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A B-SPLINE-LIKE BASIS FOR THE POWELL-SABIN 12-SPLIT

BASED ON SIMPLEX SPLINES

ELAINE COHEN, TOM LYCHE, AND RICHARD F. RIESENFELD

Abstract. We introduce a simplex spline basis for a space of C1-quadratics on
the well-known Powell-Sabin 12-split triangular region. Among its many im-
portant desirable properties, we show that it has an associated recurrence rela-
tion for evaluation and differentiation. Also developed are a Marsden-like iden-
tity, quasi-interpolants, approximation methods exhibiting unconditional sta-
bility, a subdivision scheme, and smoothness conditions across macro-element
edges.
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1. Introduction

Surfaces defined over triangulations have widespread application in many areas
ranging from finite element analysis and physics and engineering applications to the
entertainment industry. For many of these applications piecewise linear surfaces
do not offer sufficient smoothness. To obtain C1 smoothness, one must either use
quintic polynomials with 21 degrees of freedom over each triangle or use lower degree
macroelements that subdivide each triangle into a number of subtriangles. Thus
far, the second approach has largely been based on using the Bernstein-Bézier basis
on each subtriangle, manually enforcing the smoothness internal to each triangle
and solving the resulting constrained system.

In this paper we introduce the S-spline basis, a B-spline like basis, over a sin-
gle macroelement known as the Powell-Sabin 12-split (PS12-split). Internal to the
macroelement, each of the 12 basis elements is C1 and the basis is uncondition-
ally stable independent of the shape of the macroelement. Analogous results for
analytical and shape properties, so inextricably intertwined in the B-spline/Bézier
formulation of surfaces, are shown for the S-spline basis.

1.1. Background. Consider a triangulation T1 of a domain Ω ∈ R
2 and integers

r, d with −1 ≤ r < d. Let

S
r
d(T1) := {f ∈ Cr(Ω) : f|T is a polynomial of degree d, ∀ T ∈ T1}

be the space of piecewise Cr polynomials of degree d over T1. To evaluate f ∈
Srd(T1) the standard approach is to represent f piecewise using a Bernstein–Bézier
representation on each triangle in T1 and use the de Casteljau Recursive Algorithm
[13] for evaluation. It was shown in [15] that the Lq normalized Bernstein-Bézier
basis on a triangle is stable in any Lq norm.

Now suppose T1 is obtained from a coarser triangulation T0 by splitting each
triangle in T0 into subtriangles. Suppose for each triangle Δ ∈ T0 there exists a
basis BΔ of the space Srd(T1) restricted to Δ that has:

• stable recurrence relations
• differentiation formula
• minimal support
• local linear independence
• nonnegative partition of unity
• explicit dual functionals
• Lq stable basis, 1 ≤ q ≤ ∞
• simple conditions for C1 joins to neighboring triangles
• well conditioned collocation matrices for Lagrange and Hermite interpola-
tion using certain sites, and

• subdivision algorithms of Lane-Riesenfeld type.

These characteristics yield a B-spline-like basis within each Δ, but they do not
give a B-spline basis for the whole triangulation T1. So B behaves like the triangular
Bernstein–Bézier basis across the edges of T0, but like a B-spline internal to each
triangle of T0. The characteristics of this basis make it unnecessary to convert it to
a Bernstein–Bézier representation on each of the subtriangles of Δ. Instead there
is a single control mesh to facilitate control and early visualization of the surface
over each triangle Δ in T0.



SIMPLEX SPLINES FOR THE POWELL-SABIN 12-SPLIT 1669

Figure 1. Left: PS6-split, and right: PS12-split configurations.

We develop a quadratic C1 spline basis with the above desired behavior on each
element of T0 that has been split according to the scheme of the Powell-Sabin 12-
Split (PS12) [20]. Each triangle in T0 is split into 12 subtriangles delineated by the
complete graph connecting all vertices and edge midpoints. (See Fig. 1). The union
of the bases over T0 can be used to represent the space of C1 quadratic splines on
T1.

An interpolatory subdivision scheme for the PS12-split introduced in [9] can be
used to evaluate a quadratic PS12 specified surface on an arbitrary triangulation.

There are other notable approaches to constructing spline spaces over triangu-
lations, in particular:

• The nodal basis, dual to the degrees of freedom for the Hermite constraints,
is commonly employed [3] in finite element calculations.

• Elaborate constructions exist based on perturbing the knots of a Bernstein-
Bézier triangle representation in [6, 7, 12, 22]. However, the space thus
obtained, represented by a simplex spline basis over the perturbed knot set,
depends on the particular perturbations applied. Also, evaluation based on
simplex spline recursion is slow [10, 11].

• An approach employing Delaunay configurations based on points in general
position is introduced and studied by Neamtu in [18, 19] . This approach
uses a sum of simplex splines as basis functions and generalizes many B-
spline properties; however, there is no associated recurrence relation relat-
ing these functions to basis functions of lower degree.

• Box splines [2] can be applied to uniform triangulations.
• Schemes using a different split rule, called the Powell-Sabin 6-Split (PS6)
[20], create T1 from T0 by dividing each triangle of T0 into 6 subtriangles
by connecting the incenter of a triangle to its vertices and to the incenters
of its adjacent triangles. Dierckx [8] introduced a B-spline-like basis for C1

quadratics on a T1 split of T0 according to the PS6 rules. Since there is no
recurrence relation for this basis, evaluation is done by transforming them
to the Bernstein-Bézier representation on each of the 6 subtriangles. Being
nonnegative and forming a partition of unity, the basis functions can be
manipulated with their corresponding control points. They form a stable
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basis in the Lq norm, 1 ≤ q ≤ ∞, where the stability constant depends on
the smallest angle in the underlying triangulation [16, 23].

• The Dierckx basis was recently extended in [25] to a space of C2 quintics
on triangulations amenable to the PS6-split.

In this paper we introduce the S-spline basis, a quadratic simplex spline basis
S2, for the PS12 macroelement. In addition to having simplex spline properties,
we prove that the S-spline basis has many desirable B-spline properties. In par-
ticular, they form a partition of unity, provide a recurrence relation down to hat
functions, satisfy a Marsden-like identity, and exhibit Lq stability for a scaled ver-
sion. Furthermore, the restriction of each basis element to the boundary edges of
the macroelement reduces to a standard univariate B-spline. A control mesh can
be formed that mimics the shape of the surface and exhibits distance O(h2) to
any one of its control points from its surface, where h is the length of the longest
edge. We obtain a pyramidal evaluation algorithm in terms of the control points
that is strikingly reminiscent of the analogous one for triangular Bézier surfaces.
An unusual hybrid, the control mesh presents both triangular and quadrilateral
connectivity.

The S-spline basis can be used to represent surfaces over arbitrary triangulations.
We derive conditions for C1 smoothness across macro-triangle edges in terms of
control points similar to the triangular Bézier case.

We obtain two algorithms for the subdivision approach considered. One sub-
divides each macroelement into 4 submacro-elements so that the S-spline basis
elements are subdivided giving formulas analogous to Oslo Algorithm 1 [4]. The
other is an analog of the the Lane-Riesenfeld Algorithm for Bézier surfaces [14].
Repeated subdivision converges quadratically due to the aforementioned distance
result and can be used for evaluation, rendering, and other computations commonly
associated with freeform geometric modeling.

Now we preface the ensuing mathematical development with a description of the
notation consistently used throughout.

1.2. Notation. We use small boldface letters to denote vectors and capital boldface
letters for matrices, while calligraphic fonts like R,S indicate sets. With function
spaces we associate symbols like S.

The symbol Rm,n denotes the class of m × n real matrices A,R, . . .. We de-
note the unit vectors in R

m by e1, . . . , em, the identity matrix with I, and e :=
[1, 1, . . . , 1]T ∈ Rm. We write #A for the number of columns of A, and #S for
the cardinality of set S. If A ∈ Rm,n and i = [i1, . . . , ir]

T , j = [j1, . . . , js]
T with

1 ≤ i1 < · · · < ir ≤ m, 1 ≤ j1 < · · · < js ≤ n, then A(i, j) ∈ Rr,s denotes the
matrix whose k, � element is aik,j� . In particular, c(i) denotes the vector whose jth
element is cij . For a vector of functions f the symbol f(i) denotes the subvector
of functions whose jth element is fij . The support of a function f , denoted by
supp(f), is the closure of the set of values in the domain of f at which f is nonzero.

We denote by Πd(R
2) the space of bivariate polynomials with real coefficients

of total degree ≤ d, i.e., the span of all monomials of the form xi1
1 xi2

2 , where
the nonnegative integers satisfy i1 + i2 ≤ d. The dimension of Πd(R

2) is νd :=
(d+1)(d+2)/2. Srd(Δ) denotes the space of piecewise polynomials of degree d and
smoothness Cr on a triangulation Δ of R2.
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Figure 2. Reference labels for vertices and induced 12 subtrian-
gles for the PS12-split.

To denote the closed or open convex hull of a set S we use ch(S) or ch(S)o,
respectively. When S, consisting of the columns of A, spans Rm, we say simply
“A spans Rm”.

1.3. PS12-Split. Prominent among the known macroelements is the Powell-Sabin
12-split (PS12-split). Given three noncollinear points p1,p2,p3 in R2, the triangle

(1.1) Δ := ch({p1,p2,p3})
with vertices p1,p2,p3 will serve as our macrotriangle. The PS12-split divides Δ
into 12 subtriangles delineated by the complete graph formed by the 3 original
triangle vertices and its 3 edge midpoints (see Fig. 2).

We number the vertices p1, . . . ,p10 and the triangles Δ1, . . . ,Δ12 of the PS12-
split as depicted in Figure 2. Note that

(1.2)

p4 :=
1

2
(p1 + p2), p5 :=

1

2
(p2 + p3), p6 :=

1

2
(p1 + p3),

p7 :=
1

2
(p4 + p6), p8 :=

1

2
(p4 + p5), p9 :=

1

2
(p5 + p6),

p10 :=
1

3
(p1 + p2 + p3).

ΔPS12 is the PS12 triangulation of Δ. We follow the convention in [22], to decide
in which subtriangle each edge and vertex belongs. The author defines a point p
to be in the half-open convex hull of Δk if and only if there is a vector η with
positive slope, and a scalar ε > 0 such that {p+ se1 + tη : 0 < s, t < s+ t < ε} is
completely contained in the interior of Δk. The resulting configuration is shown in
Figure 3 for a typical triangle. Note that in what subtriangle each edge and vertex
is contained depends on the orientation of the triangle. This convention extends to
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Figure 3. Scheme that uniquely assigns each x ∈ Δ to a unique
(possibly half-open) subtriangle Δk.

associate every edge and vertex in the PS12-refinement of an arbitrary triangulation
with a unique subtriangle. Thus this uniquely and completely defines a piecewise
polynomial at all points of the PS12-refinement of an arbitrary triangulation.

The following algorithm determines a unique subtriangle for a point in R
2 with

respect to a single PS12 macroelement. The algorithm is consistent with the con-
vention described above for the triangle in Figure 3.

Algorithm 1.1. Let x ∈ R2 and Δ be partitioned by {Δ1, . . . ,Δ12} as in Figure 3.
Then:

(1) Find the barycentric coordinate triple (β1, β2, β3) of x with respect to Δ.
(2) Compute sw := [25, 24, 23, 22, 21, 20]t, where

t := [(β1 > 1
2 ), (β2 ≥ 1

2 ), (β3 ≥ 1
2 ), (β1 > β2), (β1 > β3), (β2 ≥ β3)]

T .
(3) Select k from the table below.

sw 38 46 39 19 17 8 25 12 6 7 3 1 0 4
k 1 1 2 3 4 5 5 6 7 8 9 10 11 12

(4) x ∈ Δk. x /∈ Δ for other values of sw.

Note that t is a Boolean vector consisting of zeros and ones. For example the
second to last component is one if x is closer to p1 than to p3, constraining it to
lie in only one of the triangles Δk, k = 1, 2, 3, 7, 8, 9.

2. Simplex splines over PS12-split

On the triangulation ΔPS12 of the triangle Δ, we consider the spline spaces:

(2.1) Sd := S
d−1
d (ΔPS12), d = 0, 1, 2.
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Figure 4. Shaded areas indicated support for knot configurations
of the 10 linear simplex splines Sj,1 on PS12-split.

Since there are 12 triangles and 10 vertices in ΔPS12 (see Fig. 2), n0 := dim(S0) =
12 and n1 := dim(S1) = 10, respectively. Similarly, n2 := dim(S2) = 12, and there
is a unique f ∈ S2 that interpolates function values and gradients at the vertices
p1,p2,p3 and cross derivatives at the midpoints p4,p5,p6 [20].

Definition 2.1. For d = 0, 1, 2, we define S-splines for Sd by

(2.2) Sj,d =
vj,d
νd

M(·|Kj,d), j = 1, . . . , nd,

where M(·|Kj,d) is a degree d simplex spline normalized to have unit integral, and
vj,d := v(Ωj,d) is the 2-dimensional volume (area) of Ωj,d := supp(Sj,d) = ch(Kj,d).
The set

(2.3) Sd := {S1,d, . . . , Snd,d}, d = 0, 1, 2,

is the S-spline basis of degree d for the PS12-split. The knot sets Kj,d are defined as
follows: Kj,0 consists of the three vertices of Δj , while Kj,1 and Kj,2 are defined
as follows:
(2.4)

K1,1 = [p
(2)
1 ,p4,p6] K2,1 = [p

(2)
2 ,p5,p4] K3,1 = [p

(2)
3 ,p6,p5]

K4,1 = [p1,p4,p2,p10] K5,1 = [p2,p5,p3,p10] K6,1 = [p3,p6,p1,p10]
K7,1 = [p1,p4,p10,p6] K8,1 = [p2,p5,p10,p4] K9,1 = [p3,p6,p10,p5]
K10,1 = [p4,p5,p6,p10],
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Figure 5. Shaded areas indicated support for knot configurations
of the 12 quadratic simplex splines Sj,2 on PS12-split.

(2.5)

K1,2=[p
(3)
1 ,p4,p6] K2,2=[p

(2)
1 ,p4,p2,p6] K3,2=[p1,p4,p2,p5,p6]

K4,2=[p
(2)
2 ,p5,p1,p4] K5,2=[p

(3)
2 ,p5,p4] K6,2=[p

(2)
2 ,p5,p3,p4]

K7,2=[p2,p5,p3,p6,p4] K8,2=[p
(2)
3 ,p6,p2,p5] K9,2=[p

(3)
3 ,p6,p5]

K10,2=[p
(2)
3 p6,p1,p5] K11,2=[p3,p6,p1,p4,p5] K12,2=[p

(2)
1 ,p4,p3,p6].

Note that superscript indicates multiplicity so that [p
(2)
1 ,p4,p6] = [p1,p1,p4,p6].

Comprised of points in R2, the d+ 3 columns of Kj,d are called the knots of Sj,d.
A spline of degree d on ΔPS12 is any linear combination

∑nd

j=1 cjSj,d.

The supports of the 10 linear S-splines are shown in Figure 4. There are 4
distinctly structured types grouped as follows: the 3 corners S1,1, S2,1, S3,1, the 3
midpoint edges S4,1, S5,1, S6,1, the 3 Egyptian pyramids S7,1, S8,1, S9,1, and the cen-
ter pyramid S10,1. For quadratic S-splines shown in Figure 5 there are three distinct
types, namely, the 3 corners S1,2, S5,2, S9,2, the 6 edges S2,2, S4,2, S6,2, S8,2, S10,2,
S12,2 and the 3 with trapezoidal support S3,2, S7,2, S11,2. Observe that all support
sets are shaped either like a triangle or a quadrilateral.

The S-splines have the following properties.

Theorem 2.2. For d = 0, 1, 2, j = 1, . . . , nd, and x ∈ Δ:

(1) Smooth piecewise polynomial: Sj,d ∈ Sd.
(2) Nonnegativity and positivity: Sj,d(x) ≥ 0, Sj,d(x) > 0 for x ∈

ch(Kj,d)
o.

(3) Partition of unity:
∑nd

j=1 Sj,d(x) = 1.
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(4) Convex hull: If the S-spline coefficients cj are points in R2 or R3, then
f(x) :=

∑nd

j=1 cjSj,d(x) is contained in ch({cj}nd
1 ).

(5) Local linear independence: On each of the 12 subtriangles Δk the
nonzero Sj,d constitute a basis for Πd(R

2).
(6) Basis: The S-basis Sd := {S1,d, . . . , Snd,d} is a basis for Sd.
(7) Degree 0: Sj,0 = χΔj

, the characteristic function of Δj.

(8) Linear hat: Sj,1 is a piecewise linear hat function with,

(2.6) Sj,1(pi) = δi,j , i, j = 1, . . . , 10,

(9) Edge restriction: For d = 1, 2 a spline f =
∑nd

j=1 cjSj,d reduces to a

univariate spline with one interior (midpoint) knot along an edge of Δ. In
particular, for d = 1 along the edge ch({p1,p2}),

(2.7) f((1− t)p1 + tp2) = c1B1,1(t) + c4B2,1(t) + c2B3,1(t), t ∈ [0, 1],

where {Bj,1}3j=1 is the set of 3 consecutive univariate linear B-splines on the

knot vector [0, 0, 12 , 1, 1], normalized to form a partition of unity on [0, 1].
Similarly, for d = 2,

(2.8) f((1− t)p1 + tp2) = c1B1,2(t)+ c2B2,2(t)+ c4B3,2(t)+ c5B4,2(t), t ∈ [0, 1],

where {Bj,2}4j=1 is the set of 4 consecutive univariate quadratic B-splines
on the knot vector [0, 0, 0, 1/2, 1, 1, 1]. Again, they are normalized to form
a partition of unity.

Proof. As bona fide simplex splines, the elements of the S-basis exhibit the following
desirable properties [5, 17]:

(1) Sj,d has d+ 3 knots and is a piecewise polynomial of degree d.
(2) The support of Sj,d is ch(Kj,d).
(3) Sj,d is positive in the interior of its support.
(4) The knot lines of Sj,d form the complete graph of the knots.
(5) Sj,d has d + 1 −m continuous derivatives across a knot line containing m

collinear knots.

Since all knot lines of Sj,d are segments of edges in ΔPS12 it follows from Property 1
that Sj,d is a piecewise polynomial of degree d on ΔPS12. Moreover, since there
are exactly two knots on those knot lines of Sj,d containing a point in the interior
of Δ, Sj,d ∈ Cd−1(ΔPS12) by Property 5. It follows that Sj,d ∈ Sd. There are
precisely νd nonzero Sj,d on each triangle Δk (cf. Figures 4 and 5). In particular, it
follows from the support, continuity and partition of unity that for d = 0, Sj,0 is the
characteristic function of Δj , and that for d = 1 equation (2.6) holds. We show a
Marsden-type identity in Section 3 that implies that functions in Sd span Πd(R

2) on
every Δk and this identity also implies partition of unity, local linear independence,
and basis properties. The convex hull property follows from nonnegativity and
partition of unity. The edge restriction property will be proved using the recurrence
relations in Theorem 2.3. �
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Figure 6. The S-splines Sj,2 for j = 1, 2, 3, 4, 5, on the unit tri-
angle p1 = (0, 0),p2 = (1, 0), and p3 = (0, 1) .

Figure 6 illustrates the edge restriction property along the front edge ch({p1,p2}),
where Sj,2, for j = 1, 2, 4, 5, exhibit the proper shapes of a univariate quadratic B-
spline. Along the boundary of the triangle, the S-spline S3,2, whose support is
trapezoidal, has function value 0, but its cross-boundary derivative is nonzero.

2.1. Recurrence relations: Basis form. Consider the recurrence relation for
univariate B-splines Bj,d of degree d and with d+ 2 knots tj , . . . , tj+d+1,

Bj,d = μj,dBj,d−1 + λj+1,dBj+1,d−1, μj,d(x) :=
x− tj

tj+d − tj
, λj,d(x) :=

tj+d − x

tj+d − tj
,

and where λj,d = μj,d := 0 if tj+d = tj . On a knot vector t := (tj)
m
j=1 with

t1 ≤ t2 ≤ · · · ≤ tm, the recurrence relation for the (r := m − d − 1) B-splines of
degree d that are defined on t can be written in matrix form as,

(2.9) [B1,d, . . . , Br,d] = [B1,d−1, . . . , Br+1,d−1]Rd,t, t1 ≤ x < tm,

where

(2.10) Rd,t =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1,d

λ2,d μ2,d

λ3,d
. . .

. . . μr,d

λr+1,d

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

r+1,r.
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If tk ≤ x < tk+1 for some integer k, then only Bk−d,d(x), . . . , Bk,d(x) can be nonzero
and (2.9) reduces to the polynomial version

(2.11) [Bk
k−d,d, . . . , B

k
k,d] = [Bk

k−d+1,d−1, . . . , B
k
k,d−1]R

k
d,t,

where Bk
j,d is the polynomial of degree ≤ d representing Bj,d on [tk, tk+1) and

(2.12) Rk
d,t :=

⎡
⎢⎢⎢⎢⎣
λk−d+1,d μk−d+1,d

. . .
. . .

. . .
. . .

λk,d μk,d

⎤
⎥⎥⎥⎥⎦ ∈ R

d,d+1.

We now give analogs of equations (2.9) and (2.11) for the S-spline basis. Consider
first (2.9).

Theorem 2.3. If

(2.13) sTd := [S1,d, . . . , Snd,d], d = 0, 1, 2,

then

(2.14) sTd = sTd−1Rd, d = 1, 2,

where R1 ∈ R12,10 and R2 ∈ R10,12 are given by
(2.15)

R1(x) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 0 0 0 0 2β3,2 4β2 0 0 0
γ1 0 0 2β2,3 0 0 4β3 0 0 0
0 γ2 0 2β1,3 0 0 0 4β3 0 0
0 γ2 0 0 2β3,1 0 0 4β1 0 0
0 0 γ3 0 2β2,1 0 0 0 4β1 0
0 0 γ3 0 0 2β1,2 0 0 4β2 0
0 0 0 0 0 2β3,2 4β1,3 0 0 −3γ1
0 0 0 2β2,3 0 0 4β1,2 0 0 −3γ1
0 0 0 2β1,3 0 0 0 4β2,1 0 −3γ2
0 0 0 0 2β3,1 0 0 4β2,3 0 −3γ2
0 0 0 0 2β2,1 0 0 0 4β3,2 −3γ3
0 0 0 0 0 2β1,2 0 0 4β3,1 −3γ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
(2.16)

R2(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 2β2 0 0 0 0 0 0 0 0 0 2β3

0 0 0 2β1 γ2 2β3 0 0 0 0 0 0
0 0 0 0 0 0 0 2β2 γ3 2β1 0 0
0 β1,3 3β3 β2,3 0 0 0 0 0 0 0 0
0 0 0 0 0 β2,1 3β1 β3,1 0 0 0 0
0 0 0 0 0 0 0 0 0 β3,2 3β2 β1,2

0
β1,3

2
3β2

2 0 0 0 0 0 0 0 3β3

2
β1,2

2

0 0 3β1

2
β2,3

2 0
β2,1

2
3β3

2 0 0 0 0 0

0 0 0 0 0 0 3β2

2
β3,1

2 0
β3,2

2
3β1

2 0
0 0 −γ3 0 0 0 −γ1 0 0 0 −γ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Here β = [β1, β2, β3]
T is the vector of barycentric coordinates of x with respect to

the triangle Δ so that βi(pj) = δi,j and

(2.17) γj := 2βj − 1, βi,j = βi − βj , for i, j = 1, 2, 3.

Moreover, Rd(i, j)Si,d−1(x) ≥ 0 for all i, j and x ∈ Δ.

To prove this result we use the recurrence and knot insertion relations found in
[17]. The details of the proof can be found in Appendix A.

Using (2.14) repeatedly we obtain,

Corollary 2.4. Suppose x ∈ Δk for some 1 ≤ k ≤ 12 and 0 ≤ d ≤ 2. Then

(2.18) sd(x)
T := [S1,d(x), . . . , Snd,d(x)] = eTk

d∏
i=1

Ri(x).

Moreover, for a spline with coefficients c = [c1, . . . , cnd
]T ,

(2.19) fd(x) :=

nd∑
j=1

cjSj,d(x) = eTk

d∏
i=1

Ri(x)c.

We need to establish some notation before developing an analog of (2.11) for the
S-spline basis.

Definition 2.5. We define

(2.20)
Gk
d := {j : Δk ⊂ supp(Sj,d)}, d = 0, 1, 2,

Hk
d := {j : Rd(k, j) �= 0 for some x}, k = 1, . . . , nd−1, d = 1, 2.

We use the symbols gk
d and hk

d for the vectors consisting of the elements in Gk
d and

Hk
d , respectively, arranged in increasing order.

The elements in Gk
d single out the indices of the S-splines of degree d that are

nonzero over triangle Δk. It is easily verified that each Gk
d contains νd elements,

so that gk
d = [i1, . . . , iνd

]T with i1 ≤ · · · ≤ iνd
(cf. Figures 4 and 5), and we recall

that νd is the dimension of the polynomial space Πd(R
2), d = 0, 1, 2. We show the

elements in the sets Hk
d and Gk

d in Table 1.
We also note that

(2.21) Gk
1 = Hk

1 and Gk
2 = Hi1

2 ∪Hi2
2 ∪Hi3

2 , [i1, i2, i3] = gk
1 , k = 1, . . . , 12.

Definition 2.6. For d = 0, 1, 2 define Sk
j,d to be the polynomial representing Sj,d

on Δk. Also define,

s̃kd = [Sk
1,d, . . . , S

k
nd,d

]T , skd = s̃kd(g
k
d) ∈ R

νd ,

which represents the ordered vector whose elements are in the set Sk
d := {Sk

j,d : j ∈
Gk
d}.

Definition 2.7. For 1 ≤ k ≤ 12 define submatrices

Rk
1 := R1(k, g

k
1) ∈ R

1,3, Rk
2 := R2(g

k
1 , g

k
2) ∈ R

3,6,

where gk
d is defined in Definition 2.5.
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Table 1. Enumeration of the sets Hk
d and Gk

d .

k Hk
1 = Gk

1 Hk
2 Gk

2

1 1,6,7 1,2,12 1,2,3,10,11,12
2 1,4,7 4,5,6 1,2,3,4,11,12
3 2,4,8 8,9,10 2,3,4,5,6,7
4 2,5,8 2,3,4 3,4,5,6,7,8
5 3,5,9 6,7,8 6,7,8,9,10,11
6 3,6,9 10,11,12 7,8,9,10,11,12
7 6,7,10 2,3,11,12 2,3,7,10,11,12
8 4,7,10 3,4,6,7 2,3,4,7,11,12
9 4,8,10 7,8,10,11 2,3,4,6,7,11
10 5,8,10 3,7,11 3,4,6,7,8,11
11 5,9,10 3,6,7,8,10,11
12 6,9,10 3,7,8,10,11,12

For example, from Table 1 it follows that g1
1 = [1, 6, 7] and g1

2 = [1, 2, 3, 10, 11, 12].
Thus,

R1
1(x)R

1
2(x) =

[
γ1 2γ3,2 4β2

] ⎡⎣γ1 2β2 0 0 0 2β3

0 0 0 γ32 3β2 γ12
0 γ13

2
3β2

2 0 3β3

2
γ12

2

⎤
⎦ .

We are now ready to state the polynomial version of Corollary 2.4 (cf. equation
(2.11)).

Corollary 2.8. For k = 1, . . . , 12, d = 0, 1, 2 and cT = [c1, . . . , cnd
],

(2.22) sk T
d =

d∏
i=1

Rk
i , fk

d =

d∏
i=1

Rk
i c(g

k
d), d = 0, 1, 2.

Here c(gk
d) is the vector [ci1 , . . . , ciνd ]

T , where gk
d = [i1, . . . , iνd

]T . Moreover, fk
d is

the function fd restricted to triangle Δk.

Proof. Clearly, sk0(x) = fk
0 (x) = 1 showing the result for d = 0. By (2.18)

Sk
j,1 = R1(k, j), j = 1, . . . , 10,

and (2.22) follows for d = 1. For j = 1, . . . , 12

Sk
j,2 = eTkR1R2(:, j) =

10∑
i=1

R1(k, i)R2(i, j)

=
∑
i∈Gk

1

R1(k, i)R2(i, j) = R1(k, g
k
1)R2(g

k
1 , j).

But then (2.22) follows for d = 2. �

The edge property of Theorem 2.2 can now be proved. Suppose fd =
∑nd

j=1 cjSj,d

is a spline of degree d on ΔPS12 and x = (1 − t)p1 + tp2. The corresponding
barycentric coordinates are β1 = 1 − t, β2 = t, and β3 = 0. Let {Bj,1}3j=1 be the

consecutive univariate linear B-splines on the knot vector [0, 0, 1
2 , 1, 1], normalized
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to form a partition of unity on [0, 1]. If 0 ≤ t < 1/2 then x ∈ Δ2, and (2.22) takes
the form

f2
1 (x) = R2

1(x)
[
c1 c4 c7

]T
= B1,1(t)c1 +B2,1(t)c4,

R2
1(x) =

[
1− 2t 2t 0

]
,

while if 1
2 ≤ t ≤ 1, then x ∈ Δ3 and

f3
1 (x) = R3

1(x)
[
c2 c4 c8

]T
= B2,1(t)c2 +B3,1(t)c4,

R3
1(x) =

[
2t− 1 2− 2t 0

]
.

For d = 2 and x ∈ Δ2 let {Bj,2}4j=1 be the consecutive univariate quadratic B-

splines on the knot vector [0, 0, 0, 1
2 , 1, 1, 1], normalized to form a partition of unity

on [0, 1]. Then

f2
2 (x) = R2

1(x)

⎡
⎣ 1− 2t 2t 0 0 0 0

0 1− t 0 t 0 0
0 1−t

2
3t
2 0 0 1

2 − t

⎤
⎦ [

c1 c2 c3 c4 c11 c12
]T

= (1− 2t)2c1 + 2t(2− 3t)c2 + 2t2c4 = B1,2(t)c1 +B2,2(t)c2 +B3,2(t)c4,

while for x ∈ Δ3,

f3
2 (x) = R3

1(x)

⎡
⎣ 0 0 2− 2t 2t− 1 0 0

1− t 0 t 0 0 0
0 3

2 (1− t) t
2 0 t− 1

2 0

⎤
⎦
⎡
⎢⎣
c2
...
c7

⎤
⎥⎦

= 2(1− t)2c2 + 2(1− t)(3t− 1)c4 + (1− 2t)2c5

= B2,2(t)c2 + B3,2(t)c4 +B4,2(t)c5.

This proves the edge property.

3. A Marsden-like identity

In the univariate B-spline case, the Marsden identity is usually written,

(z − x)d =
∑
j

Bj,d(x)

j+d∏
k=j+1

(z − tk),

where Bj,d is a B-spline of degree d with knots tj , tj+1, . . . , tj+d+1, and {Bj,d}j
is normalized to be a partition of unity. Dividing both sides by zd and setting
y := z−1 we obtain a form more amenable to multivariate generalization

(3.1) (1− xy)d =
∑
j

Bj,d(x)ψj,d(y), ψj,d(y) =

j+d∏
k=j+1

(1− tky).

The ψj,d are polynomials of degree ≤ d called dual polynomials.
Consider now the S-spline basis. We define dual polynomials ψj,d of degree d for

j = 1, . . . , nd. For d = 0, ψj,0 = 1 and for d > 0,

(3.2) ψj,d(y) :=

d∏
r=1

(1− p∗T
j,d,ry), d = 1, 2, y ∈ R

2,
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where

(3.3)

p∗
j,1,1 := pj , j = 1, . . . , 10,

[p∗
1,2,1, . . . ,p

∗
12,2,1] := [p1,p1,p4,p4,p2,p2,p5,p5,p3,p3,p6,p6],

[p∗
1,2,2, . . . ,p

∗
12,2,2] := [p1,p4,p10,p2,p2,p5,p10,p3,p3,p6,p10,p1],

are called dual points. There are no dual points for d = 0.

Theorem 3.1 (Marsden-like Identity). For d = 0, 1, 2

(3.4) (1− xTy)d =

nd∑
j=1

Sj,d(x)ψj,d(y) = sd(x)
Tψd(y), x ∈ Δ,y ∈ R

2,

where

sd(x)
T := [S1,d(x), . . . , Snd,d(x)], ψd(y) := [ψ1,d(y), . . . , ψnd,d(y)]

T .

Also, there are 12 polynomial versions, one for each subtriangle Δk, k = 1, . . . , 12.
If gk

d := [i1, . . . , iνd
]T is given as in Definition 2.5, then

(3.5)

(1− xTy)d =

νd∑
j=1

Sk
ij ,d(x)ψij ,d(y) = skd(x)

Tψk
d(y), k = 1, . . . , 12, x,y ∈ R

2.

Here Sk
j,d is the polynomial representing Sj,d on the subtriangle Δk and

(3.6) skd(x)
T := [Sk

i1,d(x), . . . , S
k
iνd ,d

(x)], ψk
d(y) := [ψi1,d(y), . . . , ψiνd ,d

(y)]T .

Note the similarity between equation (3.1) and equation (3.4). In the linear case
the term 1 − tj+1y is replaced by 1 − pT

j y, and, in the quadratic case, we move
around the boundary of Δ inserting p10 for the Sj,2 with trapezoidal support. In
contrast to the univariate case, the dual points are not always knots of the S-splines.
In particular, p10 is not a knot of any quadratic S-spline.

The Marsden-like identity can be used to give explicit representations for mono-
mials.

Lemma 3.2. For x = (x1, x2) ∈ Δ,

(3.7)

1 =

nd∑
j=1

Sj,d(x), d = 0, 1, 2,

x =

nd∑
j=1

mj,dSj,d(x), d = 1, 2,

[
2x2

1 x1x2

x2x1 2x2
2

]
=

12∑
j=1

H(ψj,2)Sj,2(x),

where

(3.8)
mj,1 := p∗

j,1,1 = pj , j = 1, 2, . . . , 10,

mj,2 := (p∗
j,2,1 + p∗

j,2,2)/2, j = 1, 2, . . . , 12,

and p∗
j,2,r are given by (3.3). Moreover,

(3.9) H(ψj,2) :=

[
D2

e1
(ψj,2) De1

De2
(ψj,2)

De2
De1

(ψj,2) D2
e2
(ψj,2)

]
.
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Proof. We set y = 0 in equation (3.4) to get,

1 = sd(x)
Tψd(0) = sd(x)

Te =

nd∑
j=1

Sj,d(x),

which proves Property 3 in Theorem 2.2, the partition of unity normalization. To
show the expression for x in (3.7), we differentiate equation (3.4) with respect to
y, and set y = 0 so,

−dxT = sd(x)
T∇yψd(0),

where ∇yψd(y) is the nd × 2 matrix whose rth column is ∂ψd(y)/∂yr, r = 1, 2.
Differentiating and setting y = 0 lead to,

−xT = −s1(x)
T [p∗

1,1,1, . . . ,p
∗
10,1,1]

T ,

−2xT = −s2(x)
T [p∗

1,2,1 + p∗
1,2,2, . . . ,p

∗
12,2,1 + p∗

12,2,2]
T ,

from whence the identity for x follows.
Applying second order partial derivatives with respect to y on both sides of

equation (3.4) and setting y = 0, we obtain the last equation. �

Definition 3.3. The pointsmj,d given by (3.8) for j = 1, . . . , nd are called domain
points. The domain mesh Md(Δ) is defined by vertices and edges. Two domain
points mj,2 = (p∗

j,2,1 + p∗
j,2,2)/2 and mk,2 = (p∗

k,2,1 + p∗
k,2,2)/2 define an edge if

{p∗
j,2,1,p

∗
j,2,2} ∩ {p∗

k,2,1,p
∗
k,2,2} �= ∅. Alternatively,

(3.10) Md(Δ) :=

nd−1⋃
i=1

∂ch({mj,d : j ∈ Hi
d}),

where Hi
d is given in Definition 2.5 and ∂ch is the boundary of the convex hull of

{mj,d : j ∈ Hi
d}.

A spline fd :=
∑nd

j=1 cjSj,d has control points

(3.11) γj,d := (mj,d, cj), j = 1, . . . , nd,

where the mj,d are the domain points given by (3.8). The control mesh Γd(Δ, c)
is defined by lifting the domain mesh by a piecewise bilinear mapping A : Md(Δ) →
Γd(Δ, c) defined so that A(mj,d) = γj,d for all j.

The edges of M1(Δ) are simply the mesh lines in ΔPS12 as shown in Figure 2.
The domain mesh and the control mesh for d = 2 are shown in Figure 7. The
domain mesh defined in Definition 3.3 is also related to the pyramidal Algorithm
4.1 (d = 2, r = 0) as shown in Figure 8. It is unusual in that it is a hybrid mesh
comprised of both triangular and quadrilateral faces.

In the univariate B-spline case, the numbers used to represent x in terms of B-
splines are known as nodes, knot averages or Greville points. For ΔPS12 they
could analogously be called dual point averages or Greville points. Following
the terminology used in [13], we shall call them domain points.

3.1. Proof of the Marsden-like identity. The same matrices Rd introduced
in subsection 2.1 for recurrence relations for S-splines also appear in recurrence
relations for the dual polynomials.
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Figure 7. Quadratic domain mesh M2(Δ) and the corresponding
control mesh for some surface f .

Theorem 3.4. For x,y ∈ R2, and d = 1, 2,

Rd(x)ψd(y) = (1− xTy)ψd−1(y),(3.12)

Rk
d(x)ψ

k
d(y) = (1− xTy)ψk

d−1(y), k = 1, . . . , 12,(3.13)

where, R1 and R2 are given by (2.15) and (2.16), ψ0,ψ1,ψ2 by (3.2), Rk
1 and Rk

2

in Definition 2.7, and ψk
d = ψd(g

k
d). Moreover, gk

d is given in Definition 2.5.

Proof. Let �j = �j(y) = 1− pT
j y for y ∈ R2. Fix x,y ∈ R2 and let β be the vector

of barycentric coordinates of x with respect to Δ. Then

(3.14) 1− xTy = (β1 + β2 + β3)− (β1p1 + β2p2 + β3p3)
Ty = β1�1 + β2�2 + β3�3.

Consider first d = 1. Because of the symmetry of the equations for the boundary
triangles and analogous similarity for the interior triangles, we consider only a
single outer triangle Δ1 corresponding to ψ1,0 and a single interior triangle Δ7

corresponding to ψ7,0. Combining (2.15),(1.2), (3.14) and (3.2) we obtain,

(
R1(x)ψ1(y)

)
1
= γ1�1 + 2β32�6 + 4β2�7

= (2β1 − 1)�1 + (β3 − β2)(�1 + �3) + β2(2�1 + �2 + �3)

= β1�1 + β2�2 + β3�3 = (1− xTy)ψ1,0,

and

(
R1(x)ψ1(y)

)
7
= 2β32�6 + 4β13�7 − 3γ1�10

= (β3 − β2)(�1 + �3) + (β1 − β3)(2�1 + �2 + �3)

− (2β1 − 1)(�1 + �2 + �3)

= β1�1 + β2�2 + β3�3 = (1− xTy)ψ7,0.
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For d = 2 we consider rows 1, 4, 7, 10. Again, from (2.16), (1.2), (3.14), and (3.2),
row 1 becomes(

R2(x)ψ2(y)
)
1
= γ1ψ1,2 + 2β2ψ2,2 + 2β3ψ12,2

= γ1�
2
1 + 2β2�1�4 + 2β3�6�1

=
(
(2β1 − 1)�1 + β2(�1 + �2) + β3(�3 + �1)

)
�1

=
(
β1�1 + β2�2 + β3�3

)
�1 = (1− xTy)ψ1,1,

and, row 4 becomes(
R2(x)ψ2(y)

)
4
= β1,3ψ2,2 + 3β3ψ3,2 + β2,3ψ4,2

= β1,3�1�4 + 3β3�4�10 + β2,3�4�2

=
(
(β1 − β3)�1 + β3(�1 + �2 + �3) + (β2 − β3)�2)

)
�4

= (β1�1 + β2�2 + β3�3)�4 = (1− xTy)ψ4,1.

Inserting �7 = 1
4 (2�1 + �2 + �3) for row 7, we get(

R2(x)ψ2(y)
)
7
=

(
β13ψ2,2 + 3β2ψ3,2 + 3β3ψ11,2 + β12ψ12,2

)
/2

=
(
β13�1�4 + 3β2�4�10 + 3β3�6�10 + β12�6�1

)
/2

=
(
β1(�4 + �6)�1 + β2

(
(�1 + �2 + �3)�4 − �1�6

)
+ β3

(
(�1 + �2 + �3)�6 − �1�4

))
/2

=
(
β1�1 + β2�2 + β3�3

)
�7 = (1− xTy)ψ7,1

and, for row 10, we produce,(
R2(x)ψ2(y)

)
10

= −γ3ψ3,2 − γ1ψ7,2 − γ2ψ11,2

= −γ3�4�10 − γ1�5�10 − γ2�6�10

=
(
(1− 2β3)(�1 + �2) + (1− 2β1)(�2 + �3)

+ (1− 2β2)(�1 + �3)
)
�10/2

=
(
β1�1 + β2�2 + β3�3

)
�10 = (1− xTy)ψ10,1.

Next consider (3.13). Since R1(k, j) = 0 for j /∈ Gk
1 , it easily follows that

Rk
1(x)ψ

k
1(y) = eTkR1(x)ψ1(y) = eTk (1− xTy)ψ0(y) = (1− xTy)ψk

0(y).

Finally, consider d = 2. Let Gk
1 = {i1, i2, i3}. Since R2(ir, j) = 0 for j /∈ Hir

2 ⊂ Gk
2

for r = 1, 2, 3,

Rk
2(x)ψ

k
2(y) =

⎡
⎣eTi1eTi2
eTi3

⎤
⎦R2(x)ψ2(y) =

⎡
⎣eTi1eTi2
eTi3

⎤
⎦ (1− xTy)ψ1(y) = (1− xTy)ψk

1(y).

�

Invoking the recurrence relations for the dual polynomials we arrive at:

Theorem 3.5. For d = 1, 2, xj ∈ R2, j = 1, . . . , d and y ∈ R2,

(3.15) (1− xT
1 y) · · · (1− xT

d y)ψ0(y) = R1(x1) · · ·Rd(xd)ψd(y).

Moreover,

(3.16) (1− xT
1 y) · · · (1− xT

d y) = Rk
1(x1) · · ·Rk

d(xd)ψ
k
d(y), k = 1, . . . , 12,
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where Rk
d is given in Definition 2.7 and ψk

d(y) by (3.6).

Proof. We simply apply (3.12) and (3.13) repeatedly. �
Proof of Theorem 3.1. We use (3.15) and (3.16) with x1 = · · · = xd = x. If

x ∈ Δ, then x ∈ Δk for some k. Using the kth component of (3.15) we find, using
Corollary 2.4, that

(1− xTy)d = eTk

d∏
i=1

Ri(x)ψd(y) = sd(x)
Tψd(y).

This proves (3.4), and then, by (3.16) and (2.22),

(1− xTy)d =
d∏

i=1

Rk
i (x)ψ

k
d(y) = skd(x)

Tψk
d(y).

3.2. Linear independence. In this section we show linear independence of both
the S-splines and subsets of the dual polynomials. Recall in our notation that Sk

j,d

is the polynomial that represents Sj,d on Δk and that Sk
j,d = 0 if j /∈ Gk

d .

Theorem 3.6 (Local linear independence). Suppose d = 0, 1, 2 and 1 ≤ k ≤ 12.

Then pairs of sets Sk
d := {Sk

j,d : j ∈ Gk
d} and Ψk

d := {ψj,d : j ∈ Gk
d} are both bases

for Πd(R
2).

Proof. The fact that Sk
d forms a basis for Πd(R

2) follows directly from conjoining
the two requisite conditions, namely, Lemma 3.2 affords the spanning property for
the set Sk

d , and their linear independence follows from the observation that the set
Gk
d contains exactly νd elements.

We now show that Ψk
d is also a basis. Inasmuch as Ψk

d has the same cardinality

as Πd(R
2), it remains only to show that Ψk

d spans Πd(R
2). Setting x = 0 in

equation (3.5) yields 1 = skd(0)
Tψk

d(y), so the constant 1 can be expressed as a
linear combination of ψ’s. For d > 0, differentiating (3.5) with respect to x and

then setting x = 0 to get −dy = ∇xs
k
d(0)

Tψk
d(y), establishes that y is in the span

of the ψ’s. Taking the Hessian with respect to x on either side of equation (3.5)
and setting x = 0, we obtain the quadratic case. �
Theorem 3.7. For d = 0, 1, 2, the set of S-splines {Sj,d}nd

j=1 forms a basis for Sd.

Proof. Let nd = dim(Sd). By Theorem 2.2 the nd functions Sj,d belong to Sd. The
result then follows as a consequence of local linear independence. �

Marsden’s identity and linear independence also imply the following symmetry
property.

Lemma 3.8. For x, z ∈ R
2,

Rk
1(x)R

k
2(z) = Rk

1(z)R
k
2(x), k = 1, . . . , 12,(3.17)

R1(x)R2(z) = R1(z)R2(x).(3.18)

Proof. For any x,y, z ∈ R
2 and 1 ≤ k ≤ 12,

Rk
1(x)R

k
2(z)ψ

k
2(y) = (1− zTy)Rk

1(x)ψ
k
1(y) = (1− zTy)(1− xTy)ψk

0(y)

= (1− xTy)(1− zTy)ψk
0(y) = (1− xTy)Rk

1(z)ψ
k
1(y)

= Rk
1(z)R

k
2(x)ψ

k
2(y).
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Since ψk
2 is a basis for Π2(R

2), (3.17) follows. Furthermore, for x, z ∈ Δk, (3.18)
follows from (3.17). Thus, (3.18) holds for all x, z ∈ R2. �

3.3. Differentiation. In this section we derive a formula for the directional deriv-
ative of the S-splines Sj,d. Let Du := u · ∇ = u1

∂
∂x1

+ u2
∂

∂x2
with u = [u1, u2]

T be

a directional derivative. The unique solution α := [α1, α2, α3]
T of

(3.19)
α1 + α2 + α3 = 0,

α1p1 + α2p2 + α3p3 = u

is called the directional coordinates of u. If u = q1 − q2, with qi ∈ R
2 for

i = 1, 2 then αj := β1,j − β2,j , j = 1, 2, 3, where βi := [βi,1, βi,2, βi,3]
T is the vector

of barycentric coordinates of qi, i = 1, 2.
We have the following differentiation formula:

Theorem 3.9. If u ∈ R2 has directional coordinates α, then for d = 1, 2

Dus
T
d = dsTd−1Ud,u,(3.20)

Dus
k T
d = dsk T

d−1U
k
d,u, k = 1, . . . , 12,(3.21)

where, with αi,j := αi − αj,

(3.22) U1,u :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2α1 0 0 0 0 2α3,2 4α2 0 0 0
2α1 0 0 2α2,3 0 0 4α3 0 0 0
0 2α2 0 2α1,3 0 0 0 4α3 0 0
0 2α2 0 0 2α3,1 0 0 4α1 0 0
0 0 2α3 0 2α2,1 0 0 0 4α1 0
0 0 2α3 0 0 2α1,2 0 0 4α2 0
0 0 0 0 0 2α3,2 4α1,3 0 0 −6α1

0 0 0 2α2,3 0 0 4α1,2 0 0 −6α1

0 0 0 2α1,3 0 0 0 4α2,1 0 −6α2

0 0 0 0 2α3,1 0 0 4α2,3 0 −6α2

0 0 0 0 2α2,1 0 0 0 4α3,2 −6α3

0 0 0 0 0 2α1,2 0 0 4α3,1 −6α3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.23)

U2,u=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2α1 2α2 0 0 0 0 0 0 0 0 0 2α3

0 0 0 2α1 2α2 2α3 0 0 0 0 0 0
0 0 0 0 0 0 0 2α2 2α3 2α1 0 0
0 α1,3 3α3 α2,3 0 0 0 0 0 0 0 0
0 0 0 0 0 α2,1 3α1 α3,1 0 0 0 0
0 0 0 0 0 0 0 0 0 α3,2 3α2 α1,2

0
α1,3

2
3α2
2

0 0 0 0 0 0 0 3α3
2

α1,2

2

0 0 3α1
2

α2,3

2
0

α2,1

2
3α3
2

0 0 0 0 0

0 0 0 0 0 0 3α2
2

α3,1

2
0

α3,2

2
3α1
2

0

0 0 −2α3 0 0 0 −2α1 0 0 0 −2α2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

(3.24) Uk
1,u = U1,u(k, g

k
1), Uk

2,u = U2,u(g
k
1 , g

k
2).

For a spline fd := sTd c =
∑nd

j=1 cjSj,d

(3.25) Dufd = dsTd−1c
[1] = d

nd−1∑
j=1

c
[1]
j Sj,d−1,
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Table 2. The coefficients c
[1]
j in (3.25). Here αi,j := αi − αj ,

ci,j := ci − cj .

j c
[1]
j , d = 1 c

[1]
j , d = 2

1 2α3,2c6,1 + 4α2c7,1 2α2c2,1 + 2α3c12,1
2 4α3c7,1 + 2α2,3c4,1 2α1c4,5 + 2α3c6,5
3 2α1,3c4,2 + 4α3c8,2 2α2c8,9 + 2α1c10,9
4 4α1c8,2 + 2α3,1c5,2 α1,3c2,3 + α2,3c4,3
5 2α2,1c5,3 + 4α1c9,3 α2,1c6,7 + α3,1c8,7
6 4α2c9,3 + 2α1,2c6,3 α3,2c10,11 + α1,2c12,11
7 2α3,2c6,10 + 4α1,3c7,10 1/2α1,3c2,3 + α2,3c3,11 + 1/2α1,2c12,11
8 4α1,2c7,10 + 2α2,3c4,10 1/2α2,3c4,3 + 1/2α2,1c6,7 + α3,1c7,3
9 2α1,3c4,10 + 4α2,1c8,10 1/2α3,1c8,7 + 1/2α3,2c10,11 + α1,2c11,7
10 4α2,3c8,10 + 2α3,1c5,10 2/3α3,1c7,3 + 2/3α2,3c3,11 + 2/3α1,2c11,7
11 2α2,1c5,10 + 4α3,2c9,10
12 4α3,1c9,10 + 2α1,2c6,10

where the c
[1]
j are given in Table 2. Moreover, for k = 1, . . . , 12

(3.26) Du

∑
j∈Gk

d

cjS
k
j,d = d

∑
j∈Gk

d−1

c
[1]
j Sk

j,d−1, d = 1, 2.

Proof. Let 1 ≤ k ≤ 12 and x,y ∈ R2. Recall from (3.13) that

Rk
d(x)ψ

k
d(y) = (1− xTy)ψk

d−1(y), x = [x1 x2]
T ,y = [y1 y2]

T ∈ R
2.

Let r ∈ {1, 2}. Differentiation gives

(3.27)
∂

∂xr
Rk

d(x)ψ
k
d(y) = −yrψ

k
d−1(y).

But, then

∂

∂xr
skd(x)

Tψk
d(y)

(3.5)
=

∂

∂xr
(1− xTy)d = −dyr(1− xTy)d−1

(3.5)
= −dyrs

k
d−1(x)

Tψk
d−1(y)

(3.27)
= dskd−1(x)

T ∂

∂xr
Rk

d(x)ψ
k
d(y).

Since the elements of ψk
d are linearly independent it follows that

∂

∂xr
skd(x)

T = dskd−1(x)
T ∂

∂xr
Rk

d(x), r = 1, 2

and (3.21) with Uk
d,u = DuR

k
d(x) follows by linearity of the directional derivative.

Moreover, (3.20), with Ud,u = DuRd(x), follows immediately from (3.21).
Let x have barycentric coordinates β with respect to Δ. For t ∈ R the barycen-

tric coordinates of x+ tu are β + tα, where the α is determined from (3.19). But
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then,

Ud,u(x) = DuRd(x) =
d

dt
Rd((β1 + tα1)p1 + (β2 + tα2)p2 + (β3 + tα3)p3)|t=0

= α1
∂Rd

∂β1
+ α2

∂Rd

∂β2
+ α3

∂Rd

∂β3

=: αT∇βRd.

Rd has elements like γj = 2βj − 1 and βi,j = βi − βj . Therefore,

∂γj
∂βk

= 2δk,j and
∂βi,j

∂βk
= δk,i − δk,j ,

and the formulas for U1,u and U2,u follow.

To prove (3.25) we note that (3.20) implies that c[1] = Ud,uc. The entries in
Table 2 are then obtained by eliminating one αj using α1 + α2 + α3 = 0 and
regrouping terms. �

For d = k = 1 (3.26) takes the form Du(c1S1,1 + c6S6,1 + c7S7,1) = 2α3,2c6,1 +
4α2c7,1 or in terms of control points Du(c1S1,1 + c6S6,1 + c7S7,1) = 2α3,2c6,1 +
4α2c7,1, where cj = (pj , cj) and ci,j = ci − cj . This involves two differences of
control points pointing from c1 to c6 and from c1 to c7. Similarly, on an inner
triangle, say k = 7, (3.26) will involve differences of control points pointing from
c10 to control points c6 and c7 of Δ7. Only those two types of differences are

involved in computing c[1]. For d = 2, to each component c
[1]
i of c[1] there is a

corresponding triangular or quadrilateral region. The differences of control points
used are along directed edges of that region.

There is also a simple differentiation formula for the second derivative of a qua-
dratic S-spline.

Theorem 3.10. For direction vectors u,v ∈ R2 and any x not on a knot line of
Δ, we have

DvDus
k
2(x)

T = 2Uk
1,vU

k
2,u = 2Uk

1,uU
k
2,v,(3.28)

DvDus2(x)
T = 2s0(x)

TU1,vU2,u = 2s0(x)
TU1,uU2,v,(3.29)

where the U matrices are defined according to the conventions in Theorem 3.9.

Proof. Applying Dv to (3.21) and since Uk
2,u := DuR

k
2(x) is independent of x,

DvDus
k
2(x)

T = 2Dv(s
k
1(x)

TDuR
k
2) = 2DvR

k
1DuR

k
2 = 2Uk

1,vU
k
2,u.

The commutativity of differentiation follows from Lemma 3.8. �

4. Evaluation algorithms

Consider computing an S-spline fd(x) = sd(x)
T c. If x ∈ Δk, then by Corol-

lary 2.8,

fd(x) = skd(x)c
0 =

d∏
i=1

Rk
i (x)c

0, c0 := c(gk
d), d = 1, 2.

We also consider computing directional derivatives Dufd and DvDufd of order
r = 1 and r = 2, respectively.

For d = 1 and x ∈ Δk we start with c0 = c(gk
1). Then for r = 0, D0

uf1(x) =

f1(x) = Rk
1(x)c

0, while D1
uf1(x) = Uk

1,uc
0 for r = 1. In the quadratic case,
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Figure 8. Evaluating f2(x) using Algorithm 4.1 for (a) x ∈ Δ11,
and (b) x ∈ Δ5

d = 2, and x ∈ Δk we start with c0 = c(gk
2). Then for r = 0, c1 = Rk

2(x)c
0

and D0
uf2(x) = f2(x) = Rk

1(x)c
1 and for r = 1, D1

uf2(x) = c2 = Rk
1(x)c

1, where

c1 = 2Uk
2,uc

0. Finally for r = 2, DvDuf2(x) = c2 = Uk
1,vc

1, while c1 = 2Uk
2,uc

0.
We give two algorithms. Going from right to left, we obtain Dr

ufd(x), and, from
left to right, we can compute the S-spline elements Dr

us
k
d(x) that can be nonzero

at x.

Algorithm 4.1. Given x ∈ Δ, r ∈ {0, 1, 2}, u ∈ R2 if r > 0, and coefficients c.

(1) Determine the barycentric coordinates of x with respect to Δ and k such
that x ∈ Δk using Algorithm 1.1.

(2) c0 = c(gk
d).

(3) for i = 0, . . . , r − 1

ci+1 = (d− i)Uk
d−i,uc

i.
(4) for i = r, . . . , d− 1

ci+1 = Rk
d−i(x)c

i.

(5) Dr
ufd(x) = cd.

In Figure 8, the algorithm is illustrated for d = 2, r = 0, and 2 values of k.
Table 1 gives the relevant values of gk

1 and gk
2 . For k = 5, the 6 coefficients with

indices 6, 7, 8, 9, 10, 11 are combined to give c1j , j = 3, 5, 9, and these 3, in turn, give

rise to f2(x) = c25. The cj ’s needed for x ∈ Δ11 have indices 3, 6, 7, 8, 10, 11 giving
c1j , j = 5, 9, 11, and these 3 give rise to f2(x) = c211. We see that c19 requires 4 cj ’s,
while the other two level one coefficients combine only 3 cj ’s.

Consider next an algorithm for computing Dr
us

k
d(x)

T for some x ∈ Δ. If x ∈ Δk,

then skd(x)
T =

∏d
i=1 R

k
i (x), and this leads to,

Algorithm 4.2. Given x ∈ Δ, r ∈ {0, 1, 2}, and u ∈ R
2 if r > 0.

(1) Determine the barycentric coordinates of x with respect to Δ and k such
that x ∈ Δk using Algorithm 1.1.

(2) sk0 = 1.
(3) for i = 1, . . . , d− r

ski = ski−1R
k
i (x).
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(4) for i = d− r + 1, . . . , d

ski = iski−1U
k
i,u.

(5) Dr
us

k
d(x)

T = skd

Since the elements in Rk
1(x) and Rk

2(x) are nonnegative for x ∈ Δk the algo-
rithms for r = 0 are quite stable.

5. Subdivision

Suppose we divide the triangle Δ in Figure 2 uniformly into 4 triangles δ1, δ2, δ3,
δ4, and on each of these triangles we use the PS12-split. Thus, we develop a

triangulation Δ
(1)
PS12 of Δ comprised of 48 triangles (Figure 9). On δi we have nd

linearly independent S-splines Wnd(i−1)+j,d, j = 1, . . . , nd for i = 1, . . . , 4, for a
total of,

Id := 4nd.

Since Sd(ΔPS12) ⊂ Sd(Δ
(1)
PS12) and W d spans Sd(Δ

(1)
PS12), the S-spline Sj,d is a

linear combination of the Wj,d,

(5.1) Sj,d =

Id∑
i=1

αj,d(i)Wi,d, j = 1, . . . , nd.

In analogy to B-splines, the numbers αj,d(i) are discrete S-splines of degree d

relating ΔPS12 to Δ
(1)
PS12, and the matrix,

(5.2) Ad = [αj,d(i)]
Id,nd

i=1,j=1 =

⎡
⎢⎢⎣
E1,d

E2,d

E3,d

E4,d

⎤
⎥⎥⎦ ∈ R

Id,nd , where Ej,d ∈ R
nd,nd ,

is called the knot insertion matrix of degree d taking ΔPS12 to Δ
(1)
PS12.

In succinct vector form (5.1) is expressed by,

(5.3) sTd = wT
dAd,

where

sTd := [S1,d, . . . , Snd,d], wT
d := [W1,d, . . . ,WId,d].

If

f =

nd∑
j=1

cjSj,d = sTd c = wT
dω =

Id∑
i=1

ωiWi,d,

then

(5.4) ω = Adc.

To compute the coefficients of the subdivided surface we can either: i) compute
the knot insertion matrix and do a matrix vector multiplication or use a modified
approach that directly averages the original coefficients. We will present both and
start by deriving the knot insertion matrix.
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Figure 9. A triangle divided into 48 triangles

5.1. Computing the knot insertion matrix. To determine the matrix Ad we
start with a lemma involving the dual polynomials ψj,d of Sj,d and φi,d of Wi,d. For
fixed i with 1 ≤ i ≤ Id we let x1, . . . ,xd be the dual points of Wi,d, so that,

(5.5) φi,d(y) =
d∏

r=1

(1− xT
r y).

Recall that the 12 triangles of the PS12-split of Δ are denoted by Δk, for k =
1, . . . , 12. It is easy to see that the d dual points of Wi,d are located in (at least)

one closed triangle Δki
, the closure of Δki

.

Lemma 5.1. For fixed i, 1 ≤ i ≤ Id and d = 1, 2, we get

(5.6) φi,d =

nd∑
j=1

αj,d(i)ψj,d =
∑

j∈Li,d

αj,d(i)ψj,d

and

(5.7) {j : αj,d(i) �= 0} ⊂ Li,d,

where

(5.8) Li,d := {j : supp(Wi,d) ⊂ supp(Sj,d)}.

Moreover, Li,d ⊂ Gk
d for all k such that Δk ∩ supp(Wi,d) �= ∅. In particular, the

number of elements in Li,d is at most νd.

Proof. Fix i. By linear independence of the Wi,d it follows that αj,d(i) �= 0 only if
the support of Wi,d is contained in the support of Sj,d. Therefore, if αj,d(i) �= 0,
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then j ∈ Li,d. Using (3.4) and (5.1), for x ∈ Δ and any y ∈ R,

(1− xTy)d
(3.4)
=

nd∑
j=1

Sj,d(x)ψj,d(y)

(5.1)
=

nd∑
j=1

( Id∑
i=1

αj,d(i)Wi,d(x)
)
ψj,d(y)

=

Id∑
i=1

( nd∑
j=1

αj,d(i)ψj,d(y)
)
Wi,d(x).

On the other hand, by adding together the Marsden like identities on δr for r =
1, . . . , 4, we also have,

(1− xTy)d =

Id∑
i=1

φi,d(y)Wi,d(x).

Equation (5.6) follows from the linear independence of the Id S-splines Wi,d on Δ
and (5.7).

Suppose Δk ∩ supp(Wi,d) �= ∅. Then, for all j ∈ Li,d , Δk ∩ supp(Sj,d) �= ∅, and
simplex spline properties assure Δk ⊂ supp(Sj,d). Therefore, j ∈ Gk

d , so Li,d ⊂ Gk
d .

Noting Gk
d has exactly νd elements independent of k, the result follows. �

A recurrence relation for the αj,d’s in the ith row of Ad can be determined from
the following theorem.

Theorem 5.2. Suppose, for fixed d ∈ {1, 2} and 1 ≤ i ≤ Id, that x1, . . . ,xd are
the dual points of Wi,d. Also, let k be such that x1, . . . ,xd ∈ Δk. Then

(5.9) αk
d(i)

T = Ad(i, g
k
d) =

d∏
r=1

Rk
r (xr)

and

(5.10) αd(i)
T = [α1,d(i), . . . , αnd,d(i)] = eTk

d∏
r=1

Rr(xr).

Moreover, αj,d(i) = 0 for j /∈ Gk
d . Here R1(x) is given by (2.15); R2(x), by (2.16);

and Rk
d, in Definition 2.7.

Proof. By Lemma 5.1,

φi,d(y) =
∑
j∈Gk

d

αj,d(i)ψj,d(y) = αk
d(i)

Tψk
d(y).

By (3.16)

φi,d(y) =

d∏
r=1

(1− xT
r y) =

d∏
r=1

Rk
r (xr)ψ

k
d(y).
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Theorem 3.6 shows that the set given by the vector ψk
d is linearly independent, so

(5.9) follows. From (5.7) the remaining αj,d’s in row i of Ad are 0. Thus, (5.10)
follows (cf. Lemma 5.1). �

The blocks Er,2 of the quadratic subdivision matrix (5.2) are as follows:

E1,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0 0 0 0

1
6

5
12

1
4 0 0 0 0 0 0 0 0 1

6

0 3
4 0 1

4 0 0 0 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0 0 0 0

0 1
4

3
4 0 0 0 0 0 0 0 0 0

0 1
4

1
4 0 0 0 0 0 0 0 1

4
1
4

0 0 0 0 0 0 0 0 0 0 3
4

1
4

0 0 0 0 0 0 0 0 0 1
2 0 1

2

0 0 0 0 0 0 0 0 0 1
4 0 3

4
1
6

1
6 0 0 0 0 0 0 0 0 1

4
5
12

1
2 0 0 0 0 0 0 0 0 0 0 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E2,2 = Q2E1,2Q
T
2 , Q2 = [e5, e4, e3, e2, e1, e12, e11, e10, e9, e8, e7, e6],

E3,2 = Q3E1,2Q
T
3 , Q3 = [e9, e8, e7, e6, e5, e4, e3, e2, e1, e12, e11, e10],

and

E4,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
2 0 1

2 0 0 0 0

0 0 0 0 0 0 3
4

1
4 0 0 0 0

0 0 0 0 0 0 1
2 0 0 0 1

2 0

0 0 0 0 0 0 0 0 0 1
4

3
4 0

0 0 0 0 0 0 0 0 0 1
2 0 1

2

0 0 0 0 0 0 0 0 0 0 3
4

1
4

0 0 1
2 0 0 0 0 0 0 0 1

2 0

0 1
4

3
4 0 0 0 0 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0 0 0 0

0 0 3
4

1
4 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0

0 0 0 0 0 1
4

3
4 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5.2. Coefficient averaging algorithm. For any n ∈ N and real numbers
r1, . . . , rn we define,

(5.11) μ(r1, . . . , rn) :=

n∑
j=1

rj/n.

As shorthand we write for some [c1, . . . , c12]
T and 1 ≤ i1 < · · · < im ≤ 12,

(5.12) μi1,i2,...,im = μ(ci1 , ci2 , . . . , cim).

Continuing as defined above, we state the following.
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Theorem 5.3. If

f =

12∑
j=1

cjSj,2 =

48∑
i=1

ωiWi,2,

then

(5.13) ω12(r−1)+j = ξj,r, r = 1, 2, 3, 4, j = 1, . . . , 12,

where Ξ = [ξj,r] ∈ R
12,4 is the following:

(5.14) Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 μ2,4 μ10,12 μ6,8

μ1,2 μ(μ2,4, c4) μ(μ10,11, c11) μ(μ7,8, c7)
μ(μ1,2,12, μ2,3) μ(μ4,5,6, μ3,4) μ(μ7,8, μ10,11) μ7,11

μ(c2, μ2,4) μ4,5 μ(μ7,8, c7) μ(μ10,11, c11)
μ2,4 c5 μ6,8 μ10,12

μ(μ2,3, c3) μ5,6 μ(μ6,8, c8) μ(μ11,12, c11)
μ(μ2,3, μ11,12) μ(μ4,5,6, μ6,7) μ(μ8,9,10, μ7,8) μ3,11

μ(c11, μ11,12) μ(c6, μ6,8) μ8,9 μ(c3, μ2,3)
μ10,12 μ6,8 c9 μ2,4

μ(μ10,12, c12) μ(μ6,7, c7) μ9,10 μ(μ3,4, c3)
μ(μ1,2,12, μ11,12) μ(μ3,4, μ6,7) μ(μ8,9,10, μ10,11) μ3,7

μ1,12 μ(μ3,4, c3) μ(μ10,12, c10) μ(μ6,7, c7)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. This is straightforward using the explicit form of the matricesE1,2, . . . ,E4,2.
�

Figure 10 illustrates a geometric interpretation of the subdivision algorithm.

Figure 10. Subdivided domain mesh and surfaces. Left: one level
of subdivision; center: two levels of subdivision; right: three levels
of subdivision.
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6. Stability of the S-basis and the distance to the control points

6.1. Linear and quadratic quasi-interpolant. We recall from (3.7) that the
domain points mj,d are specified as,

x =

nd∑
j=1

mj,dSj,d(x), for d = 1, 2 and x ∈ Δ.

Of the many possible quasi-interpolants to consider, we examine only Qd :
C(Δ) → Sd given by

(6.1)

Q1f :=

10∑
j=1

(λj,1f)Sj,1, where λj,1f := f(mj,1),

Q2f :=
12∑
j=1

(λj,2f)Sj,2, where λj,2f := 2f(mj,2)−
1

2
f(p∗

j,2,1)−
1

2
f(p∗

j,2,2),

where, mj,d, p
∗
j,2,1 and p∗

j,2,2 are given in (3.8) and (3.3). We next show that the
λj,d’s are dual functionals with respect to the S-spline basis.

Lemma 6.1. For d = 1, 2, i = 1, . . . , 12, and j = 1, . . . , nd, λi,dSj,d = δij.

Proof. The case d = 1 follows trivially because the corresponding basis functions
are hat functions. Now, consider the case d = 2, for which the value of the jth
quadratic S-spline at the ith linear domain point is Υ1(i, j) in the matrix below:

Υ1 :=
[
Sj,2(mi,1)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 1
2 0 1

2 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2 0 1

2 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 1

2

0 1
8

3
8 0 0 0 0 0 0 0 3

8
1
8

0 0 3
8

1
8 0 1

8
3
8 0 0 0 0 0

0 0 0 0 0 0 3
8

1
8 0 1

8
3
8 0

0 0 1
3 0 0 0 1

3 0 0 0 1
3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Analogously, Υ2(i, j) below describes the value of the jth quadratic S-spline at the
ith quadratic domain point:

(6.2) Υ2 :=
[
Sj,2(mi,2)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
1
4

5
8 0 1

8 0 0 0 0 0 0 0 0

0 1
8

7
12

1
8 0 0 1

12 0 0 0 1
12 0

0 1
8 0 5

8
1
4 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1
4

5
8 0 1

8 0 0 0 0

0 0 1
12 0 0 1

8
7
12

1
8 0 0 1

12 0

0 0 0 0 0 1
8 0 5

8
1
4 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1
4

5
8 0 1

8

0 0 1
12 0 0 0 1

12 0 0 1
8

7
12

1
8

1
4 0 0 0 0 0 0 0 0 1

8 0 5
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The value of [λi,2S1,2, . . . , λi,2S12,2] is found by combining row i of Υ2 with suitable
rows of the matrices Υ1 and Υ2. For example,

2Υ2(2, :)− (Υ1(1, :) +Υ1(4, :))/2 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

2Υ2(3, :)− (Υ1(4, :) +Υ1(10, :))/2 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

showing that λ2,2Sj,2 = δ2,j , and λ3,2Sj,2 = δ3,j . �

6.2. Stability of the quadratic S-spline basis. For each j we let Ωj,d :=
supp(Sj,d) be the support of Sj,d. The following theorem shows the S-spline basis
achieves stability in the L∞ norm.

Theorem 6.2. For any fd = sTd c ∈ Sd,

(6.3) K−1
d ‖c‖∞ ≤ ‖fd‖L∞(Δ) ≤ ‖c‖∞, d = 0, 1, 2,

where K0 = K1 = 1 and K2 = 3. Furthermore, the constants Ki are the best
possible.

Proof. Since the S-splines form a nonnegative partition of unity the upper bound
is elementary. Also the values for K0 and K1 follow easily. Using Lemma 6.1 we
see that cj = 2f(mj,2) − 1

2f(p
∗
j,2,1) − 1

2f(p
∗
j,2,2) for all j. Since p∗

j,2,1, p
∗
j,2,2 and

mj,2 all belong to Ωj,d we obtain for each j,

(6.4) |cj | ≤ 3‖fd‖L∞(Ωj,d) ≤ 3‖fd‖L∞(Δ),

thus establishing the lower bound. Equality follows by choosing f so that it reduces
to the quadratic Chebyshev polynomial, on say, the edge [p1,p4]. �

Consider next the Lq norm. The next theorem and corollary show that a scaled
S-basis is stable in the Lq norm.

Theorem 6.3. For any fd = sTd c ∈ Sd and q ≥ 1 there is a constant Cd depending
only on d such that,

(6.5) C−1
d ‖c‖q,σ ≤ ‖fd‖Lq(Δ) ≤ ‖c‖q,σ, d = 0, 1, 2,

where

(6.6) ‖c‖q,σ := (
∑
j

|cj |qσj,d)
1/q, σj,d :=

∫
Δ

Sj,d =
v(Ωj,d)

νd
.

Proof. We first show that there is a constant κ depending only on d such that for
any g ∈ Sd,

(6.7)
∣∣g(x)∣∣ ≤ κ

v(Ωj,d)

∫
Ωj,d

∣∣g(z)∣∣dz, x ∈ Ωj,d, j = 1, . . . , nd.

To show this, observe that for all k, j,

v(Ωj,d) ≤
3

4
v(Δ) ≤ 3

4
· 24v(Δk) = 18v(Δk).

If x ∈ Ωj,d, then x ∈ Δk for some k. Now g is a polynomial on Δk and by
equivalence of norms there is a constant C depending only on d such that∣∣g(x)∣∣ ≤ C

v(Δk)

∫
Δk

∣∣g(z)∣∣dz ≤ 18C

v(Ωj,d)

∫
Ωj,d

∣∣g(z)∣∣dz,
which proves (6.7).
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The rest of the proof is based on standard Lq gymnastics. For the upper in-
equality, using the relation 1/q + 1/q′ = 1, and Hölder’s inequality for sums

‖f‖qLq(Δ) =

∫
Δ

(∑
j

cjS
1/q
j S

1/q′

j

)q ≤
∑
j

|cj |q
∫
Δ

Sj,d = ‖c‖qq,σ.

For the lower inequality, using (6.4), (6.7) and Hölder’s inequality for integrals over
Ωj,d,

σ
1/q
j,d |cj | ≤ Kdσ

1/q
j,d ‖f‖L∞(Ωj,d) ≤

κKd

σ
1−1/q
j,d

‖f‖L1(Ωj,d) ≤ κ1‖f‖Lq(Ωj,d).

Here κ1 is a constant depending only on d. Raising this to the qth power and
summing over j gives

‖c‖qq,σ ≤ κq
1

∑
j

‖f‖qLq(Ωj,d)
≤ κq

2‖f‖
q
Lq(Δ)

for some constant κ2 depending only on d. Taking the qth root proves the lower
inequality with Cd = κ2. �

By scaling the S-basis appropriately we can remove the weights in the discrete
lq norms.

Corollary 6.4. Define Lq scaled S-splines by

(6.8) S
[q]
j,d := σ

−1/q
j,d Sj,d, j = 1, . . . , nd, 1 ≤ q ≤ ∞,

where σj,q =
∫
Δ
Sj,d, and set s

[q]T
d = [S

[q]
1,d, . . . , S

[q]
nd,d

]. For any fd = s
[q]T
d c ∈ Sd

and q ≥ 1 there is a constant Cd depending only on d such that

(6.9) C−1
d ‖c‖q ≤ ‖fd‖Lq(Δ) ≤ ‖c‖q, d = 0, 1, 2.

Notice that the constant Cd does not depend on the shape and size of the triangle
Δ.

6.3. Distance between a surface and its control points. We show that the
distance between a surface and its governing control points is O(h2), where h is the
length of the longest edge of the triangle Δ.

Theorem 6.5. For any f2 = sT2 c ∈ S2 there is a constant K independent of h
such that

(6.10) |cj − f2(mj,2)| ≤ Kh2, j = 1, . . . , 12.

Proof. Recall from the proof of Theorem 6.2 that cj = 2f2(mj,2) − 1
2f2(p

∗
j,2,1) −

1
2f2(p

∗
j,2,2) for all j. Define

gj(t) := f2
(
p∗
j,2,1 + t

p∗
j,2,2 − p∗

j,2,1

hj

)
, hj := ‖p∗

j,2,2 − p∗
j,2,1‖2, t ∈ [0, hj ].

Observe that gj is a quadratic polynomial since p∗
j,2,1,p

∗
j,2,2,mj,2 lie on an edge of

a subtriangle, so,

2|cj − f2(mj,2)| = |2f2(mj,2)− f2(p
∗
j,2,1)− f2(p

∗
j,2,2)|

= |2gj(
hj

2
)− gj(0)− gj(hj)| =

h2
j

4
|g′′j (

hj

2
)|.
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Figure 11. Constraints on the three control mesh regions of each
surface for C1 continuity.

Since ‖p∗
j,2,2−p∗

j,2,1

hj
‖2 = 1, we can bound |g′′j (

hj

2 )| independent of hj , and then claim

the desired result. �

7. Smooth surfaces joins: Conditions on PS12 refinements of

triangulations

Let T be a triangulation of a polygonal region Ω in the plane. Further let TPS12

be the refined triangulation obtained by splitting each T ∈ T using the Powell-
Sabin 12 split. For d = 0, 1, 2 and −1 ≤ r ≤ s < d let Sr,sd (TPS12) be the space of
functions f in Cr(Ω), such that the restriction to any triangle of TPS12 is a degree

d polynomial and f ∈ Cs(T ) for each T ∈ T . We set Srd(TPS12) := S
r,d−1
d (TPS12).

Over each Ti ∈ T we have an S-spline basis {Sj,d,i} of degree d. In particular,
Sj,d,i ∈ Cd−1(Ti). For r = −1 the collection {{Sj,d,i}j}i constitutes a basis for

S
−1
d (TPS12).
We seek conditions on the S-spline coefficients to guarantee Cr continuity r =

0, 1, across a common edge (cf. Figure 11).

Theorem 7.1. Suppose T = {T1, T2} share a common edge ch({p1,p2}). We use
the quadratic domain points mj,2 to number the vertices, so that
T1 = ch({m1

1,2,m
1
5,2,m

1
9,2}) and T2 = ch({m1

1,2,m
1
5,2,m

2
9,2}), (cf. Figure 11).

Let f ∈ S
−1
d (TPS12) be a spline of degree d ∈ {1, 2} and let

(7.1) f1 := f |T1
=

∑
j

cjSj,d,1, f2 := f |T2
=

∑
j

djSj,d,2

be the restrictions of f to Ti for i = 1, 2.

(1) f ∈ S01(TPS12) if and only if cj = dj for j = 1, 2, 4.
(2) f ∈ S02(TPS12) if and only if cj = dj for j = 1, 2, 4, 5.
(3) f ∈ S

1
2(TPS12) if and only if f ∈ S

0
2(TPS12) and in addition

(7.2)

d12 = β1c1 + β2c2 + β3c12,

d3 =
2β1 + β2

3
c2 +

β1 + 2β2

3
c4 + β3c3,

d6 = β1c4 + β2c5 + β3c6,
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where m2
9,2 = β1m

1
1,2 + β2m

1
5,2 + β3m

1
9,2, so that β1, β2, β3 are the barycentric

coordinates of the vertex m2
9,2 of T2 with respect to T1.

Proof. We show only the quadratic case and consider first C0 continuity.
By the edge property (2.8) the restriction of fi to the edge ch({m1

1,2,m
1
5,2}) is

a sum of univariate quadratic B-splines {Bj,2}4j=1 over the common knot vector
[0, 0, 0, 1/2, 1, 1, 1]

f1 = c1B1,2 + c2B2,2 + c4B3,2 + c5B4,1, f2 = d1B1,2 + d2B2,2 + d4B3,2 + d5B4,1.

Therefore, the surface is continuous if and only if these curves are the same, a
condition that follows if and only if cj = dj for j = 1, 2, 4, 5.

We proceed to discuss conditions on fi that ensure C
1 continuity for a quadratic

f given we already have C0 continuity, that is, cj = dj for j = 1, 2, 4, 5. C1-
continuity holds if and only if

τ1(t) := Duf1((1−t)m1
1,2+tm1

5,2)=Duf2((1−t)m1
1,2+tm1

5,2) =: τ2(t), 0 ≤ t ≤ 1,

where u := m2
9,2 − m1

1,2 is the cross-boundary direction chosen to be along the

edge ch({m1
1,2,m

2
9,2}) of T2. To apply the differentiation formula in Theorem 3.9

we observe that for this u the α’s in the theorem are given by α1 = [β1−1, β2, β3]
T

for T1 and α2 = [−1, 0, 1]T for T2. By the differentiation formula (3.25), Table 2,
and the edge restriction formula (2.7), we get

1

2
τ1 =

(
2α1

2c2,1 + 2α1
3c12,1

)
B1,1 +

(
α1
1,3c2,3 + α1

2,3c4,3
)
B2,1

+
(
2α1

1c4,5 + 2α1
3c6,5

)
B3,1

and

1

2
τ2 =

(
2α2

2d2,1 + 2α2
3d12,1

)
B1,1 +

(
α2
1,3d2,3 + α2

2,3d4,3
)
B2,1

+
(
2α2

1d4,5 + 2α2
3d6,5

)
B3,1,

where Bj,1, j = 1, 2, 3 are the partition of unity linear B-splines on the knot vector
[0, 0, 1/2, 1, 1]. By linear independence of these B-splines and since τ1 = τ2,

2α1
2c2,1 + 2α1

3c12,1 = 2α2
2d2,1 + 2α2

3d12,1,

α1
1,3c2,3 + α1

2,3c4,3 = α2
1,3d2,3 + α2

2,3d4,3,

2α1
1c4,5 + 2α1

3c6,5 = 2α2
1d4,5 + 2α2

3d6,5.

Substituting in values for α1,α2, ci,j , and di,j yields

β2(c2 − c1) + β3(c12 − c1) = d12 − d1 = d12 − c1,

(β1 − 1− β3)(c2 − c3) + (β2 − β3)(c4 − c3) = −2(d2 − d3)− (d4 − d3)

= 3d3 − 2c2 − c4,

(β1 − 1)(c4 − c5) + β3(c6 − c5) = −(d4 − d5) + (d6 − d5) = d6 − c4.

Solving for d12, d3, d6 and simplifying we obtain (7.2). �
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The equations at (7.2) give dj as affine combinations of three neighboring points
in T1 for j = 3, 6, 12. Hence, the C1 conditions (7.2), illustrated in Figure 11, also
show that each of the sets of four coefficients in (7.2) can be used to define coplanar
points located at the quadratic domain points. More precisely,

Corollary 7.2. C1 constraints for the control points can be written as

(7.3)

(m2
12,2, d12) = β1(m

1
1,2, c1) + β2(m

1
2,2, c2) + β3(m

1
12,2, c12),

(m2
3,2, d3) =

2β1 + β2

3
(m1

2,2, c2) +
β1 + 2β2

3
(m1

4,2, c4) + β3(m
1
3,2, c3),

(m2
6,2, d6) = β1(m

1
4,2, c4) + β2(m

1
5,2, c5) + β3(m

1
6,2, c6).

Proof. Since the triangles ch({m1
1,2,m

1
2,2,m

1
12,2}) and ch({m1

1,2,m
1
5,2,m

1
9,2}) are

similar and m2
9,2 = β1m

1
1,1 + β2m

1
5,1 + β3m

1
9,1 it follows easily that m2

12,2 =

β1m
1
1,2 + β2m

1
2,2 + β3m

1
12,2. Similarly, m2

6,2 = β1m
1
4,2 + β2m

1
5,2 + β3m

1
6,2. We

leave the proof that m2
3,2 = 2β1+β2

3 m1
2,2 +

β1+2β2

3 m1
4,2 + β3m

1
3,2 to the reader. �

8. Approximation methods

Using the S-spline basis we can consider the usual linear approximation methods
like various types of interpolation, least squares, and quasi-interpolants. In this
section we discuss two types of interpolation and return to the quadratic quasi-
interpolant defined in (6.1).

8.1. Lagrange interpolation. We consider first Lagrange interpolation. Given
12 distinct points x1, . . . ,x12 in the triangle Δ and 12 real numbers z1, . . . , z12.
The problem is to find g ∈ S2 such that,

g(xi) = zi, for i = 1, . . . , 12.

In general the collocation matrix C := (Sj,2(xi))
12
i,j=1 can be singular. This hap-

pens, for example, if there are more than 6 points in one subtriangle.
We show that interpolation at the quadratic domain points is uniquely solvable.

Theorem 8.1. The collocation matrix C2 := (Sj,2(mi,2))
12
i,j=1 for interpolation

at domain points is nonsingular. Moreover, ‖C−1
2 ‖∞ = 28/9. Hence, if g =∑12

j=1 cjSj,2 is the interpolant to z ∈ R12 then ‖g‖∞ ≤ ‖c‖∞ ≤ 28
9 ‖z‖∞, where

c := [c1, . . . , c12]
T . Thus the interpolation at domain points is stable independently

of the geometry of the triangle.

Proof. The matrix C2 is given by (6.2). Because it is strictly diagonally dominant,
it must be nonsingular. The elements of C2 are independent of the location and
shape of Δ so the inverse of C2 can be easily computed symbolically. From this
calculation it follows that ‖C−1

2 ‖∞ = 28/9. The S-splines form a nonnegative
partition of unity and the inequality ‖g‖∞ ≤ ‖c‖∞ follows. Since C2c = z we find
c = C−1

2 z and hence ‖c‖∞ ≤ 28
9 ‖z‖∞. �
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8.2. Hermite interpolation. The classical interpolation problem in finite ele-
ments over the PS12-split is to interpolate values and gradients at the vertices and
unit normals at the midpoint of the edges. These interpolation conditions can be
described as linear functionals {ρj}12j=1, such that,

ρ(f) :=[ρ1(f), . . . , ρ12(f)]
T

=[f(p1), fx(p1), fy(p1), fn3
(p4), f(p2), fx(p2), . . . , fy(p3), fn2

(p6)]
T ,

where fni
is the derivative in the unit normal direction to the edge opposite pi =

[x1, yi]
T pointing inwards, i = 1, 2, 3. The coefficients in the interpolant g = sT c

are solutions of the linear system

Ac = ρ(f),

where the rows of A ∈ R12,12 are given by
(8.1)

A(1, :) = e1,

A(2, :) = 4[ y2 − y3 y3 − y1 0 0 0 0 0 0 0 0 0 y1 − y2 ]/δ,

A(3, :) = 4[ x3 − x2 x1 − x3 0 0 0 0 0 0 0 0 0 x2 − x1 ]/δ,

A(4, :) = ‖p1 − p2‖2[ 0 4�126 6 4�215 0 0 0 0 0 0 0 0 ]/δ,

A(5, :) = e5,

A(6, :) = 4[ 0 0 0 y2 − y3 y3 − y1 y1 − y2 0 0 0 0 0 0 ]/δ,

A(7, :) = 4[ 0 0 0 x3 − x2 x1 − x3 x2 − x1 0 0 0 0 0 0 ]/δ,

A(8, :) = ‖p2 − p3‖2[ 0 0 0 0 0 4�234 6 4�326 0 0 0 0 ]/δ,

A(9, :) = e9,

A(10, :) = 4[ 0 0 0 0 0 0 0 y3 − y1 y1 − y2 y2 − y3 0 0 ]/δ,

A(11, :) = 4[ 0 0 0 0 0 0 0 x1 − x3 x2 − x1 x3 − x2 0 0 ]/δ,

A(12, :) = ‖p3 − p1‖2[ 0 0 0 0 0 0 0 0 0 4�315 6 4�134 ]/δ,

where

(8.2) �ijk :=
(pi − pj)

T (pj − pk)

(pi − pj)
T (pi − pj)

, δ :=

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
We note that ‖pi−pj‖2�ijk is the length of the projection of pj−pk in the direction
of pi − pj and that δ is twice the signed area of Δ.

The matrix A is sparse, and simple to compute.
Let hT

2 = [H1,2, . . . , H12,2]
T be the nodal basis for S2 defined by ρj(Hi,2) = δi,j .

Then

hT
2 = sT2 A

−1

gives the representation for the nodal basis in terms of the quadratic S-spline basis.
We find that columns 1 through 6 and columns 7 through 12 of A−1 are given by
the two matrices
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(8.3)

A−1(:, 1 : 6) =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1

4
x21

1
4
y21 0 0 0

− 2
3
�126

1
6
x12�126

1
6
y12�126 δ/(6‖p12‖2) − 2

3
�215

1
6
x21�215

0 0 0 0 1 1
4
x12

0 0 0 0 1 0
0 0 0 0 1 1

4
x32

0 0 0 0 − 2
3
�234

1
6
x23�234

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 2
3
�134

1
6
x13�134

1
6
y13�134 0 0 0

1 1
4
x31

1
4
y31 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A−1(:, 7 : 12) =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

1
6
y21�215 0 0 0 0 0
1
4
y12 0 0 0 0 0
0 0 0 0 0 0

1
4
y32 0 0 0 0 0

1
6
y23�234 δ/(6‖p23‖2) − 2

3
�326

1
6
x32�326

1
6
y32�326 0

0 0 1 1
4
x23

1
4
y23 0

0 0 1 0 0 0
0 0 1 1

4
x13

1
4
y13 0

0 0 − 2
3
�315

1
6
x31�315

1
6
y31�315 δ/(6‖p31‖2)

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where lijk and δ are given by (8.2), xij = xi − xj , yij = yi − yj , and pij = pi − pj .

The inverseA−1 is also sparse and easy to compute. Further we observe that each
position nodal function uses 5 S-spline basis elements, while those for the partial
derivative conditions use 4 S-spline basis elements, and the normal derivative ones
are the scaled S-spline basis functions with trapezoidal support.

8.3. Quasi-interpolants. Consider the quasi-interpolant Q2 given in (6.1) as

Q2f :=

12∑
j=1

(λj,2f)Sj,2, where λj,2f := 2f(mj,2)−
1

2
f(p∗

j,2,1)−
1

2
f(p∗

j,2,2).

This is a projection Q2 : C(Δ) → S2 since the {λj,2}12j=1 is a dual basis for the
S-spline basis. Moreover, it is easy to see that the L∞ norm of Q2 is bounded,

‖Q2‖L∞(Δ) ≤ 3.

Using a standard argument,

‖f −Q2f‖L∞(Δ) ≤ Krh
r max
ν+μ=r

‖Dν,μf‖L∞(Δ), r = 1, 2, 3, f ∈ Cr(Δ),

where h is the length of the longest side of Δ, Kr depends only on r, and Dν,μf
means taking ν, respectively μ derivatives with respect to the first (second) variable.
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9. Concluding remarks

In this paper we introduced the S-spline basis, a B-spline like basis, for a single
PS12 macroelement. Locally this basis is a B-spline basis within a single macroele-
ment, but globally it behaves like a Bernstein-Bézier basis across macro-elements.
We prove that the S-spline basis has many desirable B-spline properties including
that it forms a partition of unity, offers a recurrence to hat functions, provides a
Marsden-like identity, enjoys Lq and L∞ stability, and has an associated control
mesh. The control mesh is unusual in that it is a hybrid with both triangular and
quadrilateral connectivity. The distance from a surface to any one of its control
points is O(h2), where h is the length of the longest side of macrotriangle Δ. Fur-
thermore each basis element reduces to a single univariate B-spline on the boundary
edges of the macroelement. Using the S-spline basis over each triangle, the PS12-
split becomes amenable for use in both surface fitting and finite element analysis
over an arbitrary triangulation. We have provided a simple, sparse, explicit basis
transformation matrix for expressing the nodal basis in terms of the S-spline basis,
as well as its sparse inverse. In addition to deriving subdivision algorithms, we
also develop pyramidal algorithms both for evaluation and differentiation. They
are simple to use for both explicit and parametric macroelements. Explicit condi-
tions for smoothness across a common edge of two macrotriangles are derived in
terms of the respective control meshes. These results highlight both the similarities
to and differences from the triangular Bernstein-Bézier approach. The ordering of
vertices, triangles and domain points used herein changed several times during the
development of this work. We recognize that there are many alternative ways for
ordering these quantities. For example, the vertices could be numbered by moving
around the edges counterclockwise in such a way that Δ = ch({p1,p3,p5}). In
the polynomial Bernstein/Bézier literature, the basis functions are indexed using
a scaling of the barycentric coordinates of the triangular domain points [13]. Such
a scheme could also be adopted for the S-basis, not to mention the myriad other
possibilities that might come to mind. Feeling that a naturally convenient scheme
will likely arise from further considerations and experiences over a longer time, we
opted for a somewhat arbitrary approach that sufficed for our initial purposes.

Appendix A. Proof of Recurrence Relation Theorem 2.3

Proof. For any knot set X ∈ R2,n we use the simplex spline normalizations

(A.1)

S(·|X) := v(ch(X))Q(·|X),

Q(·|X) :=

{
ν−1
d M(·|X), if span(X) = R2,

0, otherwise,

where
∫
M = 1. Recall that M(·|X) = M(·|Y ) for any permutation Y of the

columns of X. For x not on any of the knot lines we have the recurrence relation
[17]

(A.2) Q(x|X) = βi,j,k
i Q(x|Xi) + βi,j,k

j Q(x|Xj) + βi,j,k
k Q(x|Xk),

where Xr := X \ {xr} is defined by removing one of the knots equal to xr from X
and the βi,j,k’s are the barycentric coordinates of x with respect to a nondegenerate
triangle ch({pi,pj ,pk}). In the quadratic case we will also use the knot-insertion
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relation [17]

(A.3)
Q(x|X) = βi,j,k

i (y)Q(x|Xi ∪ {y}) + βi,j,k
j (y)Q(x|Xj ∪ {y})

+ βi,j,k
k (y)Q(x|Xk ∪ {y}),

where the βi,j,k’s are now the barycentric coordinates of y with respect to ch({pi,pj ,
pk}) and we add the inserted knot y to the knots on the right in (A.3). We need
to express the barycentric coordinates of βi,j,k

r for r = i, j, k in terms of βr for
r = 1, 2, 3. A few samples that we need are:

(A.4)

β1,4,6
1 = γ1, β1,4,6

4 = 2β2, β1,4,6
6 = 2β3,

β1,2,5
1 = β1, β1,2,5

2 = β2,3, β1,2,5
5 = 2β3,

β1,2,6
1 = β1,3, β1,2,6

2 = β2, β1,2,6
6 = 2β3,

β4,5,6
4 = −γ3, β4,5,6

5 = −γ1, β4,5,6
6 = −γ2,

β1,2,10
1 = β1,3, β1,2,10

2 = β2,3, β1,2,10
10 = 3β3.

Using the recurrence relation (A.2), the equations (A.4) and the normalization
(A.1) we determine column j of R1 corresponding to Sj,1 for j = 1, 4, 7, 10. As in
Definition 2.1 we set vj,1 := v(supp(Kj,1)). and apply the shorthand notation

Q(i1, . . . , in) := Q(·|[pi1 , . . . ,pin ]), S(i1, . . . , in) := S(·|[pi1 , . . . ,pin ]).

Consider first the corner hat S1,1.

(A.5)

S1,1 = v1,1Q(1, 1, 4, 6)

= v1,1
(
β1,4,6
1 Q(1, 4, 6) + β1,4,6

4 Q(1, 1, 6) + β1,4,6
6 Q(1, 1, 4)

)
= v1,1γ1

S(1, 4, 6)

v1,1
= v1,1γ1

S1,0 + S2,0

v1,1
= γ1S1,0 + γ1S2,0.

This determines the first column of R1 and it is easy to see that γ1Si,0(x) ≥ 0 for
i = 1, 2 and x ∈ Δ.

For the edge hat S4,1 we obtain

(A.6)

S4,1 = v4,1Q(1, 4, 2, 10)

= v4,1
(
β1,2,10
1 Q(4, 2, 10) + β1,2,10

2 Q(1, 4, 10) + β1,2,10
10 Q(1, 4, 2)

)
= v4,1

(
β1,3

S(4, 2, 10)

v4,1/2
+ β2,3

S(1, 4, 10)

v4,1/2

)
= v4,1

(
β1,3

S3,0 + S9,0

v4,1/2
+ β2,3

S2,0 + S8,0

v4,1/2

)
= 2

(
β2,3S2,0 + β1,3S3,0 + β2,3S8,0 + β1,3S9,0

)
,

giving the 4th column of R1. Moreover, β2,3Si,0(x) ≥ 0 and β1,3Sk,0(x) ≥ 0 for
i = 2, 8, k = 3, 9 and x ∈ Δ. Consider next the 7th column of R1 corresponding
to the Egyptian pyramid S7,1

(A.7)

S7,1 = v7,1Q(1, 4, 10, 6)

= v7,1
(
β1,4,6
1 Q(4, 10, 6) + β1,4,6

4 Q(1, 10, 6) + β1,4,6
6 Q(1, 4, 10)

)
= v7,1

(
γ1

S7,0 + S8,0

v7,1/4
+ 2β2

S1,0 + S7,0

v7,1/2
+ 2β3

S2,0 + S8,0

v7,1/2

)
= 4

(
β2S1,0 + β3S2,0 + β1,3S7,0 + β1,2S8,0

)
,
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and again all terms on the right are nonnegative on Δ. Finally, for the center
pyramid we obtain

(A.8)

S10,1 = v10,1Q(4, 5, 6, 10)

= v10,1
(
β4,5,6
4 Q(5, 6, 10) + β4,5,6

5 Q(6, 4, 10) + β4,5,6
6 Q(4, 5, 10)

)
= v10,1

(
− γ3

S11,0 + S12,0

v10,1/3
− γ1

S7,0 + S8,0

v10,1/3
− γ2

S9,0 + S10,0

v10,1/3

)
= −3

(
γ1(S7,0 + S8,0) + γ2(S9,0 + S10,0) + γ3(S11,0 + S12,0)

)
,

which determines column 10 in R1. Also the nonnegativity assertion follows. The
remaining columns follow by symmetry.

In the quadratic case the recursions are shown for the first columns of R2 corre-
sponding to the typical cases Sj,2, j = 1, 2, 3. We let v be the area of the triangle
Δ. For the corner S-spline, the relation

(A.9) S1,2 =
v

4
Q(1, 1, 1, 4, 6)

(A.2)
=

v

4
β1,4,6
1 Q(1, 1, 4, 6) =

v

4
γ1

4

v
S1,1 = γ1S1,1,

gives the first column of R2, and nonnegativity follows. For the second column we
need to show that

(A.10) S2,2 = 2β2S1,1 + β1,3S4,1 +
1

2
β1,3S7,1.

Clearly, all terms on the right are nonnegative on Δ. Now

S2,2 =
v

2
Q(1, 1, 4, 2, 6)

(A.2)
=

v

2
β1,2,6
1 Q(1, 4, 2, 6) +

v

2
β1,2,6
2 Q(1, 1, 4, 6)

The first term does not have the knots of any of the Sj,1. We correct this by
inserting the knot p10 according to

v

2
β1,2,6
1 Q(1, 4, 2, 6)

(A.3)
=

v

2
β1,3

(
β1,2,6
1 (p10)Q(4, 2, 6, 10)

+ β1,2,6
2 (p10)Q(1, 4, 6, 10) + β1,2,6

6 (p10)Q(1, 4, 2, 10)
)

=
v

2
β1,3

(1
3
Q(1, 4, 10, 6) +

2

3
Q(1, 4, 2, 10)

)
=

v

6
β1,3

(3
v
S7,1 + 2

3

v
S4,1

)
= β1,3S4,1 +

1

2
β1,3S7,1.

Adding the second term v
2β

1,2,6
2 Q(1, 1, 4, 6) = v

2β2
4
vS1,1 = 2β2S1,1 we obtain (A.10).

Finally, we derive the recurrence relation

(A.11) S3,2 = 3β3S4,1 +
3

2
β2S7,1 +

3

2
β1S8,1 + (−γ3)S10,1.

To start

S3,2 =
3v

4
Q(1, 4, 2, 5, 6)

(A.2)
=

3v

4

(
β1,2,6
1 Q(4, 2, 5, 6) + β1,2,6

2 Q(1, 4, 5, 6) + β1,2,6
6 Q(1, 4, 2, 5)

)
.

None of the knot sets of these linear simplex splines is among the Sj,1, so we need
to use knot insertion for all 3 terms on the right of the equality sign. For the first
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term,

3v

4
β1,2,6
1 Q(4, 2, 5, 6) =

3v

4
β1,3

(
β2,5,6
2 (p10)Q(4, 5, 6, 10)

+ β2,5,6
5 (p10)Q(4, 2, 6, 10) + β2,5,6

6 (p10)Q(4, 2, 5, 10)
)

=
3v

4
β1,3

(1
3

4

v
S10,1 +

2

3

3

v
S8,1

)
= β1,3

(3
2
S8,1 + S10,1

)
,

and similarly for the second and third term,

3v

4
β1,2,6
2 Q(1, 4, 5, 6) = β2

(3
2
S7,1 + S10,1

)
,

3v

4
β1,2,6
6 Q(1, 4, 2, 5) = β3

(
3S4,1 +

3

2
S8,1

)
.

This proves (A.11). Again each of the 4 terms on the right of (A.11) are nonnegative
on Δ. This completes the proof. �
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2. C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer-Verlag, New York, 1993.
MR1243635 (94k:65004)

3. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd
ed., Springer-Verlag, New York, 2002. MR1894376 (2003a:65103)

4. E. Cohen, T. Lyche, and R. F. Riesenfeld, Discrete B-splines and subdivision techniques
in computer aided geometric design and computer graphics, Computer Graphics and Image
Processing 14 (1980), 87–111.

5. W. Dahmen, On multivariate B-splines, SIAM J. Numer. Anal. 17 (1980), 179–191.
MR567267 (81c:41020)

6. W. Dahmen and C. A. Micchelli, On the linear independence of multivariate B-splines I, Tri-
angulations of simploids, SIAM J. Numer. Anal. 19 (1982), 993–1012. MR672573 (85c:41016a)

7. W. Dahmen, C. A. Micchelli, and H-P Seidel, Blossoming begets B-splines built better by
B-patches, Math. Comp 59 (1992), 97–115. MR1134724 (93b:41014)

8. P. Dierckx, On calculating normalized Powell-Sabin B-splines, Comput. Aided Geom. Design,
15 (1997), 61–78. MR1484258 (98j:41004)

9. N. Dyn and T. Lyche, A Hermite subdivision scheme for the evaluation of the Powell-Sabin

12-split element, in Approximation Theory IX, Volume 2, Charles Chui and Larry Schumaker
(eds.), Vanderbilt University Press, Nashville, 1998, 33–38. MR1743030

10. T. A. Grandine, The computational cost of simplex spline functions, SIAM J. Numer. Anal.
24 (1987), 887–890. MR899710 (88j:41032)

11. T. A. Grandine, The stable evaluation of multivariate simplex splines, Math. Comp. 50 (1988),
197–205. MR917827 (89a:65018)
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