = 0.5 in the x-axis with respect of log of resolution
and log of the runtime (y-axis) for both the MC(2) and MLMC(2)
methods.

diffusive for the Euler equations and the errors in mean but more acutely in the
variance are larger than in the scalar case. Furthermore, the difference between the
first-order and second-order schemes is substantial with the second-order schemes
being considerably more accurate near the mean representations of shock and the
contact. There are very minor difference between the MC and MLMC methods in
this realization.

The errors in mean are quantified in Figure 15 where we plot the relative mean
error vs. mesh resolution for all four schemes. As expected, the second-order
schemes are more accurate than the first-order schemes. Furthermore, the computed
error is consistently lower with the MC schemes when compared to the MLMC
schemes, reinforcing the conclusions arrived in the scalar case. On the other hand,
the MLMC schemes are faster as shown in the right graph of Figure 15 where we
plot the error vs. runtime in log-log. The figure shows that the MLMC scheme
is about two orders of magnitude faster (for the same relative error) as the MC
scheme. This is similar to the speedup seen in the scalar case. More surprisingly,
the MLMC(2) scheme is also about an order of magnitude faster than the MC(2)
scheme. This is not predicted by the theory as the second-order case is not covered
due to the bound (4.62).

5.5.2. Sod shock tube with uncertain shock location and uncertain amplitude. In this
experiment, we consider the Euler equations (5.6) with Riemann initial data,

(5.10)

{ρ0(x, ω), u0(x, ω), p0(x, ω)}

=

{
{3.0 + 0.1Z(ω), 0.0, 3.0}, if x < 0.1Y (ω),

{1.0, 0.0, 1.0}, if x > 0.1Y (ω).

Here, Y (ω), Z(ω) ∼ U(0, 1). Hence, we have uncertainty in terms of two parameters:
uncertain shock location and uncertain amplitude.

The initial data and reference solution (computed with the same configuration
as the previous numerical experiment) are shown in Figure 16. Comparing with
the previous numerical experiment, we observe that there is a subtle competition
between the two sources of uncertainty. There is some uncertainty in the amplitude
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of left most state but this uncertainty is considerably lower for the state to the left
of the contact and almost vanishes for the state to the right of the contact. The non-
linearity appears to distribute uncertainty spatially with most of the uncertainty
being in the location of the mean shock and mean contact. Furthermore, the mean
shock and contact are both Lipschitz continuous.
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Figure 16. Reference solution for the stochastic Euler equations
with uncertain initial shock location and amplitude (5.10). We
show estimated mean and estimated mean ± standard deviation.

We compare the four schemes on a mesh of 128 points in Figure 17 and find sim-
ilar results to the previous experiment. The second-order schemes are considerably
more accurate but for both first- and second-order schemes, there are very minor
differences between the solutions computed with the MC and MLMC schemes.
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Figure 17. Computed solutions for the stochastic Euler equations
with uncertain initial shock location and amplitude (5.10). The
graphs depict estimated mean and estimated variance at time t =
0.5 with the MC(2) and MLMC(2) methods.

The error vs. resolution and error vs. runtime plots shown in Figure 18 are
very similar to those in the previous experiments. For a given resolution, the MC
schemes are more accurate than their MLMC counterparts at the same order. How-
ever, the MLMC schemes are consistently better in terms of accuracy versus CPU
time. Specifically, the MLMC scheme gives a speedup of two orders of magnitude
compared to the MC scheme whereas the MLMC(2) scheme gives at least an order
of magnitude compared to the MC(2) scheme. In fact, in this case the first-order
MLMC scheme is more efficient than the second-order MC(2) scheme.
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Figure 18. Computed solutions for the stochastic Euler equations
with uncertain initial shock location and amplitude (5.10). We
show log of mean error at time t = 0.5 in the x-axis with respect
of log of resolution and log of the runtime (y-axis) for both the
MC(2) and MLMC(2) methods.

6. Conclusions

We consider scalar conservation laws in several space dimensions with uncertain
initial data. The proper notion of random entropy solution is formulated and shown
to be well-posed. Further, we show existence of higher moments of the solution and
for the k-point correlation functions provided that the initial data has the desired
regularity.

We propose Monte Carlo (MC) methods, together with standard finite volume
schemes to approximate the random entropy solution. The MC-FVM is proved to
converge to this solution. We derive rate of convergence estimates which are used
to derive accuracy vs. work estimates which indicate that the MC methods will be
computationally slow.

Hence, we propose a new class of multi-level Monte Carlo (MLMC) methods
and prove them to be convergent. These methods are designed to have the same
accuracy vs. work estimate as a deterministic FVM (at least for low order schemes).
Hence, these methods will be much faster than the standard MC-FVM.

We present several numerical experiments for scalar conservation laws in one
space dimension that reinforce the theory. In particular, the MLMC method yields
about two orders of magnitude speedup vis a vis the MC method in computing the
mean. Furthermore, the speedup is more than an order of magnitude for computing
the variance.

Although our theoretical results are restricted to scalar conservation laws, the
MLMC algorithm can be easily extended to include systems like the Euler equa-
tions. Numerical experiments suggest that the MLMC method continues to yield a
speedup of two order of magnitude over the MC method even in this case. This is
corroborated by detailed large scale numerical experiments in [21].

Our theory indicates a limitation on the optimal complexity of the MLMC-
FVM by restricting it to low-order methods. In particular, the optimal rate is
realized for first-order methods in one space dimension. However, computational
results, also in [21], indicate that the MLMC FVM continues to yield a speedup
of at least one order of magnitude, even when it is coupled with a second-order
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high resolution finite volume scheme, with corresponding increase in accuracy of
estimated statistical quantities.

The results of this paper clearly suggest replacing the standard MC method by
the MLMC variant as it is much faster at comparable accuracy. Given a deter-
ministic FV solver, the MLMC-FVM is nonintrusive and as easy to code and to
parallelize as the standard MC-FVM. We therefore expect it to be competitive in
terms of computational efficiency with respect to the widely used gPC stochastic
Galerkin and collocation methods. A detailed comparison of the MLMC schemes
with gPC discretizations will be considered in a forthcoming paper. Further work
in progress includes implementing the MLMC-FVM in more than one space dimen-
sion. As the MLMC-FVM is obviously suited for massively parallel implementation,
tackling realistic problems in two and three spatial dimensions with random data
appears feasible. This is corroborated by our numerical experiments in [21].

7. Appendix: Analysis of sparse tensor approximations in L1

We let D ⊂ Rd denote a bounded Lipschitz polyhedron with plane faces, and
T0 = {K} a regular triangulation of D into simplices K. For � = 1, 2, ..., we denote
by T� a sequence of triangulations obtained from T0 by uniform subdivision. Then
h� = max{diam(K) : K ∈ T�} = 2−�h0. For all � ∈ N0, each K ∈ T� is an affine

image of the unit simplex K̂: for each x ∈ K, it holds K 
 x = FK(x̂) = AK x̂+ bK
with x̂ ∈ K̂, and with det(AK) = O(hd

K). Recall that for u ∈ L1(D), P�u denotes
the projection of u onto the piecewise constant functions on T�. We claim that there
exists a constant ĉ(s, κ) where κ is as in (4.50), such that for every u ∈ W s,1(D),
0 ≤ s ≤ 1 it holds that

(7.1) ∀� ∈ N0 , 0 ≤ s ≤ 1 : ‖u− P�u‖L1(D) ≤ ĉ(s, κ)hs
�|u|W s,1(D).

This estimate is a special case of general results on spline interpolation. We present
here a direct proof of (7.1). We distinguish the cases s = 0, s = 1 and 0 < s < 1.
The case s = 0 is merely the L1(D)-boundedness of the projector P�. In case s = 1,

we note that in K̂ holds a Poincaré-type inequality: there exists a constant ĉ > 0
such that for every û ∈ W 1,1(K̂),

‖û− 1

|K̂|

∫
K̂

ûdx̂‖L1(K̂) ≤ ĉ‖∇̂û‖L1(K̂) .

This follows by the standard argument that ĉ = 0 would contradict the compactness
of the embedding W 1,1(K̂) ⊂ L1(K̂) (see, e.g., [29, Theorem 4.2.1] with m = 1,

k = 0 and p = 1). Mapping K̂ affinely to K ∈ T�, we find

∀K ∈ T� : ‖u− 1

|K|

∫
K

udx‖L1(K) ≤ chK‖∇u‖L1(K) .

Here, the constant c > 0 depends only on the shape regularity constant κ of T�.
Summing the estimate over K ∈ T� implies (7.1) for s = 1.

Assume next 0 < s < 1 and recall the definition of the | ◦ |W s,1(K) seminorm on
K ∈ T�:

|u|W s,1(K) :=

∫
x∈K

∫
y∈K

|u(x) − u(y)|
|x− y|d+s

dxdy.
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From the (compact) embedding W s,1(K̂) ⊂ L1(K̂) we infer once more the existence
of ĉ(s) > 0 such that

‖û− 1

|K̂|

∫
K̂

ûdx̂‖L1(K̂) ≤ ĉ(s)

∫
K̂

∫
K̂

|û(x̂) − û(ŷ)|
|x̂− ŷ|d+s

dx̂dŷ = ĉ(s)|û|W s,1(K̂) .

Inserting here the affine change of variables x = AK x̂+ bK , y = AK ŷ + bK we find

‖u− 1

K

∫
K

udx‖L1(K) ≤ c(s, κ)hs
K

∫
K

∫
K

|u(x) − u(y)|
|x− y|d+s

dxdy = c(s, κ)hs
K |u|W s,1(K),

for every K ∈ T�. Summing this bound over all K ∈ T� implies for u ∈ W s,1(D),

‖u− P�u‖L1(D) ≤ c(s, κ)
∑
K∈T�

hs
K |u|W s,1(K) ≤ c(s, κ)hs

�|u|W s,1(D)

which implies (7.1) for 0 < s < 1. The error bound (4.72) follows then in a standard
way (see, e.g. [26]).
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