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LINEARIZED AUGMENTED LAGRANGIAN AND

ALTERNATING DIRECTION METHODS FOR

NUCLEAR NORM MINIMIZATION

JUNFENG YANG AND XIAOMING YUAN

Abstract. The nuclear norm is widely used to induce low-rank solutions for
many optimization problems with matrix variables. Recently, it has been
shown that the augmented Lagrangian method (ALM) and the alternating di-
rection method (ADM) are very efficient for many convex programming prob-
lems arising from various applications, provided that the resulting subproblems
are sufficiently simple to have closed-form solutions.

In this paper, we are interested in the application of the ALM and the ADM
for some nuclear norm involved minimization problems. When the resulting
subproblems do not have closed-form solutions, we propose to linearize these
subproblems such that closed-form solutions of these linearized subproblems
can be easily derived.

Global convergence results of these linearized ALM and ADM are estab-

lished under standard assumptions. Finally, we verify the effectiveness and
efficiency of these new methods by some numerical experiments.

1. Introduction

Let X∗ ∈ Rm×n be an unknown matrix and b = AX∗ ∈ Rp (p < mn), where A
stands for a linear mapping from Rm×n to Rp. We are often asked to reconstruct X∗

from b with A given. Clearly, without further conditions this task is not trackable
since p < mn. However, when X∗ is a low-rank matrix, this reconstruction becomes
possible via solving the following convex programming model:

(1.1) minX∈Rm×n {‖X‖∗ : AX = b} ,
where ‖ · ‖∗ is the so-called nuclear norm (also known as trace norm or Ky Fan
norm) defined as the sum of all singular values. Note that the nuclear norm is the
convex envelope of the rank function over the unit ball under the spectral norm
(see, e.g., [14]), and it is a widely used surrogate of the rank function to induce low-
rank solutions in various areas such as machine learning, statistics, engineering,
etc. When A is a sampling operator collecting a fraction of entries of a matrix,
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(1.1) reduces to the well-known matrix completion problem. We refer to [8, 9] for
some breakthrough results on the matrix completion problem, and [40] for recent
development on (1.1) with a generic linear operator A.

In practice, b is often obtained through hardware implementation, and it usually
suffers from a nontrivial level of noise. That is, b = AX∗ + ω, where ω contains
measurement errors dominated by certain normal distribution. With the consider-
ation of noise, (1.1) is often relaxed to the nuclear norm regularized least squares
problem

(1.2) minX∈Rm×n ‖X‖∗ +
1

2μ
‖AX − b‖22,

or its constrained alternative

(1.3) minX∈Rm×n {‖X‖∗ : ‖AX − b‖2 ≤ δ} ,

where μ > 0 and δ > 0 are parameters reflecting the level of noise. Based on
their respective optimality conditions, the models (1.2) and (1.3) are theoretically
related in the sense that solving one of them can determine a value of the noise
parameter for the other such that these two models share a common solution. In
the area of machine learning, (1.2) is of particular interest. For example, it is shown
in [1, 2, 36, 38] that certain multi-task learning problems with least squares loss
functions can be exactly captured by (1.2). On the other hand, the model (1.3) is
often preferred when a reasonable estimation of the noise level is available; see [31].

In practice, it is not trivial to solve (1.1)-(1.3), and there appears to be a growing
interest in developing customized algorithms, particularly for large-scale cases of
these nuclear norm involved problems. We now briefly review some influential
approaches to these problems. First, the convex problems (1.1)-(1.3) can be easily
reformulated into semidefinite programming (SDP) problems (see, e.g., [14, 44]),
and thus generic SDP solvers based on interior-point methods such as SeDuMi
[45] and SDPT3 [51] are in principle applicable. However, as pointed out in [26,
38, 40], the interior-point approach is prohibitively inefficient for large-scale (or
even medium) cases of these problems. In [40], a projected subgradient approach
is suggested to solve (1.1), whose computation at each iteration is dominated by
one singular value decomposition (SVD). The projected subgradient approach is
easily implementable, and it can be applied to large-scale cases of (1.1). However,
this projected subgradient method suffers from slow convergence, especially when
high accuracy is required. In [40], the authors also develop the UV -parametrization
approach to general low-rank matrix reconstruction problems. Specifically, the low-
rank matrix X is decomposed into the form UV �, where U ∈ Rm×r and V ∈ Rn×r

are tall and thin matrices. We refer to [54] for a similar approach. This UV -
parametrization approach is capable of avoiding the computation of SVD (see, e.g.,
[54]), and it benefits from the reduction of dimensionality from mn to (m + n)r
(normally, r � min(m,n) for optimization problems with the low-rank concern).
However, the parameter r is not known a priori for most of applications, and it has
to be estimated or dynamically adjusted, which might be difficult to realize. The
classical augmented Lagrangian method (also known as the method of multipliers,
see, e.g., [25, 39, 46]) is also discussed in [40] for low-rank matrix recovery problems
based on this UV -parametrization.

In the context of the matrix completion problem where the linear operator A
is a sampling (or projection/restriction) operator (see (1.4) for details), a singular
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value thresholding approach is proposed in [4] for solving a regularized version of
(1.1), and a fixed point continuation scheme is proposed in [32] for solving (1.2).
Moreover, some accelerated proximal gradient algorithms based on Nesterov’s work
[33, 34] are developed in [26, 49] for solving (1.2). In particular, the method in [49]
terminates in O(1/

√
ε) iterations to attain an ε-optimal solution. The method in

[26] achieves the convergence rate O(1/k2) for a more general case of (1.2) where
the least squares loss function is replaced by a generic smooth loss function. In
[31], a proximal point algorithmic framework is proposed for solving a generalized
constrained nuclear norm minimization problem. In [38], the authors first show
that a special case of (1.2) arising from multi-task learning (see (6.1) for details)
is reducible to the case where the coefficient matrix has full column rank. Then,
they propose several gradient type methods to solve both (6.1) and its dual, with
the effort of reducing the computation of SVD.

Recently, it has been shown in the literature that the augmented Lagrangian
method (ALM) [25, 39] and the alternating direction method (ADM) [17] are very
efficient for some convex programming problems arising from various applications,
provided that the resulting subproblems are simple enough to have closed-form
solutions or can be easily solved up to high precisions. Here, we mention a few of
such applications: image processing [13, 19, 35, 43], compressive sensing [55], SDP
[47, 53] and statistics [22, 29, 48]. In particular, the ADM is applied to solve nuclear
norm based matrix completion problems in [10] where the sampling operator A is
in the form of

(1.4) AX = XΩ.

Here, Ω ⊂ {1, 2, . . . ,m} × {1, 2, . . . , n} is an index set reflecting known entries of
X∗, and XΩ is a vector formed by the components of X with indices in Ω. Due
to the simplicity of the linear operator A, all the ADM subproblems of the matrix
completion problem can be solved exactly by explicit formulas; see [10] for details.
In general, the ADM derived in [10] (and those in Section 2 of the present paper)
can be viewed as the split Bregman method discussed in [7, 19] for the general
problems with �1-like regularization where the augmented Lagrangian functions
are minimized by only one round of alternating minimization.

In this paper, we first focus on the special case of (1.1)-(1.3) where AA∗ = I.
Here and hereafter A∗ and I represent the adjoint of A and the identity operator,
respectively. In particular, we show that when the ADM is applied to this case,
the resulting subproblems for (1.1)-(1.3) all have closed-form solutions. We then
concentrate on the general case where AA∗ �= I. The ALM and the ADM are
also applicable to (1.1)-(1.3), after some easy reformulations. However, when the
ALM and the ADM are applied to (1.1)-(1.3) with a generic linear operator A,
some of the resulting subproblems no longer have closed-form solutions, and the
efficiency of the ALM and the ADM depends heavily on how to solve these harder
subproblems. We hence propose to linearize those harder subproblems such that
closed-form solutions of the linearized subproblems can be achieved. Consequently,
linearized ALM and ADM are developed for solving (1.1)-(1.3) with a generic linear
operator A. The efficiency of these linearized methods is well illustrated by some
numerical experiments including comparisons with some existing efficient methods.

Throughout this paper, we use the following notation. We let 〈·, ·〉 be the stan-
dard inner product in a finite dimensional Euclidean space, ‖ ·‖ be the 2-norm, and
‖ · ‖F be the Frobenius norm for matrix variables. The transpose of a real matrix
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is denoted by the superscript “�”. The projection operator under the Euclidean
distance measure is denoted by P. Other notation will be introduced as it occurs.

The rest of this paper is organized as follows. In Section 2, we apply the ADM
to solve (1.1)-(1.3) with AA∗ = I. Sections 3 and 4 concentrate on (1.1)-(1.3) with
a generic linear operator A. Specifically, in Section 3 we present linearized ALM for
(1.1) and establish its global convergence. Then, in Section 4, we extend the same
linearization idea to solve (1.2) and (1.3), and then derive linearized ADMs. Global
convergence of the linearized ADMs are also established. In Section 5, we clarify
the connections of the linearized ALM and ADMs with some existing work in the
literature. Numerical results, including comparisons with some existing methods,
are reported in Section 6. Finally, conclusions are drawn in Section 7.

2. ADMs for (1.1)-(1.3)

In this section, we consider the special case of (1.1)-(1.3) with A satisfying
AA∗ = I, which has wide applications such as the aforementioned matrix comple-
tion problem. We show that when the ADM [17] is applied to this special case, all
the resulting subproblems have closed-form solutions. We start this section with
some preliminaries which are convenient for the presentation of algorithms later.

For δ ≥ 0, we define

(2.1) Bδ := {U ∈ Rm×n : ‖AU − b‖ ≤ δ}.
In particular, B0 = {U ∈ Rm×n : AU = b}.

For any α > 0, it is easy to verify that

(2.2) (I + αA∗A)−1 = I − α

1 + α
A∗A,

where (I + αA∗A)−1 denotes the inverse operator of I + αA∗A.
For δ > 0 and Y ∈ Rm×n, the projection of Y onto Bδ is given by

(2.3) PBδ
(Y ) = Y +

η

η + 1
A∗ (b−AY ) ,

where

(2.4) η = max{‖AY − b‖/δ − 1, 0}.
In particular,

(2.5) PB0
(Y ) = Y + A∗(b−AY ).

To see (2.3), we have that

PBδ
(Y ) = argminX∈Rm×n{‖X − Y ‖2F : ‖AX − b‖ ≤ δ},

whose solution is characterized by the following system (deriving the KKT condition
of the above minimization problem):

X − Y + ηA∗(AX − b) = 0,

‖AX − b‖ ≤ δ, η ≥ 0,

η (‖AX − b‖ − δ) = 0.

Obviously, X := PBδ
(Y ) and η defined respectively in (2.4) and (2.3) satisfy the

above system.
Similarly, consider the problem:

min
X∈Rm×n

{‖X − Y ‖2F : AX = b},
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whose KKT system is given by

X − Y −A∗h = 0 and AX = b.

Then, it is easy to check that X = PB0
(Y ) defined in (2.5) and h := b−AY satisfy

the above system. Hence, (2.5) is justified.
With given Y ∈ Rm×n and δ > 0, let Y = UΣV � be the SVD of Y and I be

the identity matrix. We define the following “shrinkage” operator

(2.6) Dδ(Y ) := U(Σ − δI)+V
�,

where (a)+ := max{a, 0}. Then, it can be shown that (see, e.g., [4, 32])

(2.7) Dδ(Y ) = argminX∈Rm×n

{
δ‖X‖∗ +

1

2
‖X − Y ‖2F

}
.

Next, we start to derive the ADMs for (1.1)-(1.3), in the order of (1.1), (1.3)
and (1.2).

By introducing an auxiliary variable Y ∈ Rm×n, (1.1) is equivalently trans-
formed to

(2.8) min
X,Y

{‖X‖∗ : X = Y, Y ∈ B0}.

The augmented Lagrangian function of (2.8) is given by

(2.9) L(X,Y, Z, β) := ‖X‖∗ − 〈Z,X − Y 〉 +
β

2
‖X − Y ‖2F ,

where Z is the Lagrange multiplier and β > 0 is the penalty parameter for the
violation of the linear constraints. For simplicity, throughout this paper we assume
that β > 0 is fixed.

Overall speaking, the ADM [17] is a practical variant of the ALM [25, 39] for
linearly (and possibly other simple set) constrained convex programming problems
with separable objective functions. For the extensive study of ADM in the context
of convex programming and variational inequalities, we refer to, e.g., [6, 12, 15, 16,
18, 21, 27, 50]. When it is applied to solve (2.8), the ADM minimizes L(X,Y, Z, β)
with respect to X and Y in an alternating order at each iteration, differing from
the ALM which minimizes L(X,Y, Z, β) with respect to X and Y simultaneously.
More specifically, given Y k, Zk and β, the iterative scheme of ADM for (2.8)
reads

Xk+1 = arg min
X

L(X,Y k, Zk, β),(2.10a)

Y k+1 = arg min
Y ∈B0

L(Xk+1, Y, Zk, β),(2.10b)

Zk+1 = Zk − β(Xk+1 − Y k+1).(2.10c)

It is easy to see that the X-subproblem (2.10a) is reducible to a problem in the
form of (2.7), and it thus can be solved by the shrinkage operator (2.6). On the
other hand, the Y -subproblem (2.10b) amounts to a projection problem onto B0,
and it thus can be solved by (2.5). Specifically, simple computation shows that the
new iterate (Xk+1, Y k+1, Zk+1) in (2.10) can be explicitly represented by

Xk+1 = D1/β(Y k + Zk/β),(2.11a)

Y k+1 = PB0
(Xk+1 − Zk/β),(2.11b)

Zk+1 = Zk − β(Xk+1 − Y k+1),(2.11c)
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which shows that all the resulting subproblems are simple enough to have closed-
form solutions when the ADM is applied to (1.1).

The application of ADM to (1.3) is completely analogous to that of (1.1). By
introducing Y , (1.3) is equivalent to (2.8), but Bδ rather than B0. The corre-
sponding augmented Lagrangian function is the same as that defined in (2.9), and
the ADM scheme for (1.3) is identical to (2.10) except that B0 is replaced by Bδ.
Eventually, the ADM iterative formulas for (1.3) is the same as (2.11) except that
PB0

in (2.11b) is replaced by PBδ
. Since PBδ

, for δ > 0, can be computed easily
by (2.3)-(2.4), all the resulting subproblems again have closed-form solutions when
the ADM is applied to (1.3).

The treatment of (1.2) is also easy. Clearly, (1.2) is equivalent to

(2.12) min
X,Y

{
‖X‖∗ +

1

2μ
‖AY − b‖2 : X = Y

}
,

which, as a result of introducing Y , has a separable objective function. The aug-
mented Lagrangian function of (2.12) is

(2.13) LU (X,Y, Z, β) := ‖X‖∗ +
1

2μ
‖AY − b‖2 − 〈Z,X − Y 〉 +

β

2
‖X − Y ‖2F .

The algorithmic framework of the ADM for (2.12) has exactly the same form as in
(2.10) except that L is replaced by LU and the Y -subproblem is unconstrained. It
is easy to see that, for fixed X = Xk+1, Z = Zk and β, the minimization of (2.13)
with respect to Y is a least squares problem whose normal equation is equivalent
to

(I + A∗A/βμ)Y = Xk+1 +
(
A∗b/μ− Zk

)
/β,

the solution of which, by using (2.2), is given by

(2.14) Y k+1 = (I − A∗A/βμ) (Xk+1 − Zk/β) + (1 − 1/βμ)A∗b.

In summary, we have derived ADMs for (1.1)-(1.3) under the condition AA∗ = I,
and all the resulting subproblems are simple enough to have closed-form solutions.
It is easy to see that, besides two multiplications of the form AX and A∗y, the main
computation of the derived ADMs at each iteration is one SVD. Since convergence
of these ADMs for any fixed β > 0 is well studied in the literature (see, e.g., [17, 18]),
we omit the details here.

On the other hand, when AA∗ �= I, some of the resulting ADM subproblems
for (1.1)-(1.3) do not have closed-form solutions, and this difficulty could result in
inefficiency of the ADM greatly. As we will show, the blend of the linearization and
proximal techniques can alleviate this difficulty substantially, and this is the main
content of Sections 3 and 4.

3. Linearized ALM for (1.1)

In this section, we present a linearized ALM (LALM for short) for solving (1.1)
and analyze its convergence.

3.1. LALM for (1.1). The augmented Lagrangian function of (1.1) is given by

(3.1) L(X,λ, β) := ‖X‖∗ − 〈λ,AX − b〉 +
β

2
‖AX − b‖2,
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where λ ∈ Rp is the Lagrange multiplier and β > 0 is the penalty parameter. Given
λk ∈ Rp, by applying the classical ALM (see, e.g., [25, 39]) to (1.1), we obtain the
following iterative scheme:

Xk+1 = arg min
X

L(X,λk, β),(3.2a)

λk+1 = λk + β
(
b−AXk+1

)
.(3.2b)

Let bk := b + λk/β. The iterative scheme (3.2) can be rewritten as

Xk+1 = arg min
X

‖X‖∗ +
β

2
‖AX − bk‖2,(3.3a)

bk+1 = bk + b−AXk+1.(3.3b)

Roughly speaking, it is not necessary to solve the subproblem (3.3a) up to a very
high precision in order to ensure the convergence of the iterative scheme (3.3). In
fact, to make the ALM (3.3) truly implementable, we pursue the ease of solving
this subproblem at each iteration as long as the overall convergence of ALM can
be guaranteed. Motivated by this philosophy, we propose to approximate the sub-
problem (3.3a) by linearizing the quadratic term of its objective function. With
this linearization, the resulting approximation to (3.3a) is then simple enough to
have closed-form solution. More specifically, we have

(3.4)
1

2
‖AX − bk‖2 ≈ 1

2
‖AXk − bk‖2 + 〈gk, X −Xk〉 +

1

2τ
‖X −Xk‖2F ,

where τ > 0 is a proximal parameter, and

(3.5) gk := A∗(AXk − bk) = A∗(AXk − b− λk/β)

is the gradient of 1
2‖AX − bk‖2 at Xk. Plugging (3.4) into (3.3a) and with simple

manipulations, we obtain the following approximation to (3.3a):

(3.6) minX ‖X‖∗ +
β

2τ
‖X − (Xk − τgk)‖2F .

Obviously, the closed-form solution of (3.6) is obtainable based on (2.7).
In summary, given λk ∈ Rp, the proposed LALM for (1.1) generates (Xk+1, λk+1)

by the following iterative framework:

Xk+1 = Dτ/β

(
Xk − τgk

)
,(3.7a)

λk+1 = λk + β
(
b−AXk+1

)
,(3.7b)

where gk is given in (3.5), and (3.7a) is the solution of (3.6).

3.2. Convergence analysis. In this subsection, we establish the global conver-
gence of the LALM scheme (3.7).

Let X∗ be an arbitrary solution of (1.1). From standard theory of convex pro-
gramming, there exists λ∗ ∈ Rp such that the following conditions are satisfied:

(3.8) A∗λ∗ ∈ ∂‖X∗‖∗ and AX∗ = b,

where ∂‖ · ‖∗ stands for the subdifferential of the nonsmooth convex function ‖ · ‖∗.
Specifically, let X = UΣV � be the SVD of X, then ∂‖X‖∗ is given by (see, e.g.,
[3, 52])

∂‖X‖∗ = {UV � + W : U�W = 0, WV = 0, ‖W‖2 ≤ 1},
where ‖W‖2 represents the operator norm of W , i.e., its largest singular value.
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We first prove two lemmas before establishing the convergence for the LALM
(3.7).

Lemma 3.1. Let X∗ be an arbitrary solution of (1.1) and λ∗ ∈ Rp be such that the
conditions in (3.8) are satisfied. For any fixed β > 0 and τ > 0, and an arbitrary
initial point λ0 ∈ Rp, the sequence {(Xk, λk)} generated by the LALM scheme (3.7)
satisfies

1

β
(λk+1 − λ∗)�(λk − λk+1) +

β

τ
〈Xk+1 −X∗, Xk −Xk+1〉

≥ (λk − λk+1)�A(Xk −Xk+1).(3.9)

Proof. The optimality condition of (3.6) implies that

(3.10) 0 ∈ ∂‖Xk+1‖∗ +
β

τ
(Xk+1 −Xk + τgk).

It follows from (3.5) and (3.7b) that

(3.11) gk = A∗(AXk − b− λk/β) = − 1

β
A∗λk+1 −A∗A(Xk+1 −Xk).

Plugging (3.11) into (3.10), we can rewrite (3.10) as

(3.12)
β

τ
(I − τA∗A)

(
Xk −Xk+1

)
+ A∗λk+1 ∈ ∂‖Xk+1‖∗.

Further, considering A∗λ∗ ∈ ∂‖X∗‖∗ and the convexity of ‖ · ‖∗, there holds〈
Xk+1 −X∗,

β

τ
(I − τA∗A)

(
Xk −Xk+1

)
+ A∗(λk+1 − λ∗)

〉
≥ 0,

which is easily shown to be equivalent to

(3.13)

〈
A(X∗ −Xk+1), βA(Xk −Xk+1) − (λk+1 − λ∗)

〉
+

β

τ

〈
Xk+1 −X∗, Xk −Xk+1

〉
≥ 0.

By noting AX∗ = b and the fact that

A(X∗ −Xk+1) = b−AXk+1 = (λk+1 − λk)/β,

we can show that (3.9) follows immediately from (3.13). �

Let u = (X,λ) ∈ Rm×n ×Rp. We define an inner product in Rm×n ×Rp by

(3.14) 〈u, v〉G =
β

τ
〈X,Y 〉 +

1

β
λ�ζ,

for v = (Y, ζ) ∈ Rm×n × Rp and the induced norm by ‖u‖2G = 〈u, u〉G. We have
the following lemma.

Lemma 3.2. Let (X∗, λ∗) satisfy the conditions in (3.8). For any fixed β > 0 and
an arbitrary initial point λ0 ∈ Rp, let {(Xk, λk)} be the sequence generated by the
LALM scheme (3.7). If 0 < τ < 1/ρ(A∗A), where ρ(A∗A) denotes the spectral
radius of A∗A, then we have

(a) ‖uk − uk+1‖G → 0;
(b) {uk} lies in a compact region;
(c) ‖uk − u∗‖2G is monotonically non-increasing and thus converges.
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Proof. Given the notation defined in (3.14), (3.9) can be rewritten as

〈uk+1 − u∗, uk − uk+1〉G ≥ (λk − λk+1)�A(Xk −Xk+1).

Since uk+1 − u∗ = (uk+1 − uk) + (uk − u∗), it follows that

(3.15) 〈uk − u∗, uk − uk+1〉G ≥ ‖uk − uk+1‖2G + (λk − λk+1)�A(Xk −Xk+1).

From uk+1 = uk − (uk − uk+1), (3.15) and (3.14), it holds that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G(3.16)

= 2〈uk − u∗, uk − uk+1〉G − ‖uk − uk+1‖2G
≥ 2‖uk − uk+1‖2G + 2(λk − λk+1)�A(Xk −Xk+1) − ‖uk − uk+1‖2G
=

β

τ
‖Xk −Xk+1‖2F +

1

β
‖λk − λk+1‖2 + 2(λk − λk+1)∗A(Xk −Xk+1).

Since 0 < τ < 1/ρ(A∗A), it holds that δ := 1 − τρ(A∗A) > 0. Let

η :=
1

β(1 + δ)
> 0.

Then, from the Cauchy-Schwarz inequality 2a�b ≥ −η‖a‖2−‖b‖2/η, the definitions
of η and δ, (3.16) implies that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G(3.17)

≥ β

τ
‖Xk −Xk+1‖2F +

(
1

β
− η

)
‖λk − λk+1‖2 − 1

η
‖A(Xk −Xk+1)‖2

≥
(
β

τ
− ρ(A∗A)

η

)
‖Xk −Xk+1‖2F +

(
1

β
− η

)
‖λk − λk+1‖2

=
βδ2

τ
‖Xk −Xk+1‖2F +

δ

β(1 + δ)
‖λk − λk+1‖2

≥ ν‖uk − uk+1‖2G,

where ν := min
(
δ2, δ

1+δ

)
> 0, from which the statements of this lemma follow

immediately. �

Now, we are ready to prove the convergence of the LALM scheme (3.7).

Theorem 3.3. For any fixed β > 0 and an arbitrary initial point λ0 ∈ Rp, the
sequence {(Xk, λk)} generated by the LALM scheme (3.7) with 0 < τ < 1/ρ(A∗A)
converges to (X∗, λ∗), where X∗ is a solution of (1.1).

Proof. From (a) of Lemma 3.2, it holds that

Xk −Xk+1 → 0 and λk − λk+1 → 0.

Thus, it follows from λk = λk−1 +β(b−AXk) that AXk → b. From (b) of Lemma
3.2, {uk} has a subsequence {ukj} converging to u� = (X�;λ�), i.e., Xkj → X�

and λkj → λ�. Next we show that (X�, λ�) satisfies the conditions in (3.8).
First, it follows from Xkj → X� and AXk → b that AX� = limj→∞ AXkj = b.

Second, (3.12) can be rewritten as

(3.18)
β

τ
(I − τA∗A)(Xk −Xk+1) + A∗λk + βA∗(b−AXk+1) ∈ ∂‖Xk+1‖∗.
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Since Xkj → X� and Xk+1 −Xk → 0, we have

Xkj+1 = Xkj + (Xkj+1 −Xkj ) → X�.

By taking the limit of (3.18) over kj and further considering AXk−b → 0, it follows
that A∗λ� ∈ ∂‖X�‖∗, which together with AX� = b imply that (X�, λ�) satisfies
the optimality conditions in (3.8). Therefore, we have shown that any limit point
of {(Xk, λk)} satisfies the conditions in (3.8).

Since (3.17) holds for any (X∗, λ∗) satisfying (3.8), by letting u∗ = (X∗, λ∗) =
(X�, λ�) at the beginning and considering (c) of Lemma 3.2, we obtain the conver-
gence of {uk}. �

4. Linearized ADMs for (1.2) and (1.3)

In this section, we extend the linearization technique proposed in Section 3 to
solving (1.2) and (1.3). First, we show that the ADM [17] is applicable to some
easy reformulations of (1.2) and (1.3). Then, we derive linearized ADMs (LADMs
for short) for solving (1.2) and (1.3), and establish their convergence. Due to the
obvious similarity, we only elaborate on the details of the LADM for (1.2) and omit
those for (1.3).

4.1. LADM for (1.2). Clearly, by introducing an auxiliary variable r ∈ Rp, the
problem (1.2) can be equivalently transformed to

(4.1) minX∈Rm×n,r∈Rp

{
‖X‖∗ +

1

2μ
‖r‖2 : AX − b = r

}
.

An obvious advantage of this reformulation is that the objective function of (4.1)
has a separable structure, and the ADM [17] is applicable. More specifically, the
augmented Lagrangian function of (4.1) is given by

(4.2) LU (X, r, λ, β) := ‖X‖∗ +
1

2μ
‖r‖2 − 〈λ,AX − r − b〉 +

β

2
‖AX − r − b‖2,

where λ ∈ Rp and β > 0 are defined as before. Given Xk and λk, the application
of the ADM for (4.1) results in the following iterative scheme:

rk+1 = arg min
r

LU (Xk, r, λk, β),(4.3a)

Xk+1 = arg min
X

LU (X, rk+1, λk, β),(4.3b)

λk+1 = λk − β(AXk+1 − rk+1 − b).(4.3c)

Therefore, to solve (4.1) by the ADM scheme (4.3), the main computation of each
iteration consists of solving two subproblems. More specifically, first it is easy to
see that the r-subproblem (4.3a) has the closed-form solution given by

rk+1 =
βμ

1 + βμ
(AXk − b− λk/β).

On the other hand, the X-subproblem (4.3b) is equivalent to

(4.4) minX ‖X‖∗ +
β

2
‖AX − bk‖2,

where bk := b + rk+1 + λk/β.
Since (4.4) does not have a closed-form solution for a generic linear operator

A, we apply a similar linearization technique in Section 3 to tackle this difficulty.
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More specifically, by applying the technique in (3.4), we obtain the following ap-
proximated problem to (4.4):

(4.5) minX ‖X‖∗ +
β

2τ
‖X − (Xk − τgk)‖2F ,

where τ > 0 and gk is the gradient of 1
2‖AX − bk‖2 at Xk, which is given by

(4.6) gk := A∗(AXk − bk) = A∗(AXk − rk+1 − b− λk/β).

The closed-form solution of (4.5) is then readily obtainable by (2.7).
In summary, with the given Xk and λk, the proposed LADM for (1.2) generates

the next iterate (rk+1, Xk+1, λk+1) as follows:

rk+1 =
βμ

1 + βμ
(AXk − b− λk/β),(4.7a)

Xk+1 = Dτ/β

(
Xk − τgk

)
,(4.7b)

λk+1 = λk − β
(
AXk+1 − rk+1 − b

)
,(4.7c)

where gk is defined in (4.6) and (4.7b) is the solution of (4.5).

4.2. Convergence analysis. In this subsection, we establish the global conver-
gence of the LADM scheme (4.7).

Let (r∗, X∗) be any solution of (4.1). From standard theory of convex program-
ming, there exists λ∗ ∈ Rp such that the following conditions are satisfied:

(4.8) r∗/μ + λ∗ = 0, A∗λ∗ ∈ ∂‖X∗‖∗ and AX∗ − b = r∗.

We first prove a lemma similar to Lemma 3.1 before establishing the convergence.

Lemma 4.1. Let (r∗, X∗) be an arbitrary solution of (4.1) and λ∗ ∈ Rp be such
that the conditions in (4.8) are satisfied. For any fixed β > 0 and τ > 0 and
an arbitrary initial iterate (X0, λ0), the sequence {(rk, Xk, λk)} generated by the
LADM scheme (4.7) satisfies

1

β
(λk+1 − λ∗)�(λk − λk+1) +

β

τ
〈Xk+1 −X∗, Xk −Xk+1〉

≥ (λk − λk+1)�A(Xk −Xk+1).(4.9)

Proof. Since rk+1 minimizes LU (Xk, r, λk, β), it holds that

rk+1/μ + λk − β(AXk − rk+1 − b) = 0,

which, by considering (4.7c), can be rewritten as

rk+1/μ + λk+1 + βA(Xk+1 −Xk) = 0.

Further, considering r∗/μ + λ∗ = 0, we obtain

(rk+1 − r∗)/μ = βA(Xk −Xk+1) − (λk+1 − λ∗).

Therefore, it holds that

(4.10) (rk+1 − r∗)�
(
βA(Xk −Xk+1) − (λk+1 − λ∗)

)
= ‖rk+1 − r∗‖2/μ ≥ 0.

Similarly, the optimality condition of (4.5) implies that

(4.11) 0 ∈ ∂‖Xk+1‖∗ +
β

τ
(Xk+1 −Xk + τgk),
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where gk is defined in (4.6). Plugging (4.6) into (4.11) and considering (4.7c), we
can rewrite (4.11) as

(4.12)
β

τ
(I − τA∗A)

(
Xk −Xk+1

)
+ A∗λk+1 ∈ ∂‖Xk+1‖∗.

Further considering A∗λ∗ ∈ ∂‖X∗‖∗ and the convexity of ‖ · ‖∗, there holds〈
Xk+1 −X∗,

β

τ
(I − τA∗A)

(
Xk −Xk+1

)
+ A∗(λk+1 − λ∗)

〉
≥ 0,

which is equivalent to

(4.13)

〈
A(X∗ −Xk+1), βA(Xk −Xk+1) − (λk+1 − λ∗)

〉
+

β

τ

〈
Xk+1 −X∗, Xk −Xk+1

〉
≥ 0.

It follows from AX∗ − r∗ = b and β(AXk+1 − rk+1 − b) = λk − λk+1 that the
addition of (4.10) and (4.13) gives rise to (4.9) immediately. �

Let (r∗, X∗, λ∗) be arbitrarily chosen such that the conditions in (4.8) are satis-
fied and assume that 0 < τ < 1/ρ(A∗A). Using the same notation defined in (3.14)
and exactly the same arguments presented in the proof of Lemma 3.2, we can show
that, for any fixed β > 0 and an arbitrary initial iterate (X0, λ0), the sequence
{(rk, Xk, λk)} generated by the LADM scheme (4.7) satisfies

(4.14) ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ ν‖uk − uk+1‖2G,

for some ν > 0. Therefore, the three conditions (a), (b) and (c) in Lemma 3.2 are
also satisfied.

Now, we are ready to prove the convergence of the LADM scheme (4.7).

Theorem 4.2. For any fixed β > 0 and an arbitrary initial iterate (X0, λ0), the se-
quence {(rk, Xk, λk)} generated by the LADM scheme (4.7) with 0 < τ < 1/ρ(A∗A)
converges to (r∗, X∗, λ∗), where (r∗, X∗) is a solution of (4.1).

Proof. It follows from ‖uk − uk+1‖G → 0 that

Xk −Xk+1 → 0 and λk − λk+1 → 0.

Further, considering λk = λk−1 − β(AXk − rk − b), we obtain

AXk − rk − b → 0.

Since {uk} lies in a compact region, it has a subsequence {ukj} converging to
u� = (X�;λ�), i.e., Xkj → X� and λkj → λ�. In addition, (4.7a) implies that

rk =
βμ

1 + βμ

(
AXk − b− λk/β + A(Xk−1 −Xk) + (λk − λk−1)/β

)
.

Considering Xkj → X�, λkj → λ�, Xk−1 −Xk → 0 and λk−1 − λk → 0, the above
equality implies that

(4.15) rkj → r� :=
βμ

1 + βμ
(AX� − b− λ�/β) , j → ∞.

Therefore, (r�, X�, λ�) is also a limit point of {(rk, Xk, λk)}.
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Next we show that (r�, X�, λ�) satisfies the optimality conditions in (4.8). First,
from (4.7) we have

λk+1 = λk − β

(
AXk+1 − βμ

1 + βμ

(
AXk − b− λk/β

)
− b

)
,

which is easily shown to be equivalent to

λk − λk+1

β
+ A(Xk −Xk+1) =

1

1 + βμ

(
AXk − b + μλk

)
.

By taking the limit of the above equality over kj , it follows that

(4.16) AX� − b + μλ� = 0.

Second, from the definition of r� in (4.15), it is easy to verify that

(4.17) r�/μ + λ� =
β

1 + βμ
(AX� − b + μλ�) = 0,

where the second equality follows from (4.16). Finally, (4.12) can be rewritten as

(4.18)
β

τ
(I − τA∗A)(Xk −Xk+1)−βA∗(AXk+1− rk+1− b)+A∗λk ∈ ∂‖Xk+1‖∗.

Since Xkj → X� and Xk+1 −Xk → 0, we have

Xkj+1 = Xkj + (Xkj+1 −Xkj ) → X�.

By taking the limit of (4.18) over kj and further considering AXk − rk − b → 0,
it follows that A∗λ� ∈ ∂‖X�‖∗, which together with equations (4.16) and (4.17)
imply that (r�, X�, λ�) satisfies the optimality conditions (4.8). Therefore, we have
shown that any limit point of {(rk, Xk, λk)} is an optimal solution of (4.1).

Since (4.14) holds for any optimal solution of (4.1), by letting u∗ = (X∗, λ∗) =
(X�, λ�) at the beginning and considering (c) of Lemma 3.2, we obtain the conver-
gence of {uk}, and thus that of {(rk, Xk, λk)}. �

4.3. LADM for (1.3). Analogously, a LADM for (1.3) can also be easily derived.
Note that (1.3) is equivalent to

(4.19) minX∈Rm×n,r∈Rp {‖X‖∗ : AX − b = r ∈ B2,δ} ,

where r ∈ Rp is an auxiliary variable and B2,δ := {ξ ∈ Rp : ‖ξ‖ ≤ δ}. The
augmented Lagrangian function of (4.19) is given by

LC(X, r, λ, β) := ‖X‖∗ − 〈λ,AX − r − b〉 +
β

2
‖AX − r − b‖2.

The ADM scheme for (4.19) is exactly the same form as in (4.3) except that LU is re-
placed by LC and the minimization for r is over B2,δ. It is easy to show that the min-
imization of LC(Xk, r, λk, β) over B2,δ is given by rk+1 = PB2,δ

(
AXk − b− λk/β

)
.

By applying the approximation technique (3.4) to LC(X, rk+1, λk, β), the LADM
for (4.19) is as follows:

rk+1 = PB2,δ

(
AXk − b− λk/β

)
,(4.20a)

Xk+1 = Dτ/β

(
Xk − τgk

)
,(4.20b)

λk+1 = λk − β(AXk+1 − rk+1 − b),(4.20c)
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where gk is defined in (4.6). Clearly, (4.20) differs with (4.7) only in the iteration for
r. The convergence of (4.20) to a solution of (4.19) is summarized in the following
theorem, whose proof is similar to that of Theorem 4.2 and thus is omitted.

Theorem 4.3. For any fixed β > 0 and an arbitrary initial iterate (X0, λ0), the
sequences {(rk, Xk, λk)} generated by the LADM scheme (4.20) with 0 < τ <
1/ρ(A∗A) converges to {(r∗, X∗, λ∗)}, where (r∗, X∗) is a solution of (4.19).

5. Connections to existing work

In this section, we elucidate the connections between the proposed linearized
methods and some existing approaches in the literature for linear inverse problems,
including total variation problems in image restoration, �1-problems in compressive
sensing, and nuclear norm related problems in matrix completion.

5.1. Connections to proximal forward-backward operator splitting meth-
ods. In fact, the blend of the linearization and proximal techniques (3.4) can be
viewed as a proximal forward-backward operator splitting method, which has been
applied to various inverse problems in the literature; see, e.g., [11] and references
therein. Specifically, based on the forward-backward operator splitting a fixed-
point algorithm is derived in [20] for the unconstrained �1-problem in compressive
sensing:

(5.1) min
x∈Rn

‖x‖1 +
1

2μ
‖Ax− b‖2,

where A ∈ Rm×n and b ∈ Rm. The iterative scheme in [20] is

yk = xk − τgk,(5.2a)

xk+1 = max(|yk| − τμ, 0) ◦ sgn(yk),(5.2b)

where gk = A�(Axk−b), τ > 0 is a proximal parameter, and |·|, sgn and “◦” denote
componentwise absolute value, signum and multiplication, respectively. Aided by
continuation and line-search techniques, fast convergence of (5.2) is demonstrated
in [20]. Subsequently, this approach is extended in [32] to solving (1.2), and its
iterative scheme is

Y k = Xk − τgk,(5.3a)

Xk+1 = Dτμ(Y k),(5.3b)

where gk = A∗(AXk − b), τ > 0 is a parameter and Dτμ is defined in (2.6).
It is shown in [20] that the convergence of (5.2) is guaranteed provided that

0 < τ < 2/ρ(A�A). Similar results are obtained in [32] for (5.3). In fact, the
accelerated proximal point algorithm derived in [49] is also based on the same
forward-backward operator splitting idea, besides the acceleration step.

We note that, by Theorems 3.3, 4.2 and 4.3, the convergence of the proposed
linearized methods (LALM (3.7), LADMs (4.7) and (4.20)) is guaranteed only for
0 < τ < 1/ρ(A∗A), which is a narrower interval than those results in [20, 32]. One
explanation for this difference is that the linearization technique (3.4) is directly
applied to the original problems (5.1) and (1.2) in [20] and [32], respectively; while
the proposed linearized methods apply the linearization technique to the resulting
subproblems. Despite this difference, our extensive experimental results show that
the proposed linearized methods are in general much faster than the accelerated
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versions of the fixed-point iterations (5.2) and (5.3) by the continuation and line-
search techniques. We refer to [10] and [55] for similar discussions on the matrix
completion problems and �1-problems in compressive sensing, respectively. We be-
lieve that the promising convergence of the proposed LALM and LADMs is mainly
attributed to the timely update of the Lagrange multiplier right after each round
of alternating minimization of the variables.

In Section 6, we will compare the proposed LADM (4.7) numerically with the
accelerated proximal gradient algorithm [49], which has been shown to be much
faster than the fixed-point continuation approach [32].

5.2. Connections to Bregman-related algorithms. In this subsection, we de-
lineate the relationships between the proposed linearized methods and the Bregman
related iterative algorithms [37, 57, 58] for linear inverse problems.

In fact, it is shown in [57] that the ALM for equality constrained problems is
equivalent to the Bregman iterative algorithm originally proposed in [37]. There-
fore, the ALM scheme (3.2) is equivalent to the Bregman iterative algorithm applied
to (1.1). In [32], the authors propose to use the Bregman iterative algorithm for
solving (1.1), resulting in an iterative framework in the form (3.3) (see [32, Eq.
(5.10)]), where the X-subproblem (3.3a) is solved iteratively by the fixed-point
scheme (5.3). An obvious advantage of the LALM scheme (3.7) is that there is no
need to solve any subproblem iteratively.

The LALM scheme (3.7) is also closely related to the linearized Bregman method
proposed in [57]. Let

vk := A∗λk/β, Y k := Xk − τA∗ (
AXk − b

)
, and J(X) :=

1

β
‖X‖∗.

By noting (3.6), we can rewrite the LALM scheme (3.7) as

Xk+1 = arg min
X

J(X) +
1

2τ
‖X − (Y k + τvk)‖2F ,(5.4a)

vk+1 = vk + A∗ (
b−AXk+1

)
.(5.4b)

While, the linearized Bregman method for (1.1) (see [57, Eqs. (5.15) and (5.17)]
and [56, Eqs. (1.9)-(1.10)]) reads

Xk+1 = arg min
X

J(X) +
1

2τ
‖X − (Y k + τvk)‖2F ,(5.5a)

vk+1 = vk −A∗ (
AXk − b

)
− (Xk+1 −Xk)/τ.(5.5b)

On the other hand, by a change of variables vk ← vk−A∗(AXk−b)+Xk/τ in (5.5),
we obtain another form of the linearized Bregman method (see [56, Eq. (1.13)]):

Xk+1 = arg min
X

J(X) +
1

2τ
‖X − τvk‖2F ,(5.6a)

vk+1 = vk + A∗ (
b−AXk+1

)
.(5.6b)

Note that (5.5) is actually the original form of the linearized Bregman method
proposed in [57]. By comparing (5.4) with (5.5) and (5.6), we see the difference
of these two method clearly. Moreover, we emphasize that the proposed LALM
differs from the linearized Bregman method essentially in the convergence aspect:
the former converges to a solution of the original problem (1.1), while the latter
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converges to the solution of the problem

(5.7) min
X

{
J(X) +

1

2τ
‖X‖2F : AX = b

}
,

which is only an approximation to (1.1). Note that the problem (5.7) approximates
to the original problem (1.1) well only when τ is large (for fixed β). We refer to
[5, 6] for analogous discussions on the basis pursuit problem.

After the first round of referee review, our attention was brought to the Breg-
manized operator splitting (BOS) method proposed in [58] for linear equality con-
strained problems in the form of (1.1), where a generic convex objective function
is studied in place of the nuclear norm. By a change of variable bk := λk/β + b, the
LALM scheme (3.7) can be rewritten as

Xk+1 = Dτ/β

(
Xk − τA∗(AXk − bk)

)
,(5.8a)

bk+1 = bk + b−AXk+1,(5.8b)

which is actually equivalent to the BOS method (see [58, Algorithm I]). There-
fore, we have obtained the same method from different motivations: our idea is to
linearize the augmented Lagrangian function (3.1) in the ALM framework (3.2),
while the BOS method is derived from the Bregman iterative framework [37] with
operator splitting. The motivation of linearizing the augmented Lagrangian func-
tion is natural. More importantly, our idea can be easily extended to solve (1.2)
and (1.3), while the BOS method is only derived for equality constrained problems.
Besides, we have obtained stronger convergence results under the same condition
as in [58]. In fact, it is proved in [58, Theorem 1] that any accumulation point of
the sequence generated by the BOS method is a solution of (1.1), while we estab-
lish respectively the global convergence of the LALM and LADMs to solutions of
(1.1)-(1.3).

We note that the LADMs (4.7) and (4.20) are also related to the idea of the BOS
method in the following sense. In fact, the iteration of primal variables in the BOS
method is a gradient descent step followed by a shrinkage step (or a generalized
projection step in the sense of Moreau [41, Theorem 31.5]). Similarly, since the
Hessian of LU (Xk, r, λk, β) with respect to r is identity, the iteration (4.7a) can
be viewed as a steepest gradient descent step. On the other hand, the iteration
of X in (4.7b) is a gradient descent step (with the latest updated data) followed
by a shrinkage step. As such, (4.7a)-(4.7b) is also a generalized projected gradient
descent step. The iteration of dual variables in both BOS and LADMs is in fact
identical.

6. Numerical results

In this section, we compare the proposed LALM and LADMs numerically with
some existing efficient methods and report the numerical results. In particular, we
compare the proposed methods with the accelerated proximal gradient algorithm
with line-search (APGL) in [49] and the primal algorithm in [38] due to their
significant superiorities to many other existing methods; see the extensive numerical
results in [38, 49] for matrix completion problems, gene expression examples, and
others. We also compare the proposed linearized methods with the ADMs proposed
in [10] for matrix completion problems and those discussed in Section 2 for (1.1)
and (1.3) with AA∗ = I.
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All the experiments were performed under Windows Vista Premium and Matlab
v7.10 (R2010a), running on a Lenovo laptop with an Intel Core 2 Duo CPU at 1.8
GHz and 2GB of memory.

We note that the APGL code1 is applicable to the case with a generic linear
operator A, while it can only solve the unconstrained model (1.2) (an additional
regularization of the form ‖X‖2F is also allowed). Moreover, the primal and dual
algorithms [38] (implemented in [30]) are especially designed for an unconstrained
model of the following form

(6.1) min
X∈Rm×n

‖X‖∗ +
1

2μ
‖AX −B‖2F ,

where μ > 0, A ∈ Rp×m, B ∈ Rp×n, and AX represents the ordinary matrix
multiplication. In [38], the authors first reformulate (6.1) into one that has exactly

the same form as itself, where A, B and X are replaced by certain Ã, B̃ and
X̃, respectively, with Ã being full column rank (see [38, Proposition 1]). Then
the authors study gradient-projection methods for the dual problem. In addition,
Nesterov’s accelerated first-order methods [33, 34] are also applied to solve the
reduced problem of (6.1), where a practical stopping criterion is derived based on
both the primal and the dual problems. Therefore, the primal method in [38] is
essentially a variant of the accelerated proximal gradient method, and it shares
the same idea of using the linearization and proximal techniques as the proposed
methods. Due to this similarity, we only compare with the primal method in [38]
(implemented in the SLEP package as “mat primal”). We refer to [38] for extensive
numerical results on multi-task learning problems for the relative performance of
the primal and the dual methods derived therein.

For a matrix M , we let vec(M) be the vector stagnated by the columns of M .
Then, (6.1) is a special case of (1.2) with

(6.2) AX = vec(AX) = diag(

n times︷ ︸︸ ︷
A, . . . , A)vec(X) and b = vec(B).

On the contrary, with the given A and b, in general one cannot find matrices A
and B such that (6.1) is equivalent to (1.2). For example, the matrix completion
problem, where A is defined in (1.4), cannot be written in the form of (6.1) in
general, and thus the algorithms in [38] are not applicable. In comparison, the
proposed LALM and LADMs are easily applicable to solve all these models (1.1)-
(1.3). If AA∗ = I, as we show in Section 2, the ADM is applicable. In short, the
algorithms proposed in this paper have much larger applicable range than those in
the literature.

6.1. Experiments and implementation details. Our numerical experiments
are categorized into the following three classes.

(1) Compare the LALM (3.7) and the LADM (4.20) with the ADMs in [10] on
matrix completion problems. We concentrate on the constrained models
(1.1) and (1.3).

(2) Compare the LALM (3.7) and the LADM (4.20) with the ADMs discussed
in Section 2 for solving the constrained models (1.1) and (1.3), where A is
a two-dimensional partial DCT (discrete cosine transform) operator.

1Available at: http://www.math.nus.edu.sg/~mattohkc/NNLS.html

http://www.math.nus.edu.sg/~mattohkc/NNLS.html
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(3) Compare the LADM (4.7) with the APGL [49] and the primal algorithm
in [38] for solving (6.1) with random data.

In the first two classes of experiments we do not compare with the APGL on the
unconstrained model (1.2) for reasons given below. First, the relative performance
of the ADM compared with APGL has been well illustrated in [10] on matrix
completion problems with both random and gene expression data. Roughly, to
generate solutions of the same quality, the ADM is faster than the APGL on matrix
completion problems whenever the sample ratio (denoted by sr and defined by
|Ω|/mn) is relatively high. But, we also note that the APGL performs better than
the ADM when n is large and meanwhile the sample ratio is small (say, n > 5000
and sr ≤ 10%). Second, the relative performance between the LADM (4.7) and the
APGL on the problems tested in the first two classes of experiments can be roughly
estimated based on both results in [10] and those to be presented in subsections 6.2
and 6.3. Furthermore, the LADM (4.7) is compared with the APGL in the third
class of experiments for solving (6.1) with various of random data.

In all experiments, we generated X∗ via the Matlab script

“randn(m, r) ∗ randn(r, n)”,

where r is a prefixed integer. For matrix completion problems, we generated the
index set Ω randomly. For the second class of experiments, the partial DCT oper-
ator was also generated randomly. Then, we set b = AX∗ + ω, where ω is a white
noise of mean zero and standard deviation std.

Next, we clarify some details for implementing the proposed algorithms.

• Partial SVD. As we pointed out before, each iteration of the proposed
LALM and LADMs is dominated by one SVD, as conventionally required
by most of the existing methods for nuclear norm related problems. In
our implementation, we employ the influential PROPACK package [28] to
realize partial SVD for all the proposed methods and the ADMs. In par-
ticular, we only need those singular values bigger than a threshold and the
corresponding singular vectors. However, it is well known that PROPACK
is not able to automatically compute those singular values bigger than a
prefixed threshold, but only able to compute a prefixed number of them.
Therefore, we need to efficiently determine the number of singular values
to be computed at each iteration empirically.

Let svk denote the number of singular values to be computed at the k-th
iteration, whose initial value is given by sv0 = min(m,n)/20. We use the
same strategy as in [49] to update svk, that is,

svk+1 =

{
svpk + 1, if svpk < svk,
svpk + 5, if svpk = svk,

where svpk represents the number of positive singular values of Xk. Based
on our experiments, this adjusting rule works very well: after a few itera-
tions, the rank of X∗ can be well estimated.

• The penalty parameter β. As we have proved, the proposed LALM and
LADMs all converge globally for any fixed β > 0. However, different choice
of β affects the effectiveness of the proposed LALM and LADMs. In our
experiment, we set β = 2.5/min(m,n) empirically, which works quite well
for the tested problems. We will present some experimental results to
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illustrate how the numerical performance of the proposed algorithms is
affected by different values of β.

• The proximal parameter τ . The proximal parameter τ plays also an im-
portant role for the effectiveness of the proposed methods. Theoretically,
we show the convergence of the proposed methods under the condition
0 < τ < 1/ρ(A∗A). But empirically, we find that values of τ slightly
greater than 1/ρ(A∗A) can accelerate the convergence. For this reason, in
all our experiments, we set τ = 1/ρ(A∗A). Note that for matrix completion
problems and partial DCT measurements, ρ(A∗A) = 1; while for random
data we compute ρ(A∗A) in advance for once.

For the ADMs in [10] and those discussed in Section 2, we also employed the
aforementioned implementation techniques for the proposed LALM and LADMs,
including the partial SVD and the choice of the penalty parameter, etc. Moreover,
we terminated ADMs, LALM and LADMs by the following criterion:

RelChg =
‖Xk −Xk−1‖F

max(‖Xk−1‖F , 1)
≤ tol,

where tol > 0 is a given tolerance. As discussed in [55] for �1-problems, solving
optimization problems with very high accuracy does not necessarily result in high
quality solutions for noisy data. Thus, we set tol = 10−5 for the noiseless model
(1.1) and tol = 10−4 for the noisy models (1.2) and (1.3) in all of the experiments.
For APGL and mat primal, we terminated both algorithms by setting the value
of tolerance to be 10−4. That is, we set par.tol = 10−4 in APGL and opt.tol

= 10−4 in mat primal. Other algorithmic parameters in APGL and mat primal

are set to their default values.

6.2. Comparison results of LALM, LADMs and ADMs: matrix comple-
tion via (1.1) and (1.3). In this subsection, we compare the proposed LALM and
LADMs with the ADMs [10] on matrix completion problems. We set the noise level
std = 0.001, δ = ‖ω‖ in (1.3) and m = n in all of the tests.

In the results presented below, r, sr, p and dof denote, respectively, the rank of
X∗, sample ratios taken, the number of measurements and the “degree of freedom”
defined by r(m + n − r) for a matrix with rank r. The number of iterations and
consumed CPU time (measured in seconds) are denoted by “iter” and “CPU”,
respectively. We measure the quality of a recovered solution by its relative error to
the true low-rank matrix X∗, which is denoted by “RErr” and is defined by

RErr = ‖Xk −X∗‖F /‖X∗‖F .
For each scenario, we generated the model by 10 times and reported the average
results. The results for noiseless and noisy data are presented, respectively, in
Tables 1 and 2.

As shown by Tables 1 and 2, the proposed LALM and LADMs both perform very
well on the tested matrix completion problems. Specifically, for both noiseless and
noisy data, LALM and LADMs can obtain solutions which are of almost equally
good quality as those by exact ADMs. Surprisingly, the number of iterations taken
by LALM and LADMs are almost equal to those taken by the exact ADMs. Since
the per-iteration cost of both algorithms is roughly the same (both are dominated
by one SVD), the CPU time consumed by both are also roughly equal. These
results clearly demonstrate that the proposed LALM and LADMs can be potentially
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Table 1. Comparison results of LALM (3.7) and ADM in [10]
(the same as (2.11)) on (1.1): matrix completion with noiseless
data.

Unknown X ADM LALM
(n, r) sr p/dof iter RErr CPU iter RErr CPU

(500,10) 60% 15.15 24.9 4.76e-6 5.6 24.8 9.16e-6 5.8
40% 10.10 39.1 8.44e-6 6.4 38.8 8.14e-6 6.9
20% 5.05 73.0 1.02e-5 8.5 73.2 1.02e-5 9.3

(1000,20) 60% 15.15 25.4 4.42e-6 19.5 24.3 9.18e-6 16.8
40% 10.10 38.8 9.32e-6 20.8 38.9 9.04e-6 21.3
20% 5.05 74.3 9.46e-6 26.1 74.1 9.46e-6 24.9

(2000,30) 60% 20.15 24.7 3.89e-6 56.5 23.9 8.84e-6 54.9
40% 13.43 41.1 6.71e-6 68.1 41.5 6.69e-6 64.6
20% 6.72 77.5 8.88e-6 77.6 77.3 8.88e-6 75.9

(5000,50) 20% 10.05 81.9 8.77e-6 637 82.1 8.77e-6 679

Table 2. Comparison results of LADM (4.20) and ADM in [10]
(the same as (2.11) with PB0

replaced by PBδ
) on (1.3): matrix

completion with noisy data.

Unknown X ADM LADM
(n, r) sr p/dof iter RErr CPU iter RErr CPU

(500,10) 60% 15.15 19.8 2.74e-4 5.0 20.3 2.87e-4 4.9
40% 10.10 30.5 4.94e-4 5.4 30.1 4.90e-4 5.5
20% 5.05 53.1 3.58e-4 7.1 52.6 3.58e-4 6.9

(1000,20) 60% 15.15 20.1 1.73e-4 14.8 19.9 1.85e-4 14.7
40% 10.10 29.7 3.98e-4 17.4 28.8 3.95e-4 16.2
20% 5.05 53.3 2.22e-4 20.7 53.1 2.22e-4 20.4

(2000,30) 60% 20.15 19.4 9.00e-5 47.8 18.9 1.10e-4 49.0
40% 13.43 30.3 4.12e-4 54.5 30.4 4.08e-4 52.7
20% 6.72 57.7 4.16e-4 64.4 58.2 4.16e-4 63.5

(5000,50) 20% 10.05 62.7 1.24e-4 530 63.0 1.24e-4 532

as efficient as exact ADMs. Since our experiments were completed on a laptop
with 2GB RAM, we were not able to test larger scenarios where m,n > 5000 and
rank(X∗) > 50, due to the memory limitation.

6.3. Comparison results of LALM, LADMs and ADM: partial DCT data.
In this subsection, we compare the proposed LALM and LADMs with the ADM on
the partial DCT data. The same as in subsection 6.2, we set std = 0.001, δ = ‖ω‖
in (1.3) for noisy data and m = n in all the tests. For each scenario, we generated
the model by 10 times and reported the average results in Tables 3 and 4.

Similar to the results for the matrix completion problem, the results in Tables
3 and 4 show that the LALM (3.7) performs almost equally well as the ADM on
solving (1.1) and (1.3) with partial DCT data. It can be seen that longer CPU
time is consumed by both methods for partial DCT data than the corresponding
experiments on matrix completion. This is because the computation of AX and
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Table 3. Comparison results of LALM (3.7) and ADM (2.11) on
(1.1): noiseless partial DCT data.

Unknown X ADM LALM
(n, r) sr p/dof iter RErr CPU iter RErr CPU

(500,10) 60% 15.15 25.3 5.59e-6 14.2 24.9 7.03e-6 13.5
40% 10.10 38.9 8.82e-6 20.6 39.4 8.58e-6 21.4
20% 5.05 75.3 1.40e-5 39.2 75.4 1.40e-5 39.1

(1000,20) 60% 15.15 25.1 4.51e-6 44.4 24.2 9.27e-6 43.0
40% 10.10 38.9 9.36e-6 66.9 39.2 9.07e-6 67.5
20% 5.05 73.7 1.00e-5 123 73.6 1.00e-5 125

(2000,30) 60% 20.15 25.7 4.48e-6 187 24.0 9.03e-6 176
40% 13.43 41.2 6.77e-6 293 41.5 6.75e-6 295
20% 6.72 77.2 8.95e-6 537 76.7 8.97e-6 538

(3000,50) 20% 6.05 77.4 9.02e-6 1207 76.3 9.46e-6 1198

Table 4. Comparison results of LADM (4.20) and ADM (that is,
(2.11) with PB0

replaced by PBδ
) on (1.3): noisy partial DCT

data.

Unknown X ADM LADM
(n, r) sr p/dof iter RErr CPU iter RErr CPU

(500,10) 60% 15.15 20.3 1.24e-4 12.1 20.5 2.85e-4 11.9
40% 10.10 31.5 1.65e-4 16.1 29.9 4.93e-4 15.8
20% 5.05 54.0 2.80e-4 28.1 53.4 3.92e-4 28.0

(1000,20) 60% 15.15 20.2 1.03e-4 35.1 20.4 1.85e-4 35.0
40% 10.10 29.8 1.85e-4 51.4 30.2 3.95e-4 50.3
20% 5.05 54.3 2.45e-4 90.0 53.7 2.23e-4 84.9

(2000,30) 60% 20.15 19.4 1.69e-4 125 19.3 1.09e-4 123
40% 13.43 32.8 1.95e-4 212 30.9 4.13e-4 185
20% 6.72 59.4 2.10e-4 369 58.3 4.17e-4 345

(3000,50) 20% 6.05 58.5 1.42e-4 918 57.8 3.08e-4 901

A∗y is no longer trivial for a generic linear operator A. For partial DCT data,
we were only able to test problems as large as m = n = 3000, rank(X∗) = 50
and sr = 20%, which is smaller than the limitation scale for matrix completion as
presented in subsection 6.2. This is because for matrix completion problems the
explicit storage of the matrix variable X can be avoided during the whole iteration
process due to the speciality of the linear operator A defined in (1.4). In fact, in
the PROPACK package modified by the authors of [49], X is stored by its UV -
decomposition for matrix completion problems, i.e., X = UV �, where U and V
are tall and thin matrices whose number of columns is dynamically adjusted. In
comparison, for partial DCT operator, X needs to be stored explicitly in order to
compute AX.

It is also easy to see from Tables 1-4 that the iteration numbers consumed by
the ADMs, LALM and LADMs all increase moderately as sample ratios become
lower. An explanation is that, when the number of constraints becomes fewer, the
two variable blocks in the ADM framework have more freedom in the whole space,
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and hence ADM, as a blockwise alternating coordinate descent method, can be less
efficient. This also explains why ADMs are less competitive to the APGL when
sample ratio is relatively low, as shown in [10].

6.4. Comparison results of LADM, APGL and mat primal: solving (6.1)
with random data. In this subsection, we compare the proposed LADMs (4.7)
with APGL [49] and mat primal [38] on solving (6.1) with randomly generated
data. The data matrix A is generated by the following Matlab scripts.

(1) sqrt lam = sqrt(lam max);

(2) [P,~ ] = qr(randn(p));

(3) d = [1; 1 + rand(min(p,m)-2,1)*(sqrt lam-1); sqrt lam];

(4) [Q,~ ] = qr(randn(m));

(5) A = P * spdiags(d,0,p,m) * Q’.

Here lam max is a prefixed number to control the maximum eigenvalue of AA�.
In fact, for A generated by the above Matlab scripts, the minimum and maxi-
mum eigenvalues of AA� are, respectively, 1 and lam max, while the others are
randomly distributed in [1, lam max]. For A given in (6.2), it holds that ρ(A∗A) =
ρ(A�A). In all experiments, we set τ = 1/ρ(A∗A) = 1/lam max. The low-
rank matrix X∗ and B are then generated by X∗ = randn(m, r) ∗ randn(r, n)
and B = AX∗ + std ∗ randn(p, n), respectively, where std = 0.001. In our
experiments, we tested different combinations of lam max and μ: (lam max, μ) ∈
{100, 101, 102} × {10−2, 100, 102}.

We note that in general the purpose of solving (6.1) with the data given by
“B = AX∗ + Noise” is not to recover X∗ with high accuracy (especially when the
observed data is insufficient), but to determine a trade-off solution between the low-
rank and data-fidelity purposes. On the other hand, for unconstrained optimization
problems the objective function values illustrate the quality of solutions well from
the optimization point of view. Therefore, in the following, instead of the relative
errors to X∗, we report the resulting objective function values to illustrate the
performance of the compared algorithms. We also refer to [38], where the quality
of computed solutions to (6.1) is measured by the duality gap.

The comparison results of APGL, mat primal and LADM (4.7) are presented
in Table 5, where the final objective function value (obj), the number of iterations
(iter) and the consumed CPU time (measured in seconds) are reported. lam max

is denoted by λmax in the table. In the mat primal and LADM columns, rdif is
defined by

rdif =
fmethod − fapgl

|fapgl|
,

where fapgl is the function value obtained by APGL, and fmethod is that obtained
by the corresponding method. Therefore, rdif < 0 implies that a smaller function
value is obtained.

It can be seen from Table 5 that the proposed LADM (4.7) is very competitive
with both APGL and mat primal on solving (6.1) with random data. Specifi-
cally, in more than half of the tests LADM obtained smaller objective function
values than APGL, and the results are only slightly worse than those obtained by
mat primal. As for the results on CPU time, we add the following notes. In the
original implementation of mat primal, the standard Matlab subroutine svd was
used for computing SVD. For a fair comparison, we employed a uniform way of
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Table 5. Comparison results of APGL, mat primal and LADM (4.7).

Parameters APGL mat primal LADM

(λmax, μ) p/m/n/r obj iter CPU rdif iter CPU rdif iter CPU

(100, 10−2) 500/2000/100/20 4.3e3 28 12.1 -1.4e-4 3 6.3 1.5e-12 3 0.9

1500/2000/100/20 7.4e3 28 28.8 -4.4e-4 3 30.6 -5.6e-8 3 1.8

2500/2000/100/20 8.6e3 28 44.1 -5.5e-4 3 36.3 7.3e-13 3 2.7

1000/3000/200/50 2.2e4 28 60.2 -1.5e-4 3 25.8 -1.7e-7 3 4.1

2000/3000/200/50 3.1e4 28 128 -2.8e-4 3 78.4 -3.4e-8 3 6.6

3000/3000/200/50 3.8e4 28 158 -3.9e-4 3 101 1.1e-13 3 8.8

(100, 100) 500/2000/100/20 4.3e3 28 11.9 4.1e-14 3 6.5 5.7e-13 5 1.4

1500/2000/100/20 7.4e3 28 36.7 -2.1e-13 3 37.9 6.6e-10 4 3.4

2500/2000/100/20 8.6e3 28 44.0 -2.3e-14 3 36.0 6.0e-10 4 3.5

1000/3000/200/50 2.2e4 28 77.5 1.7e-13 3 31.3 2.9e-11 4 7.2

2000/3000/200/50 3.1e4 28 128 5.4e-13 3 76.9 2.2e-11 4 8.1

3000/3000/200/50 3.7e4 28 157 3.7e-13 3 99.7 1.8e-11 4 11.3

(100, 102) 500/2000/100/20 3.3e3 28 12.1 1.2e-15 3 6.7 3.1e-8 25 6.8

1500/2000/100/20 6.4e3 28 36.8 1.4e-16 3 36.0 6.9e-8 25 18.4

2500/2000/100/20 7.6e3 31 49.4 8.4e-16 3 35.6 8.5e-8 25 19.6

1000/3000/200/50 2.0e4 30 61.7 -2.1e-15 3 24.5 1.5e-8 16 20.1

2000/3000/200/50 2.8e4 29 110 2.3e-15 3 85.1 2.2e-8 16 41.5

3000/3000/200/50 3.5e4 30 163 -2.5e-15 3 103 2.7e-8 16 41.5

(101, 10−2) 500/2000/100/20 4.3e3 35 24.7 -8.8e-4 60 9.1 2.4e-5 55 15.5

1500/2000/100/20 7.4e3 36 98.4 -6.2e-4 60 42.9 6.8e-5 66 35.7

2500/2000/100/20 8.6e3 36 223 -7.4e-4 60 70.1 3.6e-5 68 71.8

1000/3000/200/50 2.2e4 37 171 -2.5e-4 60 39.2 7.7e-5 56 71.2

2000/3000/200/50 3.1e4 37 458 -6.4e-4 60 126 5.4e-5 61 135

3000/3000/200/50 3.8e4 39 887 -6.7e-4 60 190 3.8e-5 67 273

(101, 100) 500/2000/100/20 4.3e3 36 28.4 -3.8e-5 60 8.9 -2.8e-5 54 17.5

1500/2000/100/20 7.4e3 34 111 -7.9e-5 60 41.4 -7.1e-5 66 41.4

2500/2000/100/20 8.6e3 34 269 -6.3e-5 60 69.0 -4.1e-5 68 62.5

1000/3000/200/50 2.2e4 34 171 -7.4e-5 60 40.1 -6.6e-5 56 71.5

2000/3000/200/50 3.1e4 34 449 -9.0e-5 60 126 -3.5e-5 60 141

3000/3000/200/50 3.8e4 34 810 -1.1e-4 60 192 -8.1e-5 67 198

(101, 102) 500/2000/100/20 4.0e3 40 26.1 -7.5e-7 50 8.6 -8.4e-7 29 7.6

1500/2000/100/20 7.1e3 41 123 2.7e-6 30 37.1 -7.4e-6 32 17.1

2500/2000/100/20 8.3e3 42 225 8.2e-6 30 60.9 -3.1e-6 32 25.7

1000/3000/200/50 2.1e4 41 190 -6.2e-6 60 39.9 -6.5e-6 38 48.7

2000/3000/200/50 3.0e4 41 481 3.0e-6 30 110 -7.3e-6 40 81.1

3000/3000/200/50 3.7e4 40 866 -1.5e-5 30 152 -2.4e-5 41 132

(102, 10−2) 500/2000/100/20 4.4e3 64 35.3 -2.0e-2 300 19.4 -4.4e-3 85 20.8

1500/2000/100/20 8.8e3 72 119 -1.6e-1 200 67.0 -1.5e-1 116 63.7

2500/2000/100/20 1.1e4 72 214 -1.9e-1 210 117 -1.7e-1 127 123

1000/3000/200/50 2.2e4 88 240 -1.2e-2 310 109 -1.1e-2 86 111

2000/3000/200/50 4.1e4 72 567 -2.5e-1 310 303 -2.3e-1 104 229

3000/3000/200/50 5.0e4 74 1011 -2.5e-1 300 517 -2.3e-1 120 361

(102, 100) 500/2000/100/20 4.3e3 56 32.5 -3.3e-3 210 15.5 -3.1e-3 85 21.5

1500/2000/100/20 7.4e3 64 120 -2.6e-3 190 64.8 -2.5e-3 115 58.5

2500/2000/100/20 8.7e3 63 225 -3.4e-3 190 111 -3.2e-3 127 125

1000/3000/200/50 2.2e4 59 214 -4.2e-3 200 75.1 -3.6e-3 86 136

2000/3000/200/50 3.1e4 57 605 -2.9e-3 200 282 -2.5e-3 104 227

3000/3000/200/50 3.8e4 57 940 -3.1e-3 190 410 -2.8e-3 120 415

(102, 102) 500/2000/100/20 4.2e3 60 31.3 -3.4e-4 190 14.7 -3.4e-4 67 17.0

1500/2000/100/20 7.3e3 62 137 -5.7e-4 170 62.1 -5.7e-4 89 45.6

2500/2000/100/20 8.6e3 80 312 -8.9e-5 170 97.3 -8.8e-5 99 75.2

1000/3000/200/50 2.2e4 58 205 -8.8e-4 180 69.7 -8.8e-4 74 110

2000/3000/200/50 3.1e4 64 504 -7.5e-4 180 205 -7.4e-4 92 258

3000/3000/200/50 3.7e4 64 839 -8.6e-4 180 387 -8.5e-4 105 263
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computing SVD for all the three compared methods. Specifically, we used the effi-
cient Matlab Mex interface mexsvd2 which computes SVD via a divide-and-conquer
routine (dgesdd) implemented in LAPACK. Note that this modification can be eas-
ily realized in the mat primal code, while for the APGL it can be accomplished by
setting matrix format = “standard” and par.fullsvd = 1. Since different ways of
computing SVD affect CPU time to some extent, the results presented here are only
to give a rough experience about how these methods perform. We employed this
uniform way of computing SVD just for comparison purpose. In this circumstance,
it can be seen from Table 5 that the LADM (4.7) consumed less CPU time than
the APGL to obtain comparable objective function values. In comparison with
mat primal, the LADM (4.7) is also faster for about half of the tested problems,
at the expense of resulting in slightly worse objective function values. As for the
results on the number of iterations, it can be seen from Table 5 that all of these
three methods in comparison took more iterations as λmax increases. The increas-
ing speed of iteration numbers taken by both APGL and LADM is moderate, while
that for mat primal is relatively faster. The performance of all compared methods
keeps deteriorating as λmax increases, and mat primal behaves the best for large
values of λmax in the sense that it usually obtains the smallest function values. The
favorable performance of mat primal is because the accelerated proximal gradient
method is applied to a reduced problem of (6.1) which usually has much smaller
size. We also note that mat primal needs some nontrivial pre- and post-processing
computations such as problem reformulation and solution reconstruction, etc. This
is why in some tests mat primal takes longer CPU time than LADM while the
iteration number is smaller.

Roughly speaking, (1.2) becomes more difficult as μ decreases. In fact, (1.2) can
be viewed as a penalized surrogate of (1.1), and it approaches to (1.1) while μ → 0.
Therefore, small values of μ usually cause typical numerical difficulties which are
encountered by penalty type methods. This is the reason why certain continuation
and line-search strategies are usually employed to alleviate the difficulty caused
by small values of μ (see [20, 49]). We note that the performance of LADM is
hardly affected by the value of μ. This can be partially observed from the results
in Table 5. Moreover, it is easy to see that by directly setting μ to be 0 the LADM
framework (4.7) reduce to (3.7), which indicates that (4.7) converges for μ = 0.
From the results in subsections 6.2 and 6.3, the LALM scheme (3.7) converges very
well for matrix completion and partial DCT problems.

An important advantage of those algorithms based on the shrinkage operator
(2.6) is that the yielded solutions have low-ranks. This is because those singular
values smaller than a threshold are shrunk to zero automatically. We note that
in all the tests in Table 5, as well as the tests in subsections 6.2 and 6.3 when
the sample ratios are relatively high (relative to the rank of X∗), the solutions
recovered by LADMs have the same ranks as the original low-rank matrices. This
is also true for APGL. However, we also observed that the results recovered by
mat primal usually have many small singular values for some test problems, e.g.,
for the test on (p,m, n, r, λmax, μ) = (1000, 2000, 100, 20, 10, 10−2), the solution
recovered by mat primal has rank 100 (even when stopping tolerance is restrictive,
e.g., opt.tol = 10−8 in mat primal), while the true rank of X∗ is 20. After
applying a post-processing procedure with an appropriate threshold parameter (not

2Available in the NNLS package containing the APGL code.
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difficult to determine since the singular values are usually clustered into two groups,
where the magnitudes of one group are frequently significantly bigger than those of
the other group), the “correct” rank of X∗ can then be identified. Finally, we note
that, for all the tests presented in Table 5, the resulting values of ‖AX−B‖F /‖B‖F
are in the order of O(10−3) or smaller, and are compatible to our synthetic noise
level.

6.5. Summary. From the numerical results in subsections 6.2 and 6.3, the pro-
posed LALM and LADMs perform promisingly, and they are even competitive to
the ADMs for the special case where AA∗ = I. The favorable performance of
LALM and LADMs on these random problems are mainly because the measure-
ment system is well conditioned. In fact, AA∗ = I holds for matrix completion
and partial DCT problems. For the general case with a generic linear operator that
AA∗ �= I, the results in Section 6.4 also show that the proposed LADM scheme (4.7)
is competitive to existing methods in the literature. Specifically, the LADM (4.7)
demonstrates stable and effective convergence for random problems with different
conditions. As the condition number λmax(A

�A) (for problem (6.1)) increases, the
same as for the compared methods, the LADM (4.7) requires more iterations to
achieve a solution of certain accuracy. Although the proposed LALM and LADMs
are not necessarily always the fastest (again, for matrix completion problems with
small sample ratios relative to rank(X∗), the APGL performs better, see [10]; and
for the special case (6.1), the algorithms in [38] are faster in some cases due to their
ability of reducing the problem dimensionality), our experimental results convinc-
ingly demonstrate that they converge very well for all three problems (1.1)-(1.3)
under consideration, and they are very competitive to the APGL and mat primal,
both of which are only customized for solving a certain model.

6.6. A note on β. We note that the penalty parameter β plays a critical rule
for the efficiency of the proposed LALM and LADMs (as well as other augmented
Lagrangian related methods). Theoretically, a larger value of β leads to faster
convergence of the outer loop of the ALM scheme (3.2), see [42]. However, a very
large value of β usually causes numerical difficulty, and it is thus not recommended
in practice. In general, determining suitable values of β is problem-dependant.
Roughly speaking, for solving constrained problems a suitable value of β should
be chosen such that, when the constraints are penalized to the objective functions,
their magnitudes should be balanced well. Therefore, when implementing these
first-order methods in practice, appropriate scaling of the problem data is usually
necessary. As such, some empirical way of choosing β can be incorporated, which
usually performs well in practice. For the problems studied in this paper, we set
β = β0 := 2.5/min(m,n) uniformly in all of the tests. To illustrate the performance
of LADM (4.7) with respect to different β values, we plot in Figure 1 the variation
of the objective function values of (6.1) with respect to the iteration numbers.

It can be seen from the plot on the left-hand side of Figure 1 (λmax = 102)
that β = β0 performs the best. For the plot on the right-hand side of Figure 1
(λmax = 103), the performance of β = β0 is also among the best ones, although it
is slightly slower than the setting β = 5β0 asymptotically. Surely, the results in
Figure 1 are merely illustrative examples, and for other problems this value may
not always perform the best. However, this choice of β leads to relatively stable
and effective convergence of the proposed LALM and LADMs for all the tested
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Figure 1. Test results on different choices of β. The values of p, m,

r and μ for problem (6.1) are, respectively, 500, 2000, 100, 20 and 0.01.

Each run is terminated by maximum iteration number maxit. Left:

λmax = 102 and maxit = 500; Right: λmax = 103 and maxit = 1000.

problems. In general, for linearly constrained problems the penalty parameter β
can be adjusted adaptively, subject to the principle of balancing the residuals of the
primal and the dual problems. However, this approach is not always beneficial since
the computation of the dual residual could be nontrivial, e.g., the dual problem of
(4.1) has a ball constraint determined by the matrix operator norm (the largest
singular value). This is why we adopted a simple empirical strategy on selecting β
in our experiments. We refer to, e.g., [23, 24, 27], for some self-adaptive rules of
tuning β.

7. Conclusions

In this paper, we consider the augmented Lagrangian method (ALM) and the
alternating direction method (ADM) for nuclear norm related problems. We first
show that the ADM is applicable to all the three models (1.1)-(1.3) provided that
the involved linear operator A satisfies AA∗ = I. For the general case where
AA∗ �= I, we derive linearized ALMs and ADMs in a unified manner, i.e., linearizing
the difficult subproblems such that closed-form solutions of the linearized problems
can be derived. Global convergence of these methods are established under standard
assumptions. In particular, we establish the global convergence for the linearized
ALM (3.7), which is stronger than those in [58]. An advantage of the proposed
LALM and LADMs is that they are easily implementable to all the models (1.1)-
(1.3), where A can be a generic linear operator, while previous approaches are
mostly customized for a particular model. Extensive numerical results on various
data show that the proposed linearized methods perform promisingly and they are
even very competitive to the customized algorithms APGL for (1.2) and mat primal

for (6.1).
Finally, we note that the algorithms derived in this paper can be easily extended

to general problems with J(X) in place of ‖X‖∗, where J(X) can be a generic
closed proper convex function. The resulting algorithms are easily implementable
provided that the solution to a problem of the form (2.7) can be easily computed.
Clearly, this will include, but not limited to, the cases of the �1-, �2- and �∞-norms



LINEARIZED ALM AND ADM FOR NUCLEAR NORM MINIMIZATION 327

in vector spaces, which have many applications in, e.g., compressive sensing and
machine learning, etc.

Acknowledgement

We are grateful to two anonymous referees for their valuable comments and sug-
gestions which have helped us improve the presentation of this paper substantially.

References

1. J. Abernethy, F. Bach, T. Evgeniou and J.-P. Vert, A new approach to collaborative
filtering: Operator estimation with spectral regularization, Journal of Machine Learning Re-
search, 10(2009), pp. 803–826.

2. A. Argyriou, T. Evgeniou and M. Pontil, Convex multi-task feature learning, Machine
Learning, 73(3)(2008), pp. 243–272.

3. J. M. Borwein, and A. S. Lewis, Convex analysis and nonlinear optimization, Springer-
Verlag, 2003. MR2184742 (2006f:49001)

4. J. F. Cai, E. J. Candés and Z. W. Shen, A singular value thresholding algorithm for ma-
trix completion, SIAM Journal on Optimization, 20(4) (2010), pp. 1956–1982. MR2600248

(2011c:90065)
5. J. F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing,

Mathematics of Computation, 78(267)(2009), pp. 1515–1536. MR2501061 (2010e:65086)
6. J. F. Cai, S. Osher and Z. Shen, Convergence of the Linearized Bregman Iteration

for �1-Norm Minimization, Mathematics of Computation, 78(268) (2009), pp. 2127–2136.
MR2521281 (2010k:65111)

7. J. F. Cai, S. Osher and Z. Shen, Split Bregman Methods and Frame Based Image Restora-
tion, Multiscale Model. Simul., 8(2)(2009), pp. 337–369. MR2581025 (2011a:94016)

8. E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations
of Computational Mathematics, 9(2009), pp. 717–772. MR2565240 (2011c:90066)

9. E. J. Candès and T. Tao, The power of convex relaxation: near-optimial matrix completion,
IEEE Transactions on Information Theory, 56(5) (2009), pp. 2053-2080. MR2723472

10. C. H. Chen, B. S. He and X. M. Yuan, Matrix completion via alternating direction methods,
IMA Journal of Numerical Analysis, to appear.

11. P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul., 4 (2005), pp. 1168–1200. MR2203849 (2007g:94016)

12. J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating
directions method of multipliers, In: Hager, W. W. et al. eds., Large Scale Optimization:
State of the Art, Kluwer Academic Publishers, pp. 115–134, 1994. MR1307168

13. E. Esser, Applications of Lagrangian-based alternating direction methods and connections to
split Bregman, preprint, available at http://www.math.ucla.edu/applied/cam/, 2009.

14. M. Fazel, H. Hindi and S. Boyd, A rank minimization heuristic with application to minimum
order system approximation, Proceedings American Control Conference, 6(2001), pp. 4734–

4739.
15. M. Fukushima, Application of the alternating direction method of multipliers to separable

convex programming problems, Computational Optimization and Applications, 1(1992), pp.
93–111. MR1195631 (94a:90020)

16. D. Gabay, Application of the method of multipliers to varuational inequalities, In: Fortin, M.,
Glowinski, R., eds., Augmented Lagrangian methods: Application to the numerical solution of
Boundary-Value Problem, North-Holland, Amsterdam, The Netherlands, pp. 299–331, 1983.

17. D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite element approximations, Computational Mathematics with Applications,
2(1976), pp. 17–40.

18. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Meth-
ods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, PA, 1989.
MR1060954 (91f:73038)

19. T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM
Journal on Imaging Science, 2(2) (2009), pp. 323–343. MR2496060 (2010e:65087)

http://www.ams.org/mathscinet-getitem?mr=2184742
http://www.ams.org/mathscinet-getitem?mr=2184742
http://www.ams.org/mathscinet-getitem?mr=2600248
http://www.ams.org/mathscinet-getitem?mr=2600248
http://www.ams.org/mathscinet-getitem?mr=2501061
http://www.ams.org/mathscinet-getitem?mr=2501061
http://www.ams.org/mathscinet-getitem?mr=2521281
http://www.ams.org/mathscinet-getitem?mr=2521281
http://www.ams.org/mathscinet-getitem?mr=2581025
http://www.ams.org/mathscinet-getitem?mr=2581025
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=2723472
http://www.ams.org/mathscinet-getitem?mr=2203849
http://www.ams.org/mathscinet-getitem?mr=2203849
http://www.ams.org/mathscinet-getitem?mr=1307168
http://www.math.ucla.edu/applied/cam/
http://www.ams.org/mathscinet-getitem?mr=1195631
http://www.ams.org/mathscinet-getitem?mr=1195631
http://www.ams.org/mathscinet-getitem?mr=1060954
http://www.ams.org/mathscinet-getitem?mr=1060954
http://www.ams.org/mathscinet-getitem?mr=2496060
http://www.ams.org/mathscinet-getitem?mr=2496060


328 JUNFENG YANG AND XIAOMING YUAN

20. E. Hale, W. Yin and Y. Zhang, Fixed-point continuation for �1-minimization: methodology
and convergence, SIAM Journal on Optimization, 19(3) (2008), pp.1107–1130. MR2460734
(2009j:90070)

21. B. S. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method
for monontone variational inequalities, Mathematical Programming, 92(2002), pp. 103–118.
MR1892298 (2003b:90111)

22. B. S. He, M. H. Xu and X. M. Yuan, Solving large-scale least squares semidefinite program-

ming by alternating direction methods, SIAM Journal on Matrix Analysis and Applications,
32(1) (2011), pp. 136–152. MR2811295

23. B. S. He and H. Yang, Some convergence properties of a method of multipliers for linearly
constrained monotone variational inequalities, Operations Research Letters, 23 (1998), pp.
151–161. MR1677664 (2000d:90089)

24. B. S. He, H. Yang and S. L. Wang, Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities, Journal of Optimization theory and appli-
cations, 106 (2000), pp. 337–356. MR1788928 (2001h:49016)

25. M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and Ap-
plications, 4 (1969), pp. 303–320. MR0271809 (42:6690)

26. S. Ji and J. Ye, An accelerated gradient method for trace norm minimization, The Twenty-
Sixth International Conference on Machine Learning, 2009.

27. S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for con-
vex optimization, Mathematical Programming, 83(1998), pp. 29–53. MR1643963 (99k:90116)

28. R. M. Larsen, PROPACK-Software for large and sparse SVD calculations, Available at:
http://sun.stanfor.edu/srmunk/PROPACK/, 2005.

29. Z.-C. Lin, M.-M. Chen, L.-Q. Wu and Y. Ma, The augmented Lagrange multiplier method
for exact recovery of corrupted low-rank matrices, manuscript, 2009.

30. J. Liu, S. Ji and J. Ye, SLEP: A Sparse Learning Package, Version 2.0, Available at: http://
www.public.asu.edu/~jye02/Software/SLEP, 2010.

31. Y. J. Liu, D. F. Sun and K. C. Toh, An implementable proximal point algorithmic framework
for nuclear norm minimization, Mathematical Programming, to appear.

32. S. Q. Ma, D. Goldfarb and L. Chen, Fixed point and Bregman iterative methods for matrix

rank minimization, Math. Program., 128 (2011), 321–353. MR2810961
33. Y. E. Nesterov, A method for unconstrained convex minimization problem with the rate of

convergence O(1/k2), Doklady AN SSSR, 269, pp. 543–547, 1983. MR701288 (84i:90119)
34. Y. E. Nesterov, Smooth minimization of nonsmooth functions, Mathematical Programming,

103 (2005), pp. 127–152. MR2166537 (2006g:90174)
35. M. K. Ng, P. A. Weiss and X. M. Yuan, Solving constrained total-variation problems via

alternating direction methods, SIAM Journal on Scientifc Computing, 32(5) (2010), pp. 2710–
2736. MR2684734 (2011i:65065)

36. G. Obozinski, B. Taskar and M. I. Jordan, Joint covariate selection and joint subspace
selection for multiple classification problems, Statistics and Computing, 2009. MR2610775

37. S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul. 4(2) (2005), pp. 460–489.
MR2162864 (2006c:49051)

38. T. K. Pong, P. Tseng, S. Ji. and J. Ye, Trace norm regularization: reformulations, algo-
rithms, and multi-task learning, SIAM Journal on Optimization, 20 (2010), pp. 3465-3489.
MR2763512

39. M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher, ed., Academic Press, New York, NY, pp. 283–298, 1969. MR0272403
(42:7284)

40. B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum rank solutions to linear
matrix equations via nuclear norm minimization, SIAM Review, 52(2010), pp. 471–501.
MR2680543

41. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
MR0274683 (43:445)

42. R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point al-
gorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97–116.
MR0418919 (54:6954)

http://www.ams.org/mathscinet-getitem?mr=2460734
http://www.ams.org/mathscinet-getitem?mr=2460734
http://www.ams.org/mathscinet-getitem?mr=1892298
http://www.ams.org/mathscinet-getitem?mr=1892298
http://www.ams.org/mathscinet-getitem?mr=2811295
http://www.ams.org/mathscinet-getitem?mr=1677664
http://www.ams.org/mathscinet-getitem?mr=1677664
http://www.ams.org/mathscinet-getitem?mr=1788928
http://www.ams.org/mathscinet-getitem?mr=1788928
http://www.ams.org/mathscinet-getitem?mr=0271809
http://www.ams.org/mathscinet-getitem?mr=0271809
http://www.ams.org/mathscinet-getitem?mr=1643963
http://www.ams.org/mathscinet-getitem?mr=1643963
http://sun.stanfor.edu/srmunk/PROPACK/
http://www.public.asu.edu/~jye02/Software/SLEP
http://www.public.asu.edu/~jye02/Software/SLEP
http://www.ams.org/mathscinet-getitem?mr=2810961
http://www.ams.org/mathscinet-getitem?mr=701288
http://www.ams.org/mathscinet-getitem?mr=701288
http://www.ams.org/mathscinet-getitem?mr=2166537
http://www.ams.org/mathscinet-getitem?mr=2166537
http://www.ams.org/mathscinet-getitem?mr=2684734
http://www.ams.org/mathscinet-getitem?mr=2684734
http://www.ams.org/mathscinet-getitem?mr=2610775
http://www.ams.org/mathscinet-getitem?mr=2162864
http://www.ams.org/mathscinet-getitem?mr=2162864
http://www.ams.org/mathscinet-getitem?mr=2763512
http://www.ams.org/mathscinet-getitem?mr=0272403
http://www.ams.org/mathscinet-getitem?mr=0272403
http://www.ams.org/mathscinet-getitem?mr=2680543
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=0418919
http://www.ams.org/mathscinet-getitem?mr=0418919


LINEARIZED ALM AND ADM FOR NUCLEAR NORM MINIMIZATION 329

43. S. Setzer, G. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman tech-
niques, Journal of Visual Communication and Image Representation, 21 (2010), pp. 193-199.

44. N. Srebro, J. D. M. Rennie and T. S. Jaakkola, Maximum-margin matrix factorization,
Advances in Neural Information Processing System, (2005), pp. 1329–1336.

45. J. F. Sturm, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones,
Optimization Methods and Software 11 & 12 (1999), pp. 625–653. MR1778433

46. W. Y. Sun and Y. X. Yuan, Optimization theory and methods, Nonlinear Programming

Series: Springer Optimization and Its Applications, 2006. MR2232297 (2007c:90002)
47. J. Sun and S. Zhang, A modified alternating direction method for convex quadratically con-

strained quadratic semidefinite programs, European Journal of Operational Research, 207
(2010), pp. 1210-1220. MR2727074

48. M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from
incomplete and noisy observations, SIAM Journal on Optimization, 21(1) (2011), pp. 57–81.
MR2765489

49. K. C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm
regularized least suqares problems, Pacific Journal of Optimization, 6(2010), pp. 615–640.
MR2743047

50. P. Tseng, Alternating projection-proximal methods for convex programming and variational
inequalities, SIAM Journal on Optimization, 7(1997), pp. 951–965. MR1479608 (99a:90156)
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