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A DOMAIN DECOMPOSITION METHOD FOR SEMILINEAR

HYPERBOLIC SYSTEMS WITH TWO-SCALE RELAXATIONS

SHI JIN, JIAN-GUO LIU, AND LI WANG

Abstract. We present a domain decomposition method on a semilinear hy-
perbolic system with multiple relaxation times. In the region where the re-
laxation time is small, an asymptotic equilibrium equation can be used for
computational efficiency. An interface condition based on the sign of the char-
acteristic speed at the interface is provided to couple the two systems in a
domain decomposition setting. A rigorous analysis, based on the Laplace
Transform, on the L2 error estimate is presented for the linear case, which
shows how the error of the domain decomposition method depends on the
smaller relaxation time, and the boundary and interface layer effects. The
given convergence rate is optimal. We present a numerical implementation of
this domain decomposition method, and give some numerical results in order
to study the performance of this method.

1. Introduction

Consider the hyperbolic system⎧⎨
⎩

uε
t + vεx = 0,(1.1a)

vεt + uε
x = − 1

ε(x)
(vε − f(uε)),(1.1b)

where ε(x) is the relaxation time and f(x) satisfies the subcharacteristic condition:

(1.2) |f ′(x)| < 1.

The problem is posed for x ∈ [−L,L] and t > 0 with initial data

uε(x, 0) = u0(x), vε(x, 0) = v0(x)(1.3)

and the order of the relaxation time varies considerably over the domain [−L,L].
In this paper, we consider the case when ε(x) is given by

(1.4) ε(x) = 1, x ∈ [−L, 0); ε(x) = ε, x ∈ (0, L],

where ε � 1 is a small parameter. For the boundary condition, we simply choose
the Dirichlet condition for u, i.e.:

uε(xL, t) = bL(t), uε(xR, t) = bR(t).(1.5)
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More general boundary conditions can also be analyzed by the method of the present
paper. The initial data and boundary data are required to be compatible, i.e.,
b1(0) = u0(xL), b2(0) = u0(xR).

Since the relaxation time is small in the region (0, L], numerical computation of
this system becomes very costly. On the other hand, in (0, L], the solution is, to
the leading order in ε, governed by the equilibrium equation

(1.6) ut + f(u)x = 0 ,

which can be more efficiently solved numerically. Thus a domain decomposi-
tion method, which couples the relaxation system (1.1) for x ∈ [−L, 0), where
ε(x) = O(1), with the equilibrium equation (1.6) for x ∈ (0, L], is computationally
competitive. Interface conditions at x = 0 must be provided for this coupling.

System (1.1) was first proposed by Jin-Xin [15] for numerical purpose, which
supplies a new and powerful approximation to equilibrium conservation law (1.6).
There have been many works concerning the asymptotic convergence of the relax-
ation systems (1.1) to the corresponding conservation laws (1.6) as the relaxation
time tends to zero. Most of the results dealt with the Cauchy problem. In partic-
ular, Natalini [24] gave a rigorous proof that the solution to Cauchy problem (1.1)
with initial condition (1.3) converges strongly in C([0,∞), L1

loc(R)) to the unique
entropy solution of (1.6) when ε → 0. See also [25] for a review in this direction,
and results for larger systems [2] and on more general hyperbolic systems with
relaxations [7].

In the presence of physical boundary conditions, Kriess and some others first
gave the suitability of boundary conditions for linear hyperbolic systems when the
source term is not stiff; see, for example [16], [14], [23], [27]. Wang and Xin [31]
later gave a similar result of the system (1.1)–(1.3) with boundary condition (1.5).
They proved that when the initial and boundary data satisfy a strict version of the
subcharacteristic condition (1.2), the solution of the relaxation system converges
as ε → 0 to a unique weak solution of the conservation law (1.6) which satisfies
the boundary-entropy condition. [34] and [33] then gave an explicit necessary and
sufficient condition (the so-called “Stiff Kriess Condition”) on the boundary that
guarantees the uniform well-posedness of the IBVP, and also revealed the boundary
layer structures. [33] dealt with the linear cases while [34] considered the nonlinear
one.

Domain decomposition methods connecting kinetic equation and its hydrody-
namic or diffusion limit have received a lot of attention in the past twenty years.
Our paper is strongly motivated by [13]. Others can refer to [1], [29], [3], [12],
[36], [17], [18], [9], [11]. A thorough study on the problem of this paper provides a
better understanding of the more general coupling problem of kinetic and hydro-
dynamic equations, since indeed the Jin-Xin relaxation system (1.1) can be viewed
as a discrete-velocity kinetic model, while (1.6) resembles some important features
of hydrodynamic (compressible Euler) equations.

Relaxation systems themselves are important in many physical situations, such as
kinetic theories [5], gases not in thermodynamic equilibrium [30], phase transitions
with small transition time [20], river flows, traffic flows and more general waves
[32].

In this paper, we give a domain decomposition method for system (1.1)–(1.4) by
providing the interface condition at x = 0. The interface condition depends on the
sign of f ′(u) at the interface. When f ′(u(0, t)) < 0, there will be an interface layer
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in u around x = 0+ when approximating the original system (1.1) by (1.6), then one
can solve (1.6) in the right region first and then transfer the value of v(0, t) to the
left as one boundary condition for (1.1) in the left region; see (3.1)–(3.2). On the
other hand, when f ′(u(0, t)) < 0, one just uses v(0, t) = f(u(0, t)) as one boundary
condition for (1.1) in the left region, and solves it first, then uses the value u(0, t) as
the boundary condition for (1.6) in the right region. The details are given in (3.3)
and (3.4). For the linear case, i.e., f(u) = λu, where |λ| < 1 a constant, we first
prove the stiff well-posedness of the original system (1.1) in Theorem 3 in the sense
that the L2 norm of the solution is controlled by the L2 norm of the initial and
boundary data. Then we prove the asymptotic convergence in Theorem 4 to show
that the difference between the solution to our domain decomposition system and
the solution to the original system is asymptotically small. Sharp error estimates
are also given.

This domain decomposition can be directly extended to more general cases, such
as the coupling of multiple regions, f ′(u(0, t)) changing sign in time, ε depending on
both time and space [8], and more complicated cases such as when the equilibrium
equation is a hyperbolic system instead of the scalar conservation law, and in higher
space dimensions. Some details are given in section 6.

The paper is organized as follows. In Section 2 we show the formal expansion of
the initial boundary value problem (1.1) in the upper half plane {x > 0, t > 0} in
which the boundary layer may exist. We also refer to the theorems in [34] which
validate this expansion. Section 3 is devoted to present the domain decomposition
method, and the corresponding interface condition is given. We then prove the stiff
well-posedness and asymptotic convergence for the linear case. The theorems are
proved in two parts: one for homogeneous initial data (Section 4) and the other
the inhomogeneous one (Section 5). For the homogeneous one, we simply use the
Laplace Transform to obtain the solution, while for the inhomogeneous case, we
construct several auxiliary systems to decompose the solution into two parts, one
generated by the initial data, and the other by the interface condition. With this
decomposition, we are able to use some existing results for the Cauchy problem
to avoid the difficulties raised by the Laplace Transform. Finally in Section 6, we
present the corresponding numerical algorithms and some extensions of the domain
decomposition method, and finally give some numerical examples to validate the
theoretical analysis.

2. The local equilibrium limit

In this section, we recall the asymptotic analysis proposed in [34]. Here we only
consider the boundary layer effect, and let

v0(x) = f(u0(x))

in order to avoid the initial layer effect. When x ∈ [0, L] where ε is small, one can
use the hyperbolic conservation law (1.6) to approximate the relaxation system.
Away from x = 0 and t = 0, use the expansion

uε(x, t) ∼ u0(x, t) + εu1(x, t) + ε2u2(x, t) + . . . ,

vε(x, t) ∼ v0(x, t) + εv1(x, t) + ε2v2(x, t) + . . . ,
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then matching the orders of ε, one obtains:

v0 = f(u0),

∂tu
0 + ∂xv

0 = 0,

∂tv
0 + ∂xu

0 = −(v1 − f ′(u0)u1).(2.1)

Thus, the leading order of the expansion gives

(2.2) ∂tu
0 + ∂xf(u

0) = 0, v0 = f(u0),

which is the equilibrium limit (the zero relaxation limit) (1.6).
Near x = 0, introduce the stretched variable ζ = x/ε, and write the asymptotic

expansion of uε(x, t) as

uε(x, t) ∼ u0(x, t) + εu1(x, t) + . . .+ Γ0
u(ζ, t) + εΓ1

u(ζ, t) + . . . ,

vε(x, t) ∼ v0(x, t) + εv1(x, t) + . . .+ Γ0
v(ζ, t) + εΓ1

v(ζ, t) + . . . ,

here Γ0
u, Γ

0
v, Γ

1
u, Γ

1
v, ..., depending on ζ and t, are the boundary layer correctors

near x = 0. Apply this ansatz to (1.1), and expand the nonlinear term f(uε) near
x = 0 as

f(uε) = f(u0(x, t) + Γ0
u(ζ, t) + εu1(x, t) + εΓ1

u(ζ, t) + ...)

= f(u0(0, t) + εζ∂xu
0(0, t) + ...+ Γ0

u(ζ, t) + εu1(x, t) + εΓ1
u(ζ, t) + ...)

= f(u0(0, t) + Γ0
u(ζ, t)) + εf ′(u0(0, t) + Γ0

u(ζ, t))(ζ∂xu
0(0, t)

+ u1(0, t) + Γ1
u(ζ, t)) + ε2...

where the second equality comes from the relation x = εζ. By using (2.1) and (2.2)
one has the equation to the leading order O( 1ε ):

∂ζΓ
0
v = 0,(2.3)

∂ζΓ
0
u = −(v0(0, t) + Γ0

v − f(Γ0
u + u0(0, t))).(2.4)

(2.3) implies Γ0
v ≡ 0 because the boundary layer Γ0

v(ζ, 0) should decay as ζ → 0.
Also, (2.4) can be written as

(Γ0
u)ζ = −(v0(0, t)− f(u0(0, t) + Γ0

u)) � f ′(u0(0, t))Γ0
u(ζ, t);

thus, one gets the behavior of the boundary layer in u:

Γ0
u(ζ, t) = exp(f ′(u0(0, t))ζ)Γ0

u(0, t).(2.5)

Since the boundary layer has to decay exponentially fast, we need f ′(u0(0, t))<0.
In other words, if f ′(u0(0, t)) < 0, there will be a boundary layer; otherwise there
will not be a boundary layer.

The above analysis was rigorously validated in [34].

3. A domain decomposition method

In section 2, one sees that when ε goes to 0, the hyperbolic system (1.1) can be
approximated by the equilibrium equation (1.6) that does not have any stiff term.
But the interface condition that connects the two regions should be provided. In this
section, we will give the detailed algorithm that approximates the solution of the
two-scale problem. We will consider the case with f ′(u(0, t)) < 0 and f ′(u(0, t)) > 0
separately.
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3.1. f ′(u(0, t)) < 0. In this case, there will be an interface layer in u near the
interface x = 0, so one cannot simply use u obtained from (0, L] to solve (1.6) in
the domain [−L, 0). Instead we can use the information of v at x = 0 directly from
the equation in (0, L] since there is no O(1) interface layer in v. Here is the coupling
algorithm.

• Step 1. For x ∈ (0, L], solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ur
t + f(ur)x = 0,(3.1a)

vr(x, t) = f(ur(x, t)),(3.1b)

ur(x, 0) = u0(x),(3.1c)

ur(L, t) = bR(t).(3.1d)

Note in this case one can solve (3.1) first to get vr(0, t), and then solve
(3.2).

• Step 2. For x ∈ [−L, 0), solve⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ul
t + vlx = 0,(3.2a)

vlt + ul
x = −(vl − f(ul)),(3.2b)

ul(x, 0) = u0(x), vl(x, 0) = v0(x),(3.2c)

ul(−L, t) = bL(t),(3.2d)

vl(0, t) = vr(0, t);(3.2e)

where vr(0, t) is obtained from Step 1.

3.2. f ′(u(0, t)) > 0. In this case, at the interface x = 0 there is no O(1) interface
layer in u and v. In other words, u and v are in local equilibrium v = f(u), and we
can just use this as the interface condition. We give the following algorithm.

• Step 1. For x ∈ [−L, 0), solve

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ul
t + vlx = 0,(3.3a)

vlt + ul
x = −(vl − f(ul)),(3.3b)

ul(x, 0) = u0(x), vl(x, 0) = v0(x),(3.3c)

ul(−L, t) = bL(t),(3.3d)

f(ul(0, t)) = vl(0, t);(3.3e)

• Step 2. For x ∈ (0, L], solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ur
t + f(ur)x = 0,(3.4a)

vr(x, t) = f(ur(x, t)),(3.4b)

ur(x, 0) = u0(x),(3.4c)

ur(0, t) = ul(0, t),(3.4d)

where ul(0, t) is obtained from Step 1.

Remark 1. In this case there will be a boundary layer in u near x = L−, which is
why in Theorem 4 the convergence rate is O(ε).
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In both cases, we define the solution to the domain decomposition system as
follows: {

u(x, t) = ul(x, t), v(x, t) = vl(x, t), (x, t) ∈ [−L, 0)× [0, T ],(3.5a)

u(x, t) = ur(x, t), v(x, t) = vr(x, t), (x, t) ∈ (0, L]× [0, T ].(3.5b)

Remark 2. If f ′(u(0, t)) changes sign at the interface, one can check the sign of
f ′(u(0, t)) at the current time step, and then use either (3.1)–(3.2) or (3.3)–(3.4) to
continue to the next step. More general cases, such as time-dependent ε or higher
space dimensions, are discussed in section 6.3.

The detailed numerical implementation of this domain decomposition method is
given in section 6.

Now we state the main theorems in the paper about the stiff well-posedness of the
original relaxation system and asymptotic convergence of our domain decomposition
system.

Theorem 3. Let U ε = (uε, vε)T be the solution of the original system (1.1). If
u0(x), v0(x), bL(t), bR(t) ∈ L2, and U0(±L) = 0, bL(0) = bR(0) = 0, then the
solution to the original system (1.1), with variable ε(x) given in (1.4), is stiffly
well-posed in the sense that∫ T

0

∫ L

−L

|U ε(x, t)|2dxdt+
∫ T

0

|U ε(−L, t)|2dt+
∫ T

0

|U ε(L, t)|2dt

≤ KT

[∫ T

0

|bL(t)|2dt+
∫ T

0

|bR(t)|2dt+
∫ L

−L

|U0(x)|2dx
]
,

where KT is a positive constant independent of ε. Moreover, if u0(x), v0(x), bL(t)
and bR(t) are continuous, then the solution U ε is continuous in x.

Theorem 4. Assume bL(t), bR(t)∈L2(R+), U0(±L) = 0, U0(x)∈H3([−L,L]) and

U0(0) = U ′
0(0) = U

′′

0 (0) = 0, then there exists a unique solution U = (u, v)T of the
domain decomposition system (3.1)–(3.2) or (3.3)–(3.4) such that∫ L

−L

∫ ∞

0

|U ε − U |2e−2αtdtdx → 0

as ε → 0 for any α > 0. Moreover, if we assume bL(t), bR(t) ∈ H2(R+), bL(0) =
b′L(0) = bR(0) = b′R(0) = 0, and U ′

0(±L) = 0, then∫ L

−L

∫ ∞

0

|U ε − U |2e−2αt dtdx

≤ O(1)ε||bL||2L2 +O(1)ε||bR||2L2 +O(1)ε2||bL||2H2

+O(1)ε2||bR||2H2 +O(1)ε||v0−λu0||2L2[0,L]

+

{
O(1)ε2||U0||2H3 , for λ > 0,
O(1)ε||U0||2L2 +O(1)ε2||U0||2H3 , for λ < 0.

Remark 5. (1) In the λ < 0 case, there is an interface layer near x = 0+, while
in the λ > 0 case, there is a boundary layer near x = L−, so in both cases, the
optimal convergence rate due to the boundary data is O(1)ε, which is where the
terms O(1)ε||bL(t)||2L2 +O(1)ε||bR(t)||2L2 come from.
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(2) The lower convergence rate in the case of λ < 0 is due to the presence of an
interface layer near x = 0+ generated by the initial data.

(3) O(1)ε||v0−λu0||2L2[0,L] comes from the initial layer in v.

4. Error estimate for the domain decomposition method for the

linear case: the Homogeneous initial data

In this and the next sections, we will give a rigorous justification of the domain
decomposition method for linear problems, where f(u) = λu, for |λ| < 1 a constant.
The main results are given in Theorems 3 and 4. We first represent the exact solu-
tion to the original system (1.1)–(1.4) by the Laplace Transform, we then study the
stiff well-posedness and the asymptotic convergence followed by direct calculations.

Denote

U ε =

(
uε

vε

)
, A =

(
0 1
1 0

)
, S =

(
0 0
λ −1

)
.

Here we consider system (1.1) with zero initial data (1.3), i.e., u0(x) = 0, v0(x) =
0 and nonzero boundary data (1.5). In this case one can focus on the boundary
layer effects and avoid the interactions between the initial and boundary layers.

4.1. Solution by the Laplace Transform. When (1.1) is linear, i.e., f(u) = λu,
one can find the exact solution of (1.1)–(1.4) by the Laplace Transform. Let

Û ε(x, ξ) = L(U ε) =

∫ ∞

0

e−ξtU ε(x, t)dt, Re(ξ) > 0.

Here ξ = α+iβ, then L(∂tU ε) = ξÛ ε−U ε(x, 0) = ξÛ ε(x, ξ). With the homogeneous
initial condition, system (1.1)–(1.5) becomes

∂xÛ
ε =

1

ε(x)
A−1(S − ε(x)ξI)Û ε =

1

ε(x)
M(ε(x)ξ)Û ε,(4.1)

ûε(−L, ξ) = b̂L(ξ), ûε(L, ξ) = b̂R(ξ),(4.2)

where the matrix

(4.3) M(ξ) = A−1(S − ε(x)ξI)

has two eigenvalues,

μ±(ξ) =
λ±

√
λ2 + 4ξ(1 + ξ)

2
,(4.4)

and two corresponding eigenvectors,

(4.5)

(
1

μ∓(ξ)
1+ξ

)
=

(
1

g∓(ξ)

)
.

Thus the solution of (4.1)-(4.2) can be written as:

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û ε(x, ξ) = c1e
μ−(ξ)x

(
1

g+(ξ)

)
+ c2e

μ+(ξ)x

(
1

g−(ξ)

)
for x < 0, ε(x) = 1;

Û ε(x, ξ) = c3e
μ−(εξ) x

ε

(
1

g+(εξ)

)
+ c4e

μ+(εξ) x
ε

(
1

g−(εξ)

)
for x > 0, ε(x) = ε,



756 SHI JIN, JIAN-GUO LIU, AND LI WANG

where the coefficients c1, c2, c3, c4 are determined by the boundary conditions:

c1e
−μ−(ξ)L + c2e

−μ+(ξ)L = b̂L(ξ),(4.7)

c3e
μ−(ξε)L

ε + c4e
μ+(ξε)L

ε = b̂R(ξ).(4.8)

By continuity at the interface, one has

c1 + c2 = c3 + c4,(4.9)

c1g+(ξ) + c2g−(ξ) = c3g+(εξ) + c4g−(εξ).(4.10)

From (4.7)–(4.10), one sees that c1–c4 are uniquely determined. Denote

c3 = Ec1 + Fc2,(4.11)

c4 = Gc1 +Hc2,(4.12)

where

E =
g+(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
, F =

g−(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
,

G =
g+(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
, H =

g−(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
.

Plugging (4.11)-(4.12) into (4.7)-(4.8), gives

c1=
b̂R(ξ)e

−μ+(ξ)L − b̂L(ξ)(Feμ−(εξ)L
ε +Heμ+(εξ)L

ε )

(Eeμ−(εξ)L
ε +Geμ+(εξ)L

ε )e−μ+(ξ)L−(Feμ−(εξ)L
ε +Heμ+(εξ)L

ε )e−μ−(ξ)L
,(4.13)

c2=
b̂R(ξ)e

−μ−(ξ)L − b̂L(ξ)(Eeμ−(εξ)L
ε +Geμ+(εξ)L

ε )

(Feμ−(εξ)L
ε +Heμ+(εξ)L

ε )e−μ−(ξ)L−(Eeμ−(εξ)L
ε +Geμ+(εξ)L

ε )e−μ+(ξ)L
.(4.14)

4.2. Stiff well-posedness. We first summarize some properties of the eigenvalues
μ±(ξ) in (4.4) and g±(ξ) appears in the eigenvector in (4.5), which will be used
many times later. We then prove the stiff well-posedness stated in Theorem 3.
First, we give some bounds on μ±(ξ).

Lemma 6. Under the subcharacteristic condition |λ| < 1, one has

(1) |λ|(1 + 2α) ≤ Re
√
λ2 + 4ξ(1 + ξ) ≤ 1 + 2α, for Re (ξ) = α ≥ 0;(4.15)

(2) Re μ+(ξ) > 0, Re μ−(ξ) < 0;(4.16)

(3) when λ < 0, 2Re μ−(εξ) ≤ −2|λ|, 2Re μ+(εξ) ≥ −2ελα;(4.17)

when λ > 0, 2Re μ−(εξ) ≤ −2ελα, 2Re μ+(εξ) ≥ 2λ.(4.18)

For the proof of the lemma, please refer to [33].
Now we give bounds and asymptotic behavior of g±(εξ).

Lemma 7. Under the subcharacteristic condition |λ| < 1, one has
(1) For λ > 0, g−(εξ) = O(1)εξ and 0 < C1 ≤ |g+(εξ)| ≤ C2, here C1 and C2 are
two positive constants, and g+(εξ)− λ = O(1)εξ;
(2) For λ < 0, g+(εξ) = O(1)εξ and 0 < C3 ≤ |g−(εξ)| ≤ C4, here C3 and C4 are
two positive constants, and g−(εξ)− λ = O(1)εξ;
(3) g±(ξ) − g±(εξ), g+(ξ) − g−(εξ), g+(εξ) − g−(ξ) are uniformly bounded with
respect to both ε and ξ, and they are bounded away from zero for Reξ = α > 0.
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Proof. (1) When λ > 0, from definition (4.5), one sees that

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ+
√
λ2 + 4εξ(1 + εξ)

= O(1)εξ

and

g+(εξ) =
λ+

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In order to prove that g+(εξ) is uniformly bounded with respect to εξ, and the
denominator is nonzero, one just needs to check what happens when |εξ| goes to 0
or ∞. Let εξ = reiθ, one sees that when |εξ| → 0, i.e., when r → 0, |g+(εξ)| → λ;
when |εξ| → ∞, i.e., when |r| → ∞, one has

|g+(εξ)| → |
√
λ2 + 4reiθ(1 + reiθ)

2(1 + reiθ)
| → (cos2 2θ + sin4 θ)

1
4 ,

which is bounded and nonzero. Moreover,

g+(εξ)− λ =
2(1− λ2)εξ√

λ2 + 4εξ(1 + εξ) + λ(1 + 2εξ)
= O(1)εξ.

(2) When λ < 0, similarly one has

g+(εξ) =
λ+

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ−
√
λ2 + 4εξ(1 + εξ)

= O(1)εξ

and

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In the same way as in (1), one can prove that g−(εξ) is uniformly bounded in εξ.
(3) Note that

g+(ξ)−g−(εξ)=
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ) + (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
.

Let ξ = reθ, then when ε → 0 and |r| → 0, one has |g+(ξ)−g−(εξ)| → 2|λ|. When
ε → 0, |r| → ∞, and ε|r| → 0, one has

|g+(ξ)−g−(εξ)| → |λ+
√
λ2 + 4ξ(1 + ξ)

1 + ξ
| → 1

2
(cos2 2θ + sin4 θ)

1
4 ,

which is bounded and nonzero. When ε → 0, |r| → ∞, and ε|r| → ∞, one
can still prove that |g+(ξ)−g−(εξ)| is uniformly bounded away from 0, but the
detailed calculation will be omitted. Similarly, one can prove the same result for
g+(εξ)−g−(ξ). As for g+(ξ)− g+(εξ), notice that

g+(ξ)−g+(εξ) =
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ)− (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
.

Then following the same procedure as above, it is not hard to check that it is
uniformly bounded as ε → 0, and |ξ| → ∞. Moreover, when ε → 0, |ξ| → α,

|g+(ξ)− g+(εξ)| →
∣∣∣∣∣−λα+

√
λ2 + 4α(1 + α)− (1 + α)λ

1 + α

∣∣∣∣∣ ,
which is nonzero, one can arrive at the same conclusion for g−(ξ)− g−(εξ). �
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Remark 8. (1) We will fix Reξ = α > 0 from now on.
(2) From definition (4.6), one sees that, when λ > 0, by (4.18), there is a bound-

ary layer near x = L, and on the other hand, when λ < 0, by (4.17), there is
an interface layer near x = 0. This observation will play an important role in
subsequent proofs.

Now we prove the theorem about the stiff well-posedness.

Proof. We use solution (4.6) of the original system (1.1) given by the Laplace
Transform. Consider the integral:∫ L

−L

dx

∫ ∞

−∞
|Û ε(x, ξ)|2dβ =

∫ 0

−L

e2Reμ−(ξ)xdx

∫ ∞

−∞
|c1|2(1 + |g+(ξ)|2)dβ

+

∫ 0

−L

e2Reμ+(ξ)xdx

∫ ∞

−∞
|c2|2(1 + |g−(ξ)|2)dβ

+

∫ L

0

e2Reμ−(εξ) x
ε dx

∫ ∞

−∞
|c3|2(1 + |g+(εξ)|2)dβ

+

∫ L

0

dx

∫ ∞

−∞
|c4eμ+(εξ) x

ε |2(1 + |g−(εξ)|2)dβ.

By Lemma 4 one sees E, F , G, and H in (4.11)-(4.12) are uniformly bounded away
from 0. And from (4.13), (4.14), (4.11) and (4.12) one gets

c1, c2, c3, c4 = O(1)(b̂L(ξ) + b̂R(ξ)),

and moreover, from (4.8),

(4.19) eμ+(εξ)L
ε c4 = (b̂R(ξ)− c3e

μ−(εξ)L
ε ),

so eμ+(εξ)L
ε c4=O(1)eμ−(εξ)L

ε b̂L(ξ) +O(1)b̂R(ξ). Therefore,

(4.20)

∫ L

−L

dx

∫ ∞

−∞
|Û ε(x, ξ)|2dβ ≤ O(1)

∫ ∞

−∞
(|b̂L(ξ)|2 + |b̂R(ξ)|2)dβ.

Then by Parseval’s identity

(4.21)

∫ ∞

0

e−2αt|U ε(x, t)|2dt = 1

2π

∫ ∞

−∞
|Û ε(x, α+ iβ)|2dβ,

the stiff well-posedness, as stated in Theorem 3, now follows. �

4.3. Asymptotic convergence and error estimates. Next we turn to the ques-
tion of the asymptotic convergence and error estimate stated in Theorem 4

To prove the theorem, we still compare the analytical solution of the domain
decomposition problem (3.1)–(3.4) with the original problem given in section 4.1
with the help of the Laplace Transform.

Proof. Consider the case λ < 0 first. The solution of (3.1) is

ur(x, t) =

{
0, x− L ≤ λt,
bR(t+

1
λ(L− x)), x− L ≥ λt, 0 ≤ x ≤ L.

Using the Laplace Transform, it becomes

(4.22) ûr(x, ξ) = b̂R(ξ)e
ξ
λ (L−x), for x > 0.
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The solution of (3.2) is

(4.23) Û l(x, ξ) = d1e
μ−(ξ)x

(
1

g+(ξ)

)
+ d2e

μ+(ξ)x

(
1

g−(ξ)

)
,

where d1 and d2 are determined by

d1e
−μ−(ξ)L + d2e

−μ+(ξ)L = b̂L(ξ),(4.24)

d1g+(ξ) + d2g−(ξ) = λb̂R(ξ)e
ξ
λL.(4.25)

Now compare the first expression of (4.6) with (4.23), and the second with (4.22),
respectively. For x ∈ [0, L], using (4.6) and (4.22), one gets for the first compo-
nent u,∫ L

0

dx

∫ ∞

−∞
|ûr − ûε|2dβ =

∫ L

0

dx

∫ ∞

−∞
|c3eμ−(εξ) x

ε + c4e
μ+(εξ) x

ε − b̂Re
ξ
λ (L−x)|2dβ

≤
∫ L

0

dx

∫ ∞

−∞
|c3(eμ−(εξ) x

ε −eμ+(εξ) x−L
ε eμ−(εξ)L

ε )|2dβ

+

∫ L

0

dx

∫ ∞

−∞
|b̂R(ξ)|2|eμ+(εξ) x−L

ε − e
ξ
λ (L−x)|2dβ

= I1 + I2.

Here the first inequality was derived by substituting c4 in (4.19). For I1, it is easy
to see that

I1 ≤ O(1)

∫ ∞

−∞
|c3(ξ)|2dβ(

∫ L

0

e2Reμ−(εξ) x
ε dx+ e2Reμ−(εξ)L

ε

∫ L

0

e2Reμ+(εξ) x−L
ε dx).

Then by (4.17) one gets the estimate for I1 as

I1 ≤ O(1)ε

∫ ∞

−∞
|c3(ξ)|2dβ

= O(1)ε

∫ ∞

−∞
(|b̂L|2 + |b̂R|2)dβ ≤ O(1)ε(||bL||2L2 + ||bR||2L2).(4.26)

Note here in I1, the term that contains eμ−(εξ) x
ε is the result of the interface layer,

which drops the L2 convergence rate down to ε
1
2 .

For I2, notice that∫ L

0

|eμ+(εξ) x−L
ε − e

ξ
λ (L−x)|2dx

=

∫ L

0

|eμ+(εξ)−x
ε −e

ξ
λx|2dx ≤

∫ ∞

0

|eμ+(εξ)−x
ε − e

ξ
λx|2dx

= O(1)

∣∣∣∣μ+(εξ)

ε
+

ξ

λ

∣∣∣∣
2

,

(4.27)

then one has

I2 ≤
∫ ∞

−∞
O(1)|μ+(εξ)

ε
+

ξ

λ
|2|b̂R(ξ)|2dβ = O(1)ε2

∫ ∞

−∞
|ξ|4|b̂R(ξ)|2dβ

≤ O(1)ε2||bR||2H2 .(4.28)



760 SHI JIN, JIAN-GUO LIU, AND LI WANG

Here we use the fact

(4.29)
μ+(εξ)

ε
+

ξ

λ
=

2εξ2(1− λ2)

λ(λ2 + 2εξ − λ
√
λ2 + 4εξ(1 + εξ))

= O(1)εξ2,

and we also assume that bR(t) ∈ H2(R+) and bR(t) satisfy the compatibility con-
dition bR(0) = b′R(0) = 0. Adding I1 and I2 yields

(4.30)

∫ L

0

dx

∫ ∞

−∞
|ûl − ûε|2dβ ≤ O(1)ε(‖bL‖2L2 + ‖bR‖2L2) +O(1)ε2 ‖bR‖2H2 .

When x ∈ [−L, 0], the difference between (4.6) and (4.23) is the difference be-
tween the coefficients, i.e.,∫ 0

−L

dx

∫ ∞

−∞
|Û l − Û ε|2dβ = O(1)

∫ ∞

−∞
(|d1 − c1|2 + |d2 − c2|2)dβ.

Compare (4.7)–(4.10) with (4.24) and (4.25), then one finds

|c1 − d1| = O(1)εξ(b̂L + b̂R), |c2 − d2| = O(1)εξ(b̂L + b̂R),

after using Lemma 7 and some basic calculations. The details are omitted.
Therefore,∫ 0

−L

dx

∫ ∞

−∞
|Û l − Û ε|2dβ ≤ O(1)ε2

∫ ∞

−∞
(|ξb̂L(ξ)|2 + |ξb̂R(ξ)|2)dξ

≤ O(1)ε2(||bL||2H1 + ||bR||2H1).(4.31)

Here we used the assumption that bL(t) ∈ H1(R+), and bL(t) satisfies bL(0) = 0.
Now we are done with the λ < 0 case.

For λ > 0, the proof is similar. First the solution to (3.3) is

(4.32) Û l(x, ξ) = k1e
μ−(ξ)x

(
1

g+(ξ)

)
+ k2e

μ+(ξ)x

(
1

g−(ξ)

)
, −L ≤ x ≤ 0,

where k1 and k2 are determined by

k1e
−μ−(ξ)L + k2e

−μ+(ξ)L = b̂L(ξ),(4.33)

k1(λ− g+(ξ)) + k2(λ− g−(ξ)) = 0.(4.34)

When 0 ≤ x ≤ L, the solution to (3.4) is

ur(x, t) =

{
0, λt ≤ x ≤ L,
ul(0, t− x

λ ), 0 ≤ x ≤ λt, 0 ≤ x ≤ L.

So after using the Laplace Transform, one gets

(4.35) ûr(x, ξ) = e−ξ x
λ ûl(0−, ξ) = e−ξ x

λ (k1 + k2).

Now compare (4.32) and (4.35) with (4.6). The difference between (4.32) and
the first expression of (4.6) is again the difference between the coefficients. Thus,∫ 0

−L

dx

∫ ∞

−∞
|Û l − Û ε|2dβ = O(1)

∫ ∞

−∞
(|k1 − c1|2 + |k2 − c2|2)dβ.

Comparing (4.7)–(4.10) with (4.33) and (4.34), one finds that

|c1 − k1| = O(1)εξb̂L, |c2 − k2| = O(1)εξb̂L.
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Therefore, ∫ 0

−L

dx

∫ ∞

−∞
|Û l − Û ε|2dβ ≤ O(1)ε2

∫ ∞

−∞
|ξb̂L(ξ)|2dξ

≤ O(1)ε2||bL||2H1 .(4.36)

The difference between (4.35) and the second expression of (4.6) is estimated as
follows: ∫ L

0

dx

∫ ∞

−∞
|ûr − ûε|2dβ

=

∫ L

0

dx

∫ ∞

−∞
|c3eμ−(εξ) x

ε + c4e
μ+(εξ) x

ε − (k1 + k2)e
−ξ x

λ |2dβ

=

∫ L

0

dx

∫ ∞

−∞
|c3(eμ−(εξ) x

ε −eμ+(εξ) x−L
ε eμ−(εξ)L

ε)

+ b̂Re
μ+(εξ) x−L

ε −(k1 + k2)e
−ξ x

λ|2dβ
≤ J1 + J2 + J3.

To get the second equality, we again use (4.19). First,

J1 =

∫ ∞

−∞
|b̂R(ξ)|2dβ

∫ L

0

e2Reμ+(εξ) x−L
ε dx

≤ O(1)ε||bR(t)||2L2 ,(4.37)

where the inequalities (4.16), (4.17) and (4.18) were used. For J2, one has

J2 =

∫ L

0

dx

∫ ∞

−∞

∣∣∣[c3 − (k1 + k2)]e
μ−(εξ) x

ε − c3e
μ+(εξ) x−L

ε eμ−(εξ)L
ε

∣∣∣2

≤
∫ L

0

dx

∫ ∞

−∞
|c3−k1−k2|2e2Reμ−(εξ) x

ε dβ +O(1)ε

∫ ∞

−∞
|c3|2dβ.

Since c3+c4 = c1+c2 = k1+k2+O(1)εξb̂L(ξ), c4 = e−μ+(εξ)L
ε (b̂R(ξ)−c3e

μ−(εξ)L
ε ),

one has |c3−k1−k2|2 = O(1)ε2|ξb̂L(ξ)|2. Therefore,

(4.38) J2 ≤ O(1)ε2||bL||2H1 +O(1)ε||bL||2L2 .

Note here the convergence rate is ε, which is caused by the boundary layer effect

of eμ+(εξ) x−L
ε in J1 and J2. The remaining part, J3, is

J3 =

∫ L

0

dx

∫ ∞

−∞
|(k1+k2)e

μ−(εξ) x
ε − (k1+k2)e

−ξ x
λ |2dβ

≤ O(1)

∫ ∞

0

|eμ−(εξ) x
ε − e−ξ x

λ |2dx
∫ ∞

−∞
|k1+k2|2dβ

≤ O(1)ε2||bL||2H2 .(4.39)

The calculation here is similar to (4.28). In total, one gets

(4.40)

∫ L

0

dx

∫ ∞

−∞
|ûr − ûε|2dβ ≤ O(1)ε(‖bL‖2L2 + ‖bR‖2L2) +O(1)ε2 ‖bL‖2H2 .

To this end, we have proved Theorem 4 with zero initial data. �
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Remark 9. Here we jump to the estimation of the convergence rate, and omit
the steps to prove the uniform convergence stated in Theorem 4, which is easily
obtained by a dominated convergence theorem.

5. Error estimate for the domain decomposition method for the

linear case: the inhomogeneous initial data

The case with inhomogeneous initial data is much more complicated. For clarity,
we consider instead the Cauchy problem here, that is, x ∈ (−∞,∞) instead of
[−L,L]. A new idea here is to construct some related initial value problem and
make use of the existing results about the Cauchy problem [33] to overcome the
difficulties arisen in the Laplace Transform. With these two results, the problem
with both boundary and initial data is straightforward, and the details will be
omitted.

5.1. Solution by the Laplace Transform. Again, we solve system (1.1) with
L = ∞ by the Laplace Transform. Then (1.1)–(1.3) becomes

(5.1) ∂xÛ
ε =

1

ε(x)
M(ε(x)ξ)Û ε +A−1U0(x),

where M is defined in (4.3). Then the general solution is

(5.2)

⎧⎪⎨
⎪⎩
Û ε(x, ξ) = eM(ξ)x(ÛL +

∫ x

0
e−M(ξ)yA−1U0(y)dy) for x < 0, ε(x) = 1,

Û ε(x, ξ) = eM(εξ) x
ε (ÛR +

∫ x

0
e−M(εξ) y

ε A−1U0(y)dy) for x > 0, ε(x) = ε,

where one can denote eM(ξ)x by

(5.3) eM(ξ)x = eμ+(ξ)xΦ+(ξ) + eμ−(ξ)xΦ−(ξ),

and Φ± are defined by

Φ+(ξ) =
1

g+(ξ)− g−(ξ)

(
1

g−(ξ)

)
(g+(ξ),−1),(5.4)

Φ−(ξ) =
1

g+(ξ)− g−(ξ)

(
1

g+(ξ)

)
(−g−(ξ), 1).(5.5)

Then (5.2) can be rewritten as

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û ε(x, ξ) = eμ+(ξ)xΦ+(ξ)(ÛL(ξ) +
∫ x

0
e−μ+(ξ)yA−1U0(y)dy)

+eμ−(ξ)xΦ−(ξ)(ÛL(ξ) +
∫ x

0
e−μ−(ξ)yA−1U0(y)dy)

for x < 0, ε(x) = 1;

Û ε(x, ξ) = eμ+(εξ) x
ε Φ+(εξ)(ÛR(ξ) +

∫ x

0
e−μ+(εξ) y

ε A−1U0(y)dy)

+eμ−(εξ) x
ε Φ−(εξ)(ÛR(ξ) +

∫ x

0
e−μ−(εξ) y

ε A−1U0(y)dy)

for x > 0, ε(x) = ε.

Here ÛL(ξ) =

(
ûL(ξ)
v̂L(ξ)

)
and ÛR(ξ) =

(
ûR(ξ)
v̂R(ξ)

)
are two vectors independent of

x, and defined by the boundary condition and interface conditions as follows.
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First, when x → ∞, Û ε(x, ξ) → 0, one gets

(g+(εξ), −1)

(
ûR(ξ)
v̂R(ξ)

)
+

∫ ∞

0

e−μ+(εξ) y
ε (g+(εξ), −1)

(
v0
u0

)
(y)dy = 0,

that is,

(5.7) g+(εξ)ûR(ξ)− v̂R(ξ) +

∫ ∞

0

e−μ+(εξ) y
ε (v0(y)g+(εξ)− u0(y))dy = 0.

When x → −∞, Û ε(x, ξ) → 0; thus

(−g−(ξ), 1)

(
ûL(ξ)
v̂L(ξ)

)
+

∫ −∞

0

e−μ−(ξ)y(−g−(ξ), 1)

(
v0
u0

)
(y)dy = 0,

that is,

(5.8) −g−(ξ)ûL(ξ) + v̂L(ξ) +

∫ −∞

0

e−μ−(ξ)y(−v0(y)g−(ξ) + u0(y))dy = 0.

Then by continuity, Φ+(ξ)ÛL+Φ−(ξ)ÛL = Φ+(εξ)ÛR+Φ−(εξ)ÛR, it is easy to get

(5.9) ûL = ûR, v̂L = v̂R.

Plugging (5.7)–(5.9) into (5.6), one ends up with a simplified version of (5.6):

Û ε(x, ξ) =
1

g+(εξ)− g−(εξ)

{(
1

g−(εξ)

)∫ ∞

x

eμ+(εξ) x−y
ε (u0(y)− v0(y)g+(εξ))dy

+

(
1

g+(εξ)

)∫ x

0

eμ−(εξ) x−y
ε (u0(y)− v0(y)g−(εξ))dy

+

(
1

g+(εξ)

)
eμ−(εξ) x

ε (v̂R(ξ)− ûR(ξ)g−(εξ))

}
, for x > 0,(5.10)

and

Û ε(x, ξ) =
1

g+(ξ)− g−(ξ)

{(
1

g+(ξ)

)∫ x

−∞
eμ−(ξ)(x−y)(u0(y)− v0(y)g−(ξ))dy

+

(
1

g−(ξ)

)∫ 0

x

eμ+(ξ)(x−y)(u0(y)− v0(y)g+(ξ))dy

+

(
1

g−(ξ)

)
eμ+(ξ)x(−v̂L(ξ) + ûL(ξ)g+(ξ))

}
, for x < 0.(5.11)

5.2. The stiff well-posedness. Due to the nonzero initial data, it is hard to
estimate the L2 norm of the solution from the expression (5.10)–(5.11). So we take
a detour to look at the initial value problem with initial data supported in the
right (or left) half-plane. For this initial value problem, one can solve it by the
Fourier Transform, thus avoiding the difficulties caused by the Laplace Transform.
Without loss of generality, we consider x > 0 here. The x < 0 case is the same.
First we have the following lemma.

Lemma 10. Assume U ε
IV P =

(
uε
IV P

vεIV P

)
is the solution to⎧⎪⎪⎨

⎪⎪⎩
uε
t + vεx = 0,(5.12a)

vεt + uε
x = −1

ε
(vε − λuε),(5.12b)

uε(x, 0) = u0(x), v
ε(x, 0) = v0(x),(5.12c)
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here u0 and v0 are supported in [0,∞). Then the solution, after the Laplace Trans-
form, is

Û ε
IV P (x, ξ) =

1

g+(εξ)−g−(εξ)

{(
1

g−(εξ)

)∫ ∞

x

eμ+(εξ) x−y
ε (u0(y)−v0(y)g+(εξ)) dy

+

(
1

g+(εξ)

)∫ x

0

eμ−(εξ) x−y
ε (u0(y)−v0(y)g−(εξ)) dy

}
,(5.13)

and the following inequality holds:

(5.14)

∫ ∞

−∞

∫ ∞

−∞
|Û ε

IV P (x, ξ)|2dxdβ ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

Proof. First solution (5.13) is obtained in the same way as (5.10), so we will omit
the details. Then if the Fourier Transform w.r.t. x is used instead of the Laplace
Transform w.r.t. t in this case, one gets [33]

(5.15)

∫ ∞

−∞
|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞

0

|U0(x)|2dx, ∀t > 0.

Integrating with respect to t gives∫ ∞

0

dt

∫ ∞

−∞
e−2αt|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

Then by Parseval’s identity (4.21), one can prove the inequality. For more details,
see [33]. �

One also needs to estimate
∫∞
0
e−μ+(εξ) y

ε (u0(y)−v0(y)g+(εξ))dy and
∫ −∞
0

e−μ−(ξ)y

(u0(y)−v0(y)g−(ξ))dy which appear in (5.7) and (5.8), respectively. The estimates
of these two integrals are similar by using the energy estimate. So we only estimate
the first integral here.

Lemma 11. Let

(5.16) ŵIBVP (εξ) =

∫ ∞

0

e−μ+(εξ) y
ε (u0(y)− v0(y)g+(εξ))dy,

then

(5.17)

∫ ∞

−∞
|ŵIBVP (εξ)|2dβ ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

Proof. The idea of the proof follows that in [33]. We construct the following initial
boundary value problem on the right half-plane x > 0. Later one can see that
ŵIBVP (εξ) can be expressed by the Laplace Transform of the boundary value of
the following problem; thus can be bounded by the initial data. This is the key
motivation of constructing the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uε
t + vεx = 0,(5.18a)

vεt + uε
x = −1

ε
(vε − λuε),(5.18b)

uε(x, 0) = u0(x), v
ε(x, 0) = v0(x),(5.18c)

Buu
ε(0, t) +Bvv

ε(0, t) = 0.(5.18d)

Here Bu and Bv are two constants that satisfy the so-called Stiff Kreiss Condition

(SKC) [33]: Bu

Bv
/∈ [−1, λ+|λ|

2 ]. The Laplace Transform of the solution to this system
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can be written as

Û ε
IBV P (x, ξ) = eμ+(εξ) x

ε Φ+(εξ)

[
Û ε
IBV P (0, ξ) +

∫ x

0

e−μ+(εξ) y
ε A−1U0(y)dy

]

+eμ−(εξ) x
ε Φ−(εξ)

[
Û ε
IBV P (0, ξ)+

∫ x

0

e−μ−(εξ) y
ε A−1U0(y)dy

]
,(5.19)

where Û ε
IBVP (0, ξ) =

(
ûε
IBVP

v̂εIBVP

)
satisfies

⎧⎨
⎩

Buû
ε
IBVP (0, ξ) +Bv v̂

ε
IBVP (0, ξ) = 0,(5.20a)

Φ+(εξ)(Û
ε
IBVP (0, ξ) +

∫ ∞

0

e−μ+(εξ) y
ε A−1U0(y)dy) = 0.(5.20b)

From definition (5.16), the second condition (5.20b) can be written as

g+(εξ)û
ε
IBVP (0, ξ)− v̂εIBVP (0, ξ) = ŵIBVP (εξ);

thus

(5.21) Û ε
IBVP (0, ξ) =

ŵIBVP (εξ)

Bu +Bvg+(εξ)

(
Bv

−Bu

)
.

Now the energy estimate can be used to get the upper bound of
∫ T

0
|UIBVP (0, t)|2dt.

Let H =

(
1 −λ
−λ 1

)
, multiply (5.18) by e−2αtUTH, and integrate over [0, T ]×

[0,∞), then one has (here we omit the subscription and superscription for a while)

1

2

∫ ∞

0

(U,HU)(x, T )e−2αTdx+ α

∫ T

0

∫ ∞

0

(U,HU)(x, t)e−2αtdxdt

+
1

ε

∫ T

0

∫ ∞

0

(v − λu)2e−2αtdxdt+
1

2

∫ T

0

(λu2 − 2uv + λv2)(0, t)e−2αtdt

=
1

2

∫ ∞

0

(U0(x), HU0(x))dx.

One needs to choose the boundary condition such that λu(0, t)2 − 2u(0, t)v(0, t) +
λv(0, t)2 ≥ c|U(0, t)|2, where c is a bounded constant. Later we will show that this
kind of boundary condition exits and it is a subclass of SKC. Then one can get

(5.22)

∫ T

0

|U ε
IBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

Let T → ∞, then

(5.23)

∫ ∞

0

|U ε
IBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

By Parseval’s identity and (5.21)–(5.23), one obtains (5.17). As for the boundary
condition, there are plenty of choices. Any Bu and Bv that satisfy

Bu

Bv
> − 1

λ
(1−

√
1− λ2) or

Bu

Bv
< − 1

λ
(1 +

√
1− λ2), for λ > 0,

− 1

λ
(1−

√
1− λ2) <

Bu

Bv
< − 1

λ
(1 +

√
1− λ2), for λ < 0,

Bu

Bv
> 0, for λ = 0,
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will work, and it is not hard to see it is a subclass of the SKC. �

Similarly, we have the following corollary.

Corollary 12. Let

(5.24) ŵIBVP2(ξ) =

∫ −∞

0

e−μ−(ξ)y(u0(y)− v0(y)g−(ξ))dy,

then

(5.25)

∫ ∞

−∞
|ŵIBVP2(ξ)|2dβ ≤ O(1)

∫ 0

−∞
|U0(x)|2dx.

Now we go back to the proof of Theorem 3 of the stiff well-posedness with nonzero
initial data and when the problem is set in (−∞,∞) instead of [−L,L].

Proof. When x > 0, from the solution (5.10) one gets∫ ∞

0

dx

∫ ∞

−∞
|Û ε(x, ξ)|2dβ ≤

∫ ∞

0

dx

∫ ∞

−∞
|Û ε

IV P |2dβ

+

∫ ∞

0

dx

∫ ∞

−∞

∣∣∣∣
(

1
g+(εξ)

)
eμ−(εξ) x

ε (vR − g−(εξ)uR)

∣∣∣∣
2

1

|g+(εξ)− g−(εξ)|2
dβ

= I1 + I2.(5.26)

By (5.14) I1 can be estimated as

(5.27) I1 ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

As for I2, since
1

|g+(εξ)−g−(εξ)| is uniformly bounded, one has

I2 ≤ O(1)

∫ ∞

0

dx

∫ ∞

−∞
e2Reμ−(εξ) x

ε

[
|vR|2 +O(1)|uR|2

]
dβ.

Then by (5.7), (5.8), (5.16), and (5.24), one obtains

g+(εξ)uR − vR = ŵIBVP ,

−g−(ξ)uR − vR = ŵIBVP2.

Thus, uR=O(1)ŵIBVP (εξ)+O(1)ŵIBVP2(ξ), vR=O(1)ŵIBVP (εξ)+O(1)ŵIBVP2(ξ).
Finally, by Lemma 11 and Corollary 12,

I2 ≤ −O(1)
ε

2Reμ−(εξ)

∫ ∞

−∞
|U0(x)|2dx.(5.28)

Then by (4.17) and (4.18), one sees that
∫∞
0
dx
∫∞
−∞ |Û ε(x, ξ)|2dβ is uniformly bounded.

In the same way, one can prove

(5.29)

∫ 0

−∞
dx

∫ ∞

−∞
|Û ε(x, ξ)|2dβ ≤ O(1)

∫ ∞

−∞
|U0(x)|2dx.

Till now we have proved the stiff well-posedness of the original system stated in
Theorem 3. �
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5.3. The asymptotic convergence and error estimates. Next we will prove
the asymptotic convergence and error estimates. The first step also uses the Laplace
Transform to represent the exact solution. We will consider the case λ < 0 first.
Consider the domain decomposition system (3.1)–(3.2) with L = ∞. The case when
L is finite is the same but with two extra terms coming from the boundary which
can be analyzed in the same way as follows.

First, in comparing the solution to the domain decomposition system (3.1)–
(3.2) with the original system (1.1), in order to avoid the difficulties caused by the
Laplace Transform, we need the help of the following lemma, which compares the
initial value problem (5.12) with its reduced system:{

u0
t + λu0

x = 0,(5.30a)

u0(x, 0) = u0(x).(5.30b)

Here we assume u0(x) is supported on [0,∞).

Lemma 13. Let U ε
IV P and U0

IV P be the solution of relaxation problem (5.12) and
equilibrium problem (5.30), respectively, then

(5.31)

∫ ∞

0

dx

∫ ∞

−∞
|Û ε

IV P − Û0
IV P |2dβ ≤ O(1)ε2||U0||2H2 +O(1)ε||v0 − λu0||2L2[0,∞).

Proof. The proof is based on the Fourier Transform, and one can refer to [33] for
the details. �

Now we are ready to prove Theorem 4 about the asymptotic convergence of the
domain decomposition system.

Proof. When x > 0, the solution is ur(x, t) = u0(x − λt). After the Laplace
Transform, one gets

ûr(x, ξ) = − 1

λ

∫ ∞

x

u0(y)e
− ξ

λ (x−y)dy,(5.32)

v̂r = λûr.(5.33)

For x < 0, the solution to (3.2) can be represented as

Û l(x, ξ) = eμ+(ξ)xΦ+(ξ)(D̂(ξ) +

∫ x

0

e−μ+(ξ)yA−1U0(y)dy)

+eμ−(ξ)xΦ−(ξ)(D̂(ξ) +

∫ x

0

e−μ−(ξ)yA−1U0(y)dy).(5.34)

Here D̂(ξ) =

(
D̂u(ξ)

D̂v(ξ)

)
is determined by

(−g−(ξ) 1)
(

D̂u(ξ)

D̂v(ξ)

)
+

∫ −∞

0

e−μ−(ξ)y(−g−(ξ) 1)
(

v0
u0

)
(y)dy = 0,(5.35)

1

g+(ξ)−g−(ξ)
[
(D̂u(ξ)g+(ξ)−D̂v(ξ))g−(ξ)+(D̂v(ξ)−D̂u(ξ)g−(ξ))g+(ξ)

]

= −
∫ ∞

0

u0(y)e
ξ
λ ydy,

where the second equation is simplified as

(5.36) D̂v(ξ) = −
∫ ∞

0

u0(y)e
ξ
λ ydy.
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Now one can compare the difference of (5.32) and (5.10) on the right domain.
Since the solution to (5.30) is (5.32), and part of (5.10) is (5.13), one has∫ ∞

0

dx

∫ ∞

−∞
|ûε − ûr|2dβ ≤

∫ ∞

0

dx

∫ ∞

−∞
|ûε

IV P − û0
IV P |2dβ

+

∫ ∞

0

dx

∫ ∞

−∞

∣∣∣∣ 1

g+(εξ)− g−(εξ)

∣∣∣∣
2

(1 + |g+(εξ)|2)|eμ−(εξ) x
ε (v̂R(ξ)

− g−(εξ)ûR(ξ))|2dβ = I1 + I2,

I1 ≤ O(1)ε2||U0||2H2 +O(1)ε||v0 − λu0||2L2[0,∞),(5.37)

I2 ≤ O(1)

∫ ∞

0

e2Reμ−(εξ) x
ε dx

∫ ∞

−∞
|v̂R(ξ)− g−(εξ)ûR(ξ)|2dβ ≤ O(1)ε||U0||2L2 .(5.38)

The calculation of the last inequality is the same as (5.28). Notice here that the
term that contains e2Reμ−(εξ) x

ε is due to the interface layer, since the initial data
can induce an interface layer at the interface in this case.

Now compare the solution on the left domain, (5.34) with (5.6). The difference
comes from the difference in coefficients, thus∫ 0

−∞
dx

∫ ∞

−∞
|Û l − Û ε|2dβ

≤ O(1)

∫ 0

−∞
dx

∫ ∞

−∞
|eμ+(ξ)x|2(1 + |g−(ξ)|2)[g+(ξ)(D̂u − ûL)− (D̂v − v̂L)]

2dβ

+

∫ 0

−∞
dx

∫ ∞

−∞
|eμ−(ξ)x|2(1 + |g+(ξ)|2)[−g−(ξ)(D̂u − ûL) + (D̂v − v̂L)]

2dβ.

By boundary conditions (5.8) and (5.35), the second term vanishes, so∫ 0

−∞
dx

∫ ∞

−∞
|Û l − Û ε|2dβ ≤ O(1)

∫ 0

−∞
dx

∫ ∞

−∞
e2Reμ+(ξ)x(|D̂u − ûL|2 + |D̂v − v̂L|2)dβ.

Next, compare the parameters derived in the original system (5.7)–(5.9) with those
of the domain decomposition method (5.35)-(5.36), one gets∫ 0

−∞
dx

∫ ∞

−∞
|Û l−Û ε|2dβ = O(1)

∫ ∞

−∞
(|D̂u − ûL|2 + |D̂v − v̂L|2)dβ

= O(1)

∫ ∞

−∞
|D̂v − v̂L|2dβ

= O(1)

∫ ∞

−∞

∣∣∣∣∣∣−
∫ ∞

0

e
ξ
λyu0(y)dy −

−ŵIBVP + g+(εξ)
g−(ξ) ŵIBVP2

1− g+(εξ)
g−(ξ)

∣∣∣∣∣∣
2

dβ

≤ O(1)

∫ ∞

−∞

∣∣∣∣
∫ ∞

0

(u0(y)−v0(y)g+(εξ))e
−μ+(εξ) y

ε dy−
∫ ∞

0

u0(y)e
ξ
λ ydy

∣∣∣∣
2

dβ

+O(1)

∫ ∞

−∞

∣∣∣∣g+(εξ)
∫ −∞

0

(u0(y)− v0(y)g−(ξ))e
−μ−(ξ)ydy

∣∣∣∣
2

dβ

+O(1)

∫ ∞

−∞

∣∣∣∣g+(εξ)
∫ ∞

0

u0(y)e
ξ
λydy

∣∣∣∣
2

dβ

= J1 + J2 + J3.
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We begin with the simplest part, J3. First, note that g(εξ) is uniformly bounded

(see Lemma 7), and
∫∞
0

u0(y)e
ξ
λ ydy can be considered as the Laplace Transform of

u0(y), so by Parseval’s identity, the integral
∫∞
−∞

∣∣∣∫∞
0

u0(y)e
ξ
λ ydy

∣∣∣2 dβ is uniformly

bounded, then by dominated convergence theorem, J3 → 0 as ε → 0. Moreover,
since λ < 0, g+(εξ) = O(1)εξ, thus

J3 ≤ O(1)ε2
∫ ∞

−∞

∣∣∣∣ξ
∫ ∞

0

u0(y)e
ξ
λ ydy

∣∣∣∣
2

dβ.

If the compatibility condition on u0(y) is assumed such that u0(0) = 0, then∫∞
0
ξu0(y)e

ξ
λ ydy can be considered as the Laplace Transform to u′

0(y), so

(5.39) J3 ≤ O(1)ε2
∫ ∞

−∞
|L(u′

0(y))(ξ)|2dβ ≤ O(1)ε2
∫ ∞

0

|u′
0(y)|2dy.

Next we look at J2. Similar to J3, one will first get

J2 ≤ O(1)ε2
∫ ∞

−∞

∣∣∣∣ξ
∫ −∞

0

(u0(y)− v0(y)g−(ξ))e
−μ−(ξ)ydy

∣∣∣∣
2

dβ.

By recalling (5.24) and integration by parts, one gets

(5.40) ŵIBVP2 = − 1

μ−(ξ)

∫ −∞

0

e−μ−(ξ)y(−u′
0 + g−(ξ)v

′
0)dy,

where the compatibility conditions u0(0) = 0 and v0(0) = 0 are used. Since
−μ−(ξ) = μ+(ξ)− 2λ, one has

(μ+(ξ)− 2λ)ŵIBVP2 =

∫ −∞

0

e−μ−(ξ)y(−u′
0 + g−(ξ)v

′
0)dy.

Notice when λ < 0, μ+(ξ) = − ξ
g−(ξ) , thus

−ξŵIBVP2 = 2λg−(ξ)ŵIBVP2 + g−(ξ)

∫ −∞

0

(−u′
0(y) + g−(ξ)v

′
0(y))dy.

Therefore, the following estimate holds:∫ ∞

−∞
|ξŵIBVP2|2dβ ≤ O(1)

∫ ∞

−∞

∣∣∣∣
∫ −∞

0

e−μ−(ξ)y(u′
0−g−(ξ)v

′
0)(y)dy

∣∣∣∣
2

dβ

+O(1)

∫ ∞

−∞
|ŵIBVP2(ξ)|2dβ.

(5.41)

The integral with respect to y on the right-hand side is similar to ŵIBV P2 in (5.24),
except to change u0 and v0 to u′

0 and v′0, respectively, so one has

(5.42)

∫ ∞

−∞
|ξŵIBVP2|2dβ ≤ O(1)

∫ ∞

0

|U ′
0(x)|2dx+O(1)

∫ ∞

0

|U0(x)|2dx.

Therefore,

(5.43) J2 ≤ O(1)ε2
∫ ∞

0

|U ′
0(x)|2dx.



770 SHI JIN, JIAN-GUO LIU, AND LI WANG

Now we turn to J1. First using g+(εξ) ∼ O(1)εξ gives

J1 ≤ O(1)

∫ ∞

−∞
ε2

∣∣∣∣ξ
∫ ∞

0

v0e
−μ+(εξ) y

ε dy

∣∣∣∣
2

dβ

+O(1)

∫ ∞

−∞

∣∣∣∣
∫ ∞

0

u0(y)(e
−μ+(εξ) y

ε − e
ξ
λ y)dy

∣∣∣∣
2

dβ.

(5.44)

Notice in (5.16) if one exchanges u0 and v0 and lets u0 ≡ 0, then use (5.16) and
(5.41), and similar to (5.42), one will get

(5.45)

∫ ∞

−∞

∣∣∣∣ξ
∫ ∞

0

v0e
−μ+(εξ) y

ε dy

∣∣∣∣
2

dβ ≤ O(1)

∫ ∞

0

|v′0(x)|2dx.

On the other hand, for the term
∫∞
−∞

∣∣∣∫∞
0
u0(y)(e

−μ+(εξ) y
ε − e

ξ
λ y)dy

∣∣∣2 dβ, integration
by parts w.r.t. y three times, and assume the compatibility conditions u0(0) =

u′
0(0) = u

′′

0 (0), it becomes∫ ∞

−∞

∣∣∣∣
∫ ∞

0

u0(y)(e
−μ+(εξ) y

ε − e
ξ
λ y)dy

∣∣∣∣
2

dβ

=

∫ ∞

−∞

∣∣∣∣∣
(
e

ξ
λy

(
λ

ξ

)3

− e−
μ+(εξ)

ε

(
− ε

μ+(εξ)

)3
)
u

′′′

0 (y)dy

∣∣∣∣∣
2

dβ

=

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

0

(
e

ξ
λ y

(
λ

ξ

)3

− e
ξ
λy

(
−ε

μ+(εξ)

)3

+ e
ξ
λ y

(
−ε

μ+(εξ)

)3

−e−
μ+(εξ)

ε

(
−ε

μ+(εξ)

)3
)
u

′′′

0 (y)dy

∣∣∣∣∣
2

dβ

≤
∫ ∞

−∞

∣∣∣∣∣
((

λ

ξ

)3

−
(

−ε

μ+(εξ)

)3
)∫ ∞

0

e
ξ
λ yu

′′′

0 (y)dy

∣∣∣∣∣
2

dβ

+

∫ ∞

−∞

∣∣∣∣∣
(

ε

μ+(εξ)

)3∫ ∞

0

(e
ξ
λ y− e−μ+(εξ) y

ε )u
′′′

0 (y)dy

∣∣∣∣∣
2

dβ

= L1 + L2.

For L1, notice that

λ

ξ
− ε

μ+(εξ)
=

2λεξ + λ+
√
λ2 + 4εξ(1 + εξ)

2ξ(1 + εξ)

=
λε

1 + εξ
+

ε

λ−
√

λ2 + 4εξ(1 + εξ)
= O(1)ε

by Lemma 6, and

(5.46)
ε

μ+(εξ)
= − 1

ξg−(εξ)
= O(1)

1

ξ
.

By Lemma 7, one can estimate L1 as

L1 ≤ O(1)ε2
∫ ∞

−∞

∣∣∣∣1ξ
∫ ∞

0

u
′′′

0 (y)e
ξ
λ dy

∣∣∣∣
2

dβ ≤ O(1)ε2 ‖u′′′

0 ‖L2 .(5.47)
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In the term L2, using the Cauchy-Schwarz inequality for the integral w.r.t. y, one
obtains

L2 ≤ O(1)

∫ ∞

−∞

∣∣∣∣1ξ
∣∣∣∣
6 ∫ ∞

0

∣∣∣e−μ+(εξ) y
ε − e

ξ
λ y

∣∣∣2 dy ∫ ∞

0

|u′′′

0 (y)|2dydβ

≤ O(1) ‖u′′′

0 ‖L2

∫ ∞

−∞
ε2

∣∣∣∣1ξ
∣∣∣∣
2

dβ ‖u′′′

0 ‖L2= O(1)ε2,(5.48)

where the second inequality uses the facts in (4.27) and (4.29). Therefore, one
arrives at the estimation for J3:

(5.49) J3 ≤ O(1)ε2||u0(y)||2H3 + O(1)ε2||v0(y)||2H1 .

In summary, ∫ ∞

−∞
dx

∫ ∞

−∞
|Û ε − Û |2dβ ≤ O(1)ε||v0 − λu0||2L2

+O(1)ε||U0||2L2[0,∞) +O(1)ε2||U0||2H3 .

(5.50)

The case with λ > 0 is rather similar, but there is no interface layer at x = 0, so
one finds the term that contains ||U0||2L2 will have a convergence rate O(1)ε2 instead
of O(1)ε. �

6. Domain-decomposition based numerical schemes

and numerical experiments

We use Δt and Δx to represent the time step and mesh size, respectively, un
j to

denote u at time nΔt and position jΔx. Let M = T/Δt, and N = L/Δx. We use
the upwind scheme to the Riemann invariants u ± v to solve the left part (3.2) or
(3.3), and use the Godunov scheme to solve the equilibrium equation in (3.1) or
(3.4).

6.1. The numerical scheme.

Case I: f ′(un
0 ) < 0, ∀n ≥ 0.

• Step 1. Discretization of (3.1) on the right domain.
For j = 0, 1, ..., N , n = 0, 1, ...,M , solve

un+1
j − un

j

Δt
+

Fn
j+ 1

2

− Fn
j− 1

2

Δx
= 0,(6.1)

vn+1
j = f(un+1

j ),(6.2)

u0
j = u0(xj), v0j = v0(xj),(6.3)

un
N = bR(t

n),(6.4)

where Fn
j+ 1

2

= f(R(0, un
j , u

n
j+1)), Fn

j− 1
2

= f(R(0, un
j−1, u

n
j )), and R(0, ζ, η),

the Riemann solver, is defined as

R(0, ζ, η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ, if f ′(ζ), f ′(η) ≤ 0,
η, if f ′(ζ), f ′(η) ≥ 0,
ζ, if f ′(ζ) > 0 > f ′(η), s > 0,
η, if f ′(ζ) > 0 > f ′(η), s < 0,
f ′−1(0), otherwise,

where s = f(ζ)−f(η)
ζ−η is the shock speed.
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• Step 2. Discretization of (3.2) on the left domain.
For j = −N, ...,−1, 0, n = 0, 1, ...,M , let the Riemann invariants Pn

j =
un
j + vnj , Q

n
j = un

j − vnj , and solve

Pn+1
j − Pn

j

Δt
+

Pn
j − Pn

j−1

Δx
= −(vnj − f(un

j )),(6.5)

Qn+1
j −Qn

j

Δt
−

Qn
j+1 −Qn

j

Δx
= (vnj − f(un

j )),(6.6)

P 0
j = u0(xj) + v0(xj), Q0

j = u0(xj)− v0(xj),(6.7)

un+1
−N = bL(t

n+1), vn+1
0 obtained from the right by (6.2).(6.8)

Case II: f ′(un
o ) > 0, ∀n ≥ 0.

• Step 1. Discretization of (3.3) on the left domain.
For j = −N, ...,−1, 0, n = 0, 1, ...,M , let the Riemann invariants Pn

j =
un
j + vnj , Qn

j = un
j − vnj , then solve

Pn+1
j − Pn

j

Δt
+

Pn
j − Pn

j−1

Δx
= −(vnj − f(un

j )),(6.9)

Qn+1
j −Qn

j

Δt
−

Qn
j+1 −Qn

j

Δx
= (vnj − f(un

j )),(6.10)

P 0
j = u0(xj) + v0(xj), Q0

j = u0(xj)− v0(xj),(6.11)

un+1
−N = bL(t

n+1),(6.12)

Pn+1
0 = un+1

0 + f(un+1
0 ).(6.13)

• Step 2. Discretization of (3.1) on the left domain.
For j = 1, ..., N , n = 0, 1, ...,M , solve

un+1
j − un

j

Δt
+

Fn
j+ 1

2

− Fn
j− 1

2

Δx
= 0,(6.14)

u0
j = u0(xj), v0j = v0(xj),(6.15)

uN+1
0 obtained from left,(6.16)

where Fn
j+ 1

2

and Fn
j− 1

2

are defined as in Case I. To solve for un+1
0 , since

(6.9) is an explicit scheme for Pn+1, we first use it to get Pn+1
0 , and then

use Newton’s iteration for (6.13) to get un+1
0 .

6.2. Coupling of multiple regions. The previous method for two regions can
be easily extended to three or more regions with different scales. For example,
consider the coupling that consists of the equilibrium (where ε(x) is small) region
on the left, relaxation (where ε(x) is of O(1)) in the middle, and equilibrium region
on the right, that is,

ε(x) = ε, x ∈ [−L, x1); ε(x) = 1, x ∈ [x1, x2); ε(x) = ε, x ∈ [x2, L],

where x1 < x2. Consider the case f ′(u(x1, t)) < 0 and f ′(u(x2, t)) > 0 for t ≤ T .
The other cases can be treated similarly. Our algorithm will solve the middle region
[x1, x2) first with interface condition v = f(u) at x1 and x2, and then solve the left
and right regions. To be more specific, one can follow the following steps.
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• Step 1. For j = N1 + 1, ..., N2, n = 0, 1, ...,M that correspond to the
middle region [x1, x2), solve the equations (6.9)–(6.11) for Riemann invari-
ants Pn

j = un
j + vnj , Qn

j = un
j − vnj with boundary conditions at x1 and x2,

respectively, given by

(6.17) Pn+1
N1+1 = un+1

N1+1 + f(un+1
N1+1); Pn+1

N2
= un+1

N2
+ f(un+1

N2
).

Notice here one needs to use Newton’s iteration at both boundary points
to get un+1

N1+1 and un+1
N2

from Pn+1
N1+1 and Pn+1

N2
, respectively, using (6.17).

• Step 2. For j = 0, ..., N1, n = 0, 1, ...,M , one is in the left region [−L, x1),
solve (6.1) and (6.3) with the boundary value un+1

N1+1 obtained from the
previous step.

• Step 3. For j = N2 + 1, ..., N , n = 0, 1, ...,M , solve (6.14) and (6.15) with
the boundary value un+1

N2
obtained from step 1.

In summary, near the interface, if there is a boundary layer in the equilibrium
region, then solve the equilibrium equation first and then pass on to the relaxation
regions through the value of v; on the other hand, if there is no boundary layer, then
one can always take v = f(u) as the interface condition and solve the relaxation
region first. In any situation, the system can be completely decoupled in different
regions, and one can always find an appropriate order to solve them.

6.3. More general cases.

• If f ′(u) changes sign at interface, one can check the sign of f ′(u) at the
current time step, and then use either (6.1)–(6.8) or (6.9)–(6.16) to continue
to the next step.

• If ε also depends on t, so the interface may be dynamic, then one needs to
adaptively adjust the interface location (see, for example, [8]) and then use
the domain decomposition method.

• In higher space dimension, if the interface is a curve or surface, we simply
use the Cartesian grids and extend the 1d method to higher dimensions
using dimension-by-dimension technique. This will result in a first order
error due to the grid effect. A more sophisticated method would use an
interface aligned mesh or immersed interface method [21]. We will not
elaborate on this since it is out of the scope of this paper.

6.4. Numerical examples. The first two examples are given to validate our do-
main decomposition system numerically. Therefore, we focus on the behavior of l1

error with a changing ε (we only change ε for x > 0, while for x < 0, let ε = 1).
Here we use Δx = 10−3, Δt = 2.5 × 10−4 in the regime Δx, Δt � ε, and run the
algorithm to T = 0.2. We change ε from 0.05 to 0.0025, then calculate the error

Ul1 = max
0≤n≤M

N∑
j=0

|(uε)nj − un
j |Δx, Vl1 = max

0≤n≤M

N∑
j=0

|(vε)nj − vnj |Δx.

Here (uε)nj and (vε)nj are obtained by directly solving the original system (1.1–(1.5).

Example 1. Let f(uε) = 1
4 (e

−uε − 1) in (1.1), with initial condition uε(x, 0) =

sin(πx)3, and boundary condition u(−1, t) = u(1, t) = 0. In this case, f ′(u) < 0, so
there will be an interface layer at the interface x = 0. Figure 1 gives the log(error)
versus log(ε). One can see that the convergence rate is O(ε).
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Example 2. Now we consider the case f ′(u) > 0. Let f(uε) = 1
4 (e

uε − 1), initial

condition uε(x, 0) = sin(πx)3, and boundary condition u(−1, t) = u(1, t) = 0. Still
one sees that the convergence rate is O(ε), as shown in Figure 2.

Figure 1. Convergence
rate for Example 1

Figure 2. Convergence
rate for Example 2

Next, we will compare our domain decomposition method using the under-
resolved mesh with the original relaxation system. Let ε = 0.002 be fixed for
x > 0. The relaxation system is solved by fine mesh (Δx, Δt � ε) to serve as the
reference solution to (1.1)–(1.5), which are referred to as ”analytical” solutions in
the Figures 3–6.

Example 3. The set up is the same as Example 1. The solutions are plotted at
T = 0.5. In this case, there is an interface layer in u at x = 0, as one can see from
Figures 3 and 4. In comparison, one can see that the relaxation system solved with
a relatively large mesh size (Δx, Δt  ε), referred to as “under-relax” in Figures
3–6, gives poor results at the interface which results in larger numerical errors away
from the interface. The error becomes smaller if the mesh size is reduced (yet still
under-resolved). On the other hand, the domain decomposition method gives a
more accurate approximation even when the mesh size is large (Δx, Δt  ε).

Figure 3. Example 3,
Δx = 0.04, Δt = 0.02.

Figure 4. Example 3,
Δx = 0.01, Δt = 0.005.
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Example 4. The set up is the same as Example 2. The results at T = 0.6 are
plotted in Figures 5 and 6. Similar to Example 3, one can find that the relaxation
system is better approximated with the decreasing of the mesh size, while the
domain decomposition method gives good approximation even with the large mesh
size compared to ε.

Figure 5. Example 4,
Δx = 0.04, Δt = 0.02.

Figure 6. Example 4,
Δx = 0.01, Δt = 0.005.

Example 5. Let f(uε) be the same as in Example 2, but consider the Riemann
initial data:

uε(x, 0) =

{
−1, if −1 ≤ x ≤ −0.2,
1, if −0.2 < x ≤ 1.

In this case a contact discontinuity formed at the left-hand side will propagate
across the interface to the right. Let Δx = 0.02, Δt = 0.01. From Figure 7, one
will see that, before the contact discontinuity passes through the interface, there is
not much difference between the under-resolved solution of the relaxation system
and the domain decomposition solution, but after that the domain decomposition
method has an obvious advantage in producing more accurate results. The results
are given at different times to show the dynamics of the solution.

Example 6. Let f(uε) be the same as in Example 1, and consider the following
Riemann initial data:

uε(x, 0) =

{
1, if −1 ≤ x ≤ 0.2,
−1, if 0.2 < x ≤ 1.

Here we use Δx = 0.02 and Δt = 0.01. In this case, a shock forms at the right
region and propagates to the left region. From Figure 8, one can see that, when
the shock crosses the interface, the domain decomposition method gives a spurious
solution at the interface. This is because our interface layer analysis assumes that
the solution is smooth, yet here the interaction between the interface layer and
shock complicates the problem, thus our domain decomposition system may not be
valid here.
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Figure 7. Example 5, a contact discontinuity passing through the interface.

Figure 8. Example 6, a shock from the right region passing
through the interface.

Example 7. Let f(uε) be the same as in Example 1, and consider the following
Riemann initial data:

uε(x, 0) =

{
−1, if −1 ≤ x ≤ 0.2,
1, if 0.2 < x ≤ 1.

With this initial data, a rarefaction wave forms in the right region, and propagates
across the interface to the left. We still let Δx = 0.02 and Δt = 0.01, and the
solutions are plotted at different times in Figure 9. One can see that, unlike a
shock, the domain decomposition method gives a good approximation when the
rarefaction wave crosses the interface.
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Figure 9. Example 7, rarefaction wave

7. Conclusion

In this paper, a domain decomposition method is presented and analyzed on a
semilinear hyperbolic system with multiple relaxation times. In the region where
the relaxation time is small, an asymptotic equilibrium equation is used for com-
putational efficiency which is coupled with the original relaxation system on the
other part of the region through an interface condition. A rigorous analysis estab-
lishes the well-posedness and error estimate in terms of the relaxation time on this
domain decomposition method, and numerical results are presented to study the
performance of this method.

This is a prototype model for the more general coupling of kinetic and hydro-
dynamic equations which are competitive multiscale computational methods using
multi-physics, thus a deep mathematical understanding of this simpler model prob-
lem will shed light on the more general physical problems.

There are still remaining problems to be studied. Among them we mention the
problem of shock passing through the interface, nonlinear hyperbolic systems with
relaxation, and the error estimate on the numerical schemes based on such a domain
decomposition method.
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