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ERROR ESTIMATES FOR FINITE ELEMENT

APPROXIMATIONS OF PARABOLIC EQUATIONS

WITH MEASURE DATA

WEI GONG

Abstract. In this paper we study the a priori error estimates for the finite el-
ement approximations of parabolic equations with measure data, especially we
consider problems with separate measure data in time and space, respectively.
The solutions of these kinds of problems exhibit low regularities due to the
existence of measure data, this introduces some difficulties in both theoretical
and numerical analysis. For both cases we use standard piecewise linear and
continuous finite elements for the space discretization and derive the a priori
error estimates for the semi-discretization problems, while the backward Euler
method is then used for time discretization and a priori error estimates for the
fully discrete problems are also derived. Numerical results are provided at the

end of the paper to confirm our theoretical findings.

1. Introduction

The aim of this paper is to analyze the finite element approximations of parabolic
equations with measure data. Let ΩT = Ω× (0, T ], ΓT = ∂Ω× (0, T ], Ω is an open
bounded domain in R

d (d = 2 or 3) with boundary Γ = ∂Ω. We consider the
following parabolic problems:

(1.1)

⎧⎪⎨⎪⎩
∂ty +Ay = μ in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where ∂ty = ∂y
∂t , the operator A is assumed to be a second order elliptic partial

differential operator, y0 ∈ L2(Ω) and T > 0 are fixed.
Here we consider two kinds of problems with measure data. At first, we consider

problem (1.1) with measure data in time, i.e., μ = gω, g and ω are given functions
such that g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ], where M[0, T ] is the space of the
real and regular Borel measures in [0, T ], which can be defined as the dual space of
C[0, T ] with its natural norm

‖μ‖M[0,T ] = sup
{∫ T

0

vdμ : v ∈ C[0, T ] and ‖v‖C[0,T ] ≤ 1
}
.
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One of the most important applications for parabolic equations with measure
data in time is related to the first order optimality conditions of parabolic opti-
mal control problems with pointwise state constraints. Optimal control problems
governed by parabolic PDE reads as:

(1.2) min J(y, u) =
1

2
‖y − yd‖2L2(ΩT ) +

α

2
‖u‖2L2(ΩT )

subject to

(1.3)

⎧⎪⎨⎪⎩
∂ty +Ay = u in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where y denotes the state variable and u denotes the control (see, e.g., [18]). If we
impose state constraints pointwise in time, for example (see, e.g., Example 2.3 in
[6] and [22]), ∫

Ω

g(x, t, y(x, t))dx ≤ b(t) ∀ t ∈ [0, T ](1.4)

with given function b(t), then the adjoint state p associated to the first order opti-
mality conditions satisfies

(1.5)

⎧⎪⎨⎪⎩
−∂tp+A∗p = y − yd + μΩT

in ΩT ,

p = μΣT
on ΣT ,

p(·, T ) = μT in Ω

in the sense of distributions (see, e.g., [6], [10] and [22]). In general, the Lagrange
multiplier μ associated to the state constraints for parabolic optimal control prob-
lems with pointwise state constraints belongs to M(ΩT ), where M(ΩT ) is the space
of regular Borel measures on ΩT , μΩT

:= μ|ΩT
, μΓT

:= μ|ΓT
and μT := μ|Ω×{T}.

However, in this case where only pointwise in time state constraints are imposed,
the Lagrange multiplier μ associated to the state constraints (1.4) appears to be
a measure only in time, and can be decomposed as μ = gω, g and ω are given
functions such that g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. Thus the associated (to
the state) adjoint equation exhibits the similar structure of (1.1).

Then, we consider problems with measure data in space, i.e., μ = gω, g and ω
are given functions such that g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω). Here M(Ω) is the
space of the real and regular Borel measures on Ω, and can be defined as the dual
space of C(Ω) with its natural norm

‖μ‖M(Ω) = sup
{∫

Ω

vdμ : v ∈ C(Ω) and ‖v‖C(Ω) ≤ 1
}
.

The problems of form (1.1) with measure data in space can be used to model the
potential of an electric field with an electric charge distribution μ (see [5]). These
kinds of problems also arise in other types of applications, for instance, modeling of
acoustic monopoles, transport equations for effluent discharge in aquatic media (see
[1]). In the design and management of waste-water treatment systems, mainly the
disposal of sea outfalls discharging polluting effluent from a sewerage system (see
[21] for details), the problem can be formulated as an optimal control problem with
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pointwise state and control constraints and pointwise control, while the governing
state equation of which is of the form (1.1) with measure data in space

(1.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt +Ay =

m∑
i=1

ui(t)δXi
in ΩT ,

y(x, t) = 0 on ΓT ,

y(x, 0) = y0(x) in Ω,

where δXi
represents the Dirac measure concentrated at Xi, i = 1, 2, . . . ,m. Some

other kind of optimal control problems with state equation of form (1.6), for exam-
ple, problems with pointwise control, can be found in, e.g., [11], [14] and [25].

The existence of solutions for quasi-linear elliptic and parabolic equations in-
volving measure data has been studied by Boccardo and Gallouët in [4], Casas
studied linear parabolic problems and improved the results of [4] by exploiting the
linearity of the equation in [6]. The finite element method for elliptic equation with
measure data has been extensively studied (see, e.g., [2], [5], [28] and [29]). Casas

gave an optimal error estimate of order O(h2− d
2 ) in [5], where h is the mesh size of

space triangulation and d is the dimension of Ω. Araya et al. obtained a posteriori
error estimates for elliptic problems with Dirac delta source terms in [1]. However,
there seems to be no such kind of contributions to finite element approximations of
parabolic equations with measure data. To the best of our knowledge this paper is
among the few contributions on this topic.

In this paper we study the finite element approximations of parabolic equations
with measure data, especially we consider problems with separate measure data
in time and space, respectively. We use standard piecewise linear and continuous
finite elements for the space discretization and derive the a priori error estimates
for the semidiscretization problems, while the backward Euler method is then used
for time discretization and a priori error estimates for the fully discrete problems
are also derived.

We denote by k the step size in the temporal discretization and by h the maxi-
mum element size of the spatial mesh. Then the main results of this paper are as
follows. For parabolic equations with measure data in time, we obtain the following
estimates of the error between the solution y of the continuous problem and the
solution yh of the semidiscretization one:

‖y − yh‖L2(0,T ;L2(Ω)) ≤ Ch
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
and the estimates of the error between the solution y of the continuous problem
and the solution Yh of the fully discrete one:

‖y − Yh‖L2(0,T ;L2(Ω)) ≤ C(h+ k
1
2 )
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
.

For parabolic equations with measure data in space, we obtain the following esti-
mates of the error between the solution y of the continuous problem and the solution
yh of the semidiscretization one:

‖y − yh‖L2(0,T ;L2(Ω)) ≤ Ch2− d
2

(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + ‖y0‖0,Ω

)
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and the estimates of the error between the solution y of the continuous problem
and the solution Yh of the fully discrete one:

‖y − Yh‖L2(0,T ;L2(Ω)) ≤ C(h2− d
2 + k

1
2 )
(
‖g‖

H
1
2 (0,T ;L∞(Ω))

‖ω‖M(Ω) + ‖y0‖0,Ω
)
.

Numerical results are provided at the end of the paper to confirm our theoretical
findings.

The rest of this paper is organized as follows. In Section 2 we give some notations
and present the parabolic equations with measure data in time and space, and
analyze the existence results for the unique solution. In Section 3 we establish the
continuous time semi-discrete finite element approximation schemes for the above
two kinds of problems and derive a priori error estimates. Then the fully discrete
finite element approximation based on the backward Euler method is introduced
and an a priori estimate for the discretization error is derived in Section 4. We
also carry out some numerical experiments in Section 5 to confirm our theoretical
findings. At the end of the paper we give a conclusion and discuss the future work.

2. Parabolic equations with measure data

2.1. Notation. Assume that Ω ⊂ R
d, d = 2 or 3 is a convex polygonal or polyhe-

dral domain, or domain with a C1,1 boundary. We denote by Wm,p(Ω) the usual
Sobolev space of orderm ≥ 0, 1 ≤ p < ∞ with norm ‖·‖m,p,Ω and seminorm |·|m,p,Ω,
and the standard modification for p = ∞. For p = 2 we denote Wm,p(Ω) by Hm(Ω)
and ‖ · ‖m,Ω = ‖ · ‖m,2,Ω, which is a Hilbert space. Note that H0(Ω) = L2(Ω) and
H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.
For p ∈ [1,∞), the interval [0, T ] ⊂ R and the Banach space A with norm ‖ · ‖A,

we denote by Lp(0, T ;A) the set of measurable functions y : [0, T ] → A such that∫ T

0
‖y‖pAdt ≤ ∞. The norm on Lp(0, T ;A) is defined by

‖y(t)‖Lp(0,T ;A) =

⎧⎪⎪⎨⎪⎪⎩
(∫ T

0

‖y‖pAdt
) 1

p

1 ≤ p < ∞,

ess sup
t∈[0,T ]

‖y(t)‖A p = ∞.

We denote D(ΩT ) the set of C∞(ΩT ) functions with compact support in ΩT . Let
Hs,r(ΩT ) = L2(0, T ;Hs(Ω)) ∩Hr(0, T ;L2(Ω)) be equipped with the norm

‖w‖s,r =
(∫ T

0

‖w(·, t)‖2sdt+
∫
Ω

‖w(x, ·)‖2r,[0,T ]dx
) 1

2

,

where ‖ · ‖r,[0,T ] denotes the norm on Hr([0, T ]). We set

W (0, T ) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)),

it is straightforward that W (0, T ) ↪→ C([0, T ];L2(Ω)) (see [19]). We also set

X(0, T ) := L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1

0 (Ω)).

We denote the L2-inner products on L2(Ω) and L2(ΩT ) by

(v, w) =

∫
Ω

vwdx ∀ v, w ∈ L2(Ω)

and

(v, w)ΩT
=

∫
ΩT

vwdxdt ∀ v, w ∈ L2(ΩT ),



ERROR ESTIMATES FOR PARABOLIC PDES WITH MEASURE DATA 73

respectively. The operator A is assumed to be a second order elliptic partial differ-
ential operator of the form

Ay = −
d∑

i,j=1

∂xj
(aij∂xi

y) + a0y,

where a0 ∈ L∞(Ω), a0(x, t) ≥ 0 for all (x, t) ∈ ΩT , aij (1 ≤ i, j ≤ d) is Lipschitz
continuous on ΩT and satisfies the following uniform ellipticity condition:

d∑
i,j=1

aijξiξj ≥ c|ξ|2, c > 0 ∀ ξ ∈ R
d, x ∈ Ω.

Moreover, ∂nA
=

∑n
i,j=1 aij∂xj

ni and n is the unit outer normal to ∂Ω. We will
denote by A∗ the adjoint operator of A:

A∗y = −
d∑

i,j=1

∂xj
(aji∂xi

y) + a0y.

In addition, c and C denote generic positive constants.
We introduce the following bilinear forms associated with A on Ω and ΩT :

a(v, w) =
d∑

i,j=1

∫
Ω

(aij∂xi
v∂xj

w + a0vw)dx ∀ v, w ∈ H1(Ω)

and

a(v, w)ΩT
=

d∑
i,j=1

∫
ΩT

(aij∂xi
v∂xj

w + a0vw)dxdt ∀ v, w ∈ L2(0, T ;H1(Ω)).

For f ∈ L2(ΩT ), we assume that φ and ψ are the solutions of following forward
and backward in time parabolic problems:

(2.1)

⎧⎪⎨⎪⎩
∂tφ+Aφ = f in ΩT ,

φ = 0 on ΓT ,

φ(0) = 0 in Ω

and

(2.2)

⎧⎪⎨⎪⎩
−∂tψ +A∗ψ = f in ΩT ,

ψ = 0 on ΓT ,

ψ(T ) = 0 in Ω.

Then the following standard stability estimates can be found in, e.g. [19].

Lemma 2.1. Let φ and ψ denote the solutions of problem (2.1) and (2.2), re-
spectively. Then for v = φ or v = ψ there holds v ∈ L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1(Ω)) and satisfies

(2.3) ‖v‖L2(0,T ;H2(Ω)) + ‖vt‖L2(0,T ;L2(Ω)) ≤ C‖f‖0,0
and

(2.4) ‖φ(T )‖1,Ω ≤ C‖f‖L2(0,T ;L2(Ω)), ‖ψ(0)‖1,Ω ≤ C‖f‖L2(0,T ;L2(Ω)).
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2.2. Parabolic equations with measure data in time. At first, we consider
the following parabolic equations with measure data in time:

(2.5)

⎧⎪⎨⎪⎩
∂ty +Ay = μ = gω in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. The weak solution of problems (2.5)
can be defined by transposition techniques (see Lions and Magenes [19]). In the
following theorem we will give the results on the existence and uniqueness as well
as regularity of the solution to problem (2.5).

Theorem 2.2. With the assumption that μ = gω, g and ω are given functions such
that g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ], problem (2.5) admits a unique solution
y ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) such that

− (y, ∂tv)H1,H−1 + a(y, v)ΩT
= 〈μ, v〉ΩT

+ (y0, v(·, 0)) ∀ v ∈ W (0, T )(2.6)

with v(·, T ) = 0 and

(2.7)
‖y‖L2(0,T ;H1

0 (Ω)) + ‖y‖L∞(0,T ;L2(Ω))

≤ C
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
.

Here

〈μ, v〉ΩT
=

∫
ΩT

vdμ =

∫ T

0

(∫
Ω

g(x, t)v(x, t)dx
)
dω(t), ∀ v ∈ C([0, T ];L2(Ω)).

Proof. The proof follows the idea of [6], here we sketch the proof for completeness.
Since the problem is linear, it suffices to consider either y0 ≡ 0 or μ ≡ 0.

If μ ≡ 0, y0 ∈ L2(Ω), it is obvious that problem (2.5) admits a unique solution
y ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) satisfying (see Lions and Magenes [19])

‖y‖L2(0,T ;H1
0 (Ω)) + ‖y‖L∞(0,T ;L2(Ω)) ≤ C‖y0‖0,Ω.

Now we suppose y0 ≡ 0, let {ωn}n ⊂ C[0, T ] be the sequence converging weakly-*
to ω in M[0, T ] and satisfy

‖ωn‖L1[0,T ] ≤ ‖ω‖M[0,T ].

Let yn be the solutions of

(2.8)

⎧⎪⎨⎪⎩
∂tyn +Ayn = gωn in ΩT ,

yn = 0 on ΓT ,

yn(·, 0) = 0 in Ω,

then we have yn ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H1(0, T ;L2(Ω)). For f ∈ D(ΩT ), let

ψ be the solution of problem

(2.9)

⎧⎪⎨⎪⎩
−∂tψ +A∗ψ = f in ΩT ,

ψ = 0 on ΓT ,

ψ(·, T ) = 0 in Ω,
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thus we have ψ ∈ C(ΩT ) from the regularity theory of parabolic equation. Then
from (2.8) we have∫

ΩT

fyndxdt =

∫
ΩT

(−∂tψ +A∗ψ)yndxdt

=

∫
ΩT

gωnψdxdt

≤ C‖g‖L∞(0,T ;L2(Ω))‖ωn‖L1[0,T ]‖ψ‖C([0,T ];L2(Ω))

≤ C‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]‖ψ‖C([0,T ];L2(Ω)).

Standard estimates give (see, e.g., [19])

‖ψ‖C([0,T ];L2(Ω)) ≤ C‖f‖L1([0,T ];L2(Ω))(2.10)

and

‖ψ‖C([0,T ];L2(Ω)) ≤ C‖f‖L2(0,T ;H−1(Ω)).(2.11)

We can conclude from (2.10) that the solution sequence {yn}n is bounded in the
space L∞(0, T ;L2(Ω)), while {yn}n is also bounded in the space L2(0, T ;H1

0 (Ω))
from (2.11). Thus we can take a subsequence such that yn → y weakly in

L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω))

and (2.7) is satisfied.
Then we prove (2.6). Let ψ ∈ W (0, T ) and ψ(·, T ) = 0, multiplying (2.8) by ψ

and integrating by parts we have∫ T

0

(

∫
Ω

g(x, t)ψ(x, t)dx)ωn(t)dt

= −
∫
ΩT

yn∂tψdxdt+

∫
ΩT

( d∑
i,j=1

aij∂xi
yn∂xj

ψ + a0ynψ
)
dxdt,(2.12)

passing to the limit in (2.12) we get (2.6).
Finally, we note that uniqueness holds since the only solution for zero data of

(2.5) is y = 0. �

2.3. Parabolic equations with measure data in space. Now we turn to the
following parabolic equations with measure data in space:

(2.13)

⎧⎪⎨⎪⎩
∂ty +Ay = μ = gω in ΩT ,

y = 0 on ΓT ,

y(0) = y0 in Ω,

where g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω). Similarly, the weak solution of problem
(2.13) can be defined by transposition techniques. The following theorem gives
the results concerning the existence, uniqueness and regularity of the solution to
problem (2.13).

Theorem 2.3. With the assumption that y0 ∈ L2(Ω), μ = gω, g and ω are given
functions such that g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω), problem (2.13) admits a
unique solution y ∈ L2(0, T ;L2(Ω)) in the sense that

(2.14) −(y, ∂tv)ΩT
+ (y,A∗v)ΩT

= 〈μ, v〉ΩT
+ (y0, v(·, 0)) ∀ v ∈ X(0, T )
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with v(·, T ) = 0, here

〈μ, v〉ΩT
=

∫
ΩT

vdμ =

∫
Ω

(∫ T

0

g(x, t)v(x, t)dt
)
dω(x) ∀ v ∈ L2(0, T ; C(Ω)).

Then, there exist a constant C only depending on data, such that

(2.15) ‖y‖L2(0,T ;L2(Ω)) ≤ C
(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + ‖y0‖0,Ω

)
.

Moreover, we have

y ∈ L1(0, T ;W 1,p(Ω)) ∩ C([0, T ];W 1,q(Ω)′) and ∂ty ∈ L1(0, T ;W 1,q(Ω)′),

and

(2.16) ‖y‖L1(0,T ;W 1,p(Ω)) ≤ C
(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + ‖y0‖0,Ω

)
,

where p ∈ [1, d
d−1 ) and q is the conjugate number of p such that 1

p + 1
q = 1.

Proof. Similarly, as in the proof of Theorem 2.2, we assume that y0 ∈ L2(Ω) and
g ∈ L2(0, T ; C(Ω)). For μ ≡ 0 the assertion is obvious. We set y0 ≡ 0 and let
{ωn}n ⊂ C(Ω) be the sequence converging weakly-* to ω in M(Ω) and satisfy

‖ωn‖L1(Ω) ≤ ‖ω‖M(Ω).

Let yn be the solutions of (2.8) with right-hand side gωn, then we have yn ∈ X(0, T ).
For f ∈ D(ΩT ), let ψ be the solution of problem (2.9), thus we have ψ ∈ C(ΩT )
from the regularity theory of parabolic equation. We deduce from (2.8) that∫

ΩT

fyndxdt =

∫
ΩT

(−∂tψ +A∗ψ)yndxdt

=

∫
ΩT

gωnψdxdt

≤ C‖g‖L2(0,T ;C(Ω))‖ωn‖L1(Ω)‖ψ‖L2(0,T ;C(Ω))

≤ C‖g‖L2(0,T ;C(Ω))‖ω‖M(Ω))‖ψ‖L2(0,T ;C(Ω)).

From embedding theorem we have L2(0, T ;H2(Ω)) ↪→ L2(0, T ; C(Ω)). Standard
estimates give (see, e.g., [19])

‖ψ‖L2(0,T ;H2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)).(2.17)

We can conclude from (2.17) that the solution sequence {yn}n is bounded in the
space L2(0, T ;L2(Ω)). Thus we can take a subsequence such that yn → y weakly
in L2(0, T ;L2(Ω)) and (2.15) is satisfied. The rest of the proof is standard.

Furthermore, the second part of this theorem has been proved in [6]; see also
[21]. Actually, Theorem 6.3 in [6] implies the existence of a unique solution y ∈
L1(0, T ;W 1,p(Ω)) for all p ∈ [1, d

d−1 ) and ∂ty ∈ L1(0, T ;W 1,q(Ω)′) in the sense of

(2.14), such that (2.16) is satisfied, hence we have y ∈ C([0, T ];W 1,q(Ω)′) after a
modification on a set of zero measure. �

Remark 2.4. If d = 1, the function μ = g(x, t)ω(x) belongs to L2(0, T ;H−1(Ω)),
this property implies in turn that (see [14])

y ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),
∂y

∂t
∈ L2(0, T ;H−1(Ω)).

However, we do not proceed with this issue and consider only cases when d=2 or 3.



ERROR ESTIMATES FOR PARABOLIC PDES WITH MEASURE DATA 77

3. Error estimates for the continuous time Galerkin approximations

Let us consider the continuous time finite element approximations of the prob-
lems (2.6) and (2.14). To this aim, we consider a family of triangulation T h of Ω,
such that Ω =

⋃
τ∈T h τ . We suppose that Ω is the union of the elements of T h

so that element edges lying on the boundary may be curved. This triangulation is
supposed to be regular in the usual sense. For each element τ ∈ T h we associate
two parameters ρ(τ ) and σ(τ ), where ρ(τ ) denotes the diameter of the element τ
and σ(τ ) is the supremum of the diameters of all circles contained in τ . Define the
size of the mesh by h = maxτ∈T h ρ(τ ). We suppose that the following regularity
assumptions are satisfied: There exists a positive constant C such that

ρ(τ )

σ(τ )
≤ C,

h

ρ(τ )
≤ C(3.1)

hold for all τ ∈ T h and all h > 0.
Here we consider only n-simplex elements, as they are among the most widely

used ones. Associated with T h is a finite dimensional subspace V h of C(Ω), such
that χ|τ are polynomials of order m (m ≥ 1) for ∀ χ ∈ V h and τ ∈ T h. Here we
only consider piecewise linear elements, i.e., m = 1. We also set V h

0 = V h ∩H1
0 (Ω).

Note that the regular assumption (3.1) guarantees the following inverse proper-
ties for vh ∈ V h:

‖vh‖s,Ω ≤ Chl−s‖vh‖l,Ω 0 ≤ l ≤ s ≤ 1(3.2)

and

‖vh‖0,∞,Ω ≤ Ch− d
2 ‖vh‖0,Ω,(3.3)

‖vh‖0,∞,Ω ≤ Cρ(d, h)‖vh‖1,Ω,(3.4)

where

(3.5) ρ(d, h) =

{√
| log h|, d = 2;

h− 1
2 , d = 3.

Let Πh : C(Ω) → V h denote the standard Lagrange interpolation operator, then
interpolation error estimate implies that for y ∈ H2(Ω) (see, e.g., [8])

‖y −Πhy‖0,Ω + h‖y −Πhy‖1,Ω ≤ Ch2‖y‖2,Ω(3.6)

and

‖y −Πhy‖0,∞,Ω ≤ Ch2− d
2 ‖y‖2,Ω.(3.7)

Let Ph be the L2(Ω)-projection operator defined from L2(Ω) to V h:

(Phy, vh) = (y, vh) ∀ vh ∈ V h(3.8)

and Rh : H1
0 (Ω) → V h

0 denote the Ritz projection operator defined as

a(Rhy, vh) = a(y, vh) ∀ vh ∈ V h
0 .(3.9)

Then we have the following error estimates (see, e.g., [8] and [26])

Lemma 3.1. Let Ph and Rh be the L2-projection operator and Ritz projection
operator defined above. Then there holds:

‖y − Phy‖−1,Ω + h‖y − Phy‖0,Ω ≤ Ch2‖y‖1,Ω,(3.10)

‖y −Rhy‖0,Ω + h‖y −Rhy‖1,Ω ≤ Ch2‖y‖2,Ω.(3.11)
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Moreover, we have

‖y −Rhy‖0,∞,Ω ≤ Ch2− d
2 ‖y‖2,Ω.(3.12)

Proof. Here we only prove ‖y−Phy‖−1,Ω. From the definition of L2-projection we
have

‖y − Phy‖−1,Ω = sup
v∈H1(Ω)

(y − Phy, v)

‖v‖1,Ω

= sup
v∈H1(Ω)

(y − Phy, v − Phv)

‖v‖1,Ω

≤ sup
v∈H1(Ω)

Ch2‖y‖1,Ω‖v‖1,Ω
‖v‖1,Ω

≤ Ch2‖y‖1,Ω. �

Since the solutions of problems (2.6) and (2.14) have low regularities, it seems
to be natural to estimate the error between the solutions of continuous problem
and semidiscretization problem under the norm L2(0, T ;L2(Ω)). To achieve this
we need to use the duality argument. Thus, we introduce the semi-discrete finite
element approximation of the backward parabolic problem (2.2):

(3.13)

{
−(∂tψh, vh)ΩT

+ a(ψh, vh)ΩT
= (f, vh)ΩT

∀ vh ∈ V h
0 ,

(ψh(T ), wh) = 0 ∀ wh ∈ V h
0 ,

where ψh(t) ∈ H1(0, T ;V h
0 ).

At first, we need to derive the error estimates for the solutions of the backward
parabolic problem (2.2) and its semidiscretization approximation (3.13) under the
norms L2(0, T ;L∞(Ω)) and L∞(0, T ;L2(Ω)), which will play a crucial role in the
derivation of our main results.

Lemma 3.2. Let ψ ∈ X(0, T ) ↪→ C([0, T ];H1(Ω)) and ψh ∈ H1(0, T ;V h
0 ) be the

solutions of problem (2.2) and (3.13), respectively. Then we have the following
uniformly in time and space error estimate:

(3.14) ‖ψ − ψh‖L∞(0,T ;L2(Ω)) ≤ Ch
(
‖ψ‖L2(0,T ;H2(Ω)) + ‖ψt‖L2(0,T ;L2(Ω))

)
and

(3.15) ‖ψ − ψh‖L2(0,T ;L∞(Ω)) ≤ Ch2− d
2

(
‖ψ‖L2(0,T ;H2(Ω)) + ‖ψt‖L2(0,T ;L2(Ω))

)
.

Proof. Actually, we need to prove the error estimates under the regularity condi-
tions stated in this lemma, and the techniques are different from the standard proof
for the semidiscrete error estimates which requires higher regularity; see, e.g., [30].
Using similar arguments as in [7] it is not difficult to prove the following a priori
error estimates for the backward parabolic equations

(3.16)
‖ψ(t)− ψh(t)‖0,Ω + ‖ψ − ψh‖L2(0,T ;H1(Ω))

≤ Ch
(
‖ψ‖L2(0,T ;H2(Ω)) + ‖ψt‖L2(0,T ;L2(Ω))

)
and

(3.17) ‖ψ − ψh‖L2(0,T ;L2(Ω)) ≤ Ch2
(
‖ψ‖L2(0,T ;H2(Ω)) + ‖ψt‖L2(0,T ;L2(Ω))

)
.
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The key ingredient of the proof is the introduction of the L2-projection instead of
the Ritz-projection used in the other literatures.

Error estimate (3.14) is a direct consequence of (3.16). To prove (3.15), let Πhψ
be the piecewise linear interpolation of ψ defined above, then from (3.7) we have

(3.18)

‖ψ − ψh‖L2(0,T ;L∞(Ω))

≤ ‖ψ −Πhψ‖L2(0,T ;L∞(Ω)) + ‖Πhψ − ψh‖L2(0,T ;L∞(Ω))

≤ Ch2− d
2 ‖ψ‖L2(0,T ;H2(Ω)) + Ch− d

2 ‖Πhψ − ψh‖L2(0,T ;L2(Ω))

≤ Ch2− d
2 ‖ψ‖L2(0,T ;H2(Ω)) + Ch− d

2 ‖ψ − ψh‖L2(0,T ;L2(Ω)),

where we have used the standard interpolation error estimate and inverse estimate
(3.3). This together with (3.17) implies (3.15). �

3.1. Finite element approximations to parabolic equations with measure
data in time. We now turn to defining the continuous time finite element approx-
imation scheme for problems (2.6). Based on the weak form stated in Theorem 2.2,
we can define the following semi-discrete finite element approximation of (2.6):

(3.19) −(yh, ∂tvh)ΩT
+a(yh, vh)ΩT

= 〈μ, vh〉ΩT
+(yh0 , vh(·, 0)) ∀ vh ∈ H1(0, T ;V h

0 )

with vh(·, T ) = 0, where yh(t) ∈ L2(0, T ;V h
0 ), and yh0 ∈ V h

0 is an approximation of
y0. We set yh0 = Phy0 to be the L2-projection of y0. Here

〈μ, vh〉ΩT
=

∫
ΩT

vhdμ =

∫ T

0

(

∫
Ω

g(x, t)vh(x)dx)dω(t) ∀ vh ∈ V h.

Now we are in a position to state our main result of this subsection, i.e., the
estimates of the error between the solution y of the continuous problem (2.6) and
the solution yh of the semidiscretization one (3.19).

Theorem 3.3. Assume that μ = gω, g and ω are given functions such that g ∈
C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. Let y ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and
yh ∈ L2(0, T ;V h

0 ) be the solutions of problem (2.6) and (3.19), respectively. Then
we have the following error estimate:

(3.20) ‖y − yh‖L2(0,T ;L2(Ω)) ≤ Ch
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
.

Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). Then from
(2.6), (3.19) and orthogonality property we have∫

ΩT

(y − yh)fdxdt =

∫ T

0

∫
Ω

(y − yh)(−∂tψ +A∗ψ)dxdt

= (y,−∂tψ)ΩT
+ a(y, ψ)ΩT

+ (yh, ∂tψ)ΩT
− a(yh, ψ)ΩT

= 〈μ, ψ〉ΩT
+ (y0, ψ(0)) + (yh, ∂tψh)ΩT

− a(yh, ψh)ΩT

= 〈μ, ψ〉ΩT
+ (y0, ψ(0))− 〈μ, ψh〉ΩT

− (Phy0, ψh(0))

=

∫
ΩT

(ψ − ψh)dμ+ (y0, ψ(0)− ψh(0))

=

∫ T

0

(∫
Ω

g(x, t)(ψ − ψh)dx
)
dω(t) + (y0, ψ(0)− ψh(0))

≤ C
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
‖ψ − ψh‖L∞(0,T ;L2(Ω)).
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Lemma 2.1 and Lemma 3.2 yield∫
ΩT

(y − yh)fdxdt ≤ C
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]+‖y0‖0,Ω

)
‖ψ−ψh‖L∞(0,T ;L2(Ω))

≤ Ch
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)(
‖ψ‖L2(0,T ;H2(Ω))

+ ‖∂tψ‖L2(0,T ;L2(Ω))

)
≤ Ch

(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
‖f‖L2(0,T ;L2(Ω)),

then from the definition of L2(ΩT ) norm we have

‖y − yh‖L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f �=0

(f, y − yh)ΩT

‖f‖L2(0,T ;L2(Ω))

≤ Ch
(
‖y0‖0,Ω + ‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

)
,

which completes the proof. �

3.2. Finite element approximations to parabolic equations with measure
data in space. Similarly, based on the results of Theorem 2.3 we can define the
semi-discrete finite element approximation of (2.14) as follows:

(3.21) −(yh, ∂tvh)ΩT
+a(yh, vh)ΩT

= 〈μ, vh〉ΩT
+(yh0 , vh(·, 0)) ∀ vh ∈ H1(0, T ;V h

0 )

with vh(·, T ) = 0, where yh(t) ∈ L2(0, T ;V h
0 ), and yh0 ∈ V h

0 is an approximation of
y0. We set yh0 = Phy0 to be the L2-projection of y0. Here

〈μ, vh〉ΩT
=

∫
ΩT

vhdμ =

∫ T

0

(

∫
Ω

g(x, t)vh(x)dω(x))dt ∀ vh ∈ V h.

With the above preparations we now can state our main result in the following
theorem.

Theorem 3.4. Assume that g and ω are given functions such that g∈L2(0, T ; C(Ω))
and ω ∈ M(Ω), y0 ∈ L2(Ω). Let y ∈ L2(0, T ;L2(Ω)) and yh ∈ L2(0, T ;V h

0 ) be the
solutions of problems (2.13) and (3.21), respectively. Then we have the following
error estimate:

(3.22) ‖y − yh‖L2(0,T ;L2(Ω)) ≤ Ch2− d
2

(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + ‖y0‖0,Ω

)
.

Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). Then from
(2.14) and (3.21), orthogonality property and proceeding as in the proof of Theorem
3.3 we have∫

ΩT

(y − yh)fdxdt =

∫ T

0

∫
Ω

(y − yh)(−∂tψ +A∗ψ)dxdt

=

∫
ΩT

(ψ − ψh)dμ+ (y0, ψ(·, 0)− ψh(·, 0))

=

∫ T

0

(∫
Ω

g(x, t)(ψ − ψh)dω(x)
)
dt+ (y0, ψ(·, 0)− ψh(·, 0))

≤ C
(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)‖ψ − ψh‖L2(0,T ;L∞(Ω))

+‖y0‖0,Ω‖ψ − ψh‖C([0,T ];L2(Ω))

)
.
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It now follows from Lemma 2.1 and Lemma 3.2 that∫
ΩT

(y − yh)fdxdt ≤ C
(
h2− d

2 ‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + Ch‖y0‖0,Ω
)

(
‖ψ‖L2(0,T ;H2(Ω)) + ‖∂tψ‖L2(0,T ;L2(Ω))

)
≤ Ch2− d

2

(
‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω) + ‖y0‖0,Ω

)
‖f‖L2(0,T ;L2(Ω)),

which proves (3.22) from the definition of L2(ΩT ) norm. �

Remark 3.5. The a priori error estimate we obtained in Theorem 3.4, which is

of order O(h2− d
2 ), seems to be optimal compared with the results presented in

[5], where finite element approximation for elliptic equations with measure data is

studied and an a priori error estimate of order O(h2− d
2 ) is derived.

4. Error estimates for fully discrete finite element approximations

We next consider the fully discrete approximations for above semidiscrete prob-
lems by using the backward Euler scheme in time. We consider a partitioning of
the time interval I = [0, T ] as

I = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IN

with subintervals Ii = (ti−1, ti] of size ki and time points

0 = t0 < t1 < · · · < tN−1 < tN = T.

We define the discretization parameter k as a piecewise constant function by setting
k|Ii = ki for i = 1, 2, . . . , N . For i = 1, 2, . . . , N , construct the finite element spaces
V h
i ∈ H1(Ω) (similar to V h) with the mesh T h

i . For simplicity we consider equal
partition in time, i.e., ki ≡ k, where k denotes the time step size, and the same
finite element space on each time step. For our error analysis, in the following we
set k = O(hd) throughout the paper.

4.1. Fully discrete approximations of parabolic equations with measure
data in time. Now we are in a position to define the fully discrete approximations
to parabolic equations with measure data in time. The fully discrete approximation
scheme of (3.19) is to find Y i

h ∈ V h
0 , i = 1, 2, . . . , N , such that

(4.1)

⎧⎨⎩ (
Y i
h − Y i−1

h

k
, wh) + a(Y i

h , wh) = 〈μ,wh〉Ii , ∀ wh ∈ V h
0 , i = 1, . . . , N,

Y 0
h (x) = yh0 (x), x ∈ Ω.

Here

〈μ, vh〉Ii =
1

k

∫
Ω×(ti−1,ti]

vhdμ =
1

k

∫ ti

ti−1

(

∫
Ω

g(x, t)vh(x)dx)dω(t), ∀ vh ∈ V h.

In the following we denote Yh the fully discrete finite element approximation of y;
it is obvious that Yh is piecewise constant in time and piecewise linear in space on
each time interval.

Then we can derive the following stability estimate for numerical scheme (4.1)
of problem (2.5).
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Lemma 4.1. Let Y i
h ∈ V h

0 , i = 1, 2, · · · , N be the solutions of fully discrete scheme
(4.1), yh0 = Phy0 and assume that k ≤ Chd, then there exists a constant C inde-
pendent of h, k and the data (g, ω, y0) such that

(4.2)

N∑
i=1

‖Y i
h − Y i−1

h ‖20,Ω + k‖Y N
h ‖21,Ω

≤ C
(
‖y0‖20,Ω + ‖g‖2L∞(0,T ;L2(Ω))‖ω‖2M[0,T ]

)
and

(4.3)
‖Y N

h ‖20,Ω +

N∑
i=1

k‖Y i
h‖21,Ω

≤ C
(
‖y0‖20,Ω + k−1‖g‖2L∞(0,T ;L2(Ω))‖ω‖2M[0,T ]

)
.

Proof. Let wh = k(Y i
h − Y i−1

h ) in (4.1) we get

(Y i
h − Y i−1

h , Y i
h − Y i−1

h ) + ka(Y i
h , Y

i
h − Y i−1

h ) = k〈μ, Y i
h − Y i−1

h 〉Ii ,

thus we have
(4.4)
‖Y i

h − Y i−1
h ‖20,Ω + k‖Y i

h‖21,Ω

≤ ka(Y i
h , Y

i−1
h ) +

∫ ti

ti−1

(g(t), Y i
h − Y i−1

h )dω(t)

≤ 1

2
k‖Y i

h‖21,Ω +
1

2
k‖Y i−1

h ‖21,Ω + ‖Y i
h − Y i−1

h ‖0,Ω
∫ ti

ti−1

‖g(t)‖0,Ωdω(t)

≤ 1

2
k‖Y i

h‖21,Ω +
1

2
k‖Y i−1

h ‖21,Ω + C
(∫ ti

ti−1

‖g(t)‖0,Ωdω(t)
)2

+
1

2
‖Y i

h − Y i−1
h ‖20,Ω.

Summing the above equations over i from 1 to N we obtain

(4.5)

N∑
i=1

‖Y i
h − Y i−1

h ‖20,Ω + k‖Y N
h ‖21,Ω ≤ k‖Phy0‖21,Ω

+ C
N∑
i=1

(∫ ti

ti−1

‖g(t)‖0,Ωdω(t)
)2

≤ k‖Phy0‖21,Ω + C(

∫ T

0

‖g(t)‖0,Ωdω(t))2

≤ C‖y0‖20,Ω + C‖g‖2L∞(0,T ;L2(Ω))‖ω‖2M[0,T ],
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where we have used the inverse estimate k‖Phy0‖21,Ω ≤ kh−2‖Phy0‖20,Ω ≤ C‖y0‖20,Ω.
This proves (4.2). Similarly, by setting vh = kY i

h in (4.1) we have

(Y i
h − Y i−1

h , Y i
h) + ka(Y i

h , Y
i
h) = k〈μ, Y i

h〉Ii ,

thus we have

(4.6)

‖Y i
h‖20,Ω + k‖Y i

h‖21,Ω

= (Y i
h , Y

i−1
h ) +

∫ ti

ti−1

(
g(t), Y i

h

)
dω(t)

≤ 1

2
‖Y i

h‖20,Ω +
1

2
‖Y i−1

h ‖20,Ω + ‖Y i
h‖1,Ω

∫ ti

ti−1

‖g(t)‖0,Ωdω(t)

≤ 1

2
‖Y i

h‖20,Ω +
1

2
‖Y i−1

h ‖20,Ω + Ck−1
(∫ ti

ti−1

‖g(t)‖0,Ωdω(t)
)2

+
1

2
k‖Y i

h‖21,Ω.

Summing the above equations over i from 1 to N we obtain

(4.7)

‖Y N
h ‖20,Ω +

N∑
i=1

k‖Y i
h‖21,Ω

≤ ‖Phy0‖20,Ω + C

N∑
i=1

k−1
( ∫ ti

ti−1

‖g(t)‖0,Ωdω(t)
)2

≤ C‖y0‖20,Ω + Ck−1‖g‖2L∞(0,T ;L2(Ω))‖ω‖2M[0,T ],

This proves (4.3). �

With the above preparations we are ready to estimate the error between the
solution y of continuous problem (2.6) and the solution Yh of the fully discrete
problem (4.1), which is the main result of this paper. Instead of the standard
approaches based on Ritz-projection (see, e.g, [30]), we use the duality argument
to carry out the error analysis, and the stability results stated in Lemma 4.1 for
numerical scheme (4.1) plays an important role.

Theorem 4.2. Assume that μ = gω, g and ω are given functions such that g ∈
C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. Let y ∈ L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω)) be the
solution of problem (2.6), and Yh be the solution of problem (4.1), then we have

(4.8)
‖y − Yh‖L2(0,T ;L2(Ω))

≤ C(h+ k
1
2 )
(
‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ] + ‖y0‖0,Ω

)
.
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Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). It follows
from (2.6) that∫

ΩT

(y − Yh)fdxdt =

∫ T

0

∫
Ω

(y − Yh)(−∂tψ +A∗ψ)dxdt

= −(y, ∂tψ)ΩT
+ a(y, ψ)ΩT

+

N∑
n=1

∫
In

((Y n
h , ∂tψ)− a(Y n

h , ψ))dt

= 〈μ, ψ〉ΩT
+ (y0, ψ(0)) +

N∑
n=1

∫
In

(k−1(Y n
h , ψn − ψn−1)− a(Y n

h , ψ))dt

= 〈μ, ψ〉ΩT
+ (y0, ψ(0))−

N∑
n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+ (Y N
h , ψN )− (Y 0

h , ψ(0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+ 〈μ, ψ〉ΩT
+ (y0 − Y 0

h , ψ(0))

with ψn := ψ(:, tn). Note that from (4.1) we have

N∑
n=1

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ)) =

N∑
n=1

〈μ,Rhψ〉In ,

where Rhψ ∈ V h is defined on In as

Rhψ = Rhψ
n =

1

k

∫
In

Rhψ(·, t)dt, n > 0,(4.9)

and Rhψ
N = Rhψ(T ). Here and in what follows we denote ψ the average of ψ in

In as defined in (4.9) for all ψ ∈ L1(In). It is straightforward to see that∫
In

(ψ − ψ)dt = 0.(4.10)

Therefore we have

(4.11)

∫
ΩT

(y − Yh)fdxdt = 〈μ, ψ〉ΩT
−

N∑
n=1

∫
In

〈μ,Rhψ〉In

−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+ (y0 − Y 0
h , ψ(0)) +

N∑
n=1

∫
In

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ))dt

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ) + a(Y n
h , ψ −Rhψ))dt

+ 〈μ, ψ〉ΩT
−

N∑
n=1

∫
In

〈μ,Rhψ〉In + (y0 − Y 0
h , ψ(0))

= E1 + E2 + E3.
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Note that we have

(4.12)

|E2| =
∣∣∣〈μ, ψ〉ΩT

−
N∑

n=1

∫
In

〈μ,Rhψ〉In
∣∣∣

=
∣∣∣ N∑
n=1

∫ tn

tn−1

(∫
Ω

g(x, t)(ψ −Rhψ)(x)dx
)
dω(t)

∣∣∣
≤ C‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]‖ψ −Rhψ‖L∞(0,T ;L2(Ω)).

Note that

(4.13)

‖ψ −Rhψ‖L∞(0,T ;L2(Ω))

≤ ‖ψ − ψ‖L∞(0,T ;L2(Ω)) + ‖ψ −Rhψ‖L∞(0,T ;L2(Ω))

≤ Ck
1
2 ‖ψ‖H1(0,T ;L2(Ω)) + Ch‖ψ‖L∞(0,T ;H1(Ω))

≤ C(k
1
2 + h)‖ψ‖2,1,

where standard error estimates were used in the above equation. Thus

(4.14)
|E2| ≤ C(k

1
2 + h)‖ψ‖2,1‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

≤ C(k
1
2 + h)‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]‖f‖L2(0,T ;L2(Ω)).

We also have

(4.15)
|E3| = |(y0 − Y 0

h , ψ(0))| ≤ ‖y0 − Phy0‖−1,Ω‖ψ(0)‖1,Ω
≤ Ch‖y0‖0,Ω‖f‖L2(0,T ;L2(Ω)).

Then it remains to estimate E1. Since Y n
h ∈ V h

0 , from the definition of Ritz-
projection we have ∫

In

a(Y n
h , ψ −Rhψ))dt = 0.(4.16)

Application of the Cauchy-Schwarz inequality gives

(4.17)

|E1| = | −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ) + a(Y n
h , ψ −Rhψ))dt|

= | −
N∑

n=1

∫
In

k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ)dt|

≤ F1 · F2,

where

F1 =
( N∑

n=1

‖Y n
h − Y n−1

h ‖20,Ω
) 1

2

and

F2 =
( N∑

n=1

‖ψn−1 −Rhψ‖20,Ω
) 1

2

.

Lemma 4.1 gives

F1 ≤ C
(
‖y0‖0,Ω + ‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

)
.(4.18)
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Standard error estimates yield

‖ψn−1 −Rhψ‖0,Ω ≤ ‖ψn−1 − ψ‖0,Ω + ‖ψ −Rhψ‖0,Ω
≤ ‖ψn−1 − ψ‖0,Ω + Ch2‖ψ‖2,Ω(4.19)

and

‖ψn−1 − ψ‖0,Ω ≤ k
1
2 ‖ψt‖L2(tn−1,tn;L2(Ω)).(4.20)

It is straightforward to show that

(4.21) ‖ψ‖2,Ω ≤ k−
1
2 ‖ψ‖L2(tn−1,tn;H2(Ω)).

Then from (4.19)-(4.21) we can conclude that

(4.22)

|F2| ≤ C
( N∑

n=1

(h4‖ψ‖22,Ω + k‖ψt‖2L2(tn−1,tn;L2(Ω)))
) 1

2

≤ C
( N∑

n=1

(h4k−1‖ψ‖2L2(tn−1,tn;H2(Ω)) + k‖ψt‖2L2(tn−1,tn;L2(Ω)))
) 1

2

≤ C(h+ k
1
2 )‖ψ‖2,1,

thus

(4.23)
|E1| ≤ C(h+ k

1
2 )‖ψ‖2,1

(
‖y0‖0,Ω + ‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

)
≤ C(h+ k

1
2 )‖f‖L2(0,T ;L2(Ω))

(
‖y0‖0,Ω + ‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

)
.

It follows from (4.11), (4.14), (4.15) and (4.23) that

‖y − Yh‖L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f �=0

(f, y − Yh)ΩT

‖f‖L2(0,T ;L2(Ω))

≤ C(h+ k
1
2 )
(
‖y0‖0,Ω + ‖g‖L∞(0,T ;L2(Ω))‖ω‖M[0,T ]

)
,

which completes the proof. �

Remark 4.3. In Theorem 3.3 we obtain a priori error estimates of order O(h) for the
semidiscretization finite element approximation of parabolic equations with measure
data in time, and the same result with respect to space discretization is derived for
fully discrete approximation in Theorem 4.2. The order O(h) seems to be optimal in
view of the regularity of solution y, which belongs to L2(0, T ;H1(Ω)) as presented

in Theorem 2.2. The convergence order with respect to time discretization is O(k
1
2 ),

which should also be optimal.

4.2. Fully discrete approximations of parabolic equations with measure
data in space. This subsection is devoted to the fully discrete approximations of
parabolic equations with measure data in space. The fully discrete approximation
scheme of (3.21) is to find Y i

h ∈ V h
0 , i = 1, 2, . . . , N , such that⎧⎨⎩ (

Y i
h − Y i−1

h

k
, wh) + a(Y i

h , wh) = 〈μ,wh〉Ii , ∀ wh ∈ V h
0 , i = 1, . . . , N,

Y 0
h (x) = yh0 (x) x ∈ Ω.

(4.24)
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Here

〈μ, vh〉Ii =
1

k

∫
Ω×(ti−1,ti]

vhdμ =
1

k

∫ ti

ti−1

(

∫
Ω

g(x, t)vh(x)dω(x))dt ∀ vh ∈ V h.

Also we denote Yh the fully discrete finite element approximation of y.
Then we can derive the following stability estimate for the numerical scheme

(4.24) of problem (2.13).

Lemma 4.4. Assume that g and ω are given functions such that g ∈ L2(0, T ; C(Ω))
and ω ∈ M(Ω), y0 ∈ L2(Ω). Let Y i

h ∈ V h
0 , i = 1, 2, . . . , N be the solutions of fully

discrete scheme (4.24), yh0 = Phy0 and assume that k ≤ Chd, then there exists a
constant C independent of h, k and the data (g, ω, y0) such that

(4.25)

N∑
i=1

‖Y i
h−Y i−1

h ‖20,Ω+k‖Y N
h ‖21,Ω ≤ C

(
‖y0‖20,Ω+‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω)

)
and

(4.26)
‖Y N

h ‖20,Ω +
N∑
i=1

k‖Y i
h‖21,Ω

≤ C
(
‖y0‖20,Ω + ρ2(d, h)‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω)

)
.

Proof. The proof is similar to Lemma 4.1. Let wh = k(Y i
h −Y i−1

h ) in (4.24), we get

(Y i
h − Y i−1

h , Y i
h − Y i−1

h ) + ka(Y i
h , Y

i
h − Y i−1

h ) = k〈μ, Y i
h − Y i−1

h 〉Ii ,

thus we have

‖Y i
h − Y i−1

h ‖20,Ω + k‖Y i
h‖21,Ω

≤ ka(Y i
h , Y

i−1
h ) +

∫ ti

ti−1

(

∫
Ω

g(x, t)(Y i
h − Y i−1

h )dω(x))dt

≤ 1

2
k‖Y i

h‖21,Ω +
1

2
k‖Y i−1

h ‖21,Ω +

∫ ti

ti−1

‖Y i
h − Y i−1

h ‖0,∞,Ω‖g(t)‖0,∞,Ω‖ω‖M(Ω)dt

≤ 1

2
k‖Y i

h‖21,Ω +
1

2
k‖Y i−1

h ‖21,Ω + C‖g(t)‖2L2(ti−1,ti;L∞(Ω))‖ω‖2M(Ω)

+
1

2
‖Y i

h − Y i−1
h ‖20,Ω,

(4.27)

where we have used the following inverse estimate:

√
k‖Y i

h − Y i−1
h ‖0,∞,Ω ≤ C

√
kh− d

2 ‖Y i
h − Y i−1

h ‖0,Ω
≤ C‖Y i

h − Y i−1
h ‖0,Ω.
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Summing the above equations over i from 1 to N and using the inverse estimate
we get

(4.28)

N∑
i=1

‖Y i
h − Y i−1

h ‖20,Ω + k‖Y N
h ‖21,Ω

≤ k‖Y 0
h ‖21,Ω + C

N∑
i=1

‖g(t)‖2L2(ti−1,ti;L∞(Ω))‖ω‖2M(Ω)

≤ k‖Phy0‖21,Ω + C‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω)

≤ C‖y0‖20,Ω + C‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω),

which proves (4.25).
Similarly, by setting vh = kY i

h in (4.24) we have

(Y i
h − Y i−1

h , Y i
h) + ka(Y i

h , Y
i
h) = k〈μ, Y i

h〉Ii ,

which gives

(Y i
h , Y

i
h) + ka(Y i

h , Y
i
h)

= (Y i−1
h , Y i

h) +

∫ ti

ti−1

(

∫
Ω

g(x, t)Y i
hdω(x))dt

≤ 1

2
‖Y i

h‖0,Ω +
1

2
‖Y i−1

h ‖0,Ω +

∫ ti

ti−1

‖Y i
h‖0,∞,Ω‖g(t)‖0,∞,Ω‖ω‖M(Ω)dt

≤ 1

2
‖Y i

h‖0,Ω +
1

2
‖Y i−1

h ‖0,Ω +
1

2
k‖Y i

h‖21,Ω
+ Cρ2(d, h)‖g(t)‖2L2(ti−1,ti;L∞(Ω))‖ω‖2M(Ω).

Here we used Young’s inequality and the inverse estimate (3.4). Summation from
i = 1 to N leads to

‖Y N
h ‖20,Ω + k

N∑
i=1

a(Y i
h , Y

i
h) ≤ C‖Y 0

h ‖20,Ω + Cρ2(d, h)‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω)

≤ C‖y0‖20,Ω + Cρ2(d, h)‖g(t)‖2L2(0,T ;L∞(Ω))‖ω‖2M(Ω).

This proves (4.26). �

Now we are in a position to estimate the error between the solutions of problems
(2.14) and (4.24), which is one of the main results of this paper.

Theorem 4.5. Assume that g and ω are given functions such that

g ∈ L2(0, T ; C(Ω)) ∩H
1
2 (0, T ;L∞(Ω)) and ω ∈ M(Ω), y0 ∈ L2(Ω).

Let y ∈ L2(0, T ;L2(Ω)) be the solution of problem (2.14), and let Yh be the solution
of problem (4.24), then we have

(4.29)
‖y − Yh‖L2(0,T ;L2(Ω))

≤ C(h2−d
2 + k

1
2 )
(
‖g‖

H
1
2 (0,T ;L∞(Ω))

‖ω‖M(Ω) + ‖y0‖0,Ω
)
.
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Proof. Again, we use duality argument to prove this theorem. Let ψ be the solution
of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). Note that ψ = 0 on ∂Ω, ψN = ψ(T ) = 0,
it follows from (2.14) that

∫
ΩT

(y − Yh)fdxdt =

∫ T

0

∫
Ω

(y − Yh)(−∂tψ +A∗ψ)dxdt

= −(y, ∂tψ)ΩT
+ (y,A∗ψ)ΩT

+

N∑
n=1

∫
In

((Y n
h , ∂tψ)− a(Y n

h , ψ))dt

= 〈μ, ψ〉ΩT
+ (y0, ψ(·, 0)) +

N∑
n=1

∫
In

(k−1(Y n
h , ψn − ψn−1)− a(Y n

h , ψ))dt

= 〈μ, ψ〉ΩT
+ (y0, ψ(·, 0))−

N∑
n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+ (Y N
h , ψN )− (Y 0

h , ψ(·, 0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+ 〈μ, ψ〉ΩT
+ (y0 − Y 0

h , ψ(·, 0)).

Note that from (4.24) we have

N∑
n=1

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ)) =

N∑
n=1

〈μ,Rhψ〉In ,

where Rhψ ∈ V h
0 is defined in (4.9). Thus

(4.30)

∫
ΩT

(y − Yh)fdxdt = 〈μ, ψ〉ΩT
−

N∑
n=1

∫
In

〈μ,Rhψ〉In

+
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ))dt

−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt+ (y0 − Y 0

h , ψ(0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ) + a(Y n
h , ψ −Rhψ))dt

+ 〈μ, ψ〉ΩT
−

N∑
n=1

∫
In

〈μ,Rhψ〉In + (y0 − Y 0
h , ψ(0))

= Ẽ1 + Ẽ2 + Ẽ3.
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From (4.10) we deduce

(4.31)

|Ẽ2| =
∣∣∣〈μ, ψ〉ΩT

−
N∑

n=1

∫
In

〈μ,Rhψ〉In
∣∣∣

=
∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

g(x, t)(ψ −Rhψ)(x, t)dt
)
dω(x)

∣∣∣
=

∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

(g(x, t)ψ(x, t)− g(x, t)Rhψ(x, t))dt
)
dω(x)

∣∣∣
≤

∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

ψ(x, t)(g(x, t)− g(x, t))dt
)
dω(x)

∣∣∣
+
∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

g(x, t)(ψ −Rhψ)(x, t)dt
)
dω(x)

∣∣∣
≤ C‖g − g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)‖ψ‖L2(0,T ;L∞(Ω))

+ C‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)‖ψ −Rhψ‖L2(0,T ;L∞(Ω)).

Standard error estimates yield

(4.32) ‖g − g‖L2(0,T ;L∞(Ω)) ≤ Ck
1
2 ‖g‖

H
1
2 (0,T ;L∞(Ω))

and

(4.33) ‖ψ −Rhψ‖L2(0,T ;L∞(Ω)) ≤ Ch2− d
2 ‖ψ‖L2(0,T ;H2(Ω)).

Thus we have

(4.34) |Ẽ2| ≤ C(k
1
2 + h2− d

2 )‖ω‖M(Ω)‖g‖H 1
2 (0,T ;L∞(Ω))

‖f‖L2(0,T ;L2(Ω)).

Similar to (4.15) we also have

(4.35) |Ẽ3| ≤ Ch‖y0‖0,Ω‖f‖L2(0,T ;L2(Ω)).

Then it remains to estimate Ẽ1. (4.16) and Cauchy-Schwarz inequality give

|Ẽ1| ≤ F̃1 · F̃2,(4.36)

where

F̃1 =
( N∑

n=1

‖Y n
h − Y n−1

h ‖20,Ω
) 1

2

and

F̃2 =
( N∑

n=1

‖ψn−1 −Rhψ‖20,Ω
) 1

2

.

From (4.25) of Lemma 4.4 we have

F̃1 ≤ C
(
‖y0‖0,Ω + ‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)

)
.(4.37)

Similar to (4.22) we can conclude from (4.19)-(4.21) that

|F̃2| ≤ C(h2− d
2 + k

1
2 )‖ψ‖2,1,(4.38)
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thus
(4.39)

|Ẽ1| ≤ C(h2− d
2 + k

1
2 )‖ψ‖2,1

(
‖y0‖0,Ω + ‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)

)
≤ C(h2− d

2 + k
1
2 )‖f‖L2(0,T ;L2(Ω))

(
‖y0‖0,Ω + ‖g‖L2(0,T ;L∞(Ω))‖ω‖M(Ω)

)
.

Then from (4.30), (4.34), (4.35) and (4.39) we have

‖y − Yh‖L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f �=0

(f, y − Yh)ΩT

‖f‖L2(0,T ;L2(Ω))

≤ C(h2− d
2 + k

1
2 )
(
‖y0‖0,Ω + ‖g‖

H
1
2 (0,T ;L∞(Ω))

‖ω‖M(Ω)

)
,

which completes the proof. �

5. Numerical examples

In this section we will carry out some numerical experiments to confirm our
theoretical findings. For the computation the software package AFEPack ([17]) has
been used. To validate the estimates developed in the previous section, we show
the convergence order by separating the discretization errors. At first we consider
the behavior of the error for a sequence of discretizations with different mesh sizes
and fixed time steps. Then we show the behavior of the error for different time
steps but a fixed spatial triangulation.

In the following numerical examples, we define an error functional to show the
experimental order of convergence by

rate =
logE(h1)− logE(h2)

log h1 − log h2
,

where E(h) denotes the error on triangulation with mesh size h or time step k.
Then it is easy to see that “rate = γ” means that “error = O(hγ)”.

5.1. Parabolic equations with measure data in time. At first we consider
the following parabolic equation with Dirac right-hand side in time:⎧⎪⎨⎪⎩

∂ty −Δy = gω in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where g(x, t) ∈ C([0, T ];L2(Ω)) and ω(t) ∈ M[0, T ]. For ease of constructing ex-
amples we may admit some additional regular parts to appear in the right-hand
side.

Example 5.1. The first example is a modification from the example presented in
[22]. Let ΩT = B(0, 1)× [0, 1], where B(0, 1) is the unit circle centered at zero with
radius 1, γ ∈ (0, 1) and λ ∈ R. Let

ε(t) = (e−λt − e−
λ
2 ),

we take the exact solution as

y(x, t) = sin(π|x|2) eλt

λ(1− γ)
·

⎧⎪⎨⎪⎩
ε(0)1−γ , t ≥ 1

2
,

ε(0)1−γ − ε(t)1−γ , t <
1

2
.
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Table 1. Error of y for Example 5.1 with λ = 1.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
25 1.805765645861 \ 3 0.229100247225 \
81 0.479593557806 1.9127 9 0.197363792883 0.1357
289 0.119994521144 1.9988 27 0.131680471328 0.3683
1089 0.031089301244 1.9485 81 0.080625762381 0.4465
4225 0.010045681219 1.6298 243 0.048726635543 0.4584
16641 0.006520318504 0.6236 729 0.029977569575 0.4422

Table 2. Error of y for Example 5.1 with λ = 2.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
25 2.405100524743 \ 3 0.283293492668 \
81 0.636075956291 1.9188 9 0.157102357581 0.5367
289 0.158595488032 2.0038 27 0.106189907672 0.3565
1089 0.041037524463 1.9503 81 0.067208827352 0.4164
4225 0.013412438652 1.6134 243 0.041682864989 0.4348
16641 0.008934235708 0.5862 729 0.026138785274 0.4248

After a simple calculation we have

μ(x, t) = sin(π|x|2)δ(t) + (sin(π|x|2) · eλt

1− γ
+ (−4π cos(π|x|2)

+4π2|x|2 sin(π|x|2)) eλt

λ(1− γ)
) ·

⎧⎪⎨⎪⎩
ε(0)1−γ , t ≥ 1

2
,

ε(0)1−γ − ε(t)1−γ , t <
1

2
,

where

δ(t) =

⎧⎪⎨⎪⎩
0, t ≥ 1

2
,

ε(t)−γ , t <
1

2
.

To confirm our theoretical results we test the convergence order with respect to
space discretization and time discretization, respectively. To investigate the conver-
gence order with respect to the space discretization we fixed the time discretization
withN = 33333 for λ = 1, 2 andN = 3333 for λ = 10, while the space discretization
is fixed with 16641 Dofs to investigate the convergence order with respect to the
time discretization, the results for λ = 1, λ = 2 and λ = 10 are listed in Tables 1,
2 and 3, respectively.

We can see from Tables 1–3 that the convergence order with respect to the
spatial discretization is almost 2, which is optimal and better than our predicted
order O(h). While the convergence order with respect to the time discretization is

almost O(k
1
2 ) for the cases λ = 1 and λ = 2, which is consistent with our theoretical

results. The convergence order for the time discretization is O(k) for larger λ, as
presented in Table 3.
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Table 3. Error of y for Example 5.1 with λ = 10.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
25 788.214049388618 \ 3 2421.450238197359 \
81 200.611180708993 1.9742 9 614.302084069153 1.2485
289 48.311558519598 2.0540 27 162.023290177949 1.2131
1089 11.935206551992 2.0171 81 48.670234674881 1.0947
4225 2.934940200289 2.0238 243 14.900101550467 1.0774
16641 0.885011153476 1.7296 729 5.036596568855 0.9873

Table 4. Error of y for Example 5.2.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
25 1.003408828629 \ 2 0.067209558965 \
81 0.265418710871 1.9186 4 0.033600480166 1.0002
289 0.065958680971 2.0086 8 0.016860913555 0.9948
1089 0.016567151789 1.9932 16 0.008466148990 0.9939
4225 0.004146042659 1.9985 32 0.004286813653 0.9818
16641 0.001034571264 2.0027 64 0.002276249156 0.9132

Example 5.2. The second example is constructed inspired by Example 4.2 of [9].
Let ΩT = B(0, 1)× [0, 1], and we take the exact solution as

y(x, t) = sin(π|x|2) ·
{

t2, t < 0.5,

t2 + 2t, t ≥ 0.5.

We know that ∂ty = sin(π|x|2) · δt( 12 ) + sin(π|x|2) · γ(t), where δt(z) denotes the
Dirac measure with respect to the variable t concentrated at t = z, and

γ(t) =

{
2t, t < 0.5,

2t+ 2, t ≥ 0.5.

Thus, after simple calculation we have

μ(x, t) = sin(π|x|2) · δt(
1

2
) + sin(π|x|2) · γ(t)

+(−4π cos(π|x|2) + 4π2|x|2 sin(π|x|2)) ·
{

t2, t < 0.5,

t2 + 2t, t ≥ 0.5.

At first we fixed the time discretization with 4096 time steps to investigate
the behavior of error with respect to the spatial discretization, then the space
discretization is fixed with 16641 Dofs to investigate the convergence order with
respect to the time discretization. The results are listed in Table 4. From Table 4 we
found that the convergence orders with respect to the spatial and time discretization
are O(h2) and O(k), respectively, both of them are higher than our predicted results

which are O(h) and O(k
1
2 ), respectively.

5.2. Parabolic equations with measure data in space. Since our theoretical
results are also valid for Neumann boundary conditions, we consider in this subsec-
tion the following parabolic equation with Dirac source term in space and Neumann
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Table 5. Error of y for Example 5.3 with respect to space and time.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
31 0.033467303580 \ 2 0.069700966171 \
105 0.007254281003 2.5066 4 0.030875705044 1.1747
385 0.002842650160 1.4421 8 0.014389164719 1.1015
1473 0.001350586630 1.1092 16 0.006927239146 1.0546
5761 0.000551335197 1.3139 32 0.003398471622 1.0274
22785 0.000194881287 1.5127 64 0.001688698129 1.0090

boundary condition: ⎧⎪⎪⎨⎪⎪⎩
yt −Δy + y = μ in ΩT ,

∂y

∂n
= 0 on ΓT ,

y(0) = y0 in Ω,

where μ = g(x, t)ω(x), g(x, t) ∈ L2(0, T ; C(Ω)) and ω(x) ∈ M(Ω). For ease of
constructing examples we also admit some additional regular parts to appear in
the right-hand side.

Example 5.3. The third example is a modification from Example 4.2 of [9]. Let
ΩT = [0, 1]2 × [0, 1], we take the exact solution as

y(x, t) = (et + 1) ·
{
0.5− x2

1, x1 < 0.5,

0.25, x1 ≥ 0.5,

since y does not depend on the spatial variable x2, we find that Δy = Δxxy =
(δx1

( 12 )− ψ(x1)) · (et + 1), where

ψ(x1) =

{
2, x1 < 0.5,

0, x1 ≥ 0.5,

and δxi
(z) denotes the Dirac measure with respect to the variable xi concentrated

at xi = z. Then after simple calculation we have

μ(x, t) = y(x, t)− (et + 1) · (δx1
(
1

2
)− ψ(x1)) + et ·

{
0.5− x2

1, x1 < 0.5,

0.25, x1 ≥ 0.5.

To investigate the convergence order with respect to the space discretization
we fix the time discretization with N = 2048, while the spatial discretization is
fixed with 22785 Dofs to investigate the convergence order with respect to the time
discretization, the results are listed in Table 5, and Figure 1 presents the numerical
result at time t = 0.5 for a gird with 22785 Dofs. We can see from Table 5 that the
convergence order w.r.t the space discretization is almost 1, which is consistent with
our theoretical results. While the convergence order w.r.t the time discretization is
1, which is better than our predicted result of order k

1
2 .

Example 5.4. The fourth example is a modification from Example 4.1 of [9]; see
also [1]. Let ΩT = B(0, 1)× [0, 1], we take the exact solution as

y(x, t) = − 1

2π
log |x| · (et + 1),
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Figure 1. The discrete solution Yh of Example 5.3 at time t = 0.5
with 22785 Dofs.

Figure 2. The discrete solution Yh of Example 5.4 at time t = 0.5
with 66049 Dofs.

then after simple calculation we have

μ(x, t) = (et + 1)δ0 + y(x, t)− 1

2π
log |x| · et,

where δ0 is the Dirac function at x = (0, 0).

To investigate the convergence order with respect to the space discretization
we fixed the time discretization with N = 2048, while the space discretization is
fixed with 66049 Dofs to investigate the convergence order with respect to the time
discretization, the results are listed in Table 6, and Figure 2 presents the numerical
result at time t = 0.5 for a gird with 66049 Dofs. We can see from Table 6 that
the convergence order w.r.t the space discretization is 1, which is consistent with
our theoretical results. While the convergence order w.r.t the time discretization is
also 1, which is better than our predicted result of order k

1
2 .
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Table 6. Error of y for Example 5.4 with respect to space and time.

Dofs ‖y − Yh‖L2(ΩT ) rate N ‖y − Yh‖L2(ΩT ) rate
25 0.051725167740 \ 2 0.029719956266 \
81 0.026461768120 0.9670 4 0.013208571995 1.1700
289 0.013361104038 0.9859 8 0.006210402376 1.0887
1089 0.006716533360 0.9923 16 0.003085031620 1.0094
4225 0.003366984764 0.9963 32 0.001685293247 0.8723
16641 0.001685479572 0.9983 64 0.001112777391 0.5988

6. Conclusion and future work

In this paper we study the a priori error estimates for the finite element approx-
imations of parabolic equations with measure data separately in time and space,
respectively. The space discretization is done using piecewise linear and continuous
finite elements, whereas the time discretization is based on the backward Euler
method. We derive the a priori error estimates for the semidiscretization problems
and the fully discrete problems, respectively. Numerical results are provided at the
end of the paper to confirm our theoretical findings.

To the best of author’s knowledge, this paper is among the few contributions
to finite element method for partial differential equations involving measure data.
The results obtained in this paper especially constitute the crucial ingredients to
derive the error estimates for some kind of parabolic optimal control problems with
state constraints. The traditional approach of error analysis for parabolic optimal
control problems with state constraints is to avoid the error estimates for adjoint
state equation, which is caused by the lack of error estimates for parabolic equations
involving measure data (see, e.g., [10], [15] and [22]). We believe that the results
in this paper provide a shortcut for the error analysis of such kinds of problems.

Moreover, the results obtained in this paper can be viewed as the first step,
but a crucial step, for the error analysis of the finite element approximation to
parabolic optimal control problems with pointwise control, where control acts on
finitely many points of the domain. The state equation has the form of (2.13) with
right-hand side μ = u(t)ω(x) (see (1.6)), where u(t) denotes the control variable,
the details can be found in [11], [14] and [25]. The finite element approximation of
such kinds of problems and corresponding error analysis will be addressed in our
future work. In addition, as pointed out in the introduction, parabolic equations
with measure data find many applications in optimal control theory. But generally
the Lagrange multiplier μ associated to the state constraints for parabolic optimal
control problems with pointwise state constraints belongs to M(ΩT ) (see (1.5)),
so it is also very interesting to study the finite element approximation of parabolic
problems with measure data in both space and time (see [4] for the analytical
setting), the approaches developed in the current paper seems to be inapplicable
for such extreme cases.

On the other hand, since the solutions of parabolic problems involving measure
data have lower regularities, only reduced convergence order can be expected by
standard finite element approximation. Thus the a posteriori error estimate and
adaptive finite element method for such kinds of problems are necessary and deserve
further study. Araya et al. ([1]) have studied a posteriori error estimates for elliptic
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problems with Dirac delta source terms, the applications of their approaches to our
setting will be postponed to our future work.
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[21] A. Mart́ınez, C. Rodŕıguez and M. E. Vázquez-Méndez, Theoretical and numerical analysis
of an optimal control problem related to wastewater treatment, SIAM J. Control Optim., 38
(2000), pp. 1534-1553. MR1766429 (2001a:49040)

[22] D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretiza-
tions of parabolic optimization problems with pointwise state constraints in time, SIAM J.
Control Optim., 49 (2011), pp. 1961–1997. MR2837507

[23] R. H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation
of curvature-driven interfaces, SIAM J. Numer. Anal., 34 (1997), pp. 490-512. MR1442924
(98d:65127)

[24] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, vol-
ume 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994.
MR1299729 (95i:65005)

[25] A. M. Ramos, R. Glowinski and J. Periaux, Pointwise control of the Burgers equation and
related Nash equilibrium problems: Computational approach, J. Optim. Theory Appl., 112
(2002), pp. 499-516. MR1892233 (2003e:93043)

[26] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element
approximations, Math. Comput., 38 (1982), pp. 437-445. MR645661 (83e:65180)

[27] A. H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the
finite element method on irregular grids. I: Global estimates, Math. Comput., 67 (1998), pp.
877-899. MR1464148 (98j:65082)

[28] R. Scott, Finite element convergence for singular data, Numer. Math., 21 (1973), pp. 317-327.
MR0337032 (49:1805)

[29] R. Scott, Optimal L∞ estimates for the finite element method on irregular meshes, Math.
Comput., 30 (1976), pp. 681-697. MR0436617 (55:9560)

[30] V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin,
2006. MR2249024 (2007b:65003)

Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstrasse

55, 20146, Hamburg, Germany

E-mail address: wgong@lsec.cc.ac.cn
Current address: LSEC, Institute of Computational Mathematics and Scientific/Engineering

Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, China

http://www.ams.org/mathscinet-getitem?mr=646596
http://www.ams.org/mathscinet-getitem?mr=646596
http://www.ams.org/mathscinet-getitem?mr=1766429
http://www.ams.org/mathscinet-getitem?mr=1766429
http://www.ams.org/mathscinet-getitem?mr=2837507
http://www.ams.org/mathscinet-getitem?mr=1442924
http://www.ams.org/mathscinet-getitem?mr=1442924
http://www.ams.org/mathscinet-getitem?mr=1299729
http://www.ams.org/mathscinet-getitem?mr=1299729
http://www.ams.org/mathscinet-getitem?mr=1892233
http://www.ams.org/mathscinet-getitem?mr=1892233
http://www.ams.org/mathscinet-getitem?mr=645661
http://www.ams.org/mathscinet-getitem?mr=645661
http://www.ams.org/mathscinet-getitem?mr=1464148
http://www.ams.org/mathscinet-getitem?mr=1464148
http://www.ams.org/mathscinet-getitem?mr=0337032
http://www.ams.org/mathscinet-getitem?mr=0337032
http://www.ams.org/mathscinet-getitem?mr=0436617
http://www.ams.org/mathscinet-getitem?mr=0436617
http://www.ams.org/mathscinet-getitem?mr=2249024
http://www.ams.org/mathscinet-getitem?mr=2249024

	1. Introduction
	2. Parabolic equations with measure data
	2.1. Notation
	2.2. Parabolic equations with measure data in time
	2.3. Parabolic equations with measure data in space

	3. Error estimates for the continuous time Galerkin approximations
	3.1. Finite element approximations to parabolic equations with measure data in time
	3.2. Finite element approximations to parabolic equations with measure data in space

	4. Error estimates for fully discrete finite element approximations
	4.1. Fully discrete approximations of parabolic equations with measure data in time
	4.2. Fully discrete approximations of parabolic equations with measure data in space

	5. Numerical examples
	5.1. Parabolic equations with measure data in time
	5.2. Parabolic equations with measure data in space

	6. Conclusion and future work
	Acknowledgements
	References

