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A SMALL PROBABILISTIC UNIVERSAL SET OF STARTING
POINTS FOR FINDING ROOTS OF COMPLEX POLYNOMIALS
BY NEWTON’S METHOD

BELA BOLLOBAS, MALTE LACKMANN, AND DIERK SCHLEICHER

ABSTRACT. We specify a small set, consisting of O(d(loglogd)?) points, that
intersects the basins under Newton’s method of all roots of all (suitably nor-
malized) complex polynomials of fixed degrees d, with arbitrarily high proba-
bility. This set is an efficient and universal probabilistic set of starting points
to find all roots of polynomials of degree d using Newton’s method; the best
known deterministic set of starting points consists of [1.1d(log d)?] points.

1. INTRODUCTION

Newton’s root-finding method is as old as analysis, but still not well understood,
even in the fundamental case of finding all roots of a polynomial in a single variable.
Its local convergence properties are well known; near simple roots convergence is
quadratic and thus extremely rapid. However, the global dynamical properties are
insufficiently understood so that numerical analysis algorithms often use different
global methods, and resort to Newton’s method for a final local “polishing” of the
roots.

This article is a contribution towards a better understanding of the global prop-
erties of Newton’s method, applied to polynomials in a single complex variable.
Even for polynomials over the reals, and even if all the roots are real, it is often
preferable to use complex methods; see Figure [l

Among the difficulties with Newton’s method are the following:

e if an orbit under iteration comes close to a critical point of the polynomial,
the Newton map sends the orbit far away near oo, so that control of the
dynamics is lost, and in any case a large number of iterations are required
until the orbit comes back to where the roots are;

e there are polynomials with open sets of starting points that do not con-
verge to any root (Smale [SI] asked, in 1984, for a classification of such
polynomials; an answer has recently been given by Mikulich in the current
work [Mi]);

e the boundary of the basins of convergence for the roots may have posi-
tive planar Lebesgue measure (this follows from recent work by Buff and
Chéritat on the existence of Julia sets with positive measure [BC], combined
with Douady and Hubbard’s renormalization theory [DH]);

e even if almost every point in C converges to some root under the Newton
iteration, our goal is to find all roots of the polynomial, and with bounded
complexity. Finding some roots and deflating is usually not an option,

Received by the editor September 10, 2010 and, in revised form, August 28, 2011.
2010 Mathematics Subject Classification. Primary 37F10, 49M15.
(©2012 American Mathematical Society

Reverts to public domain 28 years from publication

443



444 BELA BOLLOBAS, MALTE LACKMANN, AND DIERK SCHLEICHER

FIGURE 1. Dynamical planes of Newton maps of two complex
polynomials. Different colors illustrate basins of attraction of dif-
ferent roots; shades of color illustrate different speeds of conver-
gence. It is clearly visible that all immediate basins are unbounded
and have one or several channels to oo of different widths. Left: a
polynomial of degree 7. Right: a polynomial of degree 11 with all
roots real. Some of the roots are very close to each other; however,
away from the disk containing all the roots, the basins and their
channels all have almost uniform width, so that finding the real
roots using complex methods is much easier.

because deflation is in general numerically unstable (unless the roots are
found in a specific order), and because deflation might not be compatible
with the way the polynomial may be specified, or evaluated efficiently (for
instance, if the polynomial itself is given by an efficient iteration procedure).

See [Ril for a recent survey of known results on Newton’s method.
This article is a contribution towards the goal of turning Newton’s method into
an efficient algorithm. To achieve this goal, one should:

e select a finite set Sy of good starting points that are guaranteed to intersect
the basins of all roots;

e specify a condition when to stop iterating any of these starting points, be-
cause the orbit is either sufficiently close to a root, or the orbit is discarded
in favor of some other starting points;

e give a good bound on the complexity of Newton’s method to find all roots
of the polynomial with prescribed precision.

This article is concerned with the first of these questions; we will not discuss the
other two issues in detail (see for instance [S2] [Rii]). Concerning efficiency of the
Newton method, we mention the following recent result from [Schil [Sch2, [ABS]:
roughly speaking, for “most” polynomials p of degree d, properly normalized, our
universal set Sy contains d points that converge to the d different roots of p so
that the total number of Newton iterations, for all d roots combined, to achieve an
accuracy of € is at most O(d> log4 d) 4+ dlog|loge|. This makes it possible to turn
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FIGURE 2. The dynamical plane of the polynomial p(z) = z(2'° —

1): the ten roots of unity cach have one “thick” channel, while
the root z = 0 has 10 channels which are all rather “thin”. The
deterministic method from [HSS] would search for the individual
thin channels and thus requires more points, while our method
searches for the union of all thin channels, which together are much
bigger.

Newton’s method into an efficient algorithm for the problem of finding all roots of
a given polynomial.

To state our main result, let Py be the space of polynomials of degree d, nor-
malized so that all roots are contained in the complex unit disk D.

Theorem 1 (Small Probabilistic Universal Set of Starting Points). For every degree
d > 3, there is an explicit universal probabilistic set Sy consisting of O(d(loglog d)?)
starting points so that for every polynomial p € Py, the probability is greater than
1/2 that the immediate basin of each root of p contains at least one point in Sy (in
fact, this probability is greater than 1 —1/d > 2/3).

Remark 1. The meaning of an “explicit and universal” probabilistic set is as follows:
we give an explicit probability distribution of starting points that depends only
on d so that for any p € P4, with probability at least 1 — 1/d all immediate
basins contain at least one point in this set. (The probability 1 — 1/d may seem
somewhat artificial; it is what we get naturally from of our estimates, and it is
better than the uniform 2/3.) Of course, enlarging this set of points appropriately,
the probability of success can be increased (see Remark[D)): For every probability p €
(0,1), there is an explicit and universal set Sq,, of starting points with cardinality
O(d(loglog d)? + d|log(1 — p)|) such that the statement of Theorem [ is true with
probability p instead of 1 — 1/d.

This result is in a similar spirit as [HSS], where a similar explicit universal set of
starting points is constructed. It consists of [1.1d(logd)?] points and is determin-
istic. Our new set is significantly smaller than the deterministic set, much closer
to the “ideal lower bound” of d points, but we can do so only using a probabilistic
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set. We believe that there is no deterministic explicit and universal set of starting
points with o(dlog d) points.

Construction of the set Sg. Our set Sy is constructed as follows: first, we de-
fine a “fundamental annulus” V := {z eC:Ry/1-1/d<z< R} for some R >

14++/2, and choose a “deterministic set” of approximately (16/7)d(log log d)? points
that are distributed on m = [(2/7)loglogd] circles. These circles have radii
Ry = R(1 — 1/d)+=1/2)/2™ for |t = 0,1,,...,m — 1, and each circle contains
[47d[(2/7)loglog d]] points at equal distances. This construction is in principle
the same as in [HSS]. Second, we choose a “probabilistic set” of [(300/7)d loglog d]
points randomly inside the annulus Agp = {z € C: R(d—1)/d — 1/d < |z| < R}
for some R > 11. These deterministic and probabilistic sets of points will respec-
tively find “thick” and “thin” roots, as defined below. Iterating Newton’s method
starting at these points (in parallel or in any order), we will find all roots of p
with probability at least 1 — 1/d (or with any probability p € (0,1) when taking
appropriately more points in the probabilistic set).

Historical Remark. This research has its origins at the 50th anniversary celebra-
tion of the International Mathematical Olympiad (IMO) held in 2009 in Bremen,
Germany. One chief goal of this celebration was to bring together olympiad math-
ematics and research mathematics, and people involved in both. This paper was
authored by a research mathematician who in his youth was one of the first contes-
tants ever at the IMO and in 2009 was a guest of honor at the 50th IMO, together
with one of the contestants there, and a research mathematician who was among
the senior organizers of that IMO and its anniversary. This work is thus very
much in the spirit of the IMO anniversary, and we are grateful to this anniversary
celebration that has brought us together.

2. CHANNELS AND THEIR MODULI

Consider a complex polynomial p(z) = cH?Zl(z — a;) and let Np(z) = z —
p(2)/p'(2) be the associated Newton map. This is a rational map of degree d if
all roots of p are distinct, and of lower degree otherwise. Without changing the
Newton map, we may suppose that ¢ = 1, and after rescaling, we may suppose that
all o; € D.

For any root « of p, let U, be the immediate basin of c: the basin is the set of
all z € C that converge to o under iteration of IV, and the immediate basin is the
connected component containing «. It is known that each U, is simply connected
[Pr] and that the restriction of N, to U, sends U, to itself as a proper map of some
degree k+ 1 € {2,3,...,d}. We will use the construction and some results from
[HSS]. If ¢: U, — D is a Riemann map with ¢(a) = 0, then f:=po Nyop~!is
a proper holomorphic self-map of D of degree k + 1 and thus extends, by Schwarz
reflection, to a rational map of degree k + 1, and the restriction of f to JD is a
covering of dD, also of degree k + 1. In particular, the restriction of f to 0D has
k > 1 fixed points q1,...,qk. Set \; := f/(¢;), for i =1,2,... k.

The holomorphic fixed point formula (which essentially is the residue theorem
for 1/(z — f(2)); see [M]) implies that

G|
(1) Y21
i=1 "
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(with equality if the root « is simple). Each of these k fixed points gives rise to
a channel to oo in the immediate basin U,: for our purposes, a channel is an
unbounded component B; of U, \ D. Near oo, each channel is mapped by N,
conformally to itself, and it defines an access to co within U, that is fixed by IV,,.
The quotient of B; by the dynamics of N, is a conformal annulus with modulus
wi =7/ log A;.

Choose some positive real number M < 7/log4 ~ 2.266 that will be specified
later (we will eventually use M = 7/loglogd for large d).

We call a root « thick if it has a channel with modulus p; > M, and thin if there
is no such channel. We will treat these two cases separately.

e We will explicitly and deterministically construct a set of [4wd[2/M]?]
points that is guaranteed to intersect each channel of a root with modulus
greater than M. This set will thus suffice to “find” all thick roots.

e The advantage of thin roots is that even though the individual channels
have small moduli, the total area of these channels within any fundamental
domain of the Newton dynamics is greater than in the thick case: each
channel may have little area, but there are more channels in this case (see
Figure B). We show that if [300dlogd/Me™™7 points are distributed
randomly in a certain fundamental annulus of the Newton dynamics, then
the probability that the immediate basins of all thin roots contain such a
point is at least 1 — 1/d.

Remark 2. If « is a thin root, then all 4; < M, hence all \; — 1 = ¢™/#i —1 >
e™M _ 1, so by (), the number k of channels of a thin root is strictly greater
than e™/™ — 1. But the mapping degree of U, equals k + 1, so U, must contain
k > e™/M _1 of the at most 2d — 2 critical points of Np, and thus the number of
thin roots is at most (2d —2)/(e™™ —1). In the end, we will use M = 7/ loglogd,
so the number of thin roots will be at most (2d — 2)/(logd — 1): most roots will
be thick. It seems to be an interesting question (outside the scope of this paper)
to estimate how likely it is for a given polynomial of degree d to have all its roots
thick.
If there are thin roots, then we can estimate

(2) M <k 41<d;
in particular, there are no thin roots at all if M < 7 /logd.

A conformal quadrilateral is a Riemann domain ¢ C C with two distinguished
connected and disjoint subsets of the boundary. In our setting, the boundary of Q
may not be a topological curve, but the two distinguished boundary subsets will
be; we will call them distinguished boundary arcs. Then there is a unique h > 0 so
that the domain @ := {# € C: 0 <Imz < 1,0 < Rez < h} has a Riemann map
@: Q — Qp that maps the two distinguished boundary arcs onto the two horizontal
sides of @}, (the Riemann map may not extend continuously to the boundary of @,
but it does so near the two distinguished boundary arcs; the general framework of
extremal length using curve families works even if the boundaries are not curves).
The value h is defined as the conformal modulus of the quadrilateral @ with respect
to the two boundary subsets, and denoted mod(Q); it is invariant for conformal
homeomorphisms that respect the distinguished boundary subsets, in particular,
for Riemann maps with this property [A].
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Identifying the two distinguished boundary arcs, we obtain a complex annulus
(a doubly connected Riemann surface) with modulus mod(Q) or less (the exact
modulus depends on how the boundaries are identified).

3. HITTING THICK ROOTS

In this section, we will construct an explicit and deterministic set of starting
points that is guaranteed to intersect the basins of all thick roots. Our arguments
are essentially the same as in [HSS, Section 5], except that we no longer need to
find all roots, but only the thick ones.

If R> (d+1)/(d— 1) and Cg is the circle of radius R centered at the origin,
then NN, maps Cr homeomorphically onto some topological circle around D, and
there is some x > 0 so that the round annulus

VRk,d = {z €C:R <—d; 1> <lz] < R}

is contained in the topological annulus between Cr and N,(CRr); specifically, if
R>1+ \/5, then k > 1/2 for all d. If R tends to oo, then & tends to 1. All this is
in [HSS| Lemmas 4 and 12]; see also Figure Bl

S

F1GURE 3. Left: the dynamics of Newton’s method for some com-
plex polynomial. Highlighted is the immediate basin of attraction
of one root, with fundamental domains within the channels shaded.
Also shown is the circle at radius R and its image, which is a topo-
logical (but not geometric) circle. Right: the complex unit disk
D provides a conformal model for the Newton dynamics of the
immediate basin. (Picture taken from [HSS].)

We will use the round annulus V' = Vg . ¢ with R > 1 + V2 and k = 1/2 (if
we use larger values of R, then we can take larger values of x, and our bounds will
eventually be slightly better; however, in practice these starting points would be
further away from the roots, and the iteration would take longer).
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Remark 3. The modulus of V' is |log((d — 1)/d)|/4m > 1/4xd.

Consider some channel B;. We want to define Q; as “the part of the channel
B; within V7. If each of the two boundary circles of V intersect B; in a single
connected arc, we set Q; := B;NV. However, if B;\V has more than two connected
components (see Figure [3), we need to be more careful. Consider the intersection
of B; with Cg, the outer boundary of V. Let v be any connected component in this
intersection. It separates U, into two components, one of which contains the root
«; then v will be called an essential boundary arc of B; N C'g if the component of
U, \ 7 not containing « is unbounded: this means that v separates the unbounded
part of the channel B; from the root. At least one component of B; NCp is essential;
choose one such essential component =, let 7' := N,(7), and let @ be the subset
of U, that is bounded by v and ' (if B; intersects C'r and equivalently N,(Cg) in
only one component, then @ is the part of B; between Cr and N,(Cg); in general,
the difference may consist of some number of bounded components). Then Q) is a
fundamental domain of B; by the dynamics; when viewed as a quadrilateral with
distinguished boundary arcs v and 4/, then mod(Q}) > mod(B;) = p; (Q} is a
quadrilateral, the modulus of B; is defined using the quotient annulus of B; by the
dynamics).

Now let C'g be the inner boundary circle of V' and consider all essential arcs of
intersection of B; N Cgr/. If there is only one, then let 7" be this essential arc. If
there are several, then they are totally ordered (because they all separate « in U,
from the unbounded component of B; \ V). Let 4" be the outermost component
that separates « from 7 (i.e., the one closest to ), and let @Q); be the component
of B; \ (v U~") that is bounded by v and ~”. This is a conformal quadrilateral
with Q; C @}, and with v and 4" as distinguished boundary arcs, and we have
mod(Q;) > mod(Q;) > p;.

Our task will be to distribute sufficiently many points into V' so that we hit
quadrilaterals Q; C V' with moduli bounded below.

Lemma 2. Let S ={z€ C: —1/2 < Rez < 1/2} and let Q C C be a quadrilateral
whose two distinguished boundary arcs are on the two vertical sides of S, one on

each. Suppose that Q is disjoint from the set iZ. Then the modulus of Q) is at most
2.

Proof. This is an easy extremal length exercise [A]. There is an integer n € Z so
that any curve in @) connecting the two distinguished boundary arcs must intersect
the segment [ni, (n + 1)i]. Without loss of generality, suppose that n = 0.

Let B:={z€ S: —1/2 <Imz < 3/2} and let p be the characteristic function
of B. Then for any curve v C @) connecting the two distinguished boundary arcs,
its intersection with B has length at least 1. Since f(c p?dx dy = 2, it follows that
mod(Q) < 2. O

Remark 4. The bound of 2 is not sharp. It is not hard to calculate the exact bound
[A], but we are not optimizing constant factors here.

Lemma 3. IfV is subdivided into at least 2/M concentric and conformally equiva-
lent subannuli, and at least 4wd[2/M] points are distributed onto the core circles of
all subannuli, so that the points on all circles are equidistributed, then each quadri-
lateral Q; with modulus at least M contains at least one of these points.
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FIGURE 4. The annulus V' (hatched). Its outer boundary circle is
Cg; the image N,(C,) is a topological circle within the bounded
complementary component of V. Also shown is a channel B;; it
intersects C'g in four arcs, three of which are essential. Shaded is
the quadrilateral @ which is bounded by two essential arcs, one on
Cr and one on N,(Cg); it is a fundamental domain of B; modulo
N,. The quadrilateral Q; C Q) is shaded darker: it is bounded by
two essential arcs on 9V, but may not be contained in V.

Proof. Let m := [2/M] and subdivide V into m concentric and conformally equiva-
lent subannuli Vi, ..., V;,, ordered by decreasing radii (so that V;, = {z € V: Rp* <
2| < RB*=1} for B = (1 —1/d)"/?™) . Write Q for Q;; this is a quadrilateral for
which the two distinguished boundary arcs are on 9V, one on each boundary com-
ponent of V.

Subdivide @ into quadrilaterals @Qf,...,Q’, as follows, similarly as above. The
common boundary circle of V; and V;41 may intersect () in several arcs; such an arc
is essential if it separates the root « from the unbounded component of B; \ V. Use
an essential arc to separate @} from @}, for j = 1,2,...,m — 1. (In the special
case that B; NdV; only has two connected components, then simply Q; =B;NV;.)

By the Grétzsch inequality, one of the quadrilaterals Q; has modulus mod(Q}) >
m-mod(Q) > [2/M]M > 2. Supposing for now that 0 ¢ Q’; and taking logarithms,
the annulus V; becomes an infinite vertical strip of width |log((d — 1)/d)|/2m >
1/2md, and Q; becomes a quadrilateral that connects the two boundary sides of
the strip; see Figure

By Lemma ] appropriately rescaled, each annulus of modulus 2 intersects the
central vertical line within this strip in a straight line segment of length at least
1/2md. Therefore, placing an infinite sequence of points on any vertical line within
the strip so that adjacent points have distance less than 1/2md, one can be sure that
at least one of these points intersects the annulus. The exponential map projects
the strip back onto V; as a universal cover and has period 2w, so the required
number of points on Vj is dmmd = 4nd[2/M].
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oy
R

FiGUurE 5. The annulus V is subdivided into m = 3 concentric
subannuli, all of equal moduli. The logarithm unfolds these annuli
to vertical strips (moved apart to show them separately). High-
lighted is the intersection of one channel with V. The quadrilateral
in the channel corresponding to the middle subannulus is shown in
a darker shade: notice that it intersects the other subannuli as
well.

If Q' happens to contain the point z = 0, then one cannot take the log of Q’;
but one can take the log of Q; N V; and transport the function p in the proof of
Lemma [2] into Q; N V;. This suffices for the conclusion to remain valid. O

Corollary 4 (Deterministic Starting Points for Thick Roots). For every d there is
an an explicit set consisting of [4nwd[2/M][2/M| ~ 16md/M? points in V so that
for each p € Py and each thick root of p, at least one point in Py is contained in
the immediate basin of this root.

Proof. Using the construction described in Lemma [B] we have m = [2/M] circles,
and each circle contains [47d[2/M ] points. Hence the total number of required
points is as claimed. These points intersect each quadrilateral @); and thus the
immediate basin of each thick root. O

4. HITTING THIN ROOTS

Our goal in this case is to find a good lower bound for the area of the union of
all channels of any root, guaranteeing us that we will hit one of the channels with
high probability if we distribute sufficiently many points randomly on a specified
annulus. The area of intersection of a channel with modulus p; with an annulus
will be bounded below by some multiple of y;, so the total area of intersection of
an immediate basin with the annulus will be proportional to > p;, summed over
all channels of the root. We thus start with a lower bound for Zle -

Set a; = ﬁ, so that Zle a; > 1. We have

s s

T loghi log(1 + ai)

Hi

Since p; < M for all i, we get that a; < 1/(e™/* — 1) for all i.
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We want to find a lower bound for

k k
™
;ui - ; log(1+ 1/a;)

subject to the conditions Zle a; > 1and a; < 1/(e™™ —1).

Lemma 5. The function f: RT — R, f(z) = w/log(1 + 1/x) is strictly mono-
tonically increasing and concave (i.e., its graph is above the line segment through
any two points on it).

Proof. Tt suffices to prove that f’ is positive and monotonically decreasing. This is
a straightforward exercise. O

Lemma 6. If u; < M < 7/log4d for alli € {1,...k}, then Zle i > %Me”/M.

Proof. Without loss of generality, assume that a; > as > .-+ > ai, and that
> a; =1. We now consider the sequence (by,...by) defined by
e"/+—1 leSI_eTr/M—1J7
bi=q -l = (e 1,
0 if i > |e™M — 1] 4 1.

Then we also have > b; = 1, and since all a; < e"'/+—1’ it follows that the sequence
(b1, ba, . .. b) majorizes the sequence (a,as,...,ax), in the sense that

m m

Z b; > Z a;
i=1 i_1

for all m € {1,2,..., k}, with equality for m = k. The function f from Lemma[lis
concave, so we can use Karamata’s inequality Y f(a;) > > f(b;) (see [HLP, Thm.
108]) and get that

k le™/M 1]
1
) N /M . /M _
Sre = X 100 = 1 1 f (g ) > (- 2)
i=1 i=1
Since M < @, we have ™M > 4 and thus
k k
> =Y fla)) > MM —2) > ~Me™/M
i=1 i=1
as claimed. O

Let ¢: (C\ D) — C be a linearizing map near oo of N, i.e., ¥(Ny(z)) =
P(2)(d — 1)/d with 1p(c0) = oo, and normalize so that ¥(z)/z — 1 as z — oc.
Let

Wgr:={weC: R(d-1)/d < |w| < R}
be a fundamental domain in linearizing coordinates.

Lemma 7. For any channel B;, we have

[v(B;) N Wg| > mod(B;)R?/d”.
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Proof. This is another elementary exercise using extremal length: fix a channel B;
and let B := ¢(B;) N Wg. By conformal invariance, the modulus of B; equals the
modulus of B where the boundaries are identified by multiplication by (d — 1)/d,
and this is

2
(mod B;)~! = (mod B) ™! = supinf ¢ 2(7) ,
p 7 lle*ls

where p: B — RT are measurable functions, v: [0,1] — B are smooth curves with
Y(1) = 4(0)(d = 1)/d, and £(+) = [; p(3(1)) I/ (t)] dt.

We simply set p = 1|p (the characteristic function of B). If A denotes the
Euclidean area of B, then |p?||p = A. The two boundary circles of Wx have
radii R and R(d —1)/d, so {(y) > R/d. Therefore, 1/mod B > R?/d*A or A >
mod(B)R?/d* = mod(B;)R?/d>. O

Lemma 8. For R > 5, the intersection of the annulus
d—1

AR—{ZE(C: d

1
R_E<|2<R}

with a channel of modulus v has area at least

po (R—1)*R-3)?
2 4R+1)?

Proof. Consider the circle Cr := {z € C: |z| = R}, and the image C}; := N,(Cg).
Then C% is another topological circle with absolute values between R(d —1)/d —
1/d=R-(R+1)/d>(R—1)/2>2and R(d—1)/d+1/d=R—-(R-1)/d < R.
Let Zg be the annulus bounded by Cgr and C%; it is a fundamental domain for
the Newton dynamics, and we have Zr C Agr. Consider a channel B and set
Bpr := BN Zg; this is a fundamental domain of the channel, but not necessarily
connected.

Consider again the linearizing function ¢: C\ D — C of N, normalized as
P(0c0) = oo and P(z)/z — 1 as z — oco. The Koebe distortion theorem in this
normalization yields

|z| + 1
~ J2l(l2 = 1)

-1 Y
ECEDR ‘ o(2)

Define the sets

B, = {z € Br: R (%)nl <|Y(z)| <R (%)n}

for n € Z. Each area element in B,, is mapped into Wg by the map z — ¢(z)((d —
1)/d)™ with derivative

d W Tl =1 " R=1 (R=3)
where we used the Koebe theorem in the second inequality and then |z| > (R—1)/2.
This yields a diffeomorphism from Bg to ¥(B) N Wg, except for discontinuities at
the finitely many boundary arcs of the B,,.

The set 1(B) intersects W in a set of area R? mod(B)/d? by Lemma [T and

areas in B,, are distorted by a factor of no more than the square of the derivative.
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This implies that

(R—1)*(R-3)*
4d?>(R +1)?

as claimed. [l

|Br| >

mod(B)

Lemma 9. Let R > 5 and consider the annulus Ag defined as in Lemma 8. Choose
a probability p € (0,1). If
|log(1 —p)| +logd  R(R+1)°
Mem/M (R—1)%(R—3)?
points are randomly and independently distributed in Ar, then for any polynomial

p € Py, each thin root has at least one of these points in its immediate basin with
probability at least p.

{167rd

Proof. The area of all channels within Ar of any fixed thin root is at least
((R—1)*(R—3)?/4d*(R+1)?) Y p; by Lemma B and > > 2Me™™M by
Lemmalfl A simple calculation shows that the area of Ap is less than 2r R(R+1)/d.
Therefore, the probability that a point chosen randomly in Ar will lie in one of the
channels of this root is at least

Me™™ (R —1)*(R — 3)?
1= 6rd '~ R(R+1)3
Now, suppose that we distribute some (large) number K of points on the annulus
Ag, randomly and independently. Then the probability that we do not hit one
of the channels of some fixed thin root will be at most (1 — ¢)®. Since there are
at most d thin roots, the probability that there is some thin root the channels of
which are not hit is at most d(1 — ¢)*. We need to make K large enough so that
d(1—¢)% <1—p, hence we need K > log ((1 — p)/d)/log(1 — q).
Since log(1 — q) < —¢ < 0, we have

log (1 —p)/d) _ log(1—p) —logd _ |log(1—p)| +logd

log(1 —q) —q q
— 3
_ 167Td| log(1 —p)| +logd  R(R+1) 7
Mem/M (R—1)%2(R-3)?

so it suffices to distribute this number of points within the annulus at random so
that, with probability at least p, at least one channel of each thin root is hit. [

Remark 5. Increasing the radius R will decrease the necessary number of points to
asymptotically 16md(|log(1 — p)| +logd) /Me™/™M for large R. The disadvantage is
that the required number of iterations will be very large until the roots are reached.
In this article, we do not optimize the number of starting points vs. the number of
iterations; indeed, it is possible to optimize all constants by refining several of our
estimates (see below).

5. CONCLUSION

Proof of Theorem M. We have to distribute 16wd/M? points within the annulus V
by the algorithm described in Section [B] to be sure that all thick roots are found.
To hit the thin roots, we consider the annulus Ar defined as in Lemma [ where
we choose R = 11 (see Remark [)) so that R(R + 1)3/(R — 1)?(R — 3)? = 2.97; in
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order to hit all the thin roots with probability at least p = 1 — 1/d, we thus have
to randomly distribute

(3) 16 - 2.977d(| log(1 — p)| + log d) /Me™™ < 300dlog d/Me™™

points inside the annulus Ag (in both statements, we ignored the condition that
we need to round up certain numbers).
This gives us a total of
16wd ~ 300dlogd
P(M) = M2 Men/M
points to be chosen to hit the channels of all roots with probability at least 1 —1/d.
In particular, setting M = 7 /loglogd, it suffices to use at least

m _ 16d 5 300 B )

points. O

Remark 6. Strictly speaking, this proof only works for d > e* ~ 54.6 as we claimed
in the beginning that M < 7/log4 and finally chose M = 7/ loglog d. However, we
only need this to simplify some term in the proof of Lemma [ for 2 < logd < 4,
by being a little bit more careful in the proof of Lemma[6l one can even get slightly
better constants, whereas for 1 < logd < 2 one has to choose another value for M
to get the same final upper bound.

Remark 7. Of course, the probability 1 — 1/d can be replaced by any probability
p € (0,1) by appropriately increasing the number of points. For M = 7 /loglogd,
the number of points to find the thin roots then becomes O(d loglog d(1+ |log(1 —
p)|/ log d). Including thick roots as well, and ignoring dominated terms, the total
number of points becomes

O (d(loglog d)* + dloglog d|log(1 — p)|/ log d)
< O (d(loglog d)® + d|log(1 — p)]) .

This will not even change the leading term of the number of points as long as
p <1-— 1/dlogdloglogd.

Remark 8. At several places, we preferred the simple argument over optimal nu-
merical values, as far as constant factors were concerned. If one were to optimize
these factors, it would involve the following places. The thick roots have the higher
complexity, so asymptotically it is most important to optimize constants here. In
Lemma 2] the modulus of a quadrilateral is estimated only roughly using a simple
argument. The precise value of this quadrilateral can be determined using elliptic
integrals; this has been done in [HSS|] in an analogous situation. One could then
optimize the number of circles and the number of points on them: taking more (or
fewer) circles would allow us to use fewer (more) points on each of them, and there
is an optimal value of circles that minimizes the total number of points.

For thin roots, we used the estimate e™/™ —2 > ™M /2 at the end of the proof
of Lemma [6l and for large d this loses a factor of 2. Moreover, in equation (B)
within the proof of Theorem [I] one could gain a factor of 2 (for large d) by using
a fixed probability p, rather than p = 1 — 1/d. Finally, there is a certain loss in
the estimation of probabilities of hitting the d different basins; these probabilities
are not quite additive as estimated. Our estimates in the thin case are roughly a
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factor 4 away from being optimal, and of course, one can reduce the radius R of
the starting points, and thus the required number of iterations, at the expense of
increasing the number of starting points.

Remark 9. Since the complexities of the deterministic and the probabilistic parts
are different, it is tempting to reduce the total complexity by choosing a value of M
different from 7/loglogd so that both partial complexities become closer to each
other. Slight improvements are indeed possible that way, but the gain seems to be
minimal. For example, one has

T
" <(log log d)ll/(”loglogd)) =0 (d (loglog d)* >/ oeies d)> '

In this case, the deterministic term is still much bigger than the probabilistic one.
Such calculations seem to become much more complicated with relatively little
gain.

Moreover, we have not used the condition Eai k; < 2d—2 coming from the total
number of “free” critical points. We believe that the effect of incorporating this
condition will be marginal.
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