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COMPUTATIONAL ASPECTS OF CUI-FREEDEN STATISTICS

FOR EQUIDISTRIBUTION ON THE SPHERE

CHRISTINE CHOIRAT AND RAFFAELLO SERI

Abstract. In this paper, we derive the asymptotic statistical properties of a
class of generalized discrepancies introduced by Cui and Freeden (SIAM J. Sci.
Comput., 1997) to test equidistribution on the sphere. We show that they have
highly desirable properties and encompass several statistics already proposed
in the literature. In particular, it turns out that the limiting distribution is an
(infinite) weighted sum of chi-squared random variables. Issues concerning the
approximation of this distribution are considered in detail and explicit bounds
for the approximation error are given. The statistics are then applied to assess

the equidistribution of Hammersley low discrepancy sequences on the sphere
and the uniformity of a dataset concerning magnetic orientations.

1. Introduction

The aim of this paper is to derive the properties of a new class of statistics
for testing equidistribution on the sphere and to investigate their computational
aspects. They have been introduced in a seminal paper by Cui and Freeden (see
[10]) under the name of generalized discrepancies1 in order to extend the famous
Koksma-Hlawka inequality of Numerical Analysis from the unit hypercube to the
sphere, and to evaluate the uniformity properties of some deterministic sequences
on the sphere. Some further properties of these discrepancies with direct interest for
Numerical Analysis are developed in [43]. These discrepancies can be generalized
to hyperspheres of arbitrary dimension: for the numerical properties in this case,
the reader may consult [9].

These discrepancies are indicated in the following as D (PN ;A) where PN is a
sample of points and A is a pseudodifferential operator acting on functions defined
on the sphere Ω ⊂ R

3, that enters D only through its symbol, that is a sequence
of constants {An;n = 0, 1, . . . }. In the following we will need no property of A
apart from its symbol. We address the reader interested in the mathematical de-
tails underlying the formulas to the original paper [10], in which the authors do not
however derive the statistical properties of this class of discrepancies. This is the
object of the present paper. A short exposition of the mathematical background
necessary to understand the statistical results is given in Section 2. The test sta-
tistics encompass those of Beran ([4]), Giné ([21]), Prentice ([33], see also [34]),
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and Pycke ([36, 37]). It is important to remark that some of these test statistics
have particular optimality properties (e.g., against certain hypotheses) that are not
shared by the general version D (PN ;A). The definition of D (PN ;A) is expressed
in terms of a (generally infinite) sum and its computation may be unstable when no
closed formula exists. For this reason, in Section 3 we review a set of cases in which
closed formulas are available. The main statistical results are stated in Section 4:
in particular, the asymptotic distribution of generalized discrepancies is shown to
be an infinite weighted sum of chi-square random variables. The computation of
this distribution passes customarily through the truncation of the infinite sum and
its approximation through a finite weighted sum. Several methods are available to
compute finite weighted sums of chi-squares (see [27, 14, 41, 15, 38], just to name
a few), but the error caused by the truncation of the infinite sequence of weights
is not sufficiently investigated in the literature. This is particularly relevant in this
case, since the number of degrees of freedom of the chi-squares in the sum increases
with the summation index. Therefore we provide some easily computable and ef-
fective bounds for the truncation error in Section 5. In Section 6, we consider a
particular version of the statistic proposed in [10]; we evaluate through simulations
the finite-sample performance of the statistic and the error in the approximation
of the asymptotic distribution, and we use it to evaluate the uniformity of a deter-
ministic sequence; at last, we compare several statistics on a dataset on Ω. Proofs
are gathered in Section 7.

2. Mathematical preliminaries

In order to introduce the formula of D (Pn;A), we need some concepts from
Functional Analysis on the sphere. Let L2 (Ω) be the space of Lebesgue square
integrable scalar functions on Ω. The spherical harmonics

{Yn,j ;n = 0, 1, . . . ; j = −n,−n+ 1, . . . , n− 1, n}
are a class of double indexed functions defined on Ω, where n is called the degree and
j is called the order of the spherical harmonics. Spherical harmonics constitute an
orthonormal basis of L2 (Ω), when Ω is endowed with the Lebesgue measure.2 The
Legendre polynomials {Pn;n = 0, 1, . . . } are the infinitely differentiable eigenfunc-
tions of the Legendre operator satisfying the normalization condition |Pn (1)| = 1.
The addition theorem of spherical harmonics links these functions to the Legendre
polynomials through the relation:

n∑
j=−n

Yn,j (ξ) · Yn,j (η) =
2n+ 1

4π
· Pn (ξ · η) , (ξ, η) ∈ Ω2,

where · denotes the inner product on the sphere. In particular, taking ξ = η, we

have that
∑n

j=−n |Yn,j (ξ)|2 = 2n+1
4π .

The only property of a pseudodifferential operator A that we will need is the
spherical symbol, that is a sequence {An;n = 0, 1, . . . } of real numbers charac-

terizing the behavior of the operator. If limn→∞
|An|

(n+ 1
2 )

t = const �= 0 for some

t ∈ R, then A is a pseudodifferential operator of order t. If, on the other hand,

limn→∞
|An|

(n+ 1
2 )

t = 0 for any t ≥ 0, A is of order −∞. Since we are not interested in

the way in which A acts on functions defined on Ω, but only in {An;n = 0, 1, . . . },
2Note that here we use the real-valued spherical harmonics and not the complex ones.
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for us the fact that A is of order t reduces to the rate of decrease of An to 0
(however, see [10, p. 597], for more information).

Let PN = {ξ1, ξ2, . . . , ξN} be a set of points on Ω. The generalized discrepancy
associated with a pseudodifferential operator A with symbol {An}, An �= 0 for
n ≥ 1, is defined by

(2.1) D (PN ;A) =
1

N

⎡
⎣ N∑

i=1

N∑
j=1

∞∑
n=1

2n+ 1

4πA2
n

· Pn (ξi · ξj)

⎤
⎦
1/2

.

A difference with respect to the case considered in [10] is the fact that these authors
suppose that An is finite for every n ≥ 1, while in statistical applications there is
some interest in allowing for A−1

n = 0 for some n, as we will show in the examples
below.

In Section 3 we consider the computation of the test statistic. In Section 4,
we will consider the asymptotic properties of D2 (PN ;A). The computation of the
asymptotic distribution is addressed in Section 5, while Section 6 shows simulations
providing support for the previous results.

3. Computation of the test statistics

The computation of D2 (PN ;A) for a specific point set PN is much more difficult
than it seems. Indeed, the computation of the Legendre polynomials appearing in
(2.1) can be overly complicated if a nonstable numerical formula for Pn is used
(see the introductory treatment in [35, Section 5.4]). This fact is noted also in
[10, p. 602]. Therefore, it is always better to have a closed form expression for∑∞

n=1
2n+1
4πA2

n
· Pn (ξ · η).

Some tests used in Statistics are characterized by explicit forms. Closed formulas

trivially exist for the Rayleigh statistic 1
N2

∑N
i=1

∑N
j=1 P1 (ξi · ξj) obtained taking

A2
1 = 3

4π and A−1
n = 0 for n ≥ 2 (see [21, p. 1263]) and for the Bingham statistic

1
N2

∑N
i=1

∑N
j=1 P2 (ξi · ξj) obtained taking A2

2 = 5
4π and A−1

n = 0 for n �= 2 (see [21,

p. 1264]). Other, more complicated cases are:

• Beran’s form of Ajne’s statistic (see [33, p. 172]; note that [21, p. 1262]
uses a different normalization):

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) =
1

4
− (2π)

−1
cos−1 t,

obtained taking A2
n = +∞ for n even and A2

n = n2 ·
(

Γ(n+3
2 )

Γ(n+2
2 )

)2

for n odd

(see, e.g., equation 8.925.1 in [22]),
• Giné’s statistic (see [21, p. 1262] and, in particular, Proposition 6.4):

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) =
1

2
− 2π−1 sin cos−1 t,

obtained taking A2
n = +∞ for n odd and A2

n = n−1
n+2 ·

(
Γ(n

2 )
Γ(n+1

2 )

)2

for n even

(see, e.g., equation 8.925.2 in [22]),
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• and Pycke’s statistic (see [36, 37]):

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) = − 1

4π
· ln e

2
(1− t) ,

obtained taking An =
√
n (n+ 1) (see, e.g., equations 8.926.1 and 2 in [22];

however, note that this statistic does not respect the condition
∑∞

n=1
2n+1
A2

n

< ∞, and has to be analyzed as in Theorem 4.1 (iv)).

In Numerical Analysis, the most prominent case arises when

An =
√
(2n+ 1)n (n+ 1),

yielding (see equations 8.926.1 and 2 in [22]):

D2 (PN ;A) =
1

N2
·

N∑
i=1

N∑
j=1

1

4π
·
[
1− 2 ln

(
1 +

√
1− ηi · ηj

2

)]
.

This is the case considered in [10, p. 598], [43] and [26] (where it is calledD−discrep-
ancy, see p. 6).

A closed form arises also when An = −n (n+ 1). In this case, described in detail
in [20, Section 4.7], we have

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) =
1

4π
·
{
1− π2

6
+ L2

(
1 + t

2

)}

where L2 (·) is the so-called dilogarithm:

L2 (u) = −
∫ u

0

ln (1− v)

v
dv =

∞∑
k=1

uk

k2
.

The formula appearing in [20] is slightly more complicated than the one above,
which is taken from [24, p. 142]. We remark, in passing, that this is equal, up to
multiplication by 1

4π , to (0.8) in [16], even if the formula in the last reference is
even more complicated than those quoted above.

A case that has attracted a lot of interest arises if we consider the Riesz kernels
(see, e.g., [11]), appearing in the analysis of s−energies ([30, 12]). For ξ1, ξ2 ∈ Ω,
we define

K (ξ1, ξ2) =

{
sign (s) · ‖ξ1 − ξ2‖−s

2 , s �= 0,

− ln ‖ξ1 − ξ2‖22 , s = 0,

where ‖·‖2 is the Euclidean distance. The choices s = 0 and s = 1 lead respectively
to the logarithmic and Coulombic potential. We can write this kernel asK (ξ1, ξ2) =
ks (ξ1 · ξ2), where

ks (t) =

{
sign (s) · |2 (1− t)|−

s
2 , s �= 0,

− ln 2 (1− t) , s = 0,

for t ∈ [−1, 1). When s �= 0, the choice

A2
n =

2s−2Γ
(
s
2

)
Γ
(
− s

2 + n+ 2
)

πΓ
(
s
2 + n

)
Γ
(
1− s

2

)
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for s < 2 yields

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) = |2 (1− t)|−
s
2 − 2−s

1− s
2

= sign (s) · ks (t)−
2−s

1− s
2

.

When s = 0, the choice

A2
n =

n (n+ 1)

4π
yields

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) = − ln 2 (1− t)− ln
e

4
= k0 (t)− ln

e

4
.

This is simply a version of Pycke’s statistic.
Note that A2

n ∼ n−s+2, so that
∑∞

n=1
2n+1
4πA2

n
∼
∑∞

n=1 n
s−1, and this converges if

s < 0. Therefore the D2 (PN ;A) form of the discrepancy can be used only when
s < 0. On the other hand, d2 (PN ;A) (see Theorem 4.1(iv) below) can be used if∑∞

n=1

(
2n+1
4πA2

n

)2
∼
∑∞

n=1 n
2s−2 converges: this holds if s < 1

2 .

The requirement that s < 2 is quite unfortunate. Generalized Riesz kernels
remove it (see [13, p. 817]). In [5, Appendix B], some computations are available
that allow one to recover A2

n for s > 0 in the case of generalized Riesz kernels.
Some new cases can be obtained from the mathematical literature on special

functions. When A2
n = (2n+ 1) · ρ−n for ρ ∈ (−1, 1), the generating function of

Legendre polynomials yields (see [39, p. 533]; see [28] for a more general formula):

∞∑
n=1

2n+ 1

4πA2
n

· Pn (t) =
1

4π

1

(1− 2ρt+ ρ2)1/2
− 1

4π
,

while when A2
n = ρ−n for ρ ∈ (0, 1) we get the Abel-Poisson kernel (see [39, p.

534]):
∞∑

n=1

2n+ 1

4πA2
n

· Pn (t) =
1

4π

1− ρ2

(1− 2ρt+ ρ2)
3/2

− 1

4π
.

Other situations in which closed form expressions exist are given in [16, pp. 41-42]
and [24], but not all of them respect the condition

∑∞
n=1

2n+1
A2

n
< ∞ (see Theorem

4.1).

4. Asymptotic properties

The following theorem provides the most relevant asymptotic properties of the
generalized discrepancies under the null hypothesis of uniform distribution of the
sample of points PN .

Theorem 4.1. Let PN be a sample of iid uniform random variables on Ω, and
suppose that the spherical symbol {An} of the pseudodifferential operator A is such
that An �= 0 for any n. Then, if

∑∞
n=1

2n+1
A2

n
< ∞ the first three properties hold.

(i) D2 (PN ;A)
as−→ 0.

(ii)

N ·D2 (PN ;A)
D−→

∞∑
n=1

1

4πA2
n

· χ2
n (2n+ 1) ,
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where χ2 (k) denotes a χ2 random variable with k degrees of freedom, and{
χ2
n (2n+ 1) ;n ∈ N

}
is a sequence of independent χ2 random variables.

(iii) The following uniform bound holds:∣∣∣∣∣P{N ·D2 ≤ y
}
− P

{ ∞∑
n=1

χ2
n (2n+ 1)

4πA2
n

≤ y

}∣∣∣∣∣
≤ e

c·λ−1
13

√∑∞
n=1

2n+1

A4
n

N
·

⎛
⎜⎝1 +

(∑∞
n=1

2n+1
A2

n

) 3
2

(∑∞
n=1

2n+1
A4

n

) 3
4

⎞
⎟⎠

where λ13 is defined in the proof of the theorem.

(iv) If
∑∞

n=1

(
2n+1
A2

n

)2
< ∞, the modified statistic

d2 (PN ;A) =
1

N2

N∑
i �=j=1

∞∑
n=1

2n+ 1

4πA2
n

· Pn (ξi · ξj)

obtained removing the diagonal elements is such that d2 (PN ;A)
as−→ 0 and

N · d2 (PN ;A)
D−→

∞∑
n=1

1

4πA2
n

·
[
χ2
n (2n+ 1)− (2n+ 1)

]
.

Remark 1. (i) When An =
√
(2n+ 1)n (n+ 1),

∑∞
n=1

2n+1
A2

n
=
∑∞

n=1
1

n(n+1) = 1 <

∞ and

N ·D2 (PN ;A)
D−→

∞∑
n=1

χ2
n (2n+ 1)

4π (2n+ 1)n (n+ 1)
.

When A2
n = ρ−n, then N ·D2 (PN ;A)

D−→ 1
4π

∑∞
n=1 ρ

n · χ2
n (2n+ 1). When An =√

n (n+ 1) (i.e., Pycke’s statistic), we have to use the statistic d2 and we get

N · d2 (PN ;A)
D−→

∞∑
n=1

[
χ2
n (2n+ 1)− (2n+ 1)

]
4πn (n+ 1)

.

(ii) If A is such that k1 ·n1+α ≤ An ≤ k2 ·n1+α for α > 0 and 0 < k1 ≤ k2 < +∞,
then the bound has the following behavior in terms of N and α:∣∣∣∣∣P{N ·D2 ≤ y

}
− P

{ ∞∑
n=1

χ2
n (2n+ 1)

4πA2
n

≤ y

}∣∣∣∣∣
≤ ec·9

α
√

ζ(3+4α)

N
·
(
1 +

ζ
3
2 (1 + 2α)

ζ
3
4 (3 + 4α)

)

where ζ is the Riemann zeta function. The only practical implication of α is in the
exponent; this shows that a large value of α implies a worse convergence rate.

(iii) Adapting Theorem 4.4 in [21], it is possible to show the following fact: The

condition A2
n < +∞ for any n is equivalent to the fact that D2 (PN ;A)

P−→ 0 iff
the sample PN comes from a uniform distribution. This implies that a test based
on a generalized discrepancy may converge to 0 also for nonuniform distributions
if A2

n = +∞ for some n. As an example, Giné’s statistic (which has A2
n = +∞

for n odd, see above) converges to 0 for every probability measure uniform on the
projective space and not only on the sphere (see [21, p. 1262]).
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As concerns the asymptotic properties under the alternative hypothesis that the
points are independent realizations of a nonuniform distribution, we just quote
them, together with references to results in the literature that allow for deriving
them. Consider an iid sample P�

N drawn from a distribution P
� on the sphere

different from the uniform distribution. Note that, according to Remark 1 (iii), if
A2

n = +∞ for some n, then D2 (P�
N ;A) can converge in probability to 0 even if the

sample P�
N does not come from a uniform distribution. The following properties

hold if D2 (P�
N ;A) does not converge in probability to 0. Using Corollary 4 of

[1, p. 5], it is possible to show that whenD2 (P�
N ;A) is suitably centered and scaled,

it converges in distribution to a standard normal random variable. A uniform bound
on the distance between the finite sample and the asymptotic distribution can be
obtained through [1, Corollary 5, p. 5] and decreases as 1/

√
N . The asymptotic

distribution of N ·D2 (P�
N ;A) under a local alternative converging to the null, i.e.,

under a Pitman drift, is given by a weighted sum of noncentral χ2 random variables
(see [23, Theorem 2.1]).

5. Computation of the asymptotic distribution

In this section, we consider approximations of the asymptotic distribution of

N · D2 (PN ;A), denoted, in the following as X =
∑∞

n=1
χ2
n(2n+1)
4πA2

n
, through three

different methods. This topic is relevant for any distribution given by a weighted
sum of χ2 random variables, but is particularly critical here. Indeed, contributions

toX corresponding to large values of n (that is
χ2
n(2n+1)
4πA2

n
) can be quite relevant since

the degrees of freedom of the χ2 random variable depend on n (this problem does
not arise with the most common test statistics on the real line, such as Cramér-von
Mises and Anderson-Darling, and is a facet of the curse of dimensionality problem).

The first approximation amounts to considering a scaled and translated Γ dis-
tributed random variable XΓ that matches the first three moments of X:

XΓ = μ+
Γ
(
ν
2 , 2
)
− ν√

2ν
· σ

where Γ (α, θ) denotes a Γ random variable with shape parameter α and scale
parameter θ,

μ =

∞∑
n=1

2n+ 1

4πA2
n

, σ2 = 2

∞∑
n=1

2n+ 1

(4πA2
n)

2

and

ν =

( ∞∑
n=1

2n+ 1

A4
n

)3

/

( ∞∑
n=1

2n+ 1

A6
n

)2

.

This approximation for linear combinations of χ2 random variables has been con-
sidered in [6], in [31] and in [46], where uniform bounds are also derived.

We propose also the following truncated version of X:

Xν =

ν∑
n=1

χ2
n (2n+ 1)

4πA2
n

.

We will show that a better alternative is to use a centered version of Xν :

X�
ν =

ν∑
n=1

χ2
n (2n+ 1)

4πA2
n

+
∞∑

n=ν+1

2n+ 1

4πA2
n

.
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The computation of Xν can then be easily performed using the algorithm described
in [14] and linked in R from C in [7]. We majorize the errors implied by the
replacement of X with Xν or X�

ν using the following bounds.

Theorem 5.1. We have:

|P {X ≤ x} − P {Xν ≤ x}| ≤

√√√√√2
∑∞

n=ν+1
2n+1
A4

n
+
(∑∞

n=ν+1
2n+1
A2

n

)2
∑ν

n=1
2n+1
A4

n

· 2

π
√
3
·B
(
1

2
,
1

4

)
and

|P {X ≤ x} − P {X�
ν ≤ x}| ≤

∑∞
n=ν+1

2n+1
A4

n∑ν
n=2

2n+1
A4

n

· 5
π
.

If A is such that A−1
n ∼ k · n−1−α for α > 0 (so that A is a pseudodifferential

operator of order t = 1 + α with const = 1
k ), we have:

|P {X ≤ x} − P {Xν ≤ x}| ≤ k2

ασ
·
√
3

16π2
·B
(
1

2
,
1

4

)
· ν−2α · (1 + o (1)) ,

|P {X ≤ x} − P {X�
ν ≤ x}| ≤ k4

(1 + 2α) ·
{
σ2 − 3

8π2A4
1

} · 5

8π3

· ν−2−4α · (1 + o (1))

where σ2 has been defined above.

Remark 2. (i) Both bounds are tight, as will be shown in Section 6.
(ii) The previous bounds assert that the approximation of X through Xν and

X�
ν is better when the order of the pseudodifferential operator A is higher. This

is in line with [10, p. 602], where it is stated that computation of D2 (PN ;A) is
easier the larger t is.

(iii) For the interesting case An =
√
(2n+ 1)n (n+ 1), we have k = 1/

√
2 and

α = 1/2, so that

|P {X ≤ x} − P {Xν ≤ x}| ≤ 6.41233 · ν−1 · (1 + o (1)) ,

|P {X ≤ x} − P {X�
ν ≤ x}| ≤ 28.33329 · ν−4 · (1 + o (1)) ,

where X�
ν = Xν +

1
4π(ν+1) . Even if the constant of the second bound is quite large,

the bound shows that the approximation is very good even for small values of ν.
When A2

n = (2n+ 1) · ρ−n, the first bound is O (ρν) while the second is O
(
ρ2ν
)
;

when A2
n = ρ−n, the former is O (νρν) while the latter is O

(
νρ2ν

)
.

(iv) When using the statistic d2 (PN ;A), centering is automatic and only the
second bound applies.

6. Simulation results and applications

In this section we deal with four distinct topics, namely the rate of convergence of
the finite-sample distribution of N ·D2 (PN ;A) to the asymptotic one, the accuracy
of the approximations XΓ, Xν and X�

ν to X, the use of our asymptotic results to
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evaluate the quality of quasi-Monte Carlo sequences on the sphere, and at last a
statistical application to magnetic orientations.

When not explicitly stated otherwise, we consider only the Cui-Freeden test
statistic N · D2 (PN ;A) for An =

√
(2n+ 1)n (n+ 1), since in this case a closed

form expression exists and the previously quoted topics can be investigated without
further problems arising in the computation of the test statistic through Legendre
polynomials.

6.1. Rate of convergence to the asymptotic distribution. In Figure 1, we
have reproduced the finite-sample cdf (say FN ) for N ∈ {10, 30, 100} and the as-
ymptotic cdf (say F∞). The finite-sample distributions are based on Monte Carlo
sampling of S = 10, 000, 000 values of the test statistic N · D2 (PN ;A). In this
case, the Laws of the Iterated Logarithm for the empirical cdf (see, e.g., [44, p.
268]) prescribe that (asymptotically) the maximal error in the Monte Carlo ap-
proximation of FN through 10, 000, 000 points is at most 0.0003728232 and at least
0.0002106624.
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Figure 1. Distribution of N ·D2 (PN ;A) for N = 10, 30, 100 and ∞.

From the graphs it is not possible to devise any deviation of the finite-sample
distributions from the asymptotic one. Therefore, in Figure 2 we have reproduced
also the deviation FN −F∞ between the finite-sample and the asymptotic distribu-
tions. It turns out that the convergence is indeed very fast and the error for N = 10
is around 0.015. The decrease in 1/N in the figure is coherent with the bound in
Theorem 4.1.

6.2. Accuracy of approximations to the asymptotic distribution. In Fig-
ure 3, we represent the deviation between the asymptotic distribution of
N · D2 (PN ;A) and the proposed approximations. UNC-Real is the deviation
supx |P {X ≤ x} − P {Xν ≤ x}|, while CEN-Real is supx |P {X ≤ x} − P {X�

ν ≤ x}|.
UNC-Comp and CEN-Comp are the bounds computed through Theorem 5.1. It
is possible to see that both UNC-Comp and CEN-Comp are precise upper bounds
respectively on UNC-Real and CEN-Real. The most striking feature arising from
the graph is the dramatic improvement in the performance of the approximation
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Figure 2. Deviation of the distribution of N ·D2 (PN ;A) for N =
10, 30, 100 with respect to the asymptotic one.
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Figure 3. Accuracy of the approximations to the asymptotic dis-
tribution of N ·D2 (PN ;A).

method that can be obtained simply through centering, even if this operation in-
volves a shift of the distribution through a small constant such as

∑∞
n=ν+1

2n+1
4πA2

n
=

1
4π(ν+1) . Centering allows for a reduction of the error behavior from Θ

(
ν−1
)
to

Θ
(
ν−4
)
as shown by Theorem 5.1.

From the previous figure, it seems that the Γ approximation cannot compete with
the other methods, but the use of a uniform bound hides the fact that for most
quantiles of interest (confined to the upper tail) the Γ approximation is extremely
good. In Figure 4, the quantities P {X�

ν ≤ x}−P {X ≤ x}, P {Xν ≤ x}−P {X ≤ x}
and P {XΓ ≤ x}− P {X ≤ x} are shown for ν = 100, that is when the errors in the
approximation of X through Xν and XΓ are almost equal: this comparison shows
that, while X�

ν is by far the best method, XΓ approximates X better than Xν in
the upper tail. The graph of the Gamma approximation is strikingly similar to the
one in [6, p. 155].
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asymptotic distribution of N ·D2 (PN ;A).

6.3. Uniformity of quasi-Monte Carlo sequences. In this section, we show
how generalized discrepancies can be used in the assessment of low-discrepancy
(often called quasi-Monte Carlo) sequences.3

We recall the definition of the Hammersley sequence in the two-dimensional
hypercube and on the sphere (see [10, p. 605]). Let p be an integer greater than
or equal to 2. Then any integer n can be expressed as n = a0 + · · · + arp

r, for
an integer r and positive or null integer coefficients a0, . . . , ar. The nth element

of the p−adic van der Corput sequence is defined by x
(p)
n = a0

p + · · · + ar

pr+1 . The

Hammersley sequence of length N in the two-dimensional hypercube is defined by

(tn, φn)n=1,...,N =
(

2n−1
2N , x

(p)
n

)
n=1,...,N

. The Hammersley sequence on the sphere

is defined by applying to each element of the sequence (tn, φn)n=1,...,N the following
transformation:

(t, φ) �→
(√

1− (2t− 1)2 · cos (2πφ) ,
√
1− (2t− 1)2 · sin (2πφ) , 2t− 1

)
.

In [45], the Hammersley sequence has been proposed for the solution of some prob-
lems in computer graphics. In particular, the authors remark that when p (in their
paper denoted as p1) increases, the uniformity of the sequence seems to get worse:

Figures 2 and 3 show the Hammersley points with different bases,
on the plane and the sphere respectively. When p1 = 2, it gives
the best uniformly distributed pattern on the sphere. Cui et al.
[5] measures the uniformity of Hammersley points with p1 = 2 on
the sphere using the generalized discrepancy. It gives the lowest
generalized discrepancy (most uniformly distributed) among the
methods tested. As p1 increases (from Figures 3(b) to 3(f)), points
start to line up and form regular lines on the sphere. The position
of the pole (marked with an arrow) becomes distinguishable from
the pattern. [...] The Hammersley point set with p1 = 2 gives the

3For other computational studies concerning sequences on the sphere, the reader may consult
[10, 19, 26, 2, 29, 43] and the references therein.
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most uniformly distributed sampling pattern. For higher p1, the
points tend to align and reduce its usefulness.

Here, we quantify the qualitative remark in [45]. Therefore, we have computed the
value of N ·D2 (PN ;A) when PN is a Hammersley sequence on the sphere for N
varying in the interval [10, 10000] and for p prime and comprised between 2 and
23 (the restriction to prime numbers is not necessary, but customary; see, e.g.,
[17, p. 28]). The results are represented in Figure 5: from this, it is evident that
the sequence with p = 2, represented by the continuous line, is uniformly the best
one. When p increases, the generalized discrepancy N · D2 (PN ;A), represented
by a dashed line, shows an oscillating behavior but remains consistently above the
(black) curve with p = 2. By the way, this is coherent with the behavior of the
star discrepancy of Hammersley sequences that can be shown to worsen when p
increases (see [32, Theorem 3.8]).

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

0.
00
1

0.
02
0

50005005010 50005005010 50005005010

50005005010 50005005010 50005005010

50005005010 50005005010 50005005010

p=2 p=17p=7

p=3

p=5 p=23p=13

p=19p=11

Figure 5. Values of N ·D2 (PN ;A) when PN is an Hammersley
sequence with varying values of N (on the horizontal axis) and of
p.

6.4. A statistical example. We have considered a classical dataset concerning
52 measurements of magnetic remanence from specimens of red beds from Bowen
Basin, Queensland, after thermal demagnetisation to 670◦C (see Table B5 in [18]).
We have computed seven statistics as D2 (PN ;A) = 1

N2 ·
∑∞

i=1

∑∞
j=1

∑∞
n=1

2n+1
4πA2

n
·

Pn (ξi · ξj) (Pycke’s statistic is the only one computed removing the elements with
i = j in the double sum over i and j), and we have reported the values of N ·
D2 (PN ;A) in Table 1, along with the other values of interest.4 The values of the
cumulative distribution function have been computed through Xν and X�

ν , where
ν = 1000. The seven statistics yield similar results in the sense that all of them
fail to reject the null hypothesis of uniformity, even if one of them (Giné’s statistic)
comes very near to reject it at 90%. The respective error bounds are also displayed
in parentheses. The difference in the bounds for the centered and the uncentered
cases is eloquent. It should also be remarked that the bounds for the Cui-Freeden
statistic are coherent with the rates of decrease derived in Remark 2 (iii).

4In these computations, we do not consider s−energies since they cause some peculiar problems
that will be dealt with in a separate paper.
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é

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
+
∞

n
o
d
d

n
−

1
n
+

2

(
Γ
( n 2

)
Γ
( n

+
1

2

)) 2
n
e
v
e
n

1 2
−

2
π
−

1
si
n
c
o
s−

1
t

∞ ∑ n
=

1

(
2
n
−

1
)
[ B

( 2
n
−

1
2

,
3 2

)] 2
χ
2 n
(
4
n
+

1
)

8
π
(
n
+

1
)
[ Γ

( 3 2

)] 2

C
u
i-
F
re

e
d
e
n

(2
n

+
1
)
n
(n

+
1
)

1 4
π

[ 1
−

2
ln

( 1
+

√ 1
−

t
2

)]
∞ ∑ n
=

1

χ
2 n
(
2
n
+

1
)

4
π
(
2
n
+

1
)
n
(
n
+

1
)

F
re

e
d
e
n
-S

c
h
re

in
e
r

n
2
(n

+
1
)2

1 4
π

·{ 1
−

π
2 6

+
L

2

( 1+
t

2

)}
∞ ∑ n
=

1

χ
2 n
(
2
n
+

1
)

4
π
n
2
(
n
+

1
)
2

P
y
c
k
e

n
(n

+
1
)

−
1 4
π

·l
n

e 2
(1

−
t)

∑ ∞ n
=

1

[ χ
2 n
(
2
n
+

1
)
−

(
2
n
+

1
)
]

4
π
n
(
n
+

1
)

N
a
m

e
N

·D
2
(P

N
;
A

)
p
−
v
a
lu

e
U
N
C

p
−
v
a
lu

e
C
E
N

R
a
y
le
ig
h

0
.7
5
3
9
6
5
3

0
.5
1
9
8
5
9
9

(—
)

0
.5
1
9
8
5
9
9

(—
)

B
in

g
h
a
m

1
.3
2
5
0
8
3

0
.2
5
0
0
2
1
7

(—
)

0
.2
5
0
0
2
1
7

(—
)

B
e
ra

n
/
A
jn

e
0
.2
2
2
6
9
5
3

0
.4
6
5
2
0
1
9

(0
.0
0
2
8
1
2
0
2
4
)

0
.4
6
5
6
5
2
1

(8
.2
6
9
9
9
1
e
-1

1
)

G
in

é
0
.7
6
3
8
4
8
4

0
.1
0
2
3
6
7
5

(0
.0
0
8
6
2
2
0
6
7
)

0
.1
0
2
7
4
9
7

(7
.9
3
9
3
3
0
e
-1

2
)

C
u
i-
F
re

e
d
e
n

0
.0
8
8
1
0
5
1

0
.3
1
3
4
6
8
2

(0
.0
0
6
4
0
5
2
8
4
)

0
.3
1
4
2
1
8
2

(2
.8
2
2
0
2
1
e
-1

1
)

F
re

e
d
e
n
-S

c
h
re

in
e
r

0
.0
7
4
4
1
6
9

0
.4
3
6
9
8
1
3

(4
.3
9
2
6
9
1
e
-0

6
)

0
.4
3
6
9
8
2

(1
.2
3
4
3
0
7
e
-1

6
)

P
y
c
k
e

0
.1
5
3
1
1
3
5

—
(—

)
0
.0
9
4
3
9
5
4
9

(6
.3
5
3
5
1
e
-0

6
)



2150 CHRISTINE CHOIRAT AND RAFFAELLO SERI

7. Proofs

In the following ω (·) will denote the uniform measure on the sphere Ω and
ω� (·) := ω (·)/ω (Ω) the uniform probability measure corresponding to ω (·).

Proof of Theorem 4.1. We show that D2 (PN ;A) is a degenerate V−statistic with
respect to ω (·) (see [40, Chapter 5]). Indeed, from the definition of the generalized
discrepancy, it can be seen that

N ·D2 (PN ;A) =
1

N
·

N∑
i=1

N∑
j=1

h (ξi, ξj)

where h (ξi, ξj) =
∑∞

n=1
2n+1
4πA2

n
· Pn (ξi · ξj) is called the kernel. Since h (ξi, ξi) =∑∞

n=1
2n+1
4πA2

n
, we can write:

N ·D2 (PN ;A) =
2

N
·

N∑
i=1

i−1∑
j=1

h (ξi, ξj) +
∞∑

n=1

2n+ 1

4πA2
n

.

The first term is a U−statistic (see [40, Chapter 5]). From the addition theorem of
spherical harmonics, we have

h (ξi, ξj) =
∞∑

n=1

2n+ 1

4πA2
n

· Pn (ξi · ξj)

=
∞∑

n=1

1

A2
n

·
n∑

k=−n

Yn,k (ξi) · Yn,k (ξj) ,

so that it is simple to see that
∫
Ω
h (η, ξ)ω� (dη) =

∫
Ω

∫
Ω
h (η, ξ)ω� (dη)ω� (dξ) = 0.

In this case the kernel is said to be degenerate. A very important role in this
situation is played by the eigenvalues of the integral operator

Am (ξ) =

∫
Ω

h (η, ξ)m (η)ω� (dη) .

We can identify the eigenvalues of A with the sequence {( 1
4πA2

n
)⊗(2n+1);n ∈ N}

where x⊗i means that x is repeated i times. The presence of the term (4π)
−1

is
due to the fact that the eigenvalues of A are defined with respect to the uniform
measure on the sphere. The reason is very simple to see if A is invertible. Indeed,
from the fact that the pseudodifferential operator A is invariant (see equation on p.
597 in [10]) and invertible, we get A−2Yn,j = A−2

n ·Yn,j , n = 0, 1, . . . , j = −n, . . . , n.
However, the eigenvalues of A are defined with respect to the probability measure
ω� (·), so that

AYn,j =
1

ω (Ω)
·A−2Yn,j =

1

4πA2
n

· Yn,j .

In all other cases (that is when An = +∞ for at least one value of n ∈ N), the

appearance of the (4π)
−1

term is linked to the fact that the orthonormality of the
eigenfunctions of the operator A are defined with respect to the probability measure
ω� (·), while the spherical harmonics are orthonormal with respect to the measure
ω (·). In the following, the eigenvalues of A, counted with their multiplicities and
arranged in order of decreasing absolute value, will be denoted as {λn;n ∈ N}.

(i) We show that, if the points are uniformly distributed, then D (PN ;A) con-
verges to 0. When E |h (η, ξ)| < ∞, the strong law of large numbers holds for
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D (PN ;A) (see [40, Theorem A, p. 190]) and D2 (PN ;A)
as−→ 0. But E |h (η, ξ)| =

E

∣∣∣∑∞
n=1

2n+1
4πA2

n
· Pn (η · ξ)

∣∣∣ and this is guaranteed by the condition
∑∞

n=1
2n+1
A2

n
< ∞.

(ii) For degenerate U−statistics, the asymptotic distribution is given in [40,
Theorem on p. 194]. Therefore, we get

N ·D2 (PN ;A)
D−→

∞∑
n=1

1

4πA2
n

·
n∑

k=−n

[
χ2
n,k (1)− 1

]
+

∞∑
n=1

2n+ 1

4πA2
n

where {χ2
n,k (1) ;n = 0, 1, . . . ; k = −n, . . . , n} is a sequence of independent chi-

squared random variables with one degree of freedom. Using the classical relation∑n
k=−n χ

2
n,k (1) = χ2

n (2n+ 1) the result follows.

(iii) As concerns the uniform bound, from [3, Theorem 1.1] we have

∣∣∣∣∣P{N ·D2 (PN ;A) ≤ y
}
− P

{ ∞∑
n=1

χ2
n (2n+ 1)

4πA2
n

≤ y

}∣∣∣∣∣
≤

exp
{

c
√
γ2

|λ13|

}
N

·
(

γ3

γ
3
2
2

+
γ2,2
γ2
2

)
≤

exp
{

c
√
γ2

|λ13|

}
N

·
(
γ

3
4
4

γ
3
2
2

+
γ2,2
γ2
2

)

where λ13 is the 13th element of the sequence of eigenvalues of A (counted with
their multiplicities and arranged in order of decreasing absolute value), and

(7.1) γs = E |h (ξi, ξj)|s , γs,r = E {E [|h (ξi, ξj)|s |ξi ]}r .

We get

γ2 = E |h (ξi, ξj)|2 
∞∑

n=1

2n+ 1

A4
n

and

γ4 = E |h (ξi, ξj)|4 �
( ∞∑

n=1

2n+ 1

A4
n

)
·
( ∞∑

n=1

2n+ 1

A2
n

)2

.

As concerns γ2,2, we use the relation
∑n

j=−n |Yn,j (ξ)|2 = 2n+1
4π to get

γ2,2 = E

{
E

[
|h (ξi, ξj)|2 |ξi

]}2

= E

{ ∞∑
n=1

1

A4
n

·
n∑

k=−n

|Yn,k (ξi)|2
}2


( ∞∑

n=1

2n+ 1

A4
n

)2

. �
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Proof of Theorem 5.1. We start with the uncentered case. Consider the following
bound obtained through the inversion formula

|P {X ≤ x} − P {Xν ≤ x}| ≤ 1

π

∫ +∞

−∞

1

|t| · |φX (t)− φXν
(t)| dt

=
1

π

∫ +∞

−∞

1

|t| · |φXν
(t)| ·

∣∣∣∣ φX (t)

φXν
(t)

− 1

∣∣∣∣ dt
=

1

π

∫ +∞

−∞

1

|t| · |φXν
(t)| ·

∣∣∣Eeit(X−Xν) − 1
∣∣∣ dt

≤ 1

π

∫ +∞

−∞

1

|t| · |φXν
(t)| · E

∣∣∣eit(X−Xν) − 1
∣∣∣ dt

≤

√
E (X −Xν)

2

π
·
∫ +∞

−∞
|φXν

(t)|dt

where the third step comes from the fact that Xν and X−Xν are independent and

the fifth step from the inequalities
∣∣eix − 1

∣∣ ≤ |x| and E |X −Xν | ≤
√
E (X −Xν)

2

(see [42, Lemma 4.2, Chapter 13, p. 352], and [40, p. 197] for a similar majorization).
Then we have

φXν
(t) =

ν∏
n=1

(
1− 2it

4πA2
n

)− 2n+1
2

= exp

{
−

ν∑
n=1

2n+ 1

2
ln

(
1− it

2πA2
n

)}

= exp

{
−

ν∑
n=1

2n+ 1

4
ln

(
1 +

t2

4π2A4
n

)

−i
ν∑

n=1

2n+ 1

2
arctan

(
− t

2πA2
n

)}

= exp

{
−

ν∑
n=1

2n+ 1

4
ln

(
1 +

t2

4π2A4
n

)}

·
{
cos

[
ν∑

n=1

2n+ 1

2
arctan

(
− t

2πA2
n

)]

−i · sin
[

ν∑
n=1

2n+ 1

2
arctan

(
− t

2πA2
n

)]}

|φXν
(t)| = exp

{
−

ν∑
n=1

2n+ 1

4
ln

(
1 +

t2

4π2A4
n

)}
=

ν∏
n=1

(
1 +

t2

4π2A4
n

)− 2n+1
4

=
1∏ν

n=1

(
1 + t2

4π2A4
n

) 2n+1
4

≤ 1(
1 + t2 ·

∑ν
n=1

2n+1
12π2A4

n

) 3
4
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and

E (X −Xν)
2 = E

( ∞∑
n=ν+1

χ2
n (2n+ 1)

4πA2
n

)2

= E

( ∞∑
n=ν+1

χ2
n (2n+ 1)

4πA2
n

−
∞∑

n=ν+1

2n+ 1

4πA2
n

)2

+

( ∞∑
n=ν+1

2n+ 1

4πA2
n

)2

=

∞∑
n=ν+1

1

16π2A4
n

· E
(
χ2
n (2n+ 1)− 2n− 1

)2
+

( ∞∑
n=ν+1

2n+ 1

4πA2
n

)2

=

∞∑
n=ν+1

2 (2n+ 1)

16π2A4
n

+

( ∞∑
n=ν+1

2n+ 1

4πA2
n

)2

.

Therefore,

|P {X ≤ x} − P {Xν ≤ x}|

≤

√
2
∑∞

n=ν+1
2n+1

16π2A4
n
+
(∑∞

n=ν+1
2n+1
4πA2

n

)2
π

·
∫ +∞

−∞

1(
1 + t2 · 3

4

∑ν
n=1

2n+1
16π2A4

n

) 3
4

dt

=
1

π

√√√√√2
∑∞

n=ν+1
2n+1

16π2A4
n
+
(∑∞

n=ν+1
2n+1
4πA2

n

)2
3
4

∑ν
n=1

2n+1
16π2A4

n

·
∫ +∞

0

1

(1 + z)
3
4 z

1
2

dz

=

√√√√√2
∑∞

n=ν+1
2n+1

16π2A4
n
+
(∑∞

n=ν+1
2n+1
4πA2

n

)2
3
4

∑ν
n=1

2n+1
16π2A4

n

· 1
π
·B
(
1

2
,
1

4

)

where B is the beta function.
In the centered case, on the other hand,

∣∣φX�
ν
(t)
∣∣ yields

∣∣φX�
ν
(t)
∣∣ = |φXν

(t)| = 1∏ν
n=1

(
1 + t2

4π2A4
n

) 2n+1
4

≤ 1(
1 + t2

4π2A4
1

) 3
4
(
1 + t2 ·

∑ν
n=2

2n+1
20π2A4

n

) 5
4

≤ 1(
1 + t2 ·

∑ν
n=2

2n+1
20π2A4

n

) 5
4

,

and
∣∣Eeit(X−X�

ν ) − 1
∣∣ becomes∣∣∣Eeit(X−X�

ν ) − 1
∣∣∣ =

∣∣∣Eeit(X−X�
ν ) − 1− Eit (X −X�

ν )
∣∣∣

≤ E

∣∣∣eit(X−X�
ν ) − 1− it (X −X�

ν )
∣∣∣

≤ t2 · E |X −X�
ν |

2

2
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(always through [42, Lemma 4.2, Chapter 13, p. 352]) where

E (X −X�
ν )

2
= V

( ∞∑
n=ν+1

χ2
n (2n+ 1)

4πA2
n

)
=

∞∑
n=ν+1

2n+ 1

8π2A4
n

.

Therefore,

|P {X ≤ x} − P {X�
ν ≤ x}| ≤ 1

π

∫ +∞

−∞

1

|t| ·
∣∣φX�

ν
(t)
∣∣ · E ∣∣∣eit(X−X�

ν ) − 1
∣∣∣ dt

≤ 2

π

E |X −X�
ν |

2

2
·
∫ +∞

0

t(
1 + t2 · 4

5

∑ν
n=2

2n+1
16π2A4

n

) 5
4

dt

=

∑∞
n=ν+1

2n+1
16π2A4

n∑ν
n=2

2n+1
16π2A4

n

· 5

4π
·B
(
1,

1

4

)
.

The other relations are obvious from A−1
n ∼ k · n−1−α, using the fact that

E

[ ∞∑
n=1

2n+ 1

4πA2
n

· Pn (ξi · ξj)
]2

=
∞∑

n=1

2n+ 1

16π2A4
n

. �
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