MATHEMATICS OF COMPUTATION

Volume 82, Number 284, October 2013, Pages 2389-2420
S 0025-5718(2013)02704-4

Article electronically published on May 8, 2013

GENERALISED MERSENNE NUMBERS REVISITED

ROBERT GRANGER AND ANDREW MOSS

ABSTRACT. Generalised Mersenne Numbers (GMNs) were defined by Solinas
in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use
in elliptic curve cryptography. Their form is such that modular reduction is
extremely efficient, thus making them an attractive choice for modular mul-
tiplication implementation. However, the issue of residue multiplication effi-
ciency seems to have been overlooked. Asymptotically, using a cyclic rather
than a linear convolution, residue multiplication modulo a Mersenne num-
ber is twice as fast as integer multiplication; this property does not hold for
prime GMNs, unless they are of Mersenne’s form. In this work we exploit
an alternative generalisation of Mersenne numbers for which an analogue of
the above property — and hence the same efficiency ratio — holds, even at
bitlengths for which schoolbook multiplication is optimal, while also main-
taining very efficient reduction. Moreover, our proposed primes are abundant
at any bitlength, whereas GMNs are extremely rare. Our multiplication and
reduction algorithms can also be easily parallelised, making our arithmetic
particularly suitable for hardware implementation. Furthermore, the field rep-
resentation we propose also naturally protects against side-channel attacks,
including timing attacks, simple power analysis and differential power analy-
sis, which is essential in many cryptographic scenarios, in constrast to GMNs.

1. INTRODUCTION

The problem of how to efficiently perform arithmetic in Z/NZ is a very natural
one, with numerous applications in computational mathematics and number theory,
such as primality proving [1], factoring [45], and coding theory [68], for example. It
is also of central importance to nearly all public-key cryptographic systems, includ-
ing the Digital Signature Algorithm [24], RSA [54], and elliptic curve cryptography
(ECC) [9]. As such, from both a theoretical and a practical perspective it is inter-
esting and essential to have efficient algorithms for working in this ring, for either
arbitrary or special moduli, with the application determining whether generality
(essential for RSA for instance), or efficiency (desirable for ECC) takes precedence.

Two intimately related factors need consideration when approaching this prob-
lem. First, how should one represent residues? And second, how should one perform
arithmetic on these representatives? A basic answer to the first question is to use
the canonical representation Z/NZ = {0,...,N — 1}. With regard to modular
multiplication, for example, an obvious answer to the second question is to per-
form integer multiplication of residues, followed by reduction of the result modulo

Received by the editor August 15, 2011 and, in revised form, February 23, 2012.

2010 Mathematics Subject Classification. Primary 12Y05, 11T71, 11Y16.

Key words and phrases. Prime fields, high-speed arithmetic, elliptic curve cryptography, gen-
eralised Mersenne numbers, cyclotomic primes, generalised repunit primes.

The first author was supported by the Claude Shannon Institute, Science Foundation Ireland
Grant No. 06/MI/006.

(©2013 American Mathematical Society
Reverts to public domain 28 years from publication

2389

2390 ROBERT GRANGER AND ANDREW MOSS

N, in order to obtain a canonical representative once again. Using this approach,
the two components needed for efficient modular arithmetic are clearly fast integer
arithmetic, and fast modular reduction.

At bitlengths for which schoolbook multiplication is optimal, research on fast
modular multiplication has naturally tended to focus on reducing the cost of the
reduction step. For arbitrary moduli, Montgomery’s celebrated algorithm [49] en-
ables reduction to be performed for approximately the cost of a residue by residue
multiplication. For the Mersenne numbers M; = 2F — 1, efficient modular mul-
tiplication consists of integer residue multiplication to produce a 2k-bit product
U -2F + L, with U, L of at most k-bits, followed by a single modular addition
U + L mod Mj, to effect the reduction, as is well known. In 1999 Solinas proposed
an extension of this method to a larger class of integers: the Generalised Mersenne
Numbers (GMNs) [60]. As they are a superset, GMNs are more numerous than the
Mersenne numbers and hence contain more primes, yet incur little additional over-
head in terms of performance [1I]. In 2000, NIST recommended ten fields for use
in the ECDSA: five binary fields and five prime fields, and due to their performance
characteristics the latter of these are all GMNs [24], which range from 192 to 521
bits in size. The Standards for Efficient Cryptography Group also recommended
the same five prime fields in 2010 [12].

For the GMNs recommended by NIST, there is no interplay between the residue
multiplication and reduction algorithms, each step being treated separately with
respect to optimisation. On the other hand, at asymptotic bitlengths the form of
the modulus may be effectively exploited to speed up the residue multiplication
step. For the Mersenne numbers My, in particular, modular multiplication can
be performed for any k using a cyclic convolution effected by an irrational-base
discrete weighted transform (IBDWT) [16, §6] (see also [I7, §§9.5.2-9.5.4] for an
excellent overview of discrete Fourier transform-based multiplication methods, con-
volution theory and IBDWTSs). As such, multiplication modulo Mersenne numbers
is approximately twice as fast as multiplication of integers of the same bitlength,
for which a linear convolution is required, as each multiplicand must be padded
with k zeros before a cyclic convolution of length 2k can be performed. For Mont-
gomery multiplication at asymptotic bitlengths, the reduction step can be made
25% cheaper, again by using a cyclic rather than a linear convolution for one of the
required multiplications [53]. However, since the multiplication step is oblivious to
the form of the modulus, it seems unlikely to possess the same efficiency benefits
that the Mersenne numbers enjoy. These considerations raise the natural question
of whether there exists a similar residue multiplication speed-up at bitlengths for
which schoolbook multiplication is optimal? Certainly for the modulus N = 2%,
such a speed-up can be achieved, since the upper half words of the product can
simply be ignored. However, this modulus is unfortunately not at all useful for
ECC.

In this work we answer the above question affirmatively, using an alternative
generalisation of Mersenne numbers, which has several desirable features:

— Simple. Our proposed family is arguably a far more natural generalisation of
Mersenne numbers than Solinas’, and gives rise to beautiful multiplication and
reduction algorithms.

— Abundant. Our primes are significantly more numerous than the set of prime
GMNs and are abundant for all tested bitlengths; indeed, their number can be

GENERALISED MERSENNE NUMBERS REVISITED 2391

estimated using Bateman and Horn’s quantitative version [3] of Schinzel and
Sierpiriski’s “Hypothesis H” [56].

— Fast multiplication. Our residue multiplication is nearly twice as fast as mul-
tiplication of integer residues.

— Fast reduction. Our reduction has linear complexity and is particularly effi-
cient for specialised parameters, although such specialisation comes at the cost
of reducing the number of primes available.

— Parallelisable. Both multiplication and reduction can be easily parallelised,
making our arithmetic particularly suitable for hardware implementation.

— Side-channel secure. Our representation naturally protects against well-known
side-channel attacks on ECC (see [10, ch. IV] for an overview), in contrast to
the NIST GMNs, see [55] and [58), §3.2]. This includes timing attacks [40] [64],
simple power analysis [55] and differential power analysis [41].

This article provides an introductory (and comprehensive) theoretical framework
for the use of our proposed moduli. It thus serves as a foundation for a new ap-
proach to the secure and efficient implementation of prime fields for ECC, both in
software and in hardware. At a high level, our proposal relies on the combination of
a remarkable algebraic identity used by Nogami, Saito, and Morikawa in the context
of extension fields [51], together with the residue representation and optimisation
of the reduction method proposed by Chung and Hasan [I5], which models suitable
prime fields as the quotient of an integer lattice by a particular equivalence relation.
To verify the validity of our approach, we also provide a proof-of-concept implemen-
tation that is already competitive with the current fastest modular multiplication
algorithms at contemporary ECC security levels [B] 26 [32] [46] 25 [6].

The sequel is organised as follows. In §2] we present some definitions and recall
related work. In §8lwe describe the basis of our arithmetic, then in §§4H6l we present
details of our residue multiplication, reduction and representation respectively. In
gl we show how to ensure I/O stability for modular multiplication, then in §8we put
everything together into a full modular multiplication algorithm. We then address
other arithmetic operations and give a brief treatment of side-channel secure ECC
in §9 and in §I0 show how to generate suitable parameters. In §IT] we present our
implementation results and finally, in §I2] we draw some conclusions.

2. DEFINITIONS AND RELATED WORK

In this section we introduce the cyclotomic primes and provide a summary of
related work. We begin with the following definition.

Definition 2.1. For n > 1 let (,, be a primitive n-th root of unity. The n-th
cyclotomic polynomial is defined by

@@= [(-ch)=TJ0 -,

(k,n)=1 dn
where p is the Mobius function.

Two basic properties of the cyclotomic polynomials are that they have integer
coefficients, and are irreducible over Z. These two properties ensure that the eval-
uation of a cyclotomic polynomial at an integer argument will also be an integer,
and that this integer will not inherit a factorisation from one in Z[z]. One can
therefore ask whether or not these polynomials ever assume prime values at integer
arguments, which leads to our next definition.

2392 ROBERT GRANGER AND ANDREW MOSS

Definition 2.2. For n > 1 and ¢t € Z, if p = ®,(t) is prime, we call p an n-th
cyclotomic prime, or simply a cyclotomic prime.

Note that for all primes p, we have p = ®1(p+1) = Po(p—1), and so trivially all
primes are cyclotomic primes. These instances are also trivial in the context of the
algorithms we present for performing arithmetic modulo these primes, since in both
cases the cyclotomic polynomials are linear and our algorithms reduce to ordinary
Montgomery arithmetic. Hence for the remainder of the article we assume n > 3.

In addition to being prime-evaluations of cyclotomic polynomials, note that for
a cyclotomic prime p = ®,(¢), the field F, can be modelled as the quotient of
the ring of integers of the n-th cyclotomic field Q(¢,), by the prime ideal m =
(p, ¢, — t). This is precisely how one would represent F,, when applying the Special
Number Field Sieve to solve discrete logarithms in F,,, see, for example, [44]. Hence
our nomenclature for these primes seems apt. This interpretation of I, for p a
cyclotomic prime is implicit within the arithmetic we develop here, albeit only
insofar as it provides a theoretical context for it; this perspective offers no obvious
insight into how to perform arithmetic efficiently and the algorithms we develop
make no use of it at all. Similarly, the method of Chung and Hasan [I5], upon
which our residue representation is based, can be seen as arising in exactly the
same way for the much larger set of primes they consider, with the field modelled
as a quotient of the ring of integers of a suitable number field by a degree one prime
ideal, just as for the cyclotomic primes.

2.1. Low redundancy cyclotomic primes. The goal of the present work is to
provide efficient algorithms for performing F, arithmetic, for p = ®,,(¢) a cyclotomic
prime. As will become clear from our exposition, in order to exploit the available
cyclic structure — for both multiplication and reduction — we do not use the field
Z/®,,(t)Z, but instead embed into the slightly larger ring Z/(t"—1)Z if n is odd, and
Z/(t"/? +1)Z if n is even. In each case, using the larger ring potentially introduces
an expansion factor e(n) into the residue representation. One can alternatively
view this in terms of a redundancy measure r(n), where r = e — 1. Since using a
larger ring for arithmetic will potentially be slower, we now identify three families
of cyclotomic polynomials for which the above embeddings have low redundancy.
For n even, there is a family of cases for which the above embedding does not
introduce any redundancy, namely for n = 2%, since ®ox (t) = 27 =22 4 1,
and hence e = 1 and 7 = 0. When t = 2 these are of course the Fermat numbers,
and for general ¢ these integers are known as Generalised Fermat Numbers (GFNs).

It is expected that for each k there are infinitely many ¢ for which 2" +11s prime [20,

If n = 2p for p prime, then @5, (t) = P~ —tP72 4. ..+t —1 = (tP4+1)/(t+1) and
in this case e = p/(p — 1) and r = 1/(p — 1). The primality of these numbers was
studied in [21], and while they apparently do not have a designation in the literature,
one can see that by substituting ¢t with —¢ in the third family below produces this
one. For general even n we have e = n/2¢(n) and r = (n —2¢(n))/2¢(n), with ¢(-)
Euler’s totient function, which is the degree of ®,(x). Hence amongst those even n
which are not a power of 2, this family produces the successive local minima of r.

For odd n, we have e = n/¢(n) and r = (n — ¢(n))/éd(n). The successive local
minima of r occur at n = p for p prime, in which case ®,(t) = 2
t+1=(—-1)/(t—1), also with r = 1/(p—1). When ¢t = 2 these are of course the

GENERALISED MERSENNE NUMBERS REVISITED 2393

Mersenne numbers, and in analogy with the case of Fermat numbers, it would be
natural to refer to these integers for general ¢ as Generalised Mersenne Numbers,
particularly as one can show they share the aforementioned asymptotic efficiency
properties of the Mersenne numbers, while Solinas’ GMNs do not, unless they are
of Mersenne’s form. However, this family of numbers is known in the literature as
generalised repunits [65] (59} [19], since their base-t expansion consists entirely of 1’s.
Therefore, for the sake of uniform nomenclature, we use the following definition.

Definition 2.3. For m + 1 an odd prime let
p=C a(t) =t"+t" 1

We call such an integer a Generalised Repunit (GR); when p is prime we call it a
Generalised Repunit Prime (GRP).

We have developed modular multiplication algorithms for both GRPs and GFNs.
In terms of efficiency, for GRPs and GFNs of the same bitlength the respective
multiplication algorithms require exactly the same number of word-by-word multi-
plications. Also, our reduction algorithms for both GRPs and GFNs are virtually
identical. However, the multiplication algorithm for GFNs is far less elegant, is
not perfectly parallelisable and contains more additions. Furthermore, for a given
bitlength there are fewer efficient GFN primes than there are GRPs — as the
bitlength of GFNs doubles as k is incremented — and the I/O stability analysis
for multiplication modulo a GRP is far simpler. Therefore, in this exposition we
focus on algorithms for performing arithmetic modulo GRPs and their analysis
only. Note that the studies of GRPs [19, [65] consider only very small ¢ and large
m, whereas we will be interested in ¢ approximately the word base of the target
architecture, and m the number of words in the prime whose field arithmetic we
are to implement. Hence one expects (and finds) there to be very many GRPs for
any given relevant bitlength; see §I0

2.2. Related work. In the context of extension fields, let m + 1 be prime and let
p be a primitive root modulo m + 1. Then Fpm = F,[2]/(Ppq1(2)Fplz]). In the
binary case, i.e., p = 2, several authors have proposed the use of this polynomial
— also known as the all-one polynomial (AOP) — to obtain efficient multiplica-
tion algorithms [34] [66] 8, 57]. All of these rely on the observation that the field
Fa[2]/(®py1(2)Falz]) embeds into the ring Falx]/((z™ ! + 1)Fy[x]) — referred to
by Silverman [57] as the “ghost bit” basis — which possesses a particularly nice
cyclic structure, but introduces some redundancy. Similarly, this idea applies to any
cyclotomic polynomial, and several authors have investigated this strategy, embed-
ding suitably defined extension fields into the ring Fa[z]/((z™+1)Fa[z]) [22] 27, [67].

For odd characteristic extension fields, Silverman noted that the “ghost bit”
basis for p = 2 extends easily to larger p [57], while Kwon et al. have explored
this idea further [42]. Central to our application is the work of Nogami, Saito and
Morikawa [51], who used the AOP to obtain a very fast multiplication algorithm;
see §4 The use of cyclotomic polynomials in extension field arithmetic is therefore
well studied. In the context of prime fields, however, the present work appears to be
the first to transfer ideas for cyclotomic polynomials from the domain of extension
field arithmetic to prime field arithmetic, at least for the relatively small bitlengths
for which schoolbook multiplication is optimal.

2394 ROBERT GRANGER AND ANDREW MOSS

With regard to the embedding of a prime field into a larger integer ring, the idea
of operand scaling was introduced by Walter in order to obtain a desired represen-
tation in the higher-order bits [61], which aids in the estimation of the quotient
when using Barrett reduction [2]. Similarly, Ozturk et al. proposed using fields
with characteristics dividing integers of the form 2% 4 1, with particular applica-
tion to ECC [52]. As stated in the introduction, there are numerous very efficient
prime field ECC implementations [5, 26] [32] [46] [6]. While the moduli used in these
instances permit fast reduction algorithms, and the implementations are highly op-
timised, it would appear that none of them permit the same residue multiplication
speed-up that we present here, which is one of the central distinguishing features
of the present work.

3. GRP FIELD REPRESENTATION

In this section we present a sequence of representations of IF,,, with p a GRP,
the final one being the target representation which we use for our arithmetic. We
recall the mathematical framework of Chung-Hasan arithmetic, in both the general
setting and as specialised to GRPs, focusing here on the underlying theory, deferring
explicit algorithms for residue multiplication, reduction and representation until

§94HEl

3.1. Chung-Hasan arithmetic. We now describe the ideas behind Chung-Hasan
arithmetic [I3] 14, [I5]. The arithmetic was developed for a class of integers they
term low-weight polynomial form integers (LWPFIs), whose definition we now re-
call.

Definition 3.1. An integer p is a low-weight polynomial form integer (LWPFT), if
it can be represented by a monic polynomial f(t) =" + f,_1t" "t +---+ fit + fo,
where t is a positive integer and |f;| < £ for some small positive integer £ < t.

Note that if for a given LWPFI each f; € {£1,0} and t = 2* then it is a GMN, as
defined by Solinas [60]. The key idea of Chung and Hasan is to perform arithmetic
modulo p using representatives from the polynomial ring Z[T]/(f(T)Z[T]). To
do so, one uses the natural embedding ¢ : F, — Z[T|/(f(T)Z[T]) obtained by
taking the base ¢ expansion of an element of I, in the canonical representation
F, = {0,...,p — 1}, and substituting T for ¢. To compute ¢~! one simply makes
the inverse substitution and evaluates the expression modulo p.

The reason for using this ring is straightforward: since ¥ ~! is a homomor-
phism, when one computes z(T') = z(T) - y(T') in Z[T)], reducing the result modulo
f(T) to give w(T) does not change the element of F, represented by z(T), i.e., if
2(T) = w(T) (mod f(T)), then z(t) = w(t) (mod p), since p = f(¢). Furthermore,
since f(T) has very small coefficients, w(T") can be computed from z(T') using only
additions and subtractions. Hence given the degree 2(n — 1) product of two degree
n — 1 polynomials in Z[T], its degree n — 1 representation in Z[T]/(f(T)Z[T]) can
be computed very efficiently. Note that for non-low-weight polynomials this would
no longer be the case.

The only problem with this approach is that when computing z(T') as above,
the coefficients of z(T'), and hence w(T'), will be approximately twice the size of
the inputs’ coefficients, and if further operations are performed the representatives
will continue to expand. Since for I/O stability one requires that the coefficients
be approximately the size of ¢ after each modular multiplication or squaring, one

GENERALISED MERSENNE NUMBERS REVISITED 2395

must somehow reduce the coefficients of w(T) to obtain a standard, or reduced
representative, while ensuring that ¢~ (w (7)) remains unchanged.

Chung and Hasan refer to this issue as the coefficient reduction problem (CRP),
and developed three solutions in their series of papers on LWPFI arithmetic [13]
14, [T5]. Each of these solutions is based on an underlying lattice, although this was
only made explicit in [I5]. Since the lattice interpretation is the most elegant and
simplifies the exposition, in the sequel we opt to develop the necessary theory for
GRP arithmetic in this setting.

3.2. Chung-Hasan representation for GRPs. Let p = ®,,,(¢) be a GRP.
Our goal is to develop arithmetic for IF,, and we begin with the canonical rep-
resentation F, = Z/®,,41(t)Z. As stated in §2.0] the first map in our chain of
representations takes the canonical ring and embeds it into Z/(t™*! — 1)Z, for
which the identity map suffices. To map back, one reduces a representative modulo
p. We then apply the Chung-Hasan transformation of §3.1] which embeds the sec-
ond ring into Z[T]/(T™* — 1)Z[T], by taking the base ¢ expansion of a canonical
residue representative in Z/(t™ ! —1)Z, and substituting T" for t. We call this map
1. To compute ¥~ one simply makes the inverse substitution and evaluates the
expression modulo ™11 — 1.

Note that the codomain of ¢ may be regarded as an (m + 1)-dimensional vector
space over Z, equipped with the natural basis {T™,...,T,1}. In particular, for
x(T) € Z[T)/(T™* — 1)Z[T), where

2(T) =z, T + ...+ 1T + o,

one can consider z(T) to be a vector X = [Ty, ...,xo] € Z™1. Since Z™T! has
elements whose components are naturally unbounded, for each z € Z/(t™+! — 1)Z
there are infinitely many elements of Z™*! that map via 1! to z. Therefore in
order to obtain a useful isomorphism directly between Z/(t™*! — 1)Z and Z™*!,
we identify two elements of Z™! whenever they map via 9)~! to the same element
of Z)(t™ T —1)Z, i.e.,

(3.1) X~y = ¢ (X =y71(F) (mod t™F! 1),

and take the image of ¥ to be the quotient of Z™*! by this equivalence relation.
Pictorially, we thus have

F, CcZ/(t™ T —1)Z=27Zm)~ .

As mentioned in §3.1] for each coset in Z™*! /~, we would like to use a minimal,
or in some sense “small” representative, in order to facilitate efficient arithmetic
after a multiplication or a squaring, for example. Since we know that the base-t
expansion of every x € Z/(t™ ! —1)Z gives one such representative for each coset in
7™+ /~, for a reduction algorithm we just need to be able to find it, or at least one
whose components are of approximately the same size. Chung and Hasan related
finding such “nice” or reduced coset representatives to solving a computational
problem in an underlying lattice, which we now recall.

3.3. Lattice interpretation. Given an input vector z, which is the output of a
multiplication or a squaring, a coefficient reduction algorithm should output a vec-
tor W such that W ~ Z, in the sense of ([3.II), whose components are approximately
the same size as t. As observed in [15], the equivalence relation ([B.I]) is captured
by an underlying lattice, and finding W is tantamount to solving an instance of the

2396 ROBERT GRANGER AND ANDREW MOSS

closest vector problem (CVP) in this lattice. To see why this is, we first fix some
notation as in [I5].
Let T and ¥ be vectors in Z™*! such that the following condition is satisfied:

[t 1] -al =t 1] -V (mod ¢ — 1)

Then we say that U is congruent to Vv modulo t™1 —1 and write this as U =;m+1_1 V.
Note that this is exactly the same as saying ¢~ (1) = ¢~1(¥) (mod t™!—1), and
SOU~V < UZmst1_q V.

Similarly, but abusing notation slightly, for any integer b # t™* — 1 (where b
is typically a power of the word base of the target architecture), we write U =, v
for some integer v satisfying [t™,...,t,1]-@’ = v (mod b), and say | is congruent
to v modulo b, in this case. We reserve the use of “=" to express a component-
wise congruence relation, i.e., @ = ¥V (mod b). Finally, we denote by @ mod b the
component-wise modular reduction of u by b.

The lattice underlying the equivalence relation ([Bl) can now enter the frame.
Let V = {Vo,...,V,u} be a set of m+ 1 linearly independent vectors in Z™*! such
that ¥V; &m+1_4 0, the all zero vector, for i = 0,...,m. Then the set of all integer
combinations of elements of V forms an integral lattice, £(V), with the property
that for all z € Z™*+!, and all U € £, we have

(3.2) Z+U=mir_q Z.

In particular, the equivalence relation (3.) is captured by the lattice £, in the sense
that

igtm+1,1y < f—VGE

Therefore, if one selects basis vectors for £ that have infinity-norm approximately
t, then for a given z € Z™*!, finding the closest vector @ € £ to Z (with respect
to the Lo,-norm), means the vector W =z — 1 is in the fundamental domain of £,
and so has components of the desired size. Furthermore, since W =z — 4, by (3.2)
we have
W Xymir_q Z,

and hence solving the CVP in this lattice solves the CRP. In general, solving the
CVP is NP-hard, but since we can exhibit a good (near-othogonal) lattice basis for
LWPFTIs and an excellent lattice basis for GRPs, solving it is straightforward in our

case.

3.4. Lattice basis and simple reduction. For GRPs, we use the following basis
for L:

1 0 0 0 -t
—t 1 0 0 0
0 —t 0 0 0
(3.3) .
0 0 ~t 1 0
L0 o0 0 —t 1 |

Observe that the infinity-norm of each basis vector is ¢, so elements in the funda-
mental domain will have components of the desired size, and that each basis vector
is orthogonal to all others except the two adjacent vectors (considered cyclically).

GENERALISED MERSENNE NUMBERS REVISITED 2397

In order to perform a simple reduction that reduces the size of components by ap-
proximately log, ¢ bits, write each component of Z in base t: z; = 21t + 2;,0. If we
define W' to be

[z] M1 O --- 0 0 =t [Zm—1,1 1
Zm—1 -t 1 -~ 0 0 0 Zm—2,1
: 0 -t 0o 0 O
+ .)
2 o o0 - =t 1 0 201
| 20 L 0 0 - 0 =t 1 | |z

then W 2;m+1_1 Z and each |w;| ~ |2;|/t, assuming |z;| > t2. This was the method
of reduction described in [13], which requires integer division. The idea described
in [I4) was based on an analogue of Barrett reduction [2]. The method we shall
use, from [15], is based on Montgomery reduction [49] and for ¢ not a power of 2 is
the most efficient of the three Chung-Hasan methods.

3.5. Montgomery lattice-basis reduction. In ordinary Montgomery reduction
[49], one has an integer 0 < Z < pR which is to be reduced modulo p, an odd
prime, where here R is the smallest power of the word base b larger than p. The
central idea is to add a multiple of p to Z such that the result is divisible by R.
Upon dividing by R, which is a simple right shift of words, the result is congruent
to ZR~! (mod p), and importantly is less than 2p.

In the context of GRPs, let R = b% be the smallest power of b greater than
t. The input to the reduction algorithm is a vector z € Z™*! for which each
component is approximately R?. The natural analogue of Montgomery reduction
is to add to Z a vector U € £ whose components are also bounded by R2, such that
z+u=[0,...,0] (mod R). Then upon the division of each component by R, the
result will be a vector W which satisfies

w %tm,-f—lil (Z"‘ﬁ) . Ril %tmr+171 z- Ril,

and which has components of the desired size. While this introduces an R~! term
into the congruence, as with Montgomery arithmetic, one circumvents this simply
by altering the original coset representation of Z/(t™*! —1)Z, via the map = — =R
(mod t™*1 — 1), which is bijective since ged(t™*! — 1, R) = 1, assuming ¢ is even;
see §8l How then does one find a suitable lattice point W? For this one uses the
lattice basis (B3], which from here on in we call L. Proposition 3 of [I5] proves
that det L = 1 — t™*! and so ged(det L, R) = 1. One can therefore compute

(3.4) a’ —L7'-Z" (mod R),

(3.5) wl @+ L.u")/R,

giving W with the required properties. Observe that the form of these two opera-
tions is identical to Montgomery reduction, the only difference being that integer

multiplication is replaced by matrix-vector multiplication. It is easy to see that
this is what one requires, since for any @ € Z™*!, we have L -u’ € £, and so

def

Z'+ L-al 2, 7.
Furthermore, modulo R we have

zZ'+L-u' =z" +L-(-L7'-Z" mod R) =[0,...,0]7,

2398 ROBERT GRANGER AND ANDREW MOSS

ensuring the division of each component by R is exact. Hence W ~m+1_; z- R71,
as claimed.

In [15], an algorithm was given for computing @ and W in (84) and (B3] re-
spectively, for an arbitrary LWPFI f(¢). The number of word-by-word multiply
instructions in the algorithm — which is the dominant cost — is ~ ng?, where n
is the degree of f(t), and R = b?. In comparison, for ordinary Montgomery reduc-
tion modulo an integer of equivalent size this number is n2¢?, making the former
approach potentially very attractive. For our choice of primes — the GRPs — our
specialisation of this algorithm is extremely efficient, as we show in §5l

3.6. High level view of Chung Hasan-arithmetic. For extension fields, there
exists a natural separation between the polynomial arithmetic of the extension, and
the prime subfield arithmetic, which makes respective optimisation considerations
for each almost orthogonal. On the other hand, if for an LWPFI one naively
attempts to use efficient techniques that are valid for extension fields, then one
encounters an inherent obstruction, namely that there is no such separation between
the polynomial arithmetic and the coefficient arithmetic, which leads to coefficient
expansion upon performing arithmetic operations. Chung-Hasan arithmetic can be
viewed as a tool to overcome this obstruction, since it provides an efficient solution
to the coefficent reduction problem. Therefore, in practice any efficient techniques
for extension field arithmetic can be ported to prime fields, whenever the prime is
an LWPFI, which is precisely what we do in §4

4. GRP MULTIPLICATION

In this section we detail algorithms for performing multiplication of GRP residue
representatives. While for the reduction and residue representation we consider
elements to be in Z™*!, the multiplication algorithm arises from the arithmetic of
the polynomial ring Z[T|/(T™*! — 1)Z[T], and so here we use this ring to derive
the multiplication formulae.

4.1. Ordinary multiplication formulae. Let R = Z[T|/(T™! — 1)Z[T], and
let X =[x, ..., Zo] and ¥ = [Ym, - - -, Yo] be elements in R. Then in R the product
X -y is equal to [z, ..., 20|, where

(4.1) 2= Z T Y (i)

where the subscript (i) denotes ¢ (mod m+1). This follows from the trivial property
Tt =1 (mod T™+! — 1), and that for X = Y (2, T" and § = Y7 y;T7, we
have

Xy = in,(Ti.y):in.(Zijﬁj)
i=0 i=0 =0

I
]
B
/N
]
=
|
!
N——
I
/N
NE
&
<
1
N
!

This is of course just the cyclic convolution of X and y.

GENERALISED MERSENNE NUMBERS REVISITED 2399

4.2. Multiplication formulae of Nogami et al. Nogami, Saito and Morikawa
proposed the use of all-one polynomials (AOPs) to define extensions of prime
fields [5I]. In this section we will first describe their algorithm in this context,
and then show how it fits into the framework developed in §3

Let F, be a prime field and let f(w) = w™ + w™ ' + -+ +w + 1 be irre-
ducible over F,, i.e., m + 1 is prime and p is a primitive root modulo m + 1. Then
Fpm = Fpw]/(f(w)Fpw]). Using the polynomial basis {w™,w™ !, ... w} — rather
than the more conventional {w™ ! ... w,1} — elements of F,m are represented as
vectors of length m over Fp:

X=[Tm,. s 2T1] = Tw™ + Ty W™ Ty
Let X = [zpm,...,21] and ¥ = [Ym, ..., y1] be two elements to be multiplied. For
0<71<m,let
m/2
(4.2) ¢ = z;(%m = B4-) Wity ~ Yig-a):
=

where the subscript (i) here, as in §4.1] denotes ¢ (mod m + 1). One then has
(4.3) Z=X-y= Zziwi, with z; = qo — ¢;.
i=1

Nogami et al. refer to these coefficient formulae as the cyclic vector multiplication
algorithm (CVMA) formulae. The CVMA formulae are remarkable, since the num-
ber of F,, multiplications is reduced relative to the schoolbook method from m? to
m(m + 1)/2, but at the cost of increasing the number of F,, additions from m? — 1
to 3m(m — 1)/2 — 1. As alluded to in §3.6] a basic insight of the present work is
the observation that one may apply the expressions in (£2) to GRP multiplication,
provided that one uses the Chung-Hasan representation and reduction methodology
of §3 to give a full modular multiplication algorithm.

Note that Karatsuba-Ofman multiplication [36] offers a similar trade-off for ex-
tension field arithmetic. Crucially, however, as we show in §4.6] when we apply
these formulae to GRPs the number of additions required is in fact reduced. One
thus expects the CVMA to be significantly more efficient at contemporary ECC
bitlengths. The original proof of (3] given in [51] excludes some intermediate
steps and so for the sake of clarity we give a full proof in §4.4] beginning with the
following motivation.

4.3. Alternative bases. Observe that in the set of equations ([@2]), each of the
2(m+ 1) coefficients z;, y; is featured m + 1 times, and so there is a nice symmetry
and balance to the formulae. However, due to the choice of basis, both g and yg
are implicitly assumed to be zero. The output z naturally has this property also,
and indeed if one extends the multiplication algorithm to compute zy we see that
it equals gg — qo = 0.

At first sight, the expression z; = qg — ¢; may seem a little unnatural. It is easy
to change the basis from {w™, ..., w} to {w™ !, ... ,w,1}: for X = [Tpm_1,...,T0]
and ¥ = [Ym—1,-- -, o], we have

m—1
Z=X'y= g Z;w",
i=0

2400 ROBERT GRANGER AND ANDREW MOSS

resulting in the expressions z; = ¢, — ¢;, with ¢; as given before. This change of
basis relies on the relation

(4.4) W'=-1-w—-—w" ' mod f(w).

Note that in using this basis we have implicitly ensured that z,, = y,, = 0 in ([£2]),
rather than xg = yg = 0, and again the above formula is consistent since z,, =
Gm — ¢m = 0. More generally if one excludes w* from the basis, then z;, = y; = 0
and z; = qx — ¢;.

One may infer from these observations that the most natural choice of basis
would seem to be {w™,...,w, 1}, and that the expressions for ¢; arise from the
arithmetic in the quotient ring R’ = Fplw]/((w™* — 1)Fp[w]), rather than Fpm =
Fylw]/(f(w)Fplw]). In this case multiplication becomes

m—1 m—1 m
Z=X-y= Z zZiw' = Z(qm—qi)w’ = Z—qiw’,
i=0

=0 =0

where for the last equality we have again used equation (4.

4.4. Derivation of coefficient formulae. We now derive the CVMA formulae

of m Let x = [iCm, s 7x0] = Z:’;O xiwia and y = [ym, .. ,yO] :‘ Z:’;O yzwz
Then in the ring R/, as in @) the product X-¥ is equal to Y_;" ; z;w’, where

m
ZI 3)YY(i—7)
7=0

Of crucial importance is the following identity. For 0 < i < m we have

m m m
(4.5) 2) Ty — 2 Tium = — D (@6 — w6 W) — Yeg)):
=0 j=0

Jj=0

To verify this identity observe that when one expands the terms in the right-hand
side, the two negative sums cancel with the second term on the left-hand side, since
both are over a complete set of residues modulo m + 1. Similarly, the two positive
sums are equal and therefore cancel with the convolutions in the first term on the
left-hand side. We now observe that there is some redundancy in the right-hand
side of (LX), in the following sense. First, observe that

Zf” LY Z%w—%» —(G—4)) *Z% Yti—j)-
Jj=0 j=0

One can therefore rewrite the right-hand side of (@A) as

m

(4.6) =D (@) — o) Wi — Vi)
j=0

Noting that the j = 0 term of expression (48] is zero, we rewrite it as

=2 @) Wi VG-~ D @) W Y-,

GENERALISED MERSENNE NUMBERS REVISITED 2401

which in turn becomes

m/2 m/2
=D @y~ T Wid — Yi-i) — D@y =) Wiy — Vg
j=1 j=1

and then upon negating the two terms in the second summation, we finally have
m/2

m
=D @y~) Wi —Y-i) = 20 @y — T) W) — Yia—p)-
=0 =1

Hence (X)) becomes

m m m/2
(A7) D oweYi-n = 2 T0Y6) — D@ —) Wisn ~ Yis-p)
j=0 3=0

j=1
Equation (7)) gives an expression for the coefficients of the product z of elements
X and y, in the ring R’. Assuming these are computed using the more efficient
right-hand side, in order to restrict back to Fp[w]/(f(w)F,[w]), one can reduce the
resulting polynomial zZ by f(w). Note, however, that one does not need to use a
smaller basis & la Nogami et al. in §42 or §4.3], but can reduce by f(w) implicitly,
;;lvithout performing any computation. Indeed, letting (X,y) = E;-":O T(5Y(5), We
ave

z = Z ziwi = Z(_Qi + <i7 y>)wz = Z _ini + <i’ y> Zwi
i=0 i=0 i=0 =0

(4.8) —qgiw' (mod f(w)).

If
.MS

Il
=)

K2

Therefore the first term on the right-hand side of (7)) vanishes, so that one need
not even compute it. Thus using the arithmetic in R’ but implicitly working modulo
f(w) is more efficient than performing arithmetic in R’ alone. This is somewhat
fortuitous as it means that while the multiply operation in (&§]) is not correct in
R’, nevertheless, when one maps back to F,[w]/(f(w)F,[w]), it is correct.

4.5. Application to GRPs. Since equation (L)) is an algebraic identity, it is easy
to see that exactly the same argument applies in the context of GRPs, and we can
replace the formulae ([@1]) with the CVMA formulae (£Z). Since reduction in the
ring R = Z[T]/(T™*! — 1)Z|T] has a particularly nice form for GRPs, we choose
to use the full basis for R and hence do not reduce ezplicitly modulo ®,,11(T) to
obtain a smaller basis. This also has the effect of eliminating the need to perform the
addition of go (or g, or whichever term one wants to eliminate when one reduces
modulo ®,,1(T)), simplifying the multiplication algorithm further. Absorbing the
minus sign into the ¢;, Algorithm [I] details how to multiply residue representatives.

Remark 4.1. Observe that each component of Z may be computed entirely inde-
pendently of the others. Hence using m + 1 processors rather than 1, it would
be possible to speed up the execution time of Algorithm [] by a factor of m + 1,
making it particularly suitable for hardware implementation. In §8 we consider the
parallelisation of our reduction algorithms as well.

2402 ROBERT GRANGER AND ANDREW MOSS

ALGORITHM 1: GRP MULTIPLICATION

INPUT: X = [T, 20, ¥ = [Um,-- -, 0] € Z™T?
OUTPUT: Z = [z, ..., 20 € Z™T1
where Z%q)m“(t) X'y

1. For ¢=m to 0 do:
m/20. . , :
20w D By~ Ti) - Wi — Vi)

3. Return z

4.6. Cost comparison. Here we use a simple cost model to provide a measure of
the potential performance improvement achieved by using Algorithm[Il rather than
schoolbook multiplication of residues. We assume the inputs to the multiplication
algorithm have coefficients bounded by 09, i.e., they each consist of ¢ words. Let
M (q, q) be the cost of a g-word by g-word schoolbook multiplication, and let A(q, q)
be the cost of an addition of two g-word values. We assume that A(2q, 2q) = 2A(q, q)
and that there is no overflow beyond 2¢ words in the resulting vector components,
which one can ensure by selecting appropriate GRPs; see §il The cost of the
multiplication using each method is as follows.

4.6.1. GRP schoolbook multiplication. Working modulo T" +--- 4T 41 and using
a basis consisting of m terms only, the number of coefficient multiplications is m?2,
while the number of double-length additions is also m2?. Hence the total cost is
simply

m? - M(q,q) +2m? - A(q, q).

Note that computing the convolution (I]) costs
(m+1)* - M(q,q) +2m(m + 1) - A(q, q),

which is costlier since it requires embedding into R, which introduces some redun-
dancy.

4.6.2. CVMA formulae. For each z; computing each term in the sum costs M (q, q)+
2A(q,q), and so computing all these terms costs 3 - (M(q,q) +2A(q, q)). The cost
of adding these is (% — 1)A(2q,2q) = (m —2) - A(q, q). For all the m + 1 terms z;
the total cost is therefore
m(m+ 1)
2

Therefore, by using the CVMA formulae, we reduce not only the number of mul-
tiplications, but also the number of additions (by 2), contrary to the case of field
extensions, for which the CVMA formulae increases the number of additions by
nearly 50%. We have thus found an analogue of the asymptotic cyclic versus linear
convolution speed-up for multiplication modulo Mersenne numbers (see eq. (6.1)
of [16], for example) at small bitlengths for which schoolbook multiplication is
optimal, for GRPs.

- M(q,q) +2(m* — 1) - A(q, q).

GENERALISED MERSENNE NUMBERS REVISITED 2403

5. GRP REDUCTION

In this section we detail reduction algorithms for two types of GRPs. The first,
Algorithm] assumes only that ¢ is even, which provides the minimum possible
restriction on the form of the resulting GRPs for any given bitlength. All such
GRPs can therefore be implemented with code parametrised by the single variable
t, which may be beneficial for some applications. Supposing that R = b? > ¢, then
as with Montgomery reduction, it is more efficient to reduce components not by R
as in (B4) and 3], but by b sequentially g times. In Algorithm [2] each reduction
therefore reduces the input’s components by approximately log, b bits.

The second reduction method as detailed in Algorithm [is a specialisation of
Algorithm It assumes that t = 0 mod 2! for some { > 1, and each application
of the reduction function reduces the input’s components by approximately [bits.
Algorithm Bl is potentially far more efficient than Algorithm Bl depending on the
form of ¢. Ideally one should choose a t for which I > (log,t)/2 so that two
applications of the reduction function are sufficient in order to produce components
of the desired size, which is minimal. In general for other values of | a larger
number of reductions may be needed, which we consider in §7l In constrast to
Algorithm [2] which is designed for generality, Algorithm [B]is geared towards high-
speed reduction. The trade-off arising here is that there will naturally be far fewer
GRPs of this restricted form. We also present a modification of Algorithm [which
is slightly more efficient in practice, in Algorithm [l

5.1. GRP reduction: t even. Following §35 in equation ([B4]) we need the
matrix —L~1:

[A A A
t I A A
. 1 t? A A
(5.1) —L = gl : : Lo
tm—l tm—Z .. t 1 tm
tm tm_l . t2 t 1 |
The form of L and —L~! allows one to compute @ = —L~'-zZmod b and L - 1,

computed in equation (B.3), very efficiently. Since ¢ is even, the following vector
may be computed. Let t[0] be the least significant digit of ¢, written in base b, and

let
57 def 1

Algorithm [details how to reduce a given input vector z by b, modulo t™*+! — 1,
given the precomputed vector V. Observe that Algorithm [greatly simplifies the
reduction algorithm originally given in [I5]. This is possible since for #™*! — 1 one
can interleave the computation of the vectors U and W defined in [B4]) and (B3),
respectively. This has two benefits. First, as one computes each component of W
sequentially, one need only store a single component of @, rather than m+1. Second,
since when one computes L - U one needs to compute ¢ - u(;41y for i =m,...,0 (in
line 3), one obtains t[0] - u; (the first term on the right-hand side of line 4) for
free by computing the full product ¢- w41y first. One therefore avoids recomputing
the least significant digit of ¢ - w41y in each loop iteration. In fact one can do this
for

line
3
line
4

2404 ROBERT GRANGER AND ANDREW MOSS

ALGORITHM 2: redl,(Z)

INPUT: Z = [2,...,20] € Z™TL

OUTPUT: redy(Z) where redy(Z) mi1_q Z-b~ "
1. Set ug+ (>, Vi 2[0]) mod b

2 For i =m to 0 do:

3. Vi 1 Uy

4. u; < (v;[0] — 2[0]) mod b

5 w; < (zi +u; —v;)/b

6 Return w

any polynomial t™*! —¢, with exactly the same algorithm, the only difference being
in the definition of V, where t"*! — ¢ becomes the denominator. For polynomials
with other non-zero coefficients, this does not seem possible, and so Algorithm
seems likely to be the most efficient Chung-Hasan reduction possible with this
minimal restriction on the form of t.

It is straightforward to verify that Algorithm [] correctly produces an output
vector in the correct congruency class, via a sequence of simple transformations
of [15, Algorithm 3]. However, we do not do so here, since we are mainly interested
in the more efficient Algorithms [3] and [41

Remark 5.1. Note that in the final loop iteration, ug from line 1 is recomputed,
which is therefore unnecessary. However, we chose to write the algorithm in this
form to emphasise its cyclic structure. Indeed, there is no need to compute wug first;
if one cyclically rotates V by j places to the left, then the vector W to be added
to z in (B is rotated j places to the left also. One can therefore compute each
coefficient of red1,(z) independently of the others using a rotated definition for V
(or equivalently by rotating the input z). This demonstrates that a parallelised
version of the reduction algorithm with m+1 processors is feasible. However, as each
processor requires the least significant word of each component of z, this necessitates
a synchronised broadcast before each invocation of the reduction function. In this
scenario the reduction time would be proportional to the number of such broadcasts
and reductions required, independently of m + 1.

5.2. GRP reduction: ¢ = 0 mod 2'. In the ideal case that ¢ = 2!, we see that such
a GRP would be a GMN. In this case, one can use the reduction method detailed in
§3.4l without resorting to using its Montgomery version at all. Multiplication would
also be faster thanks to Nogami’s formulae. Unfortunately, such GRPs seem to be
very rare. It is easy to show that if ¢ = 2! with > 1 and ®,,,(¢) is prime, then
Il = m + 1. Testing the first few cases, we find prime GRPs for | = 2,3,7,59 but
no others for prime [< 400. Note that these primes contradict Dubner’s assertion
that no such GRPs exist [19, §2]. Since for | = 59 the corresponding GRP has 3422
bits, this is already out of our target range for ECC, so we need not worry about
such GRPs.

Hoping not to cause confusion, in this subsection we now let b = 2! where [is
not necessarily and usually not the word size of the target architecture. We denote
the cofactor of b in ¢ by ¢ (which by the above discussion we assume is > 1), so that

t = b-c. Algorithm [details how to reduce a given input vector z by b, modulo
tm—i—l —1.

line
1

GENERALISED MERSENNE NUMBERS REVISITED 2405

ALGORITHM 3: red2;(2z)

INPUT: Z = [2m,...,20] € Z™"!

OUTPUT: red,(z) where redy(z) ym+1_1Z-b~!

1. For ¢+=m to 0 do:

2. w; < (2 + (=2 mod b)) /b — ¢ - (—2z(;31) mod b)

3. Return w

A simple proof of correctness of Algorithm B comes from the specialisation of
Algorithm Pl Since ¢ = 0 mod b, writing ¢ in base b, the vector V becomes

V¥ 0,...,0,—1] mod b.

Hence for 1line 1 of Algorithm 2] we have
ug < —2p[0] mod b.

Since in line 4 of Algorithm @l we have v; = 0 mod b, we deduce that u; =
—z; mod b, and hence we can eliminate u; altogether. Each loop iteration then
simplifies to

v; 4t (—2z(41) mod b),
(5.2) w; 4 (2 + (—2 mod b) — v;)/b.

Upon expanding (B.2]), we obtain
w; 4 (2 + (—2zmodb))/b—t-(—23;41) modb)/b
= (2i + (=2i mod b))/b — ¢ (—z(i4+1) mod b),

as required. However, since we did not provide a proof of correctness of Algorithm[2]
we also give a direct proof as follows. Observe that modulo t™*! — 1, we have

vHW) = Zwiti
=0
=) [(2i+ (—2 mod b))/b—c- (—2z(;1y mod b)]t'
=0
= Y (zi/b) tH—Z —2; mod b) /b)t — > "((—2(;1) mod b)/b)t"
=0 1=0

Zziti/b (mod t™*! — 1)

as required. In terms of operations that may be performed very efficiently, we alter
Algorithm [slightly to give Algorithm [which has virtually the same proof of
correctness as the one just given.

line
1
line
4

2406 ROBERT GRANGER AND ANDREW MOSS

ALGORITHM 4: red3,(z)

INPUT: Z = [2p,...,20] € Z™L
OUTPUT: red,(z) where redy(z) Zm+1_1Z- bt

1. For ¢=m to 0 do:
2. w; = 2i/b+ ¢ - (2(i41) mod b)
3. Return w

Note that the first term in 1ine 2 of Algorithm Blhas been replaced by a division
by b, which can be effected as a simple shift, while now the second term needs the
positive residue modulo b, which can be extracted more efficiently. Hence Algo-
rithm [is the one we use. By our previous discussion, ¢ necessarily has Hamming
weight at least two for GRPs in our desired range. By using ¢ that have very low
Hamming weight, one can effect the multiplication by ¢ by shifts and adds, rather
than a multiply (or imulq) instruction. Hence for such GRPs, assuming only two
invocations of Algorithm Ml are needed, reduction will be extremely efficient.

Remark 5.2. Regarding parallelisation, observe that for m + 1 processors, only the
least significant word of z(;;1) is passed to processor i, thus reducing the broadcast
requirement in comparison with Algorithm

6. GRP RESIDUE REPRESENTATION

So far in our treatment of both multiplication and reduction, for the sake of
generality we have assumed arbitrary precision when representing GRP residues
in Z™*+1. In this section we specialise to fixed precision and develop a residue
representation that ensures that our chosen algorithms are efficient. Our deci-
sions are informed purely by our chosen multiplication and reduction algorithms
— Algorithms [I] and @ — which we believe offer the best performance for GRPs
for the relatively small bitlengths which are relevant to ECC. In other scenarios
or if considering asymptotic performance, one would need to redesign the residue
representation and multiplication algorithm accordingly.

For z € {0,...,t™"! — 1} we write X = [z, ..., %] for its base-t expansion,
ie, r = Z?;o z;t'. The base-t representation has positive coefficients, however,
Algorithm [makes use of negative coefficients, so we prefer to incorporate these. We
therefore replace the mod function in the conversion with mods, the least absolute
residue function, to obtain a residue in the interval [—t/2,t/2 — 1]:

x mod t if (x mod t) <t/2,
rmodt—t otherwise.

mods(s) = {

Using this function, Algorithm [converts residues modulo t™*! —1 into the required
form [I5], Algorithm 1].

line
2
imulq

GENERALISED MERSENNE NUMBERS REVISITED 2407

ALGORITHM 5: BASE-t CONVERSION ¢

INPUT: An integer 0 <z <t™tl -1
QUTPUT: X = [Zy,....,20] such that |z;| <t/2
and Y./' z;t" =z (mod ™! —1)

For ¢ from 0 to m do:
T; < x mods t
x4+ (x—a;)/t

XTo < Xo+x

Return X = [, . - ., Z0]

O W N

The reason for line 4 in Algorithm Flis to reduce modulo ™! —1 the coefficient
of t™*1 possibly arising in the expansion. Note that in this addition, = € {0, 1},
and hence |x;| < t/2 for each 0 < ¢ < m. By construction, we in fact have
—t/2 < z; < t/2 for 1 < i < m while only zy can attain the upper bound of ¢/2.
There are therefore t™ (t+ 1) representatives in this format, thus introducing a very
small additional redundancy. Letting k& = [log,t], if we assume ¢t < 2¥ — 2 so
that [—t/2,t/2] C [-2%/2,2%/2 — 1], then the coefficients as computed above can
be represented in two’s complement in k bits. In terms of efficiency, Algorithm
contains divisions by ¢, which requires not only time, but also space, which on some
platforms may be at a premium. Writing ¢t = 2' - ¢ as in §5.2] then if the cofactor
¢ =2kt — ¢ with ¢/ very small, then division by t consists of a shift right by [bits
and a division by ¢, which can be performed efficiently using Algorithm 1 of [13].

Following this conversion, it might seem desirable to define vectors whose com-
ponents are in [—2% /2, 2% /2 —1] to be reduced, or canonical residue representatives.
However, for efficiency purposes it is preferable to have a reduction function which,
when performed sufficiently many times, outputs an element for which one does
not have to perform any modular additions or subtractions to make reduced, as
this eliminates data-dependent branching. A control-flow invariant reduction func-
tion is also essential to defend against side-channel attacks; see §3l To obtain
such a function, observe that the second term in line 2 of Algorithm 4l namely
c- (z<i+1> mod b), is positive, and in the worst case is k bits long. The first term,
z;/b, is clearly I = log, b bits shorter than z;. Since one adds these the resulting
value may be k + 1 bits, or larger, depending on the initial length of the inputs’
components. Furthermore, since we wish to allow negative components, in two’s
complement the output requires a further bit, giving a minimal requirement of k42
bits. We therefore choose not to use minimally reduced elements as coset represen-
tatives in Z™*1/ ~, as output by Algorithm [but slightly larger elements, which
we now define.

Definition 6.1. We define the following set of elements of Z™*! to be reduced:
(6.1) ™ = [z, ..., x0] € Z™T | —2FF < gy < 2K}

Note that the redundancy inherent in this representation depends on how close
t is to 2F*2. For a modular multiplication, we assume that the inputs are reduced.
We must therefore ensure that the output is reduced also. This naturally leads one
to consider I/0O stability, as we do in {7l

line
4
line
2

2408 ROBERT GRANGER AND ANDREW MOSS

Once we have a reduced representative X = 1(x) we also need to convert to the
Montgomery domain. While one can do this in Z/(t"+! —1)Z before applying v, it
is more convenient to do so in Z™*!/ ~. Assuming ¢ reductions by b are sufficient
to ensure 1/O modular multiplication stability, we precompute (5?7 mod ®,,1(t))
and then using Algorithms [I] and @ compute

X - p(0* mod @pyi1 (1)) /b9 g, (1) Y(z - bY).

Similarly, to get back from the Montgomery domain, again using Algorithms [I]
and [we compute

Y- 07) (1) /b1 =g, 1) ().

With regard to mapping back from X = [2,y,...,z0] € I™*! to canonical residues
in Z/®,41(t)Z, one has

m m—1
inti = Z (x5 — xp)t" (mod @41 (1)),
i=0 i=0

which can be computed efficiently by first using Horner’s rule and then mapped
to {0,...,®,,11(t) — 1} by repeated additions or subtractions. In terms of opera-
tions required for ECC, we assume that the conversions are one-time computations
only, with all other operations taking place in the (Montgomery) Chung-Hasan
representation.

7. MODULAR MULTIPLICATION STABILITY

In this section we analyse Algorithms [Il and @ with a view to ensuring I/0
stability for modular multiplication. We assume the following: b = 2!, t = ¢- b
where ¢ < 2F7! (and hence t < 2% — 2), and that reduced elements have the
form (G.I)). Input elements therefore have components in I = [—2*F+1 2k+1 1] and
these are representable in k + 2 bits in two’s complement. For simplicity and in
order for our analysis to be as general as possible, we use the term single precision
to mean a word base large enough to contain ¢ — even if this in fact requires
multiprecision on a given architecture — and double precision to mean twice this
size. We assume that for this single precision word size w, the components of z
output by Algorithm [I] are double precision. In practice one prefers to specialise
to actual single precision ¢ on a given architecture, since this obviates the need
for multiprecision arithmetic; utilising the native double precision multipliers that
most CPUs possess is more efficient, and reduction is also faster for smaller ¢ since
fewer iterations need be performed. We note that in constrained environments,
multiprecision may, however, be unavoidable.

During the multiplication, terms of the form x; — x; are computed, which are
bounded by

_2/€+2+1 le_l,J §2/€+2_1’

and which therefore fit into k + 3 bits in two’s complement. The product of two
such elements is performed, giving a result

_22k+4 + 2k+3 -1 S (xz _ .’L']) 3 (y] _ yz) S 22k+4 _ 2k+3 + 17

which fits into 2k + 5 bits in two’s complement. One then adds m/2 of these terms,
giving a possible expansion of up to [log, m/2] bits, which must be double precision.

GENERALISED MERSENNE NUMBERS REVISITED 2409

TABLE 1. Stable parameters: w = 64, ¢ = 2

m+1| k| 1 |c<]|[logyp]
3 61]33 2% 122
5 61 | 34 | 227 244
7 60 | 34 | 226 360
11|60 |34]2% | 600
13 60 | 34 | 226 720
17 60 | 34 | 226 960

TABLE 2. Stable parameters: w = 64, ¢ = 3

m+1| k|1 |c<]|[logyp]
3 61 | 23] 2%8 122
5 61 | 23 | 238 244
7 60 | 23 | 2°7 360
11 |60 |23 | 2% 600
13 | 60| 23| 2°%7 720
17 160 | 23| 237 960

We therefore have a constraint on the size of ¢ (in addition to the constraint ¢ <
2% — 2) in terms of m:

(7.1) [logy (Mm/2)] + 2k + 5 < 2w.

This inequality determines a constraint on the size of ¢, given m and w. Assum-
ing (1)) is satisfied, one then needs to find the minimum value of b = 2! such that
the result of the multiplication step, when reduced by b a specified number of times,
say ¢, outputs a reduced element. This needs to be done for each (m, k) found in
the procedure above. Any power of 2 larger than this minimum will obviously
be satisfactory also, however, minimising b maximises the set of prime-producing
cofactors ¢, which as stated in §5 may be useful in some scenarios.

In §6l, we showed that one application of Algorithm [] shortened an input’s com-
ponents by [—1 bits, unless the components were already shorter than (k+2)4(I—1)
bits. Therefore stipulating that ¢ reductions suffice to produce a reduced output,
we obtain a bound on [in the following manner. Let

h = [logy (m/2)] + 2k + 5.
Then after one reduction, the maximum length of a component is h—I+1. Similarly,
after ¢ reductions, the maximum length is max{h — ¢(I — 1),k 4+ 2}, and we need
this to be at most k + 2. Hence our desired condition is
h—q(l—1)<Ek+2.
Solving for I, we have

1 2 k+3
(7.2) 1> 14 Lo (m/2)]Tk+3
q
Using these inequalities it is an easy matter to generate triples (m+1, k, 1) which
ensure multiplication stability for any w and ¢. For example, for w = 64, Tables [l
and 2l give sets of stable parameters for ¢ = 2 and g = 3 respectively.

2410 ROBERT GRANGER AND ANDREW MOSS

The final column gives the maximum bitlength of a GRP that can be represented
with those parameters, though of course by using smaller ¢ one can opt for smaller
primes, and the corresponding minimum value of ! reduces according to [2)). To
generate suitable GRPs, a simple linear search over the values of ¢ of the desired
size is sufficient, checking whether or not ®,,,,1(2' - ¢) is prime; see §I0

8. FuLL GRP MODULAR MULTIPLICATION

For completeness we now piece together the parts treated thus far into a full
modular multiplication algorithm, where in Algorithm [l we assume ¢ reductions by
b are required for I/O stability and in line 4 either Algorithm [or Algorithm [is
used according to the form of b.

ALGORITHM 6: GRP MODMUL

INPUT: X = [T, -, 20, ¥ = [Ums-- -, 0] € IHL
Z:

QUTPUT: [Zms -, 20) €I™T! where 22 (1) X-y b4
1. For ¢=m to 0 do:
m/20.. . , ,
2. w2 (@h —2aan) Wi — G -n)
3. For k from 0 to ¢—1 do:
4. Z < redy(2z)
5. Return z

Should ¢ be multiprecision on a particular architecture, then as with Mont-
gomery arithmetic it may be more efficient to use an interleaved multiplication
and reduction algorithm, as we detail in Algorithm [[l Here one needs b to be the
word base of the underlying architecture and so in line 6, if ¢ = 0 (mod b) we
use Algorithm [otherwise we use Algorithm For X = [z, ...,20] we write
x; = 2;[0] + 2;[1b + - - - + x;[q — 1]b77 L.

ALGORITHM 7: GRP MODMUL (interleaved)

INPUT: X = [Ty, 20, ¥ = [Um,-- -, Yo] € I™HL
OUTPUT: Z = [2m, ..., 20] € ™! where Z =4
zZ <+ [0,...,0]
For k=0 to ¢—1 do:
For t=m to 0 do:

1
2
3
m/2 | | |
4. wi 2501 (@ K] = 2 s KD - Wiy — veg—5)
5
6
7

m+1(t) X-y-bt

Z+—Z+WwW
Z — redb(Z)
Return z

line
4
line
6

GENERALISED MERSENNE NUMBERS REVISITED 2411

To verify the correctness of Algorithm [7, observe that for each of the m + 1
components of z, after the last iteration of the outer loop we have:

m/2 q—1
—k
5= (D@5 k] = 20y D/) - (g = 0i5—5)
j=1 k=0
m/2
= D (@agy =)V W) — Ya—n)-
=1

Hence when taken modulo ®,,.1(t), we see that z is congruent to

m m/2

Yot Zew Y (Z($<%—j> =24/ (Yagy) — y<%—j>)) v
i=0 i=0 j=1
m m/2

a0 D (D@m= Tigan) - Wisasy —Yig—p) - #) /0
i=0 j=1

g0 Xy b9

as required. As with ordinary Montgomery arithmetic, there are many possible
ways to perform the interleaving; see [39] for example.

9. OTHER ARITHMETIC AND SIDE-CHANNEL SECURE ECC

In addition to modular multiplication, one also needs to perform other arithmetic
operations when implementing ECC point multiplication. In this section we detail
how to perform these using our representation and briefly explain how it enables
point multiplication to be made immune to various side-channel attacks.

9.1. Other arithmetic operations.

9.1.1. Addition/subtraction. To perform an addition or subtraction of two reduced
elements X,y, we compute the following:

Xty = [Tm £ Yms- -, To £ Yol

Note that the bounds on each of these components is [—2¢+2 2k+2 — 2] which are
therefore not necessarily reduced. One could reduce the resulting element using
the specialisation to GRPs of [15] Algorithm 5], which shows how to do this for a
general LWPFI. Chung and Hasan refer to this process as short coefficient reduction
(SCR), as opposed to full modular reduction. However, for ECC operations it is
faster (and more secure) to simply ignore this expansion and rely on a later modular
multiplication to perform the reduction, as is required when computing a point
addition or doubling; see [5l 6] and §9.2

9.1.2. Squaring. When t is single precision, the CVMA formulae do not have any
common subexpressions, as arises for ordinary integer residue squaring. In this
case GRP squaring is performed using Algorithm[@l If ¢ is multiprecision, then the
components of a product X-y are computed as a sum of integer squares. In this case,
one can eliminate common subexpressions to improve efficiency by nearly a factor
of two (in the multiplication step). On the other hand, when using Algorithm [fland
its variants it may be difficult to eliminate common subexpressions efficiently [39].

2412 ROBERT GRANGER AND ANDREW MOSS

9.1.3. Inwversion and equality check. Inversion seems difficult to perform efficiently
in the GRP representation. One can therefore opt to map back to Z/®,,11(t)Z,
remaining in the Montgomery domain, and perform inversion using the binary ex-
tended Euclidean algorithm (see [38], for example) and modular multplying by the
precomputed value (b3 mod ®,,11(¢)). Alternatively, for data-independent inver-
sion, one can simply power by ®,,,11(t) —2, as do the authors of [6]. Using projective
coordinates can obviate the need for inversions altogether, however, for many pro-
tocols inversion is unavoidable and when it is avoidable, in some scenarios such
representations of points should be randomised after a point multiplication [50].

Since our representation possesses redundancy, equality checking is naturally
problematic. We therefore opt to map back to Z/®,,+1(t)Z to check equality there
— as for inversion — while remaining in the Montgomery domain. For ECC equal-
ity checking is usually a one-time computation per coordinate, and so again this
operation does not greatly impinge upon efficiency.

9.2. Side-channel secure ECC. As we demonstrated in §7 by choosing ¢, I
and m + 1 carefully, one can avoid the need to compute any final additions or
subtractions when performing a modular reduction. This is an analogue to various
results for ordinary Montgomery arithmetic [62] [63] [29]. The lack of a conditional
addition/subtraction averts threats such as [64, [55], the latter of which applies
directly to the NIST GMNs. Our modular multiplication algorithm is thus control-
flow invariant with no data-dependent operations, making it immune to timing
attacks [40] and simple power analysis (SPA).

In addition to making modular multiplications and squarings immune to timing
attacks and SPA, one can also ensure that the computation of an entire elliptic
curve point addition or doubling is also immune. To do so, one chooses a GRP
with ¢ divisible by a sufficiently high power of 2, so that during the course of an
elliptic curve point operation, even if one ignores the coefficient expansion caused
by additions/subtractions, these do not overflow and the modular reductions ensure
the outputs are fully reduced elements. Note that this requires b = 2! | ¢ to be a few
bits longer than the minimum [-values listed in Tables[Iland 2} for reasons of space
we do not include the analysis here. By doing so, a point addition or doubling be-
comes an atomic operation, where the sequence of arithmetic operations is entirely
data-independent. In this case one only needs point-multiplication-level defences
against timing attacks and SPA, such as the double-and-add-always algorithm due
to Coron [I8], or the use of Edwards curves, for which the addition formula can
also be used for doubling [7]. Hence, ECC over GRPs may be straight-line coded,
which is beneficial for both efficiency and security.

Finally, our representation can also be made immune to differential power analy-
sis (DPA) [41]. Observe that the embedding of Z/®,,, 1 (t)Z into Z /(™1 —1)Z can
be randomised by adding to it a random multiple r-®,, 1 (t) for r € {0,..., (t—1)—
1}. While our embedding is an example of “operand scaling” [61] [52] which is used
for faster reduction, the addition of a multiple of the modulus within a redundant
scaled representation also acts as a countermeasure to DPA — such as Goubin’s
attack [28] on the randomised projective coordinates defence of Coron [18] — as
shown by Smart, Oswald and Page [68]. In particular, for multiprecision integer
residues the authors show that this countermeasure thwarts DPA whenever the
scaling factor is longer than the longest string of ones or zeros in the binary ex-
pansion of the initial modulus. For the NIST GMNs, this countermeasure requires

GENERALISED MERSENNE NUMBERS REVISITED 2413

a large scaling factor, making the defence inefficient and nullifying the benefits of
using these moduli. Applying the Smart-Oswald-Page rationale to GRPs, one sees
that the scaling factor is t — 1, while the longest string of ones or zeros in the binary
expansion of ®@,,1(t) is [logt] — 1. Since GRPs already use the larger ring, we ac-
quire this defence for almost negligible cost. In particular the addition of a random
multiple 7 of ®,,,41(t) to an element X has the form [z, + r, &pm—1+7,...,20 + 7],
which only requires m + 1 additions. Since DPA depends on the ability of an at-
tacker to predict a specific bit in the representation of a given field element (other
than the upper excess zero bits in each coefficient of GRP residues, which are the
same for every field element), if the representation of points is randomised in this
way prior to every point multiplication, or even every modular multiplication, then
DPA should not be feasible.

10. GRP PARAMETERS

In this section we provide empirical data regarding the abundancy of GRPs at
various bitlengths relevant to ECC. We also specify parameters that are particularly
suitable for efficient implementation.

10.1. Estimating the number of GRP parameters. As we saw from Tables[I]
and 2 for a given prime m + 1 and word size w, there is an upper bound on the
length of a GRP that may be represented. Table [contains estimates (or exact
counts) for the number of GRPs which are in accordance with the GRP field and
residue representation set out in this work, for a word size w = 64 and where ¢ = 2
reductions suffice to ensure I/O modular multiplication stability. The data was
obtained as follows.

For a desired GRP p of bitlength [logp], Table [gives the minimum value
of prime m + 1 which is adequate to represent GRPs of this size. The inequal-
ity (CI)) gives kijae which is the maximum bitlength of ¢ that is representable,
while (Z.2)) gives the minimum value [required in order for ¢ = 2! - ¢ to be I/O
stable. We estimate t,q, simply as 2/1°621/™ which implies a maximum value for
¢ of 2Megrl/m=lmin Similarly, for p of this precise bitlength, we estimate the mini-
mum value of ¢ as 2(M°8P1=1)/m=lmin We denote this interval by I(c). To estimate
P(prime), which is the probability that a given generalised repunit in our form is
a GRP, we performed a linear search over ¢ € I(c), counting the first 1,000 primes
and simply dividing by the length of the search. The estimated total number of
GRPs satisfying our requirement that ¢ = 2 is then given by |I(c)| - P(prime).

For each of m+1 = 5,7 and 11, Table Bl contains estimated counts for the largest
GRPs representable. It also contains estimates (or exact counts) for the number
of GRPs at the NIST GMN sizes 224, 256 and 384. We also consider bitlength 512
rather than 521, since this conjecturally gives 256-bit security, with the larger prime
2521 — 1 being nominated purely for fast reduction. Observe that the number of
available GRPs for a given m + 1 decreases as the size of p, and hence ¢ decreases.
The number available for bitlengths 383 and 384 is particularly low. However,
should this be a concern for a particular application, one can see from Table
that by moving to GRPs for which 3 reductions suffice, |I(c)| becomes much larger
(3.71 x 10°) and our estimate of the number of GRPs becomes over 5,000. On the
other hand, since 384 is not too far beyond the upper bound for the size of GRP
representable by m + 1 = 7, it may be preferable to trade 12-bits of security for
much improved performance; see 111

2414 ROBERT GRANGER AND ANDREW MOSS
TABLE 3. Estimated GRP counts for w = 64, ¢ = 2

[logp] | m+1 | kmaz | 108 tmaz | lmin [I(c)| P(prime) | ~ #GRPs
600 11 60 60.0 34 | 4.49 x 10° | 8.54 x 1073 | 38.4 x 103
599 11 60 59.9 34 |4.19 x10° | 9.05 x 1073 | 37.9 x 103
512 11 60 51.2 30 | 1.61 x 10° | 1.05 x 102 1697
511 11 60 51.1 30 | 1.51 x 10° | 1.06 x 102 1591
384 11 60 38.4 24 1448 9.67 x 1073 14
383 11 60 38.3 24 1352 1.33 x 1072 18
360 7 60 60.0 34 [4.49x10° [1.82x 1072 81.7 x 103
359 7 60 59.9 34 | 4.19%x10° | 1.77 x 1072 | 74.1 x 103
256 7 60 42.66 25 | 2.27 x 10% | 2.47 x 1072 561
255 7 60 42.5 25 | 2.02 x 10* | 2.63 x 1072 531
244 5 61 61.0 34 214 %107 | 1.68 x 10~2 | 3.58 x 10°
243 5 61 60.75 34 | 1.80 x 107 | 1.72 x 1072 | 3.08 x 10°
224 5 56 56.0 31 [5.34x10% [1.98 x 1072 | 1.06 x 10°
223 5 56 55.75 31 | 4.49 x 10° | 1.88 x 1072 | 8.42 x 10*

10.2. Hamming weight 2 parameters. As we showed in §5.2] there are no suit-
able GRPs in the ECC range for which ¢ = 2!. Hence the next best type of GRP
parameter ¢ will have Hamming weight equal to 2, where we allow ¢ to have the
form 2¢ + 1 as well as 2¢ — 1 when there is sufficient slack in the representation,
since subtractions cost the same as additions. We list these GRPs in Table[dl The
final column indicates whether or not the given GRP allows for atomic side-channel
secure point additions and doublings, as per §9.21 Note that for m +1 = 5 and
w = 64 we can not represent GRPs any larger than 244-bits, and are thus short
of the conjectured 128-bit ECC security level of 256-bits. One can therefore either
move up to m + 1 = 7, which can represent GRPs of up to 360-bits, or one can
opt to reduce security by a few bits, for better performance. Indeed, in recent
work Kisper argues that the NIST GMN prime P-224 = 2224 — 29 1 1 offers a
satisfactory trade-off between security and efficiency, when used as the basis of the
elliptic curve Diffie-Hellman (ECDH) key exchange in the Transport Layer Security
(TLS) protocol [33]. Bernstein has also implemented arithmetic mod P-224 [4]. Yet
another possibilty at this security level are the GFN primes ®g(2*! - (2! — 1)) and
Pg(250 - (26 — 1)), both of which have bitlength 224, but experiments with such
GFNs have not yet been carried out.

11. IMPLEMENTATION AND RESULTS

In this section we provide details of our proof-of-concept implementation and
our results. We consider field multiplications only as this is the bottleneck for ECC
point multiplication and hence gives an accurate indication of performance.

In terms of performance, the fastest implementations of ECC in the literature all
feature cycle counts for 256-bit ECC point multiplication [5l 26], [32] 46|, 25] 6], except
for Késper’s P-224 implementation [37], with [5 6] [B7] each being side-channel
secure. As it is difficult to get a fair comparison between our implementation and
these, we opt to compare our modular multiplication performance with the mp[F,
benchmarking system due to Gaudry and Thomé [26]. This has been ported to

mp

GENERALISED MERSENNE NUMBERS REVISITED 2415

TABLE 4. Approximately NIST-size fast GRPs for w = 64, ¢ = 2

[log p| GRP S.C. Secure
511 [@22 (2°+1)) Yes
381 | @11(2%%- (21 - 1)) Yes

380 4)11(234 : (24 + 1)) Yes

)
)

270 | ®,(27- (21T — 1 Yes

253 | ®7(227- (2P +1 Yes
253 | ®7(237-(2°+ 1)) Yes
243 | ®5(2%9-(22-1)) No
228 | ©5(2%- (23 -1)) Yes
224 | ®5(231- (2% - 1)) No
220 | ®5(25%- (2% - 1)) Yes

0S-X 10.5.8 with minor changes and executed on a platform using an Intel Core
2 Duo at 2.2Ghz. As stated in [0], to date mpF, gives only the fourth fastest
implementation of ECDH, based on Bernstein’s curve25519, which utilises a non-
standard representation of residues mod 22°° — 19 and exploits the floating-point
unit of specific instruction-set architectures to great effect. However, by comparing
the basic multiplication cost on the target architecture, one can obtain a crude
estimate of the relative performance of our arithmetic with that of curve25519.

Our implementation consists of two inline assembly operations targeted at the
Core 2 processor. One accumulates the innermost sum of line 2 of Algorithm [
while the other performs a single instance of the reduction operation in line 4
of Algorithm Both use the 64-bit operations available on the Core 2 and the
extended register set available in x86_64. These assembly operations both use a
mere 4 of the 15 available in the x86-64 instruction set. This allows one to rely on
normal C code to arrange these macros, and to handle data-storage. As a result the
gce compiler can generate all of the intermediate memory access instructions and
schedule the usage of the other 11 registers available. This means that the same
code can be reused for any field supported by Algorithm [6] — the only changes
required are the parameter definitions. To generate a particular instance of the
family of algorithms we use a simple wrapper written in Python that arranges the
sequence of these operations required for the particular parameter choice of m + 1
and ¢.

To emphasise the relative simplicity of our implementation, we use only 64-bit
scalar operations on the processor, and allow the compiler to schedule most of the
output instructions. As a result we reach a throughput of slightly less than one
operation per cycle. In comparison the mplF, implementation of curve25519 uses
SSE2 to reach a throughput of almost two operations per cycle (the theoretical
maximum on the architecture). Although our implementation is less efficient (be-
cause we have spent less programmer time on the machine-dependent optimisation)
the performance achieved is still higher. Scheduling a lower-level implementation
on the processor would be an interesting challenge.

As explained in §5 within the reduction algorithm we have a trade-off between
the number of GRPs available and performance. If one opts for a generic value
of ¢ many GRPs are available, but the reduction involves a full imulq instruction
with relatively high latency. If we specialise our choice of ¢ to very low Hamming

mp
curve25519
curve25519
line
2
line
4
mp
curve25519
imulq

2416 ROBERT GRANGER AND ANDREW MOSS

TABLE 5. mplF, cycle counts for curve25519 and Montgomery arithmetic

Algorithm | Size (bits) | Mult (cycles)

M. 64 30

M. 128 105

M. 192 195
curve25519 255 140

M. 256 280

M. 320 407

M. 384 563

M. 448 757

M. 512 981

TABLE 6. Cycle counts for GRP arithmetic

Parameters Max size (bits) | ModMul (cycles)
m+ 1=5 HW(c)=2 244 96
m + 1=5, general ¢ 244 112
m+1=7 HW(c) =2 360 165
m + 1=7, general ¢ 360 182
m + 1=11, general ¢ 600 340

weight, then we can replace this instruction with a combination of shift and add
instructions to improve performance. We have measured the performance of both
implementations. To ensure a fair comparison we have merged our code into mplF,
so that all algorithms are being tested with the same timing code. This timer
executes 10% operations in the field, measuring the elapsed time. The reported
figures are the mean execution time for the operation. Table [contains cycle
counts for Montgomery arithmetic at various bitlengths, as well as the curve25519
modular multiplication cycle count. Table [(] contains our results for GRP modular
multiplication.

As stated in §I0.0] the closest size of field to curve25519 that we can implement
using m + 1 = 5 is only 244-bits. This small reduction in field size is compen-
sated by an increase in performance, requiring only 80% of the curve25519 cycles
per multiplication. Using the specialised reduction function for the 243-bit GRP
5(2%9 - (22 — 1)), this figure improves to 69%. Since the results for the first line
of Table Bl apply also to Hamming weight 2 GRPs smaller than 2243, we obtain the
same modular multiplication performance, while utilising the acquired slack in the
representation to ensure atomic point doublings/additions as per §0.2] in particular,
for the 228-bit GRP ®5(2%4 - (22 — 1)). At bitlength 512 with general ¢, compared
to Montgomery multiplication, GRP multiplication costs only 35% as many cycles.
At bitlength 600, this proportion would naturally be even smaller, however, at
this size Karatsuba multiplication may be faster than schoolbook arithmetic. We
thus expect that point multiplications at 224-bits and 512-bits using GRPs to be
competitive with the state-of-the-art in the literature.

We freely admit that our proof-of-concept implementation has not been opti-
mised, and therefore believe that one could obtain significantly better performance

curve25519
mp
curve25519
curve25519
curve25519

GENERALISED MERSENNE NUMBERS REVISITED 2417

figures. By comparing our arithmetic with the modular multiplication used in [6],
which is the benchmark for point multiplication at the 128-bit security level, one
gains an idea of the potential performance of arithmetic mod ®5(2%4 - (23 — 1)),
for example. In [6], residues are also represented by five 64-bit words. Residue
multiplication requires 25 mul instructions, as well as some imul, add and adc in-
structions. In comparison, to multiply X and y in our representation, the CVMA
formulae are as follows:

20 = (za—m1)(y1 —ya) + (23 — 22) (Y2 — ¥3),
21 = (22— x4)(ya — y2) + (21 — 20) (Yo — ¥1),
z2 = (w0 —2)(y2 — o) + (¥4 — 23)(y3 — ¥a),
z3 = (z3—0)(yo —y3) + (x2 — 1) (Y1 — ¥2),
ze = (z1—23)(y3 —v1) + (2o — 24)(ya — Yo),

requiring only 10 mul, 25 add and 5 adc instructions. Since the respective reduc-
tion algorithms are quite similar with both requiring two rounds of shifts, masks
and additions, one expects the GRP modular multiplication to be considerably
faster, when optimsed. It is also possible that an optimised implementation of
multiplication mod the m 4+ 1 = 7 GRPs listed in Table @l may be faster than [6],
since it requires 21 mul instructions, rather than 25. However, since this paper is
predominantly expositional, we leave such optimisations as open research.

12. CONCLUSION

We have proposed efficient algorithms for performing arithmetic modulo a large
family of primes, namely the generalised repunit primes. The algorithms are simple
to implement, are fast, are easily parallelisable, can be made side-channel secure,
and all across a wide range of field sizes. The central contribution of this work is
the development of the necessary theory, covering field and residue representation,
as well as novel algorithms for performing efficient multiplication and reduction in
these fields. We have also presented proof-of-concept implementation results which
provide an empirical comparison with other results in the literature, ensuring a fair
comparison by reusing the same benchmarking procedure. Against Montgomery
arithmetic we show an approximate three-fold increase in performance, and expect
optimised implementations of point multiplications using our proposed family to be
competitive with the state-of-the-art in the literature. We thus present a compelling

argument in favour of a new approach to the secure and efficient implementation
of ECC.

ACKNOWLEDGEMENTS

The authors would like to thank Dan Page for making several very useful com-
ments and suggestions, and the referees for their comments.

REFERENCES

1. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29—
68, 1993. MR1199989/(93m:11136)

2. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm
on a standard digital signal processor, In Advances in Cryptology CRYPTO 1986 Springer-
Verlag, LNCS 263, 311-323, 1987. MR907099 (88i:94015)

mul
imul
add
adc
mul
add
adc
mul
http://www.ams.org/mathscinet-getitem?mr=1199989
http://www.ams.org/mathscinet-getitem?mr=1199989
http://www.ams.org/mathscinet-getitem?mr=907099
http://www.ams.org/mathscinet-getitem?mr=907099

2418 ROBERT GRANGER AND ANDREW MOSS

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P.T. Bateman and R.A. Horn. A heuristic asymptotic formula concerning the distribution of
prime numbers. In Math. Comp. 16, pp. 363—367, 1962. MR0148632 (26:6139)

D.J. Bernstein. A software implementation of NIST P-224. Presentation at the 5th Workshop
on Elliptic Curve Cryptography (ECC 2001), University of Waterloo, October 29-31, 2001.
Slides available from http://cr.yp.to/talks.html.

. D.J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key Cryptography

- PKC 2006, LNCS 3958, 207-228. Springer-Verlag, 2006. MR2423191 |(2009¢:94058)

. D.J. Bernstein, N. Duif, T. Lange, P. Schwabe and B. Yang. High-speed high-security signa-

tures. Cryptology ePrint Archive, Report 2011/368, 2011.

. D.J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In Advances in

Cryptology — ASIACRYPT 2007, LNCS 4833, pp. 29-50, Springer-Verlag, 2007. MR2565722
(2011d:11125)

. LF. Blake, R.M. Roth and G. Seroussi. Efficient Arithmetic in GF(2™) through Palindromic

Representation. Technical Report HPL-98-134, 1998. Available from http://www.hpl.hp.com/
techreports/98/HPL-98-134.html.

. LLF. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. London Math-

emtical Society Lecture Note Series, 265, Cambridge University Press, 1999. MR1771549
(2001i:94048)

L.F. Blake, G. Seroussi, and N.P. Smart. Advances in Elliptic Curve Cryptography. London
Mathemtical Society Lecture Note Series, 317, Cambridge University Press, 2005. MR2166105
(2007g:94001)

M. Brown, D. Hankerson, J. Lépez, and A. Menezes Software Implementation of the NIST
Elliptic Curves Over Prime Fields In Topics in Cryptology — CT-RSA 2001, LNCS 2020,
250-265, Springer. MR1907102

Certicom Research. SEC 2: Recommended elliptic curve domain parameters, 2010.

J. Chung and A. Hasan. More Generalized Mersenne Numbers. In Selected Areas in Cryptog-
raphy, volume 3006 of LNCS, 335-347. Springer, 2004. MR2094740/|/(2005{:94089)

J. Chung and A. Hasan. Low-Weight Polynomial Form Integers for Efficient Modular Multi-
plication. In IEEE Trans. Comput., 56-1, 44-57, 2007. MR2361668|/(2008h:94050)

J. Chung and A. Hasan. Montgomery Reduction Algorithm for Modular Multiplication Using
Low-Weight Polynomial Form Integers. In ARITH 18, 230-239, 2007.

R. Crandall and B. Fagin. Discrete Weighted Transforms and Large-Integer Arithmetic. In
Math. Comp., vol. 62, 205, pp. 305-324, 1994. MR1185244[(94c:11123)

R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective (second edi-
tion). Springer, New York, 2005. MR2156291//(2006a:11005)

J.S. Coron. Resistance against differential power analysis for elliptic curve cryptosystems. In
Cryptographic Hardware and Embedded Systems — CHES’99, LNCS 1717, pp. 292-302, 1999.
H. Dubner. Generalized repunit primes. In Math. Comp., vol. 61, 204, pp. 927-930, 1993.
MR1185243(94a:11009)

H. Dubner and Y. Gallot. Distribution of generalized Fermat prime numbers. In Math. Comp.,
vol. 71, 238, pp. 825-832, 2002. MR1885631//(2002j:11156)

H. Dubner and T. Granlund. Primes of the Form (b™ + 1)/(b+ 1). In Journal of Integer
Sequences, vol. 3, 2, Art. 0.0.2.7, 2000. MR1800881//(2001j:11123)

G. Drolet. A new representation of elements of finite fields GF(2™) yielding small complexity
arithmetic circuits. IEEE Trans. Comput., 47(9): 938-946, 1998. MR 1655771 |(99h:68015)
ECC Brainpool Standard Curves and Curve Generation. Available from http://www.bsi.
bund.de/english/index.htm.

FIPS 186-2. Digital Signature Standard. Federal Information Processing Standards Publica-
tion 186-2, US Department of Commerce/N.I.S.T. 2000.

S.D. Galbraith, X. Lin and M. Scott. Endomorphisms for faster elliptic curve cryptography
on a large class of curves. In J. Cryptology, vol. 24, no. 3, pp. 446—469, 2011. MR2786038

P. Gaudry and E. Thomé. The mpFq library and implementing curve-based key exchanges.
In SPEED: Software Performance Enhancement for Encryption and Decryption, ECRYPT
Workshop, 49-64, 2007.

W. Geiselmann and D. Grollmann. VLSI design for exponentiation in GF(2™).
AUSCRYPT’90, 398-405. Springer-Verlag, 2001. MR1083786

L. Goubin. A refined power analysis attack on elliptic curve cryptosystems. In em Public Key
Cryptography — PKC 2003, LNCS 2567, pp. 199-211, 2003. MR2171927||/(2006h:94105)

http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://cr.yp.to/talks.html
http://www.ams.org/mathscinet-getitem?mr=2423191
http://www.ams.org/mathscinet-getitem?mr=2423191
http://www.ams.org/mathscinet-getitem?mr=2565722
http://www.ams.org/mathscinet-getitem?mr=2565722
http://www.hpl.hp.com/techreports/98/HPL-98-134.html
http://www.hpl.hp.com/techreports/98/HPL-98-134.html
http://www.ams.org/mathscinet-getitem?mr=1771549
http://www.ams.org/mathscinet-getitem?mr=1771549
http://www.ams.org/mathscinet-getitem?mr=2166105
http://www.ams.org/mathscinet-getitem?mr=2166105
http://www.ams.org/mathscinet-getitem?mr=1907102
http://www.ams.org/mathscinet-getitem?mr=2094740
http://www.ams.org/mathscinet-getitem?mr=2094740
http://www.ams.org/mathscinet-getitem?mr=2361668
http://www.ams.org/mathscinet-getitem?mr=2361668
http://www.ams.org/mathscinet-getitem?mr=1185244
http://www.ams.org/mathscinet-getitem?mr=1185244
http://www.ams.org/mathscinet-getitem?mr=2156291
http://www.ams.org/mathscinet-getitem?mr=2156291
http://www.ams.org/mathscinet-getitem?mr=1185243
http://www.ams.org/mathscinet-getitem?mr=1185243
http://www.ams.org/mathscinet-getitem?mr=1885631
http://www.ams.org/mathscinet-getitem?mr=1885631
http://www.ams.org/mathscinet-getitem?mr=1800881
http://www.ams.org/mathscinet-getitem?mr=1800881
http://www.ams.org/mathscinet-getitem?mr=1655771
http://www.ams.org/mathscinet-getitem?mr=1655771
http://www.bsi.bund.de/english/index.htm
http://www.bsi.bund.de/english/index.htm
http://www.ams.org/mathscinet-getitem?mr=2786038
http://www.ams.org/mathscinet-getitem?mr=1083786
http://www.ams.org/mathscinet-getitem?mr=2171927
http://www.ams.org/mathscinet-getitem?mr=2171927

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

GENERALISED MERSENNE NUMBERS REVISITED 2419

. G. Hachez and J.J. Quisquater. Montgomery Exponentiation with No Final Subtractions:
Improved Results. In Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag LNCS 1965, pp. 293-301, 2000.

Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag 2004. MR2054891/(2005¢:94049)

D. Hankerson, A. Menezes, and S. Vanstone. Software Implementation of Pairings Technical
report available from http://www.cacr.math.uwaterloo.cahttp://citeseer.ist.psu.edu
Hiseyin Hisil. Elliptic curves, group law, and efficient computation. Ph.D. thesis, Queensland
University of Technology, 2010. URL: http://eprints.qut.edu.au/33233.

Internet Engineering Task Force. Elliptic Curve Cryptography (ECC) Cipher Suites for Trans-
port Layer Security (TLS), 2006. http://wuw.ietf.org/rfc/rfc4492.

T. Itoh and S. Tsuji. Structure of Parallel Multipliers for a Class of Fields GF(2™). In Infor-
mation and Computers, vol. 8, 21-40, 1989. MR1019954//(91¢:68064)

J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptog-
raphy Specification Version 2.1 http://citeseer.ist.psu.edu/jonsson03publickey.html
A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. In Soviet
Physics, Doklady 7, 595-596, 1963.

E. Késper. Fast elliptic curve cryptography in OpenSSL. In Financial Cryptography and Data
Security: FC 2011 Workshops (RLCPS and WECSR), LNCS 7126, pp. 27-39, Springer-
Verlag, 2011.

D.E. Knuth. The Art of Computer Programming, 2 - Semi-numerical Algorithms. Addison-
Wesley, 2nd edition, 1981. MR0378456//(51:14624)

C.K. Kog, T. Acar and B.S. Kaliski Jr. Analyzing and comparing Montgomery multiplication
algorithms. In IEEE Micro, vol. 16, 3, pp. 26-33, 1996.

P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other
systems. In Advances in Cryptology — CRYPTO 96, LNCS 1109, pp. 104-113, 1996.

P.C. Kocher, J. Jaffe and B. Jun. Differential power analysis. In Advances in Cryptology —
CRYPTO 99, LNCS 1666, pp. 388-397, 1999.

S. Kwon, C.H. Kim and C.P. Hong. Gauss Period, Sparse Polynomial, Redundant Basis, and
Efficient Exponentiation for a Class of Finite Fields with Small Characteristic. In ISAAC
2003, LNCS 2906, pp. 736—745, 2003. MR2088253|(2005d:94123)

A K. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryp-
tosystems over finite fields. In Proc ACISP’97, Springer-Verlag LNCS 1270 (1997), 127-138.
A.K. Lenstra and H.W. Lenstra. The Development of the Number Field Sieve. LNM 155/,
Springer-Verlag, 1993. MR1321217

H.W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2), 126(3):649-673,
1987. MR916721//(89g:11125)

P. Longa and C.H. Gebotys. Efficient techniques for high-speed elliptic curve cryptography. In
Cryptographic hardware and embedded systems, CHES 2010, LNCS 6225, pp. 80-94, Springer
2010.

Alfred Menezes, Paul van Oorschot, Scott Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996. MR1412797(99g:94015)

Alfred Menezes, Edlyn Teske, and Annegret Weng. Weak Fields for ECC. In Topics in Cryp-
tology - CT-RSA 2004, 366-386, Springer-Verlag, 2004. MR2092257/[(2005d:94131)

P.L. Montgomery. Modular multiplication without trial division. Math. Comp., 44, 519-521,
1985. MR777282(86e:11121)

D. Naccache, N.P. Smart and J. Stern. Projective coordinates leak. In Advances in Cryptology
- EUROCRYPT, LNCS 2586, pp. 257267, Springer-Verlag, 2004. MR2153177

Y. Nogami, A. Saito, and Y. Morikawa. Finite extension field with modulus of all-one poly-
nomial and representation of its elements for fast arithmetic operations. In IEICE TRANS-
ACTIONS on Fundamentals of FElectronics, Communications and Computer Sciences Vol.
E86-A No. 9, 2376-2387, 2003.

E. Ozturk, B. Sunar, and E. Savas. Low-power elliptic curve cryptography using scaled mod-
ular arithmetic. In CHES 2004, LNCS 3156, Springer-Verlag, pp. 92-106, 2004.

D.S. Phatak and T. Goff. Fast Modular Reduction for Large Wordlengths via One Linear and
One Cyclic Convolution. In 17th IEEE Symposium on Computer Arithmetic (ARITH’05), pp.
179-186, 2005.

http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.cacr.math.uwaterloo.ca http://citeseer.ist.psu.edu
http://eprints.qut.edu.au/33233
http://www.ietf.org/rfc/rfc4492
http://www.ams.org/mathscinet-getitem?mr=1019954
http://www.ams.org/mathscinet-getitem?mr=1019954
http://citeseer.ist.psu.edu/jonsson03publickey.html
http://www.ams.org/mathscinet-getitem?mr=0378456
http://www.ams.org/mathscinet-getitem?mr=0378456
http://www.ams.org/mathscinet-getitem?mr=2088253
http://www.ams.org/mathscinet-getitem?mr=2088253
http://www.ams.org/mathscinet-getitem?mr=1321217
http://www.ams.org/mathscinet-getitem?mr=916721
http://www.ams.org/mathscinet-getitem?mr=916721
http://www.ams.org/mathscinet-getitem?mr=1412797
http://www.ams.org/mathscinet-getitem?mr=1412797
http://www.ams.org/mathscinet-getitem?mr=2092257
http://www.ams.org/mathscinet-getitem?mr=2092257
http://www.ams.org/mathscinet-getitem?mr=777282
http://www.ams.org/mathscinet-getitem?mr=777282
http://www.ams.org/mathscinet-getitem?mr=2153177

2420 ROBERT GRANGER AND ANDREW MOSS

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

R.L. Rivest, Shamir A., and L.M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Comm. ACM, 21, 120 — 126, 1978. MR700103| (83m:94003)

Y. Sakai and K. Sakurai. Simple power analysis on fast modular reduction with generalized
Mersenne prime for elliptic curve cryptosystems. In Ieice Transactions - IEICE, vol. 89-A,
no. 1, pp. 231-237, 2006.

A. Schinzel and W. Sierpinski. Sur certaines hypotheéses concernant les nombres premiers. In
Acta Arith. 4 (1958), pp. 185-208, Erratum 5 (1959), 259. MR0106202](21:4936)

J.H. Silverman. Fast multiplication in finite fields GF(2™V). In Proc. Workshop Cryptographic
Hardware and Embedded Systems (CHES ’99), LNCS 1717, 122-134. Springer 1999.

N.P. Smart, E. Oswald and D. Page. Randomised representations. In IET Information Secu-
rity, vol. 2, no. 2, pp. 19-27, 2008.

W.M. Snyder. Factoring repunits. In Amer. Math. Monthly, 89, pp. 462-466, 1982. MR673635
(84h:10011)

J.A. Solinas. Generalized Mersenne Numbers. Technical report CORR-39, Dept. of C&O,
University of Waterloo, 1999. Available from http://www.cacr.math.uwaterloo.ca

C.D. Walter. Faster modular multiplication by operand scaling. Advances in Cryptology LNCS
576, 313-323, Springer-Verlag, 1992.

C.D. Walter. Montgomery exponentiation needs no final subtractions. In Electronics Letters,
35, pp. 1831-1832, 1999.

C.D. Walter. Montgomery’s multiplication technique: How to make it smaller and faster. In
Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 1717, pp.
80-93, 1999.

C.D. Walter and S. Thompson. Distinguishing exponent digits by observing modular subtrac-
tions. In CT-RSA 2001, LNCS 2020, pp. 192-207, 2001. MR1907098

H.C. Williams and E. Seah. Some primes of the form (a™ — 1)/(a — 1). In Math. Comp., 33,
pp. 1337-1342, 1979. MR537980 (80g:10014)

J.K. Wolf. Low complexity finite field multiplication. In Discrete Math., no.s 106/107, 497—
502, 1992.

H. Wu, A. Hasan, 1. Blake and S. Gao. Finite Field Multiplier Using Redundant Representa-
tion. IEEE Trans. Comput., vol. 51, no. 11, Nov 2002. MR2015123

S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. STOC ’07,
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, 266-274,
2007. MR2402450 (2009e:94129)

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY COLLEGE DUBLIN, IRELAND
E-mail address: robbiegranger@gmail.com

ScHOOL OF COMPUTING, BLEKINGE INSTITUTE OF TECHNOLOGY, SWEDEN
E-mail address: awm@bth.se

http://www.ams.org/mathscinet-getitem?mr=700103
http://www.ams.org/mathscinet-getitem?mr=700103
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=0106202
http://www.ams.org/mathscinet-getitem?mr=673635
http://www.ams.org/mathscinet-getitem?mr=673635
http://www.cacr.math.uwaterloo.ca
http://www.ams.org/mathscinet-getitem?mr=1907098
http://www.ams.org/mathscinet-getitem?mr=537980
http://www.ams.org/mathscinet-getitem?mr=537980
http://www.ams.org/mathscinet-getitem?mr=2015123
http://www.ams.org/mathscinet-getitem?mr=2402450
http://www.ams.org/mathscinet-getitem?mr=2402450

	1. Introduction
	2. Definitions and related work
	2.1. Low redundancy cyclotomic primes
	2.2. Related work

	3. GRP field representation
	3.1. Chung-Hasan arithmetic
	3.2. Chung-Hasan representation for GRPs
	3.3. Lattice interpretation
	3.4. Lattice basis and simple reduction
	3.5. Montgomery lattice-basis reduction
	3.6. High level view of Chung Hasan-arithmetic

	4. GRP multiplication
	4.1. Ordinary multiplication formulae
	4.2. Multiplication formulae of Nogami et al.
	4.3. Alternative bases
	4.4. Derivation of coefficient formulae
	4.5. Application to GRPs
	4.6. Cost comparison

	5. GRP reduction
	5.1. GRP reduction: 𝑡 even
	5.2. GRP reduction: 𝑡≡0\bmod{2^{𝑙}}

	6. GRP residue representation
	7. Modular multiplication stability
	8. Full GRP modular multiplication
	9. Other arithmetic and side-channel secure ECC
	9.1. Other arithmetic operations
	9.2. Side-channel secure ECC

	10. GRP parameters
	10.1. Estimating the number of GRP parameters
	10.2. Hamming weight 2 parameters

	11. Implementation and results
	12. Conclusion
	Acknowledgements
	References

