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AN IMPROVED INTERPOLATION SCHEME FOR FINITE

VOLUME SIMULATIONS ON UNSTRUCTURED MESHES

SAMUEL K. M. CHENOWETH, JULIO SORIA, AND ANDREW OOI

Abstract. The unstructured bilinear interpolation scheme of Kim and Choi
(2000) is claimed to be second order accurate on the basis of empirical results
from finite volume simulations of the incompressible Navier-Stokes equations.
In this paper, the scheme is analysed theoretically, and is shown to be only
first order accurate for function interpolation and zeroth order accurate for
spatial derivative approximation, in the general case. A number of special cases
exist, however, where higher order accuracy may be obtained, and these are
identified in this paper. Since the mesh used by Kim and Choi to demonstrate
the accuracy of their scheme was one of these special cases, this explains their
results. Finally, an improved version of Kim and Choi’s scheme is presented,
which is shown to be truly second order accurate for function interpolation

and first order accurate for spatial derivative approximation.

1. Introduction

Finite volume simulations are a popular method of solving partial differential
equations, especially those relating to fluid flow phenomena, owing to their flux
conservative properties. Increasingly, such finite volume solvers are being developed
for use with unstructured meshes, since this allows problems with complex domain
geometry to be simulated, as well as allowing a high degree of flexibility in mesh
design. While unstructured meshes have these advantages, their use necessitates
the employment of an interpolation scheme, so that the fluxes may be computed. In
an element centred finite volume scheme, for example, the simulation variables are
tracked at each element centroid of the mesh, and some interpolation scheme must
be used to approximate the values and spatial derivatives of these variables at each
of the edge midpoints, so that the fluxes between each element and its neighbours
may be computed. On an unstructured mesh, the interpolation is complicated by
the fact that there may be an arbitrary geometric and/or topological relationship
between each edge midpoint and the surrounding element centroids which form the
stencil for the interpolation.

A variety of schemes exist which are capable of handling interpolations on ir-
regular data, for instance, Sheppard interpolation [9], radial basis functions [4] or
moving least squares [7]. The above techniques were originally developed for han-
dling scattered data, where there is no mesh topology at all. While they may easily
be adapted to interpolations on unstructured meshes (e.g., by [1]), they are not
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necessarily the best tools for the task as they do not make full use of the mesh
topology.

One interpolation scheme which does make effective use of the mesh topology is
an unstructured version of bilinear interpolation, which evolved through the work
of Davidson [3], Lai [6] and principally Kim and Choi [5]. In its original form, the
bilinear interpolation scheme provides a very simple way of interpolating the value
of a function and its first order spatial derivatives on a regular, rectangular mesh.
In essence, interpolation in multiple dimensions is achieved through a sequence of
linear interpolations along straight line segments, until an interpolated value is ob-
tained for the desired location. Although this scheme is very well known and in
common use, it is only more recently that it has been adapted to unstructured
meshes. Davidson’s approach was to perform a weighted linear interpolation be-
tween the two element centroids adjacent to an edge, and then use this value as an
approximation to the value at the edge midpoint. The deficiency of this method is
that the straight line segment connecting the two adjacent element centroids does
not necessarily intersect the edge at its midpoint, and so the interpolated value is
really for the wrong point in space. It was shown by Kim and Choi that the function
interpolation is only first order accurate if this issue is not taken into account.

Having identified the problem with Davidson’s scheme, Kim and Choi attempted
to fix it, developing a scheme which is claimed to be second order accurate. While
that scheme is not named in their paper, it is referred to in this paper as “unstruc-
tured bilinear interpolation” for convenience. Their innovation was the addition
of an extra term to the equation for the interpolation, which allows for the fact
that on an unstructured mesh, the midpoint of an edge may not be coincident with
a line connecting the adjacent element centroids. However, their claim to second
order accuracy is based on empirical data, not on an analytical proof; that is, they
used their unstructured bilinear scheme in a two-dimensional incompressible Navier-
Stokes solver and simulated the problem of a decaying vortex in a square cavity,
which has a known analytical solution. By studying the error trend as the mesh was
progressively refined, they were able to demonstrate second order accuracy. Using
empirical techniques is acceptable, in the absence of a rigourous analytical proof,
however, their method demonstrates second order spatial accuracy for the overall
solver, as opposed to the interpolation scheme in isolation. Even if the order of
accuracy is not affected by other aspects of the solver, this still fails to distinguish
between the order of accuracy of the function and spatial derivative interpolations,
which in general are different. Moreover, their mesh refinement study was limited
to one particular mesh design. It is thus not clear whether second order accuracy
also applies to a wider range of unstructured mesh topologies.

In this paper it is shown that, in general, Kim and Choi’s scheme is in fact only
first order accurate for function interpolation and zeroth order accurate for spatial
derivative approximation. Kim and Choi’s results may be explained by the existence
of several special cases of mesh geometry where second order function interpolation
is available, one of which corresponds to the mesh that they used for their testing.
There are also special cases where first or second order accurate spatial derivative
approximation is possible. The principal special cases are identified in this paper,
and these represent the full set known to the authors.

Finally, this paper presents an improved version of Kim and Choi’s interpola-
tion scheme, which is named “hybrid unstructured bilinear interpolation”. This
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improved scheme is truly second order accurate for function interpolation and first
order accurate for spatial derivative approximation, in the general case. (Special
cases are also identified where the spatial derivatives are second order accurate.)
The order of accuracy of the hybrid unstructured bilinear interpolation scheme is
proven, and the improvement over Kim and Choi’s scheme is demonstrated empir-
ically. Note that for the sake of simplicity and brevity, the scope of the discussion
in this paper is mostly limited to the interpolation schemes as they apply in the
interior of the domain. The methods used by Kim and Choi [5] for incorporat-
ing boundary conditions are not repeated in this paper, and the incorporation of
boundary conditions in the hybrid unstructured bilinear scheme is only explained
briefly.

1.1. Another perspective: Diamond-cell schemes. Both the unstructured bi-
linear scheme used by Kim and Choi and the hybrid unstructured bilinear scheme
presented in this paper are variants of the diamond-cell scheme for interpolation.
In the diamond-cell scheme, the function and spatial derivative interpolations at
the midpoint of a mesh edge are obtained on the basis of the function values at the
two adjacent element centroids, as well as the function values at the two end nodes
of the edge. These four points form a diamond with the edge midpoint at its centre,
which is the origin of the scheme’s name. Conceptually, the diamond-cell scheme de-
termines the gradient vector of the function on the basis of two differences, namely
the difference between the two function values at the adjacent element centroids
and the difference between the two interpolated function values at the end nodes
of the interpolation edge. Since the displacement vectors for these two differences
are approximately perpendicular in most cases, this method is usually well posed.
Having obtained the gradient, the interpolated value of the function at the edge
midpoint can then be “extrapolated” from the value of the function at one of the
adjacent element centroids.

A diamond-cell scheme was also used by Coudiere et al. [2], although Kim and
Choi did not appear to be aware of this earlier work and did not use this terminol-
ogy. While the various diamond-cell schemes are fundamentally similar, they differ
principally in the means by which the interpolated function values are obtained for
the end nodes. While Kim and Choi’s unstructured bilinear scheme used a sim-
ple weighted mean for their nodal interpolations, the hybrid unstructured bilinear
scheme of this paper and the scheme used by Coudiere et al. both use linear inter-
polation based on a best fit, which is more accurate. However, it should be noted
that the hybrid unstructured bilinear scheme differs from the scheme of Coudiere
et al., in that Coudiere et al. compute their convective flux using function values
from the upwind adjacent element centroid, and so do not need to consider the
interpolation of the function at edge midpoints. Both the hybrid and conventional
versions of the unstructured bilinear scheme, by contrast, interpolate the function
on the edge midpoints using approximately balanced stencils, in order to minimise
dissipative effects when used in finite volume solvers. In addition, the three schemes
vary in the way that interpolations are obtained on the mesh boundaries, although
a detailed discussion of this issue is beyond the scope of this paper.

1.2. Outline of this paper. Section 2 presents a derivation and analysis of the
general diamond-cell scheme. The error terms that are obtained are crucial for
identifying the special cases that can exist, and the authors believe this is the first
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time that this has been done comprehensively. (The previous analysis by Coudiere
et al. is broadly consistent with the results of this paper for the general case, but
did not consider the difference between the order of accuracy of the two components
of the gradient that can occur in certain special cases. Hence, they detected the
special case of parallelogram meshes, but omitted some other special cases.) Since
the order of accuracy of the diamond-cell scheme is dependent on the accuracy
of the interpolated function values at the end nodes, this needs to be considered
next. Section 3.2 explains the nodal interpolation scheme used by Kim and Choi
[5] in their unstructured bilinear interpolation, analysing the scheme’s accuracy in
the general case and in one special case. Section 3.3 explains the improved nodal
interpolation scheme used in the hybrid unstructured bilinear scheme suggested in
this paper. The accuracy of this nodal interpolation scheme is also provided for the
general case. (There are no special cases known to the authors.) In Section 4, the
order of accuracy of the difference between two nodal interpolations is determined
for the general case, and two special cases are identified. The results of all these
sections are then combined in Section 5, explaining how the actual order of accuracy
that applies in any given case may be determined. Finally, Section 6 provides some
numerical results that confirm some of the theoretical findings of this paper.

2. Diamond-cell schemes for interpolation

2.1. Geometry and notation. Figure 1 shows two neighbouring unstructured
mesh elements, with the (internal) interpolation edge separating them. Although
triangles are drawn, either or both of the elements could be quadrilaterals with-
out changing any of the following analysis. Concave quadrilaterals are disallowed,
however. Points e1 and e2 are the centroids of the elements and points na and nb
are the (internal) nodes at either end of the interpolation edge. Point Pi is at the
intersection of the interpolation edge with the line connecting the two element cen-
troids. Θ is the angle between this line and the normal to the interpolation edge.
Point Pm lies at the midpoint of the interpolation edge, which is where the value
of f and its spatial derivatives are to be interpolated. Also marked are the coor-
dinate axes for the (δ, ε) edge coordinate system, whose origin is at the midpoint
of the interpolation edge and whose axes are normal and parallel to the edge. The
dimensions are shown on the diagram, with the convention that δ1 and δ2 repre-
sent dimensions that are normal to the interpolation edge while ε1, ε2, εm and εab
represent dimensions that are parallel to the interpolation edge. Note that these
are dimensions, not coordinates in (δ, ε) space, so that δ1 > 0 (and δ2 > 0) even
though the δ coordinate of point e1 is negative. Nevertheless, ε1, ε2 and εm are
signed quantities, so that they are positive in the configuration shown but would be
negative if their sense were opposite. Further, the signs of ε1 and ε2 are linked, so
that in any configuration they must be both positive, both negative or both zero.
It should also be noted that the dimensions are not measured from the origin of
the (δ, ε) edge coordinate system, but are exactly as indicated on Figure 1. εab, for
example, is the length of the interpolation edge, and so neither end of this dimen-
sion is at the origin. A relation between some of these dimensions may be obtained
using similar triangles, which is

(2.1) δ1ε2 − δ2ε1 = 0.

This relation is required for some of the algebraic manipulations in this section.
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Figure 1. Schematic of the unstructured bilinear scheme.

Table 1 explains the different values of f and its derivatives referred to in the
rest of this paper.

Table 1. Notation for function and derivative values

Location Function Value Derivative Perpendicular to Edge Derivative Parallel to Edge

Exact Interpolated Exact Interpolated Exact Interpolated

Edge Midpoint Pm fm f∗
m

∂fm
∂δ

∂f∗
m

∂δ

∂fm
∂ε

∂f∗
m

∂ε

End Node na fa f∗
a

∂fa
∂δ

∂fa
∂ε

End Node nb fb f∗
b

∂fb
∂δ

∂fb
∂ε

Element Centroid e1 fe1

Element Centroid e2 fe2

2.2. Derivation of the scheme. The value of f at the nodes may be expressed
using Taylor’s expansions centred on the midpoint of the edge, so that

fb = fm +
(εab

2

) ∂fm
∂ε

+
1

2!
·
(εab

2

)2 ∂2fm
∂ε2

+
1

3!
·
(εab

2

)3 ∂3fm
∂ε3

+O
(
Δ4

)
(2.2)

and

fa = fm −
(εab

2

) ∂fm
∂ε

+
1

2!
·
(εab

2

)2 ∂2fm
∂ε2

− 1

3!
·
(εab

2

)3 ∂3fm
∂ε3

+O
(
Δ4

)
(2.3)
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and therefore

fb − fa = εab
∂fm
∂ε

+O
(
Δ3

)
.(2.4)

Now in diamond-cell interpolation schemes exact values are not available at the
nodes, so these must be interpolated from the values at the surrounding element
centroids. If an interpolation scheme of order of accuracy p is used, then

f∗
b = fb +O (Δp)(2.5)

and

f∗
a = fa +O (Δp) ,(2.6)

where the asterisk indicates an interpolated rather than exact value. Hence the
difference between the interpolated nodal values is

f∗
b − f∗

a = fb − fa +O
(
ΔP

)
,(2.7)

where P ≥ p. Note that this takes into account the possibility that some of the
error terms could be canceled in the subtraction. Such effects are investigated in
Section 4. Substituting (2.4) into (2.7) yields

f∗
b − f∗

a = εab
∂fm
∂ε

+O
(
ΔP

)
+O

(
Δ3

)
.(2.8)

The values at the element centroids may also be expressed using Taylor’s expan-
sions centred on the midpoint of the edge, so that

fe2 =fm + (ε2 − εm)
∂fm
∂ε

+ δ2
∂fm
∂δ

+
1

2!
· (ε2 − εm)

2 ∂
2fm
∂ε2

(2.9)

+
2

2!
· (ε2 − εm) δ2

∂2fm
∂ε∂δ

+
1

2!
· δ22

∂2fm
∂δ2

+O
(
Δ3

)
and

fe1 =fm − (ε1 + εm)
∂fm
∂ε

− δ1
∂fm
∂δ

+
1

2!
· (ε1 + εm)

2 ∂
2fm
∂ε2

(2.10)

+
2

2!
· (ε1 + εm) δ1

∂2fm
∂ε∂δ

+
1

2!
· δ21

∂2fm
∂δ2

+O
(
Δ3

)
.

The difference between the values at the element centroids is then

fe2 − fe1 =(ε2 + ε1)
∂fm
∂ε

+ (δ2 + δ1)
∂fm
∂δ

(2.11)

+
1

2!
(ε2 + ε1) (ε2 − ε1 − 2εm)

∂2fm
∂ε2

+
2

2!
[δ2 (ε2 − εm)− δ1 (ε1 + εm)]

∂2fm
∂ε∂δ

+
1

2!
(δ2 + δ1) (δ2 − δ1)

∂2fm
∂δ2

+O
(
Δ3

)
.

Note that the O
(
Δ3

)
terms do not cancel in the subtraction, although they are

omitted from this paper for clarity.
It is now useful to consider the conditions under which all the second order terms

of (2.11) disappear. Using the fact that δ1 > 0 and δ2 > 0, it is clear that the last of
the second order terms vanishes if and only if δ2 = δ1. If this is the case, then (2.1)
implies that ε2 = ε1 also, and so the second of the second order terms vanishes
if and only if εm = 0. With ε2 = ε1 and εm = 0, the first of the second order
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terms vanishes too. Equation (2.11) can then be rewritten in a more useable form,
in which the conditions under which the second order terms vanish can be clearly
seen as follows:

fe2 − fe1 = (ε2 + ε1)
∂fm
∂ε

+ (δ2 + δ1)
∂fm
∂δ

(2.12)

+O (Δ) (δ2 − δ1) +O (Δ) εm +O
(
Δ3

)
.

Solving the system of equations consisting of (2.8) and (2.12) for the spatial
derivatives yields

∂fm
∂ε

=
f∗
b − f∗

a

εab
+O

(
ΔP−1

)
+O

(
Δ2

)
(2.13)

and

∂fm
∂δ

=
fe2 − fe1
δ2 + δ1

− ε2 + ε1
δ2 + δ1

· f
∗
b − f∗

a

εab
(2.14)

+ (ε2 + ε1)O
(
ΔP−2

)
+O (1) (δ2 − δ1) +O (1) εm + O

(
Δ2

)
.

The interpolated spatial derivatives
∂f∗

m

∂ε and
∂f∗

m

∂δ can then be obtained using the
above expressions, simply by ignoring the error terms (the terms involving O (...)).
Hence,

∂f∗
m

∂ε
− ∂fm

∂ε
= O

(
ΔP−1

)
+O

(
Δ2

)
(2.15)

and

∂f∗
m

∂δ
− ∂fm

∂δ
= (ε2 + ε1)O

(
ΔP−2

)
+O (1) (δ2 − δ1) +O (1) εm + O

(
Δ2

)
.(2.16)

Having derived the scheme for computing the spatial derivatives, it is now nec-
essary to consider the interpolation of the function itself at the edge midpoint. To
this end, equation (2.9) may be written more simply as

fe2 = fm + (ε2 − εm)
∂fm
∂ε

+ δ2
∂fm
∂δ

+O
(
Δ2

)
.(2.17)

Note that this may be done without eliminating any special cases, as δ2 > 0 and so
the last of the second order terms in (2.9) cannot vanish. Likewise, the equivalent
expression for the other element centroid is

fe1 = fm − (ε1 + εm)
∂fm
∂ε

− δ1
∂fm
∂δ

+O
(
Δ2

)
.(2.18)
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Computing δ1 multiplied by (2.17) plus δ2 multiplied by (2.18) yields

δ1fe2 + δ2fe1 = (δ1 + δ2) fm − εm (δ1 + δ2)
∂fm
∂ε

+ O
(
Δ3

)
.(2.19)

By substituting (2.13) into (2.19), it may be shown that

fm =
δ1fe2 + δ2fe1

δ1 + δ2
+ εm · f

∗
b − f∗

a

εab
+ εmO

(
ΔP−1

)
+O

(
Δ2

)
.(2.20)

The interpolated value of the function can then be obtained using the above ex-
pression, simply by ignoring the error terms. Hence,

f∗
m − fm = εmO

(
ΔP−1

)
+O

(
Δ2

)
.(2.21)

The accuracy of a diamond-cell scheme may be determined using (2.15), (2.16)
and (2.21), where the orders of accuracy obtained depend on the order of accuracy
of the nodal difference (P ) and on the geometrical properties of the interpolation
edge. In particular, the conditions that can affect the order of accuracy are:

• When εm = 0. This means the straight line connecting the adjacent element
centroids passes through the midpoint of the interpolation edge.

• When ε2 + ε1 = 0. Since ε1 and ε2 have the same sign, this happens if and
only if ε2 = ε1 = 0. This means the straight line connecting the adjacent
element centroids is normal to the interpolation edge.

• When δ1 = δ2. This means the two adjacent element centroids are equidis-
tant from the interpolation edge.

Figures 2, 3, and 4 are flowcharts that explain how the above theory may be used
to determine the orders of accuracy, for P = 3, P = 2 and P = 1, respectively. At
each branch of the tree some new information becomes known, with the order of
accuracy of the function and both spatial derivatives fully determined for each leaf.
(Known information at any branch of the tree is passed on to all its sub-branches,
and for the sake of brevity is not repeated.)

If P=3

Other Cases

Case B:

( )
*

m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

Case A:

( )
*

2m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

( )* 2
m mf f O− = Δ

1 2If δ δ=
mand 0ε = ( )

*
2m mf f O

ε ε
∂ ∂

− = Δ
∂ ∂

Figure 2. Flowchart for determining accuracy when P = 3
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If P=2

Other Cases

Case D:

( )
*

m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

Case C:

( )
*

2m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

( )
*

m mf f O
ε ε

∂ ∂
− = Δ

∂ ∂

( )* 2
m mf f O− = Δ

1 2If δ δ=
mand 0ε =
1 2and 0ε ε= =

Figure 3. Flowchart for determining accuracy when P = 2

If P=1

( )
*

m m 1
f f O
ε ε

∂ ∂
− =

∂ ∂

Other Cases

( )*
m mf f O− = Δ

Case E:

( )
*

2m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

mIf 0ε =

( )* 2
m mf f O− = Δ

Case F:

( )
*

m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

Case G:

( )
*

m m 1
f f O
δ δ

∂ ∂
− =

∂ ∂

Case H:

( )
*

m mf f O
δ δ

∂ ∂
− = Δ

∂ ∂

Case I:

( )
*

m m 1
f f O
δ δ

∂ ∂
− =

∂ ∂

1 2If  0ε ε= =
1 2and δ δ= 1 2If  0ε ε= =

1 2but δ δ≠
1 2If  0ε ε= =

1 2If 0 or 0ε ε≠ ≠

Figure 4. Flowchart for determining accuracy when P = 1
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3. Nodal interpolation

3.1. Accuracy analysis. This paper considers nodal interpolation schemes where
the value of f at each node is approximated as a weighted sum of the values of f
at the centroids of the elements surrounding it. Hence the interpolated value of f
at end node nb can be expressed as

f∗
b =

∑
j

[qjbfjb],(3.1)

where fjb is the value of f at the centroid of the jth element surrounding node nb
and qjb is its weight. It is possible to express fjb as a Taylor’s series expansion
about node nb, so that

fjb = fb +
(
εjb − 1

2εab
) ∂fb

∂ε
+ δjb

∂fb
∂δ

+O
(
Δ2

)
,(3.2)

where δjb and εjb are the coordinates of the jth element centroid surrounding node
nb. Using (3.1) and (3.2), it may be shown that

f∗
b − fb = fb

⎛
⎝∑

j

[qjb]− 1

⎞
⎠+

∂fb
∂ε

∑
j

[
qjb

(
εjb − 1

2εab
)]

+
∂fb
∂δ

∑
j

[qjbδjb] +O
(
Δ2

)
.

(3.3)

Hence the interpolation at node nb is second order accurate if
∑

j [qjb] = 1,∑
j

[
qjb

(
εjb − 1

2εab
)]

= 0 and
∑

j [qjbδjb] = 0, but first order accurate if∑
j [qjb] = 1 only.
In a similar manner, it may be shown that the interpolation at node na is second

order accurate if
∑

j [qja] = 1,
∑

j

[
qja

(
εja +

1
2εab

)]
= 0 and

∑
j [qjaδja] = 0, but

first order accurate if
∑

j [qja] = 1 only.

3.2. Nodal interpolation in Kim and Choi’s unstructured bilinear scheme.
In the interior of the mesh, the unstructured bilinear scheme of Kim and Choi [5] is
simply the diamond-cell scheme presented earlier, with the following scheme used
for the nodal interpolations. Kim and Choi’s nodal interpolation is essentially a
weighted mean of the f values at the surrounding element centroids, with each
weight proportional to the reciprocal of that element’s area. Hence,

qjb =

(
1

Ajb

)
∑

k

[
1

Akb

] ,(3.4)

where Ajb is the area of the jth element surrounding node nb and the k summation
is over the set of elements surrounding the node. Obviously, a similar expression
may be written for the interpolation at node na; the analysis in this section could
then be repeated for that interpolation, although this is omitted for brevity.

It is easy to see that Kim and Choi’s nodal interpolation scheme is at least first
order accurate in all cases, since

∑
j

[qjb] =
∑
j

⎡
⎣

(
1

Ajb

)
∑

k

[
1

Akb

]
⎤
⎦ =

∑
j

[
1

Ajb

]
∑

k

[
1

Akb

] = 1.(3.5)



IMPROVED INTERPOLATION SCHEME FOR FINITE VOLUME SIMULATIONS 813

In general, it is not the case that
∑

j

[
qjb

(
εjb − 1

2εab
)]

= 0 and
∑

j [qjbδjb] = 0,
and so Kim and Choi’s nodal interpolation is only first order accurate. Figure 5
is an example of a mesh on which the interpolation at node nb is only first order
accurate, although the calculations for demonstrating this are omitted for brevity.

Figure 5. On this mesh, the interpolation at node nb is first order
accurate with Kim and Choi’s scheme

There is, however, one situation known to the authors where Kim and Choi’s
nodal scheme is second order accurate. In the case where the nodal interpola-
tion stencil is invariant through a 180◦ rotation (see Figure 6), every element j
contributing to the interpolation may be paired with a corresponding element j′

directly opposite, such that δjb = −δj′b and εjb− 1
2εab = −

(
εj′b − 1

2εab
)
. Further-

more, it is clear that Ajb = Aj′b, and so qjb = qj′b. It is then trivial to see that∑
j

[
qjb

(
εjb − 1

2εab
)]

= 0 and
∑

j [qjbδjb] = 0, which means the scheme is second
order accurate in this special case.

na

nb

f1b

f1’b

f2b

f2’b

f3’b

f3b

Figure 6. On this mesh, the interpolation at node nb is second
order accurate with Kim and Choi’s scheme
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3.3. Nodal interpolation in the hybrid unstructured bilinear scheme. The
primary weakness of the unstructured bilinear scheme of Kim and Choi [5] is the
nodal interpolation scheme, which is only first order accurate in general. This in
turn degrades the accuracy of the interpolations obtained at the interpolation edge
midpoint. Hence, the obvious way to improve the unstructured bilinear scheme is
to replace its nodal interpolation scheme with one that is second order accurate
in the general case. This had already been done by Coudiere et al. [2], although
Kim and Choi did not appear to have been aware of this earlier work. The hy-
brid unstructured bilinear interpolation scheme presented in the present paper also
uses second order accurate nodal interpolation, although unlike Coudiere et al. the
scheme is used to obtain interpolations of the function at the edge midpoints as
well as the gradient.

In the interior of the mesh, the hybrid unstructured bilinear scheme is simply
the diamond-cell scheme, with the nodal interpolation done using moving least
squares (with a first order basis polynomial). As with Kim and Choi’s scheme, the
stencil for the nodal interpolation by moving least squares consists of the element
centroids immediately surrounding the node (although the interpolation weights
are very different for the two schemes). The moving least squares method will not
be elaborated here; suffice to say that in the present application it amounts to
finding the plane of best fit through the function values at the surrounding element
centroids, then using this plane to linearly interpolate the value of the function at
the node. The reader is referred to a previous paper by the authors [1] for further
information about moving least squares. In that paper, it is shown that moving
least squares with an nth order basis polynomial is n + 1th order accurate in the
general case, and therefore moving least squares with a first order basis polynomial
is second order accurate. There are no special cases of mesh geometry known to
the authors for which higher order accuracy may be obtained.

It should also be noted that in the hybrid unstructured bilinear scheme of the
present paper, the interpolation for nodes and edges lying on the domain boundary
was modified, so that moving least squares (with a first order basis polynomial) was
used in place of Kim and Choi’s [5] method. This greatly simplifies the scheme, and
allows more flexible boundary conditions to be used. Since the focus of this paper
is on the interpolation accuracy in the interior of the mesh, however, no more will
be said about this matter.

The results of this section are summarised in Table 2.

Table 2. Accuracy of the nodal interpolation schemes used in
Kim and Choi’s unstructured bilinear scheme (UBL) and this pa-
per’s hybrid unstructured bilinear scheme (HUBL). The nodal in-
terpolation is O (Δp) accurate, with the value of p given by this
table.

Description Figure In UBL In HUBL

General Case 5 p = 1 p = 2

Node Stencil
Invariant Through 6 p = 2 p = 2
180◦ Rotation
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4. Accuracy of the difference in interpolated nodal values

In (2.7), it was noted that the order of accuracy of the difference between inter-
polated nodal values (P ) may be the same or greater than the order of accuracy of
the individual nodal interpolations (p), due to the possibility of error cancelations.
While P = p in the general case, there are two special cases where P > p, and these
are explained here.

4.1. End node stencils geometrically identical through a translation. The
first special case is where the stencils used for interpolating the value of the function
at the end nodes are geometrically identical to each other, but of course translated
by the length of the interpolation edge. In this case, the element centroids belonging
to the interpolation stencil for node na may be numbered 1a, 2a and so on, while
the corresponding element centroids belonging to the interpolation stencil for node
nb may be numbered 1b, 2b, etc., as shown in Figure 7. Further, let fja be the
values of the function at each of the element centroids in the stencil for node na and
fjb be the values of the function at each of the corresponding element centroids in
the stencil for node nb. Due to the geometric identity of the stencils, the weights qj
for corresponding element centroids in the nodal interpolations must be the same
so that

f∗
a =

∑
j

[fjaqj ](4.1)

and

f∗
b =

∑
j

[fjbqj ].(4.2)

Finally, let δja and εja be the coordinates of each of the element centroids in the
stencil for node na and let δjb and εjb be the coordinates of each of the correspond-
ing element centroids in the stencil for node nb. The geometrical identity through
a translation then means that

δjb − δja = 0(4.3)

and

εjb − εja = εab.(4.4)

The value of the function at the element centroids belonging to node na can then
be represented with a Taylor series as

fja = fm + εja
∂fm
∂ε

+ δja
∂fm
∂δ

+
ε2ja
2!

∂2fm
∂ε2

+
2εjaδja

2!

∂2fm
∂ε∂δ

+
δ2ja
2!

∂2fm
∂δ2

+O
(
Δ3

)
,

(4.5)
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δ
ε

na

nb

1a

2a 3a

4a

5a6a

1b

2b 3b

4b

5b6b

Figure 7. An interpolation edge whose end node stencils are ge-
ometrically identical through a translation.

with a similar expression for fjb. Substituting these expressions into the difference
between (4.2) and (4.1) and then subtracting (2.4) yields

(f∗
b − f∗

a )− (fb − fa) =
∂fm
∂ε

⎧⎨
⎩
∑
j

[qj (εjb − εja)]− εab

⎫⎬
⎭

+
∂fm
∂δ

∑
j

[qj (δjb − δja)]

+
1

2!
· ∂

2fm
∂ε2

∑
j

[
qj

(
ε2jb − ε2ja

)]
+

2

2!
· ∂

2fm
∂ε∂δ

∑
j

[qj (εjbδjb − εjaδja)]

+
1

2!
· ∂

2fm
∂δ2

∑
j

[
qj

(
δ2jb − δ2ja

)]
+O

(
Δ3

)
.

(4.6)
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Equation (4.6) must be simplified using (4.3) and (4.4) along with the identity
εjb + εja ≡

(
εja +

1
2εab

)
+
(
εjb − 1

2εab
)
. This yields

(f∗
b − f∗

a )− (fb − fa) = εab
∂fm
∂ε

⎧⎨
⎩
∑
j

[qj ]− 1

⎫⎬
⎭

+
εab
2!

· ∂
2fm
∂ε2

∑
j

[
qj

(
εja +

1
2εab

)]

+
εab
2!

· ∂
2fm
∂ε2

∑
j

[
qj

(
εjb − 1

2εab
)]

+
2εab
2!

· ∂
2fm

∂ε∂δ

∑
j

[qjδja] +O
(
Δ3

)
.

(4.7)

If the nodal interpolation is second order accurate, then∑
j

[qj ]=1,
∑
j

[
qj

(
εja +

1
2εab

)]
=0,

∑
j

[
qj

(
εjb − 1

2εab
)]
=0 and

∑
j

[qjδja] = 0,

and so the error in the interpolated nodal difference is third order. On the other
hand, if the nodal interpolation is first order accurate, then in general it is only
true that

∑
j [qj ] = 1 and so the error in the interpolated nodal difference is second

order. These results are summarised in Table 3.

4.2. End node stencils geometrically identical through a translation and
180◦ rotation. The second special case is where the stencils used for interpolating
the value of the function at the end nodes are geometrically identical to each other,
but this time when translated by the length of the interpolation edge and rotated
by 180◦. Once again, the element centroids belonging to the interpolation stencil
for node na may be numbered 1a, 2a and so on, while the corresponding element
centroids belonging to the interpolation stencil for node nb may be numbered 1b,
2b, etc., as shown in Figure 8. Further, let fja be the values of the function at
each of the element centroids in the stencil for node na and fjb be the values of
the function at each of the corresponding element centroids in the stencil for node
nb. Due to the geometric identity of the stencils, the weights qj for corresponding
element centroids in the nodal interpolations must be the same, so that (4.1) and
(4.2) also apply in this context.

Finally, let δja and εja be the coordinates of each of the element centroids in
the stencil for node na, and let δjb and εjb be the coordinates of each of the
corresponding element centroids in the stencil for node nb. The geometrical identity
through a translation and 180◦ rotation then means that

δjb + δja = 0(4.8)

and

εjb + εja = 0.(4.9)
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na

nb
1a

2a

3a

4a

5a

2b

3b

4b
5b

1b

Figure 8. An interpolation edge whose end node stencils are ge-
ometrically identical through a translation and 180◦ rotation.

Equation (4.6) applies to this special case also, but in this situation it must be
simplified using (4.8) and (4.9) along with the identity

εjb − εja ≡
(
εjb − 1

2εab
)
−
(
εja +

1
2εab

)
+ εab.

This yields

(f∗
b − f∗

a )− (fb − fa) = εab
∂fm
∂ε

⎛
⎝∑

j

[qj ]− 1

⎞
⎠

+
∂fm
∂ε

∑
j

[
qj

(
εjb − 1

2εab
)]

− ∂fm
∂ε

∑
j

[
qj

(
εja +

1
2εab

)]
+ 2

∂fm
∂δ

∑
j

[qjδjb] +O
(
Δ3

)
.

(4.10)

If the nodal interpolation is second order accurate, then∑
j

[qj ]=1,
∑
j

[
qj

(
εjb − 1

2εab
)]
=0,

∑
j

[
qj

(
εja +

1
2εab

)]
=0 and

∑
j

[qjδjb]=0,

and so the error in the interpolated nodal difference is third order. On the other
hand, if the nodal interpolation is first order accurate, then in general it is only
true that

∑
j [qj ] = 1 and so the error in the interpolated nodal difference is first

order. These results are summarised in Table 3.
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Table 3. Dependency of the interpolated nodal difference on the
nodal interpolation scheme and mesh geometry. The nodal inter-
polation is O (Δp) accurate, while the interpolated nodal difference
is O

(
ΔP

)
accurate.

Description Figure If p = 1 If p = 2

General Case - P = 1 P = 2

End Node Stencils
Geometrically Identical 7 P = 2 P = 3
Through Translation

End Node Stencils
Geometrically Identical 8 P = 1 P = 3
Through Translation
and 180◦ Rotation

5. Summary

In view of the complexity of the preceding theory, Figure 9 is provided as a quick
guide to determining the order of accuracy that applies in any situation covered
by this paper. This master flowchart encapsulates the logic necessary for using
the results from Tables 2 and 3. Note that different orders of accuracy may be
obtained for the function interpolation and the two components of the gradient.
The orders of accuracy that are obtained depend on the local mesh geometry near
the interpolation edge, as well as the scheme chosen for the nodal interpolation.
Figure 9 allows the order of accuracy of the nodal difference (P ) to be determined
for a given situation, and having obtained the value of P it is then necessary to
consult the relevant flowchart from Figures 2 to 4 to find the orders of accuracy for
the function and gradient interpolation at the edge midpoint.

In order to illustrate the theory, Figure 10 provides an example mesh for each
of the special cases identified. For most of the examples, only the highlighted
edge belongs to the nominated special case. Note that special cases E to I are
only possible when using unstructured bilinear interpolation, while case B is only
possible with hybrid unstructured bilinear interpolation.

At this point, it should be mentioned that the mesh used by Kim and Choi [5]
for an empirical demonstration that their scheme is “second order accurate” was of
the same form as case D of Figure 10. As is noted, the vertical edges of this mesh
belong to case D, and so the function interpolations on these edges are second order
accurate while the spatial derivatives are first order accurate. The horizontal edges
of the mesh belong to case D also, while the diagonal edges belong to case A (with
second order accuracy for the function interpolation and both spatial derivatives).
Across the entire mesh, therefore, the spatial derivatives vary between first and
second order accuracy. More importantly, the function interpolation across the
entire mesh is second order accurate, which explains why Kim and Choi were able
to get second order convergence for their finite volume Navier-Stokes simulations
on this mesh, even though the unstructured bilinear scheme that they used is only
first order accurate in general.
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All CasesIf using linearly
interpolated nodal values
(as in hybrid unstructured
bilinear interpolation)

p = 2 p = 1 or 2
If both node 
stencils are
invariant 
through a
180° rotation

p = 1

Other Cases

If end node
stencils are
geometrically
identical 
through a
translation, 
or through
a translation
and 180° 
rotation

If end node
stencils are
geometrically
identical
through a 
translation

If using Kim and Choi’s
nodal interpolation scheme
(as in unstructured bilinear
interpolation)

Other Cases

Other 
Cases

P = 3 P = 2 P = 1

Figure 9. Master flowchart for determining accuracy. The leaves
P = 3, P = 2 and P = 1 link to the trees in Figures 2, 3 and 4,
respectively.
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Case A (for UBL or HUBL): Case B (for HUBL only):

Case C (for UBL or HUBL): Case D (for UBL or HUBL):

Case E (for UBL only): Case F (for UBL only):

Case G (for UBL only): Case H (for UBL only):

Case I (for UBL only):

Figure 10. Examples of the special cases for interpolation using
the unstructured bilinear (UBL) or hybrid unstructured bilinear
(HUBL) schemes. Case D is the general case for HUBL, while case
I is the general case for UBL.
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6. Results

6.1. Empirical metrics for determining order of accuracy. It is useful to
study the order of accuracy of interpolation schemes by empirical means, in order
to provide additional evidence in support of the theoretical framework. To this
end, test function analysis may be used along similar lines to that used by [8] and
[1]. This analysis tests the accuracy of an interpolation scheme on a given mesh by
taking some analytical function f and evaluating this test function at the element
centroids (and boundary edge midpoints) of the mesh. These values may be used as
inputs to the interpolation scheme, from which estimates of the value of f (and its
spatial derivatives) at the edge midpoints may be obtained. Finally, the accuracy
of the interpolation scheme may be assessed by comparing the interpolated values
at the edge midpoints with values obtained from the analytical function.

Specifically, the overall f interpolation accuracy may be gauged by computing

(6.1) Ef =

√∑
i∈edges (f

∗
i − fi)

2

(fmax − fmin)
√
nedges

,

where f∗
i is the interpolated value of f on edge i, fi is the analytical value of f on

edge i, nedges is the number of edges used to compute the statistic and fmax and
fmin represent the extreme values taken by f over the domain. This quantity is
the root mean square interpolation error in f , normalised by the range of the test
function. This metric may be computed over all the edges in the mesh, or else over
some specific subset of these; the set of edges included will be noted where this
metric is used. Likewise, the error in the interpolation of the δ direction spatial
derivative may be gauged using

(6.2) Edf/dδ =

√∑
i∈edges

(
df∗

dδ

∣∣∣
i
− df

dδ

∣∣∣
i

)2

(
df
dδ

∣∣∣
max

− df
dδ

∣∣∣
min

)√
nedges

while the error in the interpolation of the ε direction spatial derivative may be
gauged using Edf/dε, which is given by a similar expression.

An appropriate choice for f is a sinusoidal function in both x and y, since this is
an infinite order function, varies with both x and y and has the same smoothness
properties throughout the domain. Such functions were used by [8] and [1] to
conduct similar tests. Most importantly, a sinusoidal function has a convenient
parameter (wavelength), which may be varied in order to alter the smoothness of
the function in comparison to the mesh. Experience and common sense suggests
that test function values will be easier to replicate accurately using interpolation if
the test function is smooth at the scale of the mesh elements. For the analytical
values of a sinusoidal test function to be reproduced accurately by interpolation,
there needs to be several samples per period of the wave. In other words, the
wavelength of a sinusoidal test function needs to be several times the size of a
typical mesh element if accurate reproduction is to be obtained. The number of
mesh elements N per test function period may then be taken as a measure of the
difficulty of the test function. The performance of a given interpolation scheme
may be gauged by using a range of values of N , in order to find out how quickly
the scheme’s error decays as N is increased. Specifically, a graph of log10(E) versus
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log10(N) may be shown to have a gradient equal to the negative of the order of
accuracy.

Consider a regular rectangular mesh with a mesh spacing of Δx in the x direction
and Δy in the y direction. In view of the previous discussion, a suitable test function
for this class of mesh is

(6.3) f (x, y) = cos

(
2π

NΔx
x+

2π

NΔy
y

)
,

where N is a parameter which determines the number of data points per period
of the wave along each coordinate axis. N does not need to be an integer, but
since N = 2 corresponds to the Nyquist limit, values of N greater than 2 must be
selected. The upper bound on N is determined by the need to include at least a
full period of the wave inside the domain, so that the full range of possible f values
and spatial derivatives are available from the test function at the sample points.
Specifically, the maximum value of N is selected so that:

• The range of f as sampled over the domain is at least 99% of the range of
f over the entire (x, y) plane.

• The range of df
dx as sampled over the domain is at least 99% of the range of

df
dx over the entire (x, y) plane.

• The range of df
dy as sampled over the domain is at least 99% of the range of

df
dy over the entire (x, y) plane.

The test function may be extended to irregular meshes if some rough approxi-
mations are applied. To this end, a general mesh will be represented by a regular
rectangular mesh, which is in some sense equivalent to the original mesh. Let el-
ement i have a maximum x value (i.e., at its rightmost corner node) of xi,max,
minimum x value of xi,min, maximum y value of yi,max and minimum y value of
yi,min. Further, let Ai be the area of element i and M be the number of elements
in the mesh. The aspect ratio of the rectangular elements in the equivalent mesh
should be similar to the aspect ratio of the elements in the original mesh, and so
an equivalent aspect ratio R may be defined as

(6.4) R =
1
M

∑
i (yi,max − yi,min)

1
M

∑
i (xi,max − xi,min)

=

∑
i (yi,max − yi,min)∑
i (xi,max − xi,min)

.

In effect, R is the ratio between the average y range of the elements to the average
x range. This measure gives reasonable results on a range of meshes. Next, a basic
mesh scale Δ may be calculated by taking the square root of the average element
area, i.e.,

(6.5) Δ =

√
1

M

∑
i

Ai.

Finally, the equivalent mesh scales in the x and y directions may be computed using

(6.6) Δx =
Δ√
R

and

(6.7) Δy = Δ
√
R,
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so that ΔxΔy = 1
M

∑
i Ai and

Δy

Δx
= R. Note that if this method is applied

to a regular rectangular mesh, the equivalent mesh is the same as the original
mesh, as expected. With this approximation, test function (6.3) may be applied
to unstructured meshes of triangles and/or quadrilaterals, producing consistent
results.

6.2. Accuracy of the schemes on a typical unstructured mesh. In order to
assess the typical accuracy of the unstructured bilinear scheme, the unstructured
mesh of irregular quadrilaterals shown in Figure 11 was used, and plots of the root
mean square errors (Figure 12) were obtained. All edges of the mesh were included.
The following may be observed:

• The curve for Edf/dε is fairly flat, which is exactly what is expected for the
general case (I) with zeroth order accuracy for the ε derivative.

• The curve for Edf/dδ has a gradient of nearly −2 at very small values of N ,
which indicates nearly second order accuracy when the mesh is very large
scale. This can be explained by the fact that there are many edges in the
regular rectangular areas of this mesh which belong to case A. In addition,
there are other edges which “almost” belong to case A, in the sense that
a very slight modification to the mesh geometry would make them belong.
The second order convergence rate of the errors on such edges at first gives
the illusion of second order accuracy overall.

• However, as N increases, the gradient of the Edf/dδ curve quickly reduces
to −1 and then to zero. This is because the initially rapid decrease in the
errors for the edges that belong to class A causes them to dwindle into
insignificance as N increases further, so that the root mean square error
becomes dominated by edges for which Edf/dδ has a lower order of accuracy.
Eventually, the errors associated with edges having zeroth order accuracy
for Edf/dδ make up the vast majority of the root mean square error, and so
the error curve flattens out to zero gradient.

• The Ef curve has a gradient of −2 for a wide range of scales, indicating
second order accuracy. This is consistent with the theory, as εm is very
close to zero for most edges of the mesh, and so the second order error
term of (2.21) dominates the first order error term at all but the smallest
mesh scales. (There is evidence of the presence of a very small first order
error term in the slight decrease in the convergence rate at very small mesh
scales.)

The numerical experiment suggests that the unstructured bilinear scheme may be
relied on for second order f interpolation accuracy, providing that the mesh chosen
has similar properties to that studied. This is very useful, as this mesh was chosen
as a simple, practical mesh, with no special mesh design principles applied. The ε
derivative is zeroth order accurate, and should not be relied on for anything but
the roughest of calculations. The δ derivative, on the other hand, has much better
accuracy. This is important, as in many finite volume computations (such as the
convection-diffusion equation and the incompressible Navier-Stokes equations) it is
the only spatial derivative which is actually required (even though the formulation
may be expressed in terms of x and y spatial derivatives). Thus unstructured
bilinear interpolation is a workable scheme for use in finite volume solvers requiring
only the interpolation of f and ∂f

∂δ on the mesh edges, as long as meshes with
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similar properties to Figure 11 are used. This explains the success of the numerical
simulations of Kim and Choi [5] on a variety of irregular, unstructured meshes.

Figure 11. An irregular mesh of quadrilaterals.

Figure 12. Unstructured bilinear interpolation test results on an
irregular mesh of quadrilaterals. Plots of Ef , Edf/dδ and Edf/dε

are shown. All edges are included in the statistics.

In order to assess the typical accuracy of the hybrid unstructured bilinear scheme,
the unstructured mesh of irregular quadrilaterals shown in Figure 11 was used, and
plots of the root mean square errors (Figure 13) were obtained. All edges of the
mesh were included. The following may be observed:

• The curve for Edf/dε has a gradient of about −2 at very small values of N ,
which indicates nearly second order accuracy when the mesh is very large
scale. This is due to the presence of many case A (or almost case A) edges
in the mesh, although it is not clear why these have such a strong effect on
Edf/dε in comparison to when unstructured bilinear interpolation was used.
However, at larger values of N the error becomes dominated by those edges
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with a first order convergence rate for Edf/dε, as expected for the general
case (D).

• The curve for Edf/dδ has a gradient of about −1, indicating first order
accuracy as expected for the general case (D).

• The Ef curve has a gradient of about −2 over a wide range of scales,
indicating second order accuracy as expected for the general case (D).

The numerical experiment suggests that the hybrid unstructured bilinear scheme
may be relied on for second order f interpolation accuracy and first order accurate
spatial derivative interpolation, when using typical meshes such as this. Note in
particular that the accuracy of the ε direction spatial derivative is greatly improved,
in comparison to the conventional unstructured bilinear scheme.

Figure 13. Hybrid unstructured bilinear interpolation test re-
sults on an irregular mesh of quadrilaterals. Plots of Ef , Edf/dδ

and Edf/dε are shown. All edges are included in the statistics.

6.3. Demonstrating the improvement from the hybrid unstructured bi-
linear scheme. The deficiencies of the unstructured bilinear scheme are difficult
to observe on many meshes, owing to the fact that for most edges, the line joining
the two adjacent element centroids intersects the interpolation edge very close to
its midpoint. This means the magnitude of εm is small in comparison to the mesh
scale, and so the interpolated value of f at the edge midpoint is approximately
second order accurate. On a mesh of the same form as in Figure 14, however, the
vertical edges have values of εm which are much more significant, especially for the
short vertical edges. This allows the first order accuracy of the unstructured bilin-
ear scheme to be observed, which is what the theory predicts for the general case.
In order for the effect to be isolated, the error statistics are calculated using only
the vertical edges of the mesh. Edges with an end node on the domain boundary
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Pi
e2 e1

Pm

Figure 14. Schematic of the “chevron” mesh, demonstrating the
first order accuracy of the unstructured bilinear scheme. First
order errors dominate on the edge with its midpoint marked Pm,
as well as on the equivalent edges elsewhere in the mesh.

are also excluded, limiting the results to the behaviour of the internal scheme. It
should be noted that the edges for which the error statistics are computed belong
to case H. The mesh was 1m × 1m square, with Δx = Δy = 0.02m and θ = 40◦.
Choosing a θ value so close to 45◦ makes the εm value for the short vertical edges
quite large, in comparison to the local mesh scale. This ensures that the first order
error term dominates the second order term at all mesh scales. The test function
results are as shown in Figure 15. It can be seen that:

• The Ef curve has a gradient of approximately −1 over a wide range of
scales, indicating first order accuracy. This is consistent with the theoretical
prediction for case H edges.

• The Edf/dε curve is fairly flat, indicating zero order accuracy. This is con-
sistent with the theoretical prediction for case H edges.

• The Edf/dδ curve has a gradient of −1 over a wide range of scales, indicating
first order accuracy. This is consistent with the theoretical prediction for
case H edges.

• At very small values of N , all three curves depart slightly from the expected
straight line relationship. This is difficult to explain, but minor.

This test case is of critical importance, as it provides strong empirical evidence to
support the theoretical claim that the unstructured bilinear scheme is only first
order accurate in general, in contrast to the claims of Kim and Choi [5]. It also
supports the existence of the special case H.
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Figure 15. Unstructured bilinear interpolation test results on a
mesh containing case H edges. Plots of Ef , Edf/dδ and Edf/dε are
shown. Statistics are only computed over the vertical edges of the
mesh whose end nodes are internal.

If the same numerical test is repeated using hybrid unstructured bilinear inter-
polation, then the results are as shown in Figure 16. Note that when using the
hybrid scheme, the vertical edges of the mesh in Figure 14 are classified as case D
rather than case H. It can be seen that:

• The Ef curve has a gradient of approximately −2 over a wide range of
scales, indicating second order accuracy. This is consistent with the theo-
retical prediction for case D edges.

• The Edf/dε curve has a gradient of approximately −1 over a wide range of
scales, indicating first order accuracy. This is consistent with the theoretical
prediction for case D edges.

• The Edf/dδ curve has a gradient of approximately −1 over a wide range of
scales, indicating first order accuracy. This is consistent with the theoretical
prediction for case D edges.

• At very small values of N , all three curves depart slightly from the expected
straight line relationship. This is difficult to explain, but minor.

This test case is of critical importance, as it shows that the first order function inter-
polation accuracy demonstrated for the conventional unstructured bilinear scheme
is improved to second order accuracy when the hybrid version is used. The accuracy
of the ε derivative is also improved from zeroth to first order accuracy.
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Figure 16. Hybrid unstructured bilinear interpolation test re-
sults on a mesh containing case D edges. Plots of Ef , Edf/dδ and
Edf/dε are shown. Statistics are only computed over the vertical
edges of the mesh whose end nodes are internal.

Conclusion

In this paper, it was shown that the interpolation scheme used by Kim and
Choi [5] is only first order accurate for function interpolation (and zeroth order
accurate for spatial derivatives), rather than being second order accurate as Kim
and Choi claimed. However, Kim and Choi’s results may be explained by the
fact that there are numerous special cases of mesh geometry where the order of
accuracy is higher than for the general case, as well as many situations where the
interpolation is approximately second order accurate. Many such special cases were
identified in this paper, although the list is not claimed to be comprehensive. The
variety of special cases is surprising, and highlights the complexity of the interaction
between the mesh geometry and the interpolation scheme, which ultimately has a
very significant effect on the interpolation accuracy. Having identified the problems
with Kim and Choi’s interpolation scheme, this paper then presented an improved
version that is consistently second order accurate for function interpolation. This
new scheme is also consistently first order accurate for spatial derivatives, apart
from some special cases where it is second order accurate.
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