
Taking Roots over High Extensions
of Finite Fields

Javad Doliskani
jdoliska@uwo.ca

Éric Schost
eschost@uwo.ca

Abstract

We present a new algorithm for computing m-th roots over the finite field Fq, where
q = pn, with p a prime, and m any positive integer. In the particular case m = 2,
the cost of the new algorithm is an expected O(M(n) log(p) + C(n) log(n)) operations
in Fp, where M(n) and C(n) are bounds for the cost of polynomial multiplication and
modular polynomial composition. Known results give M(n) = O(n log(n) log log(n))
and C(n) = O(n1.67), so our algorithm is subquadratic in n.

Keywords. Root extraction; square roots; finite field arithmetic.

Mathematics Subject Classification 2010. Primary 11Y16, 12Y05, Secondary
68W30.

1 Introduction

Beside its intrinsic interest, computing m-th roots over finite fields (for m an integer at least
equal to 2) has found many applications in computer science. Our own interest comes from
elliptic and hyperelliptic curve cryptography; there, square root computations show up in
pairing-based cryptography [3] or point-counting problems [8].

Our result in this paper is a new algorithm for computing m-th roots in a degree n
extension Fq of the prime field Fp, with p a prime. Our emphasis is on the case where p is
thought to be small, and the degree n grows. Roughly speaking, we reduce the problem to
m-th root extraction in a lower degree extension of Fp (when m = 2, we actually reduce the
problem to square root extraction over Fp itself).

Our complexity model. It is possible to describe the algorithm in an abstract manner,
independently of the choice of a basis of Fq over Fp. However, to give concrete complexity
estimates, we have to decide which representation we use, the most usual choices being
monomial and normal bases. We choose to use a monomial basis, since in particular our
implementation is based on the library NTL [20], which uses this representation. Thus, the
finite field Fq = Fpn is represented as Fp[X]/〈f〉, for some monic irreducible polynomial
f ∈ Fp[X] of degree n; elements of Fq are represented as polynomials in Fp[X] of degree less
than n. We will briefly mention the normal basis representation later on.

1

ar
X

iv
:1

11
0.

43
50

v1
 [

cs
.D

S]
 1

9
O

ct
 2

01
1

The costs of all algorithms are measured in number of operations +,×,÷ in the base
field Fp (that is, we are using an algebraic complexity model).

We shall denote upper bounds for the cost of polynomial multiplication and modular
composition by respectively M(n) and C(n). This means that over any field K, we can
multiply polynomials of degree n in K[X] in M(n) base field operations, and that we can
compute f(g) mod h in C(n) operations in K, when f, g, h are degree n polynomials. We
additionally require that both M and C are super-linear functions, as in [23, Chapter 8], and
that M(n) = O(C(n)). In particular, since we work in the monomial basis, multiplications
and inversions in Fq can be done in respectively O(M(n)) and O(M(n) log(n)) operations in
Fp, see again [23].

The best known bound for M(n) is O(n log(n) log log(n)), achieved by using Fast Fourier
Transform [17, 5]. The most well-known bound for C(n) is O(n(ω+1)/2), due to Brent and
Kung [4], where ω is such that matrices of size n over any field K can be multiplied in O(nω)
operations in K; this estimate assumes that ω > 2, otherwise some logarithmic terms may
appear. Using the algorithm of Coppersmith and Winograd [6], we can take ω ≤ 2.37 and
thus C(n) = O(n1.69); an algorithm by Huang and Pan [10] actually achieves a slightly better
exponent of 1.67, by means of rectangular matrix multiplication.

Main result. We will focus in this paper on the case of t-th root extraction, where t is a
prime divisor of q− 1; the general case of m-th root extraction, with m arbitrary, can easily
be reduced to this case (see the discussion after Theorem 1).

The core of our algorithm is a reduction of t-th root extraction in Fq to t-th root extraction
in an extension of Fp of smaller degree. Our algorithm is probabilistic of Las Vegas type, so
its running time is given as an expected number of operations. With this convention, our
main result is the following.

Theorem 1. Let t be a prime factor of q − 1, with q = pn, and let s be the order of p in
Z/tZ. Given a ∈ F∗q, one can decide if a is a t-th power in F∗q, and if so compute one of its
t-th roots, by means of the following operations:

• an expected O(sM(n) log(p) + C(n) log(n)) operations in Fp;

• a t-th root extraction in Fps.

Thus, we replace t-th root extraction in a degree n extension by a t-th root extraction in
an extension of degree s ≤ min(n, t). The extension degree s is the largest one for which t
still divides ps − 1, so iterating the process does not bring any improvement: the t-th root
extraction in Fps must be dealt with by another algorithm. The smaller s is, the better.

A useful special case is t = 2, that is, we are taking square roots; the assumption that
t divides q − 1 is then satisfied for all odd primes p and all n. In this case, we have s = 1,
so the second step amounts to square root extraction in Fp. Since this can be done in
O(log(p)) expected operations in Fp, the total running time of the algorithm is an expected
O(M(n) log(p) + C(n) log(n)) operations in Fp.

A previous algorithm by Kaltofen and Shoup [12] allows one to compute t-th roots in
Fpn in expected time O((M(t)M(n) log(p) + tC(n) + C(t)M(n)) log(n)); we discuss it further
in the next section. This algorithm requires no assumption on t, so it can be used in our

2

algorithm in the case s > 1, for t-th root extraction in Fps . Then, its expected running time
is O((M(t)M(s) log(p) + tC(s) + C(t)M(s)) log(s)).

The strategy of using Theorem 1 to reduce from Fq to Fps then using the Kaltofen-Shoup
algorithm over Fps is never more expensive than using the Kaltofen-Shoup algorithm directly
over Fq. For t = O(1), both strategies are within a constant factor; but even for the smallest
case t = 2, our algorithm has advantages (as explained in the last section). For larger t,
the gap in our favor will increase for cases when s is small (such as when t divides p − 1,
corresponding to s = 1).

Finally, let us go back to the remark above, that for any m, one can reduce m-th root
extraction of a ∈ F∗q to computing t-th roots, with t dividing q − 1; this is well known, see
for instance [1, Chapter 7.3]. We write m = uv with (v, q − 1) = 1 and t | q − 1 for every
prime divisor t of u, and we assume that a is indeed an m-th power.

• We first compute the v-th root a0 of a as a0 = av
−1 mod q−1 by computing the inverse

` of v mod q − 1, and computing an `-th power in Fq. This takes O(nM(n) log(p))
operations in Fp.

• Let u =
∏d

i=1m
αi
i be the prime factorization of u, which we assume is given to us.

Then, for k = 1, . . . , α1, we compute an m1-th root ak of ak−1 using Theorem 1, so
that aα1 is an mα1

1 -th root of a0.

One should be careful in the choice of the m1-th roots (which are not unique), so as to
ensure that each ak is indeed an u/mi

1-th power: if the given ak is not such a power,
we can multiply it by a m1-th root of unity until we find a suitable one. The root of
unity can be found by the algorithm of Theorem 1.

Once we know aα1 , the same process can be applied to compute an mα2
2 -th root of aα1 ,

and so on.

The first step, taking a root of order v, may actually be the bottleneck of this scheme.
When v is small compared to n, it may be better to use here as well the algorithm by
Kaltofen and Shoup mentioned above.

Organization of the paper. The next section reviews and discusses known algorithms;
Section 3 gives the details of the root extraction algorithm and some experimental results.
In all the paper, (F∗q)t denotes the set of t-th powers in F∗q.

Acknowledgments. We thank NSERC and the Canada Research Chairs program for
financial support.

2 Previous work

Let t be a prime factor of q − 1. In the rest of this section, we discuss previous algorithms
for t-th root extraction, with a special focus on the case t = 2 (square roots), which has
attracted most attention in the literature.

3

We shall see in Section 3 that given such a prime t, the cost of testing for t-th power is
always dominated by the t-th root extraction; thus, for an input a ∈ F∗q, we always assume
that a ∈ (F∗q)t.

All algorithms discussed below rely on some form of exponentiation in Fq, or in an exten-
sion of Fq, with exponents that grow linearly with q. As a result, a direct implementation
using binary powering uses O(log(q)) multiplications in Fq, that is, O(nM(n) log(p)) oper-
ations in Fp. Even using fast multiplication, this is quadratic in n; alternative techniques
should be used to perform the exponentiation, when possible.

Some special cases of square root computation. If G is a group with an odd order
s, then the mapping f : G → G, f(a) = a2 is an automorphism of G; hence, every element
a ∈ G has a unique square root, which is a(s+1)/2. Thus, if q ≡ 3 (mod 4), the square root
of any a ∈ (F∗q)2 is a(q+1)/4; this is because (F∗q)2 is a group of odd order (q − 1)/2.

More complex schemes allow one to compute square roots for some increasingly restricted
classes of prime powers q. The following table summarizes results known to us; in each case,
the algorithm uses O(1) exponentiations and O(1) additions / multiplications in Fq. The
table indicates what exponents are used in the exponentiations.

Table 1: Some special cases for square roots

Algorithm q exponent
folklore 3 (mod 4) (q + 1)/4
Atkin 5 (mod 8) (q − 5)/8

Müller [14] 9 (mod 16) (q − 1)/4 and (q − 9)/16
Kong et al. [13] 9 (mod 16) (q − 9)/8 and (q − 9)/16

As was said above, using a direct binary powering approach to exponentiation, all these
algorithms use O(nM(n) log(p)) operations in Fp.

Cipolla’s square root algorithm. To compute the square root of a ∈ (F∗q)2, Cipolla’s
algorithm uses an element b in Fq such that b2−4a is not a square in Fq. Then, the polynomial
f(Y) = Y 2 − bY + a is irreducible over Fq, hence K = Fq[Y]/〈f〉 is a field. Let y be the
residue class of Y modulo 〈f〉. Since f is the minimal polynomial of y over Fq, NK/Fq(y) = a,
ensuring that

√
a = Y (q+1)/2 mod (Y 2 − bY + a).

Finding a quadratic nonresidue of the form b2− 4a by choosing a random b ∈ Fq requires
an expected O(1) attempts [1, page 158]. The quadratic residue test, and the norm compu-
tation take O(M(n) log(n) + log(p)) and O(nM(n) log(p)) multiplications in Fp respectively.
Therefore, the cost of the algorithm is an expected O(nM(n) log(p)) operations in Fp.

Algorithms extending Cipolla’s to the computation of t-th roots in Fp, where t is a prime
factor of p− 1, are in [24, 25, 15].

The Tonelli-Shanks algorithm. We will describe the algorithm in the case of square
roots, although the ideas extend to higher orders. Tonelli’s algorithm [21] and Shanks’

4

improvement [18] use discrete logarithms to reduce the problem to a subgroup of F∗q of odd
order. Let q − 1 = 2r` with (`, 2) = 1 and let H be the unique subgroup of F∗q of order
`. Assume we find a quadratic nonresidue g ∈ F∗q; then, the square root of a ∈ F∗q can be
computed as follows: we can express a as gsh ∈ gsH by solving a discrete logarithm in F∗q/H;

s is necessarily even, so that
√
a = gs/2h(`+1)/2.

According to [16], the discrete logarithm requires O(r2M(n)) multiplications in Fp; all
other steps take O(nM(n) log(p)) operations in Fp. Hence, the expected running time of the
algorithm is O((r2 + n log(p))M(n)) operations in Fp. Thus, the efficiency of this algorithm
depends on the structure of F∗q: there exists an infinite sequence of primes for which the cost
is O(n2M(n) log(p)2), see [22].

Improving the exponentiation. All algorithms seen before use at best O(nM(n) log(p))
operations in Fp, because of the exponentiation. Using ideas going back to [11], Barreto et
al. [3] observed that for some of the cases seen above, the exponentiation can be improved,
giving a cost subquadratic in n.

For instance, when taking square roots with q = 3 (mod 4), the exponentiation a(q+1)/4

can be reduced to computing a1+u+···+u
(n−3)/2

, with u = p2, plus two (cheap) exponentiations
with exponents p(p−1) and (p+1)/4. The special form of the exponent 1+u+ · · ·+u(n−3)/2

makes it possible to apply a binary powering approach, involving O(log(n)) multiplications
and exponentiations, with exponents that are powers of p.

Further examples for square roots are discussed in [13, 9], covering the entries of Table 1.
These references assume a normal basis representation; using (as we do) the monomial basis
and modular composition techniques (which will be explained in the next section), the costs
become O(M(n) log(p) + C(n) log(n)). Some cases of higher index roots are in [2]: if t is
a factor of p − 1, such that t2 does not divide p − 1, and if gcd(n, t) = 1, then t-th root
extraction can be done using O(tM(n) log(p) + C(n) log(n)) operations in Fp.

Kaltofen and Shoup’s algorithm. Finally, we mention what is, as far as we know, the
only algorithm achieving an expected subquadratic running time in n (using the monomial
basis representation), without any assumption on p.

Consider a factor t of q − 1. To compute a t-th root of a ∈ (F∗q)t, the idea is simply
to factor Y t − a ∈ Fq[Y] using polynomial factorization techniques. Since we know that a
is a t-th power, this polynomial splits into linear factors, so we can use an Equal Degree
Factorization (EDF) algorithm.

A specialized EDF algorithm, dedicated to the case of high-degree extension of a given
base field, was proposed by Kaltofen and Shoup [12]. It mainly reduces to the computation
of a trace-like quantity b+ bp + · · ·+ bp

n−1
, where b is a random element in Fq[Y]/〈Y t − a〉.

Using a binary powering technique similar to the one of the previous paragraph, this results
in an expected running time of O((M(t)M(n) log(p) + tC(n) + C(t)M(n)) log(n)) operations
in Fp; remark that this estimate is faster than what is stated in [12] by a factor log(t), since
here we only need one root, instead of the whole factorization. In the particular case t = 2,
this becomes O((M(n) log(p) + C(n)) log(n)). This achieves a running time subquadratic
in n.

This idea actually allows one to compute a t-th root, for arbitrary t: starting from the

5

polynomial Y t − a, we apply the above algorithm to gcd(Y t − a, Y q − Y); computing Y q

modulo Y t − a can be done by the same binary powering techniques.

3 A new root extraction algorithm

In this section, we focus on t-th root extraction in Fq, for t a prime dividing q − 1 (as we
saw in Section 1, m-th root extraction, for an integer m ≥ 2, reduces to taking t-th roots,
where t is a prime factor of m dividing q − 1).

The algorithm we present uses the trace Fq → Fq′ , for some subfield Fq′ ⊂ Fq to reduce
t-th root extraction in Fq to t-th root extraction in Fq′ . We assume as before that the field Fq
is represented by a quotient Fp[X]/〈f〉, with f(X) ∈ Fp[X] a monic irreducible polynomial
of degree n. We let x be the residue class of X modulo 〈f〉.

Since we will handle both Fq and Fq′ , conversions may be needed. We recall that the
minimal polynomial g ∈ Fp[Z] of an element b ∈ Fq can be computed inO(C(n)+M(n) log(n))
operations in Fp [19]. Then, Fq′ = Fp[Z]/〈g〉 is a subfield of Fq = Fp[X]/〈f〉; given r ∈ Fq′ ,
written as a polynomial in Z, we obtain its representation on the monomial basis of Fq by
means of a modular composition, in time C(n). We will write this operation Embed(r,Fq).
Note that when b is in Fp, all these operations are actually free.

3.1 An auxiliary algorithm

We first discuss a binary powering algorithm to solve the following problem. Starting from
λ ∈ Fq, we are going to compute

αi(λ) = λ1+p
s

+ λ1+p
s+p2s + · · ·+ λ1+p

s+p2s+···+pis

for given integers i, s > 0. This question is similar to (but distinct from) some exponentia-
tions and trace-like computations we discussed before; our solution will be a similar binary
powering approach, which will perform O(log(i)) multiplications and exponentiations by
powers of p. Let

ξi = xp
is

, ζi(λ) = λp
s+p2s+···+pis and δi(λ) = λp

s

+ λp
s+p2s + · · ·+ λp

s+p2s+···+pis ,

where all quantities are computed in Fq, that is, modulo f ; for simplicity, in this paragraph,
we will write αi, ζi and δi. Note that αi = λδi, and that we have the following relations:

ξ1 = xp
s

, ζ1 = λp
s

, δ1 = λp
s

and

ξi =

{
ξp

is/2

i/2 if i is even

ξp
s

i−1 if i is odd,
ζi =

{
ζi/2ζ

pis/2

i/2 if i is even

ζ1ζ
ps

i−1 if i is odd,
δi =

{
δi/2 + ζi/2δ

pis/2

i/2 if i is even

δi−1 + ζi if i is odd.

Because we are working in a monomial basis, computing exponentiations to powers of p is
not a trivial task; we will perform them using the following modular composition technique
from [7].

6

Take j ≥ 0 and r ∈ Fq, and let R and Ξj be the canonical preimages of respectively r
and ξj in Fp[X]; then, we have

rp
js

= R(Ξj) mod f,

see for instance [23, Chapter 14.7]. We will simply write this as r(ξj), and note that it can be
computed using one modular composition, in time C(n). These remarks give us the following
recursive algorithm, where we assume that ξ1 = xp

s
and ζ1 = λp

s
are already known.

Algorithm 1 XiZetaDelta(λ, i, ξ1, ζ1)

Input: λ, a positive integer i, ξ1 = xp
s
, ζ1 = λp

s

Output: ξi, ζi, δi
1. if i = 1 then
2. return ξ1, ζ1, ζ1
3. end if
4. j ← bi/2c
5. ξj, ζj, δj ← XiZetaDelta(λ, j, ξ1, ζ1)
6. ξ2j ← ξj(ξj)
7. ζ2j ← ζj · ζj(ξj)
8. δ2j ← δj + ζjδj(ξj)
9. if i is even then

10. return ξ2j, ζ2j, δ2j
11. end if
12. ξi ← ξ2j(ξ1)
13. ζi ← ζ1 · ζ2j(ξ1)
14. δi ← δ2j + ζi
15. return ξi, ζi, δi

We deduce the following algorithm for computing αi(λ).

Algorithm 2 Alpha(λ, i)

Input: λ, a positive integer i
Output: αi

1. ξ1 ← xp
s

2. ζ1 ← λp
s

3. ξi, ζi, δi ← XiZetaDelta(λ, i, ξ1, ζ1)
4. return λδi

Proposition 2. Algorithm 2 computes αi(λ) using O(C(n) log(is) +M(n) log(p)) operations
in Fp.

Proof. To compute xp
s

and λp
s

we first compute xp and λp using O(log(p)) multiplications
in Fq, and then do O(log(s)) modular compositions modulo f . The depth of the recursion
in Algorithm 1 is O(log(i)); each recursive call involves O(1) additions, multiplications and
modular compositions modulo f , for a total time of O(C(n)) per recursive call. �

As said before, the algorithm can also be implemented using a normal basis representa-
tion. Then, exponentiations to powers of p become trivial, but multiplication becomes more
difficult. We leave these considerations to the reader.

7

3.2 Taking t-th roots

We will now give our root extraction algorithm. As said before, we now let t be a prime
factor of q − 1, and we let s be the order of p in Z/tZ. Then s divides n, say n = s`.

We first explain how to test for t-th powers. Testing whether a ∈ F∗q is a t-th power is

equivalent to testing whether a(q−1)/t = 1. Let ζ = a(p
s−1)/t; then a(q−1)/t = ζ1+p

s+···+p(`−1)s
.

Computing ζ requires O(sM(n) log(p)), and computing ζ1+p
s+···+p(`−1)s

using Algorithm 1
requires O(C(n) log(n) + M(n) log(p)) operations in Fp. Therefore, testing for a t-th power
takes O(C(n) log(n) + sM(n) log(p)) operations in Fp.

In the particular case when t divides p− 1, we can actually do better: we have a(q−1)/t =
res(f, a)(p−1)/t, where res(·, ·) is the resultant function. The resultant can be computed using
O(M(n) log(n)) operations in Fp, so the whole test can be done using O(M(n) log(n)+log(p))
operations in Fp.

In any case, we can now assume that we are given a ∈ (F∗q)t, with t-th root γ ∈ Fq.
Defining β = TFq/Fq′

(γ), where TFq/Fq′
: Fq → Fq′ is the trace linear form and q′ = ps, we

have

β =
`−1∑
i=0

γp
is

= γ(1 + γp
s−1 + γp

2s−1 + · · ·+ γp
(`−1)s−1)

= γ(1 + a(p
s−1)/t + a(p

2s−1)/t + · · ·+ a(p
(`−1)s−1)/t). (1)

Let b = 1+a(p
s−1)/t+a(p

2s−1)/t+ · · ·+a(p
(`−1)s−1)/t, so that Equation (1) gives β = γb. Taking

the t-th power in both sides results in the equation βt = abt over Fq′ . Since we know a,
and we can compute b, we can thus determine β by t-th root extraction in Fq′ . Then, if we
assume that b 6= 0 (or equivalently that β 6= 0), we deduce γ = βb−1; to resolve the issue
that β may be zero, we will replace a by a′ = act, for a random element c ∈ F∗q.

Computing the t-th root of a′bt in Fq′ is done as follows. We first compute the minimal
polynomial g ∈ Fp[Z] of a′bt, and let z be the residue class of Z in Fp[Z]/〈g〉. Then, we
compute a t-th root r of z in Fp[Z]/〈g〉, and embed r in Fq. The computation of r is done
by a black-box t-th root extraction algorithm, denoted by r 7→ r1/t.

It remains to explain how to compute b efficiently. Let λ = a(p
s−1)/t; then, one verifies

that b = 1 + λ + α`−2(λ), so we can use the algorithm of the previous subsection. Putting
all together, we obtain the following algorithm

Algorithm 3 t-th root in F∗q
Input: a ∈ (F∗q)t
Output: a t-th root of a

1. s← the order of p in Z/tZ
2. `← n/s
3. repeat
4. choose a random c ∈ Fq
5. a′ ← act

6. λ← a′(p
s−1)/t

8

7. b← 1 + λ+ Alpha(λ, `− 2)
8. until b 6= 0
9. g ← MinimalPolynomial(a′bt)

10. β ← z1/t in Fq[Z]/〈g〉
11. return Embed(β,Fq)b−1c−1

The following proposition proves Theorem 1.

Proposition 3. Algorithm 3 computes a t-th root of a using an expected O(sM(n) log(p) +
C(n) log(n)) operations in Fp, plus a t-th root extraction in Fq′.

Proof. Note first that β = 0 means that TFq/Fq′
(γc) = 0. There are q/q′ values of c for which

this is the case, so we expect to have to choose O(1) elements in Fq before exiting the repeat
. . . until loop. Each pass in the loop uses O(sM(n) log(p)) operations in Fp to compute a′

and λ, and O(C(n) log(n) + M(n) log(p)) operations in Fp to compute b.
Given a′ and b, one obtains bt and a′bt using another O(sM(n) log(p)) operations in Fp;

then, computing g takes time O(C(n) + M(n) log(n)).
After the black-box call to t-th root extraction modulo g, embedding β in Fq takes time

C(n). We can then deduce γ by two divisions in Fq, using O(M(n) log(n)) operations in Fp;
this is negligible compared to the cost of all modular compositions. �

3.3 Experimental results

We have implemented our root extraction algorithm, in the case m = 2 (that is, we are
taking square roots); our implementation is based on Shoup’s NTL [20]. Figure 1 compares
our algorithm to Cipolla’s and Tonelli-Shanks’ algorithms over Fq, with q = pn, for the
randomly selected prime p = 348975609381470925634534573457497, and different values of
the extension degree n.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250 300 350 400 450 500

ti
m

e
(s

e
c
)

extension degree

Cipolla
Tonelli-Shanks

New

Figure 1: Our square root algorithm vs. Cipolla’s and Tonelli-Shanks’ algorithms.

9

Remember that the bottleneck in Cipolla’s and Tonelli-Shanks’ algorithms is the expo-
nentiation, which takes O(nM(n) log(p)) operation in Fp. As it turns out, NTL’s imple-
mentation of modular composition has ω = 2; this means that with this implementation
we have C(n) = O(n2), and our algorithm takes expected time O(M(n) log(p) + n2 log(n)).
Although this implementation is not subquadratic in n, it remains faster than Cipolla’s and
Tonelli-Shanks’ algorithms, in theory and in practice.

Next, Figure 2 compares our NTL implementation of the EDF algorithm proposed by
Kaltofen and Shoup, and our square root algorithm (note that the range of reachable degrees
is much larger that in the first figure). We have ran the algorithms for several random
elements for each extension degree. The vertical dashed lines, and the green line show
the running time range, and the average running time of Kaltofen and Shoup algorithm
respectively. In the case of our algorithm (the red graph), the vertical ranges are invisible
because the deviation from the average is ≈ 10−2 seconds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
(s

e
c
)

extension degree

New
Kaltofen-Shoup

Figure 2: Our algorithm vs. Kaltofen and Shoup’s algorithm.

This time, the results are closer. Nevertheless, it appears that the running time of our
algorithm behaves more “smoothly”, in the sense that random choices seem to have less
influence. This is indeed the case. The random choice in Kaltofen and Shoup’s algorithm
succeeds with probability about 1/2; in case of failure, we have to run to whole algorithm
again. In our case, our choice of an element c in F∗q fails with probability 1/p � 1/2; then,
there is still randomness involved in the t-th root extraction in Fp, but this step was negligible
in the range of parameters where our experiments were conducted.

Another way to express this is to compare the standard deviations in the running times of
both algorithms. In the case of Kaltofen-Shoup’s algorithm, the standard deviation is about
1/
√

2 of the average running time of the whole algorithm. For our algorithm, the standard
deviation is no more than 1/

√
p of the average running time of the trace-like computation

(which is the dominant part), plus 1/
√

2 of the average running time of the root extraction
in Fp (which is cheap).

10

References

[1] E. Bach and J. Shallit. Algorithmic Number Theory; Volume I: Efficient Algorithms.
The MIT Press, 1996.

[2] P. Barreto and J. Voloch. Efficient computation of roots in finite fields. Designs, Codes
and Cryptography, 39:275–280, 2006.

[3] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in cryptology—CRYPTO 2002, volume 2442
of Lecture Notes in Comput. Sci., pages 354–368. Springer, 2002.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the Association for Computing Machinery, 25(4):581–595, 1978.

[5] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comp, 9(3):251–280, 1990.

[7] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2(3):187–224, 1992.

[8] P. Gaudry and É. Schost. Point-counting in genus 2 over prime fields, 2011.

[9] D.-G. Han, D. Choi, and H. Kim. Improved computation of square roots in specific
finite fields. IEEE Trans. Comput., 58:188–196, 2009.

[10] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J.
Complexity, 14(2):257–299, 1998.

[11] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in GF(2m)
using normal bases. Inform. and Comput., 78(3):171–177, 1988.

[12] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions
of finite fields. In ISSAC’97, pages 184–188. ACM, 1997.

[13] F. Kong, Z. Cai, J. Yu, and D. Li. Improved generalized Atkin algorithm for computing
square roots in finite fields. Inform. Process. Lett., 98(1):1–5, 2006.

[14] S. Müller. On the computation of square roots in finite fields. Des. Codes Cryptogr.,
31(3):301–312, 2004.

[15] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo. A remark on the computation
of cube roots in finite fields. Cryptology ePrint Archive, Report 2009/457, 2009. http:
//eprint.iacr.org/.

11

http://eprint.iacr.org/
http://eprint.iacr.org/

[16] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over
gf(p) and its cryptographic significance. IEEE Transactions on Information Theory,
IT-24:106–110, 1978.

[17] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

[18] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba
Conference on Numerical Mathematics, pages 51–70, 1972.

[19] V. Shoup. Fast Construction of Irreducible Polynomials over Finite Fields”. Journal of
Symbolic Computation, 17(5):371–391, May 1994.

[20] V. Shoup. A library for doing number theory (NTL). http://www.shoup.net/ntl/,
2009.

[21] A. Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger
Nachrichten, pages 344–346, 1891.

[22] G. Tornaŕıa. Square roots modulo p. In LATIN 2002: Theoretical Informatics, volume
2286 of Lecture Notes in Comput. Sci., pages 430–434. Springer, 2002.

[23] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2003.

[24] H. C. Williams. Some algorithms for solving xq ≡ N (mod p). In Proceedings of
the Third Southeastern Conference on Combinatorics, Graph Theory and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1972), pages 451–462. Florida Atlantic Univ.,
1972.

[25] K. S. Williams and K. Hardy. A refinement of H. C. Williams’ qth root algorithm.
Math. Comp., 61(203):475–483, 1993.

12

http://www.shoup.net/ntl/

	1 Introduction
	2 Previous work
	3 A new root extraction algorithm
	3.1 An auxiliary algorithm
	3.2 Taking t-th roots
	3.3 Experimental results

