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Analysis of the finite element heterogeneous multiscale method for

nonlinear elliptic homogenization problems.

Assyr Abdulle and Gilles Vilmart

September 28, 2012

Abstract

An analysis of the finite element heterogeneous multiscale method for a class of quasilin-
ear elliptic homogenization problems of nonmonotone type is proposed. We obtain optimal
convergence results for dimension d ≤ 3. Our results, which also take into account the
microscale discretization, are valid for both simplicial and quadrilateral finite elements. Op-
timal a-priori error estimates are obtained for the H1 and L2 norms, error bounds similar
as for linear elliptic problems are derived for the resonance error. Uniqueness of a numerical
solution is proved. Moreover, the Newton method used to compute the solution is shown
to converge. Numerical experiments confirm the theoretical convergence rates and illustrate
the behavior of the numerical method for various nonlinear problems.

Keywords: nonmonotone quasilinear elliptic problem, numerical quadrature, finite ele-
ments, multiple scales, micro macro errors, numerical homogenization.

AMS subject classification (2010): 65N30,65M60,74D10,74Q05.

1 Introduction

We consider a finite element method (FEM) for the numerical solution of a class of nonlinear
nonmonotone multiscale problems of the form

−∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, (1)

in a domain Ω ⊂ R
d, d ≤ 3, where aε(x, u) is a d × d tensor. We consider for simplicity the

homogeneous Dirichlet boundary conditions uε = 0 on ∂Ω, but our analysis could apply to
other types of boundary conditions. Such type of problems arise in many applications (e.g., the
stationary form of the Richards problem [10], the modeling of the thermal conductivity of the
Earth’s crust [34], or the heat conduction in composite materials [31]).

Yet, often the multiscale nature of the medium, described in (1) through a nonlinear multi-
scale conductivity tensor aε(x, uε(x)), is not taken into account in the modeling due to the high
computational cost in solving numerically (1) via standard methods resolving the medium’s finest
scale. Upscaling of equation (1) is thus needed for an efficient numerical treatment. Rigorously
described by the mathematical homogenization theory [11],[30], coarse graining (or homogeniza-
tion) aims at averaging the finest scales of a multiscale equation and deriving a homogenized
equation that captures the essential macroscopic features of the problem as ε → 0. The math-
ematical homogenization of (1) has been developed in [13, 9, 28] where it is shown that the
homogenized equation is of the same quasilinear type as the original equation, with aε(x, uε(x))
replaced by a homogenized tensor a0(x, u0(x)) depending nonlinearly on a homogenized solution
u0 (the limit in a certain sense of uε as ε→ 0).

While numerical methods for linear elliptic homogenization problems have been studied in
many papers - see [3, 23, 25], and the references therein - the literature for the numerical ho-
mogenization of nonlinear nonmonotone elliptic problems is less abundant. Numerical methods
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based on the multiscale finite element method (MsFEM) [25] for nonlinear elliptic problems of
the form −∇ · (aε(x, uε(x),∇uε(x)) = f(x) (a tensor nonlinear also with respect to ∇uε) have
been studied in [26],[25], where a monotonicity assumption has been used to derive convergence
rates. This assumption leads essentially to problems of the type −∇ · (aε(x,∇uε(x)) = f(x).
Following the two-grid discretization framework of [35], an analysis of the finite element hetero-
geneous multiscale method (FE-HMM) for the problem (1) has been proposed in [24] and in [17]
for the multiscale finite element method (MsFEM). Simplicial finite elements were considered
in both aforementioned work.

Unfortunately, there are several critical issues with the analysis of the FE-HMM for the
problem (1) in [24] that are addressed in the present paper. In addition, several new results are
derived (analysis for quadrilateral FEs, L2 error estimates, improved resonance error analysis,
convergence of the Newton method used to compute the solution). Finally we note that all
our results are valid for a fully discrete formulation, taking into account also the micro scale
discretization error. For the convenience of the reader we briefly discuss the main issues of the
analysis in [24] and briefly discuss our contributions.

The first major issue in [24] resides in the treatment of the variational crime that arises
when using the FE-HMM. 1 As an intermediate step, one needs to estimate |A(uH ;uH , wH) −
AH(u

H ;uH , wH)|, where A(uH ;uH , wH) =
∫
Ω a

0(x, uH)∇uH∇wHdx is the weak form for the
exact problem and AH a corresponding nonlinear form based on numerical quadrature. In [24,
equ. 5.21] the estimate |A(uH ;uH , wH)−AH(u

H ;uH , wH)| ≤ CHℓ‖wH‖H1(Ω) is used. However,

C depends (in a nonlinear way) on the broken norms of uH in Sobolev spaces of the type
W ℓ+1,p(Ω). Thus, a priori bounds (independent of H) are needed for these high-order broken
norms of the solution uH . This issue has not been discussed in [24]. Using W 1,∞ estimates in
[24], recent results [7, Prop. 2] on FEM with numerical quadrature for nonlinear nonmonotone
problems and an inverse inequality, it is possible to bound uH for P1 and P2 triangular finite
elements. However this argument does not apply for Pℓ-simplicial FEs when ℓ > 2 and we don’t
know how to derive such bound in general (notice that our new approach does not rely such
bounds).

The second major issue in the analysis of [24] resides in the use [24, Lem. 5.3] of a dis-
crete Green function GzH for an error estimate in the W 1,∞ norm. The logarithmic bound
supz∈Ω ‖GzH‖W 1,1(Ω) ≤ C| logH| (see [24, equ.(5.16)]) is used in the main a priori error estimate
result [24, Thm. 5.4]. However, such a logarithmic estimate is not available, to the best of our
knowledge, in dimension d = 3 for arbitrary bounded convex polyhedral domains. Thus, the
results in [24] are not valid for the dimension d = 3.

Both aforementioned issues are addressed in our analysis that is valid for Pℓ-simplicial FEs in
dimension 1 ≤ d ≤ 3. In addition, we also derive several new results: optimal error estimates are
derived for Qℓ-rectangular FEs (for such elements we don’t know how to obtain error estimates
using the framework in [24] even for the lowest order piecewise bilinear elements), optimal
L2 error estimates are derived for both Pℓ and Qℓ FEs (notice that we cannot simply use
the Aubin-Nitche duality argument but need to study linear indefinite elliptic problems with
numerical quadrature arising from the linearization of (1)), improved convergence rates for the
so-called modeling or resonance error rMOD are obtained (in Theorem 3.7 we show the estimate
rMOD ≤ C(δ+ε/δ), whereas rMOD ≤ C(δ+

√
ε/δ) was obtained in [24, Thm. 5.5] 2), the Newton

method used in practice to compute a solution of the nonlinear discretized problem is shown to
converge providing hence a uniqueness result for our numerical scheme. Finally all our results

1We recall that this method couples a macroscopic solver based on FEM with numerical quadrature, with
microscopic solvers based on FEM defined on sampling domains that recover locally the missing macroscopic
input data.

2Here ε is the size of the period and δ the length, in each spatial direction, of the sampling domains.
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are derived for a fully discrete FE-HMM scheme, where the errors at both the microscopic and
the macroscopic grid are taken into account. The fully discrete error bounds are also optimal in
the microscopic convergence rates. Our uniqueness result is also established in this fully discrete
setting and it requires a new estimate of the micro error for a modified micro problem (based
on the derivative of the effective tensor). Thus, the convergence of the Newton method for
sufficiently fine macro and micro meshes is also guaranteed in the fully discrete setting.

Our paper is organized as follows. In Sect. 2 we introduce the homogenization problem for
nonlinear nonmonotone problems and we describe the multiscale method. In Sect. 3 we state
our main results. The analysis of the numerical method is given in Sect. 4. In Sect. 5 we first
discuss an efficient implementation of the linearization scheme used for solving the nonlinear
macroscopic equation and present various numerical experiments which confirm the sharpness
of our a priori error bounds and illustrate the versatility of our method.

2 Homogenization and multiscale method

Let Ω be a bounded convex polyhedral subset of Rd, where d ≤ 3. We consider the quasilinear
elliptic problems (1), where for simplicity we take homogeneous Dirichlet boundary conditions,
i.e., uε(x) = 0 on ∂Ω. Associated to ε > 0, a sequence of positive real numbers going to
zero, we consider a sequence of tensors aε(·, s) = (aεmn(·, s))1≤m,n≤d assumed to be continuous,
bounded on Ω×R, uniformly elliptic, and uniformly Lipschitz continuous with respect to s, with
constants independent of the parameter ε. We further assume that f ∈ H−1(Ω). Under the
above assumptions, for all fixed ε > 0, the weak form of (1) has a unique solution uε ∈ H1

0 (Ω)
(see for example [18, Theorem11.6]),which satisfies the bound ‖uε‖H1(Ω) ≤ C‖f‖H−1(Ω). Thus,
standard compactness arguments implies the existence of a subsequence of {uε} converging
weakly in H1(Ω). The aim of homogenization theory is to provide a limiting equation for u0.
The following result is shown in [13, Theorem 3.6] (see also [28]): there exists a subsequence of
{aε(·, s)} (again indexed by ε) such that the corresponding sequence of solutions {uε} converges
weakly to u0 in H1(Ω), where u0 is the solution of the so-called homogenized problem

−∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, u0(x) = 0 on ∂Ω, (2)

and where the tensor a0(x, s) is called the homogenized tensor. It can be shown [13, Prop. 3.5]
that the homogenized tensor is Lipschitz continuous with respect to s, uniformly elliptic, and
bounded. Precisely, there exists Λ1 > 0 such that

|a0mn(x, s1)− a0mn(x, s2)| ≤ Λ1|s1 − s2|, ∀x, ∀s1, s2 ∈ R, ∀m,n = 1, . . . , d, (3)

and there exist λ,Λ0 > 0 such that

λ‖ξ‖2 ≤ a0(x, s)ξ · ξ, ‖a0(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ R
d, ∀s ∈ R, ∀x ∈ Ω. (4)

Under these assumptions, the homogenized problem (2) has also a unique solution u0 ∈ H1
0 (Ω).

We further assume for the analysis that the coefficients of the homogenized tensor are con-
tinuous,

a0mn ∈ C0(Ω× R), ∀m,n = 1, . . . , d. (5)

Let us further mention the following characterization of the homogenized tensor, instrumental to
derive the homogenization result. Let {aε(·, s)} be the subsequence of tensor considered above,
then for all fixed real parameters s, the tensor x 7→ a0(·, s) is the homogenized tensor for the
linear problem

−∇ · (aε(x, s)∇vε(x)) = f(x) in Ω, vε(x) = 0 on ∂Ω. (6)
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If the homogenized tensor a0(x, s) is locally periodic, e.g., aε(x, s) = a(x, x/ε, s) where a(x, y, s)
is Y periodic with respect to y, then weak convergence of uε to the solution of (2) holds for the
whole sequence. The homogenized tensor can be characterized in the following way [9]:

a0(x, s) =

∫

Y
a(x, y, s)(I + JTχ(x,y,s))dy, for x ∈ Ω, s ∈ R, (7)

where Jχ(x,y,s) is a d× d matrix with entries Jχ(x,y,s)ij = (∂χi)/(∂yj) and χ
i(x, ·, s), i = 1, . . . , d

are the unique solutions of the cell problems

∫

Y
a(x, y, s)∇yχ

i(x, y, s) · ∇w(y)dy = −
∫

Y
a(x, y, s)ei · ∇w(y)dy, ∀w ∈W 1

per(Y ), (8)

where ei, i = 1, . . . , d is the canonical basis of Rd.

2.1 Multiscale method

We define here the homogenization method based on the framework of the HMM [23]. The
numerical method is based on a macroscopic FEM defined on QF and linear microscopic FEMs
recovering the missing macroscopic tensor at the macroscopic quadrature points.

2.1.1 Macro finite element space.

Let TH be a triangulation of Ω in simplicial or quadrilateral elements K of diameter HK and
denote H = maxK∈TH HK . We assume that the family of triangulations {TH} is conformal and
shape regular. For each partition TH , we define a FE space

Sℓ0(Ω, TH) = {vH ∈ H1
0 (Ω); v

H |K ∈ Rℓ(K), ∀K ∈ TH}, (9)

where Rℓ(K) is the space Pℓ(K) of polynomials onK of total degree at most ℓ ifK is a simplicial
FE, or the space Qℓ(K) of polynomials on K of degree at most ℓ in each variables if K is a
quadrilateral FE. We call TH the macro partition, K ∈ TH being a macro element, and Sℓ0(Ω, TH)
is called the macro FE space. By macro partition, we mean that H is allowed to be much larger
than ε and, in particular, H < ε is not required for convergence.

2.1.2 Quadrature formula.

For each element K of the of the macro partition we consider a C1-diffeomorphism FK such that
K = FK(K̂), where K̂ is the reference element (of simplicial or quadrilateral type). For a given
quadrature formula {x̂j , ω̂j}Jj=1 on K̂, the quadrature weights and integration points on K ∈ TH
are then given by ωKj = ω̂j |det(∂FK)|, xKj = FK(x̂j), j = 1, . . . , J . We make the following
assumptions on the quadrature formulas, which are standard assumptions also for linear elliptic
problems [19, Sect. 29]:

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, ∀p̂(x̂) ∈ Rℓ(K̂), where λ̂ > 0;

(Q2)
∫
K̂ p̂(x)dx =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2ℓ− 2, ℓ) if K̂ is a simplicial

FE, or σ = max(2ℓ− 1, ℓ+ 1) if K̂ is a quadrilateral FE.
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2.1.3 Micro finite elements method.

For each macro element K ∈ TH and each integration point xKj ∈ K, j = 1, . . . , J, we define

the sampling domains Kδj = xKj + δI, I = (−1/2, 1/2)d (δ ≥ ε). We consider a conformal and
shape regular (micro) partition Th of each sampling domain Kδj in simplicial or quadrilateral
elements Q of diameter hQ and denote h = maxQ∈Th hQ. Usually, the size of δ scales with ε,
which implies that the complexity of the FEM presented below remains unchanged as ε → 0.
We then define a micro FE space

Sq(Kδj , Th) = {zh ∈W (Kδj ); z
h|Q,∈ Rq(Q), Q ∈ Th}, (10)

where W (Kδj ) is either the Sobolev space

W (Kδj ) =W 1
per(Kδj ) = {z ∈ H1

per(Kδj );

∫

Kδj

zdx = 0} (11)

for a periodic coupling or
W (Kδj ) = H1

0 (Kδj ) (12)

for a coupling through Dirichlet boundary conditions. Here H1
per(Kδj ) is defined as the closure

in H1 of C∞
per(Kδj ) (the subset of smooth periodic function on Kδj ). The choice of the Sobolev

space W (Kδj ) sets the coupling condition between macro and micro solvers. The micro FEM

problems on each micro domain Kδj is defined as follows. Let wH ∈ Sℓ0(Ω, TH) and consider its
linearization

wHlin,j(x) = wH(xKj ) + (x− xKj ) · ∇wH(xKj ) (13)

at the integration point xKj . For all real parameters s, we define a micro FE function wh,sKj
such

that (wh,sKj
− wHlin,j) ∈ Sq(Kδj , Th) and

∫

Kδj

aε(x, s)∇wh,sKj
(x) · ∇zh(x)dx = 0 ∀zh ∈ Sq(Kδj , Th). (14)

2.1.4 Finite element heterogeneous multiscale method (FE-HMM).

We have now all the ingredients to define our multiscale method. Find uH ∈ Sℓ0(Ω, TH) such
that

BH(u
H ;uH , wH) = FH(w

H), ∀wH ∈ Sℓ0(Ω, TH), (15)

where

BH(u
H ; vH , wH) :=

∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

aε(x, uH(xKj ))∇v
h,uH(xKj

)

Kj
(x) · ∇wh,u

H(xKj
)

Kj
(x)dx,

(16)
and the linear form FH on Sℓ0(Ω, TH) is an approximation of F (w) =

∫
Ω f(x)w(x)dx, obtained

for example by using quadrature formulas. Here, w
h,uH(xKj

)

Kj
denotes the solution of the micro

problem (14) with parameter s = uH(xKj ) (and similarly for v
h,uH(xKj

)

Kj
). Provided that we use

for FH a QF satisfying (Q2), for f ∈ W ℓ,p(Ω) with ℓ > d/p and 1 ≤ p ≤ ∞, we have3 [20,
Thm. 4]

|FH(wH)− F (wH)| ≤ CHℓ‖wH‖H1(Ω), ∀wH ∈ Sℓ0(Ω, TH). (17)

3Notice that the assumption (Q1) is not needed for the quadrature formula in FH .
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If in addition f ∈W ℓ+1,p(Ω), then [20, Thm. 5]

|FH(wH)− F (wH)| ≤ CHℓ+1
( ∑

K∈TH

‖wH‖2H2(K)

)1/2
, ∀wH ∈ Sℓ0(Ω, TH). (18)

The above constants C depend on ‖f‖W ℓ,p(Ω) and ‖f‖W ℓ+1,p(Ω) respectively, but they are inde-
pendent of H.

If we assume a locally periodic tensor, i.e. aε(x, s) = a(x, x/ε, s), Y -periodic with respect to
the second variable y ∈ Y = (0, 1)d, we shall consider the slightly modified bilinear form

B̃H(u
H ; vH , wH) :=

∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

a(xKj ,
x

ε
, uH(xKj ))∇v

h,uH(xKj
)

Kj
(x) · ∇wh,u

H(xKj
)

Kj
(x)dx,

(19)

where w
h,uH(xKj

)

Kj
is the solution of the micro problem (14) with tensor a(xKj , x/ε, u

H(xKj ))

(and similarly for v
h,uH(xKj

)

Kj
), where compared to (16), the tensor a(x, y, s) is collocated in the

slow variable x at the quadrature point xKj .
We shall discuss now the existence of a solution of (15). We first recall here a result for the

analysis of the FE-HMM, shown in [1], [24] in the context of linear problems (see [3, Sect. 3.3.1]
for details). The proof is similar in the nonlinear case and is thus omitted.

Lemma 2.1 Assume that (Q1) holds and that the tensor aε satisfies (3),(4),(5). Then the
bilinear form BH(z

H ; ·, ·), zH ∈ Sℓ0(Ω, TH) is uniformly elliptic and bounded. Precisely, there
exist two constants again denoted λ,Λ0 > 0 such that

λ‖vH‖2H1(Ω) ≤ BH(z
H ; vH , vH), |BH(zH ; vH , wH)| ≤ Λ0‖vH‖H1(Ω)‖wH‖H1(Ω), (20)

for all zH , vH , wH ∈ Sℓ0(Ω, TH). Analogous formulas also hold for the modified bilinear form

B̃H(z
H ; ·, ·) defined in (19).

Notice at this stage that in Lemma 2.1 no structure assumption (as for example local periodicity)
is required for the tensor aε.

Since the micro problems (14) are linear with a uniformly bounded and coercive tensor (4),

their solutions wh,sKj
∈ Sq(Kδj , Th) are always uniquely defined, in particular there is no restriction

on the mesh size h. The macro solution uH of the FE-HMM is a solution of the nonlinear system
(15) and the existence of a solution uH of (15) follows from a classical fixed point argument.

Theorem 2.2 Assume that the bilinear form BH(z
H ; ·, ·), zH ∈ Sℓ0(Ω, TH), defined in (16) is

uniformly elliptic and bounded (20), that it depends continuously on zH , and that f ∈ W ℓ,p(Ω)
with ℓp > d. Then, for all H,h > 0, the nonlinear problem (15) possesses at least one solution
uH ∈ Sℓ0(Ω, TH). In addition, ‖uH‖H1(Ω) ≤ C‖f‖W ℓ,p(Ω) where C is independent of H.

The proof of Theorem 2.2 follows standard arguments ([21], see also [15]). It relies on the
Brouwer fixed point theorem applied to the nonlinear map SH : Sℓ0(Ω, TH) → Sℓ0(Ω, TH) defined
by

BH(z
H ;SHz

H , wH) = FH(w
H), ∀wH ∈ Sℓ0(Ω, TH). (21)

In contrast, the proof of the uniqueness of a solution uH is non trivial (see Theorem 3.3).
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2.2 Reformulation of the FE-HMM

A straightforward computation shows that for all scalars s, the solution wh,sKj
of the linear cell

problem (14) is given by

wh,sKj
(x) = wHlin,j(x) +

d∑

i=1

ψi,h,sKj
(x)

∂wHlin,j
∂xi

, for x ∈ Kδj , (22)

where ψi,h,sKj
, i = 1, . . . , d are the solutions of the following auxiliary problems. Let ei, i = 1 . . . d

denote the canonical basis of Rd. For each scalar s and for each ei we consider the problem:
find ψi,h,sKj

∈ Sq(Kδj , Th) such that

∫

Kδj

aε(x, s)∇ψi,h,sKj
(x) · ∇zh(x)dx = −

∫

Kδj

aε(x, s)ei · ∇zh(x)dx, ∀zh ∈ Sq(Kδj , Th), (23)

where Sq(Kδj , Th) is defined in (10) with either periodic or Dirichlet boundary conditions.
We also consider for the analysis the following problems (24), (25), which are analogue to

(14),(23), but without FEM discretization (i.e. with test functions in the space W (Kδj ) defined

in (11) or (12)): find wsKj
such that (wsKj

− wHlin,j) ∈W (Kδj ) and

∫

Kδj

aε(x, s)∇wsKj
(x) · ∇z(x)dx = 0 ∀z ∈W (Kδj ). (24)

Similarly to (22), it can be checked that the unique solution of problem (24) is given by (22)

replacing ψi,h,sKj
(x) with ψi,sKj

(x), where for each scalar s and for each ei, ψ
i,s
Kj

are the solutions

of the following problem: find ψi,sKj
∈W (Kδj ) such that

∫

Kδj

aε(x, s)∇ψi,sKj
(x) · ∇z(x)dx = −

∫

Kδj

aε(x, s)ei · ∇z(x)dx, ∀z ∈W (Kδj ). (25)

Consider for all scalars s the two tensors

a0Kj
(s) :=

1

|Kδj |

∫

Kδj

aε(x, s)

(
I + JT

ψh,s
Kj

(x)

)
dx, (26)

ā0Kj
(s) :=

1

|Kδj |

∫

Kδj

aε(x, s)

(
I + JTψs

Kj
(x)

)
dx, (27)

where Jψs
Kj

(x) and J
ψh,s
Kj

(x)
are d × d matrices with entries (Jψs

Kj
(x))iℓ = (∂ψi,sKj

)/(∂xℓ) and

(J
ψh,s
Kj

(x)
)iℓ = (∂ψi,h,sKj

)/(∂xℓ), respectively. The Lemma 2.3 below has been proved in [6],[2] in

the context of linear elliptic problems and is a consequence of (22) (for wh,sKj
(x) and wsKj

(x)). It

permits to interpret (15)-(16) as a standard FEM applied with a modified tensor.

Lemma 2.3 Assume that the tensors a0, aε satisfy (4),(5). For all vH , wH ∈ Sℓ0(Ω, TH), all
sampling domains Kδj centered at a quadrature node xKj of a macro element K ∈ TH and all
scalar s, the following identities hold:

1

|Kδj |

∫

Kδj

aε(x, s)∇vh,sKj
· ∇wh,sKj

dx = a0Kj
(s)∇vH(xKj ) · ∇wH(xKj ),

1

|Kδj |

∫

Kδj

aε(x, s)∇vsKj
· ∇wsKj

dx = a0Kj
(s)∇vH(xKj ) · ∇wH(xKj ),

7



where vh,sKj
, vsKj

are the solutions of (14), (24), respectively, and the tensors a0Kj
(s), a0Kj

(s) are

defined in (26), (27). Analogous formulas also hold for the terms in the right-hand side of (19),
with aε(x, s) replaced by a(xKj , x/ε, s) in the above two identities and in (24),(25),(14),(23),(26).

3 Main results

We summarize here the main results of this paper. Given a solution uH of (15) the aim is to
estimates the errors ‖u0 − uH‖H1(Ω) and ‖u0 − uH‖L2(Ω), where u0 is the unique solution of the

homogenized problem (2) and to prove the uniqueness of a numerical solution uH . We shall
consider for a0 the homogenized tensor in (2) and a0Kj

defined in (26) the quantity

rHMM := sup
K∈TH ,xKj

∈K,s∈R
‖a0(xKj , s)− a0Kj

(s)‖F , (28)

where ‖a‖F = (
∑

m,n |amn|2)1/2 denotes the Frobenius norm of a d× d matrix a.
In what follows we shall assume that the family of triangulations {TH} satisfies the inverse

assumption H/HK ≤ C for all K ∈ TH and all TH . Notice that such an inverse assumption
is often assumed for the analysis of FEM for non-linear problems [33, 27, 35, 24, 16]. In our
analysis it is used only in the proof of an L2 estimate (see Lemma 4.2) and for the uniqueness
of the numerical solution (Sect. 4.3).

The first results give optimal H1 and L2 error estimates, as functions of the macro mesh
size H, for the FE-HMM without specific structure assumption on the nature of the small scales
(e.g. as periodicity or stationarity for random problems).

Theorem 3.1 Consider u0 the solution of problem (2). Let ℓ ≥ 1. Let µ = 0 or 1. Assume
(Q1), (Q2), (17), and

u0 ∈ Hℓ+1(Ω) ∩W 1,∞(Ω), a0mn ∈W ℓ+µ,∞(Ω× R), ∀m,n = 1 . . . d.

In addition to (3),(4),(5), assume that ∂ua
0
mn ∈W 1,∞(Ω×R), and that the coefficients a0mn(x, s)

are twice differentiable with respect to s, with the first and second order derivatives continuous
and bounded on Ω× R, for all m,n = 1 . . . d.

Then, there exist r0 > 0 and H0 > 0 such that, provided

H ≤ H0 and rHMM ≤ r0, (29)

any solution uH of (15) satisfies

‖u0 − uH‖H1(Ω) ≤ C(Hℓ + rHMM ) if µ = 0, 1, (30)

‖u0 − uH‖L2(Ω) ≤ C(Hℓ+1 + rHMM ) if µ = 1 and (18) holds. (31)

Here, the constants C are independent of H,h, rHMM .

The proof of Theorem 3.1 is postponed to Sect. 4.1. In contrast to previous results [24, Thm5.4],
Theorem 3.1 is also valid for d = 3 and arbitrary high order simplicial and quadrilateral macro
FEs. We emphasize that the constants H0 and r0 in Theorem 3.1 are independent of H, h, ε,
δ. Thus, the framework used to derive Theorem 3.1 allows to re-use results obtained for linear
problems to derive a fully discrete error analysis, where the micro FE discretization errors are
also taken into account.
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Remark 3.2 Except for the W 1,∞ assumption on u0 and the smoothness4 of s 7→ a0(x, s)
assumed to treat the non-linearity (as in [21] for one-scale nonmonotone standard FEM), the
smoothness assumptions of Theorem 3.1 on the homogenized problem are identical to those
classically assumed for one-scale linear FEM [20],[19, Sect. 29]. Notice that the H1 estimate
(30) and the uniqueness of uH can be proved straightforwardly provided (29) (without assuming
W 1,∞ regularity of u0 and quasi-uniform meshes) if Cλ−1Λ1‖u0‖H2(Ω) < 1 (see [7, Theorem 4]).

For the uniqueness result, we shall consider the quantity

r′HMM := sup
K∈TH ,xKj

∈K,s∈R

∥∥∥∥
d

ds

(
a0(xKj , s)− a0Kj

(s)
)∥∥∥∥

F

. (32)

For r′HMM to be well defined and for the subsequent analysis, we need the assumption

s ∈ R 7→ aε(·, s) ∈ (L∞(Ω))d×d is of class C1 (33)

with the norms of aε, ∂sa
ε ∈ (L∞(Ω))d×d bounded independently of s and ε.

Theorem 3.3 Assume that the hypotheses of Theorem 3.1 and (33) hold. Then, there exist
positive constants H0, r0 such that if

H ≤ H0 and H−1/2rHMM + r′HMM ≤ r0 (34)

the solution uH of (15) is unique.

If the oscillating coefficients are smooth and locally periodic coefficients (see (H1) and (H2)
below), then the assumptions for the uniqueness result can be stated solely in terms of the size
of the macro and micro meshes.

Corollary 3.4 In addition to the hypotheses of Theorem 3.3, assume |aεij |W 1,∞(K) ≤ Cε−1,

∀K ∈ TH and (H2) as defined below. Assume W (Kδj ) = W 1
per(Kδj ) (periodic coupling condi-

tions), δ/ε ∈ N
∗ and that (19) is used for the solution uH of (15). Then, there exists positive

constants H0, r0 such that if

H ≤ H0 and H−1/2(h/ε)2 ≤ r0 (35)

the solution uH of (15) is unique.

Remark 3.5 Inspecting the proofs of Theorem 3.3 and Corollary 3.4 (postponed to Sect. 4.3)
shows that in dimension d = 2, the quantity H−1/2 in (34),(35) can be replaced by (1+| logH|)1/2.
In Corollary 3.4, if we use the form (16) for the solution uH of (15), to obtain the uniqueness
of uH , we need to assume in addition that δ is small enough (ε ≤ δ ≤ CH1/2). Notice also that
(35) is automatically satisfied if (h/ε)2q ≤ CH ≤ H0 with H0 small enough.

We next describe our fully discrete a priori error estimates. For that, let us split rHMM into

rHMM ≤ sup
K∈TH ,xKj

∈K,s∈R
‖a0(xKj , s)− ā0Kj

(s))‖F
︸ ︷︷ ︸

rMOD

+ sup
K∈TH ,xKj

∈K,s∈R
‖ā0Kj

(s)− a0Kj
(s))‖F

︸ ︷︷ ︸
rMIC

, (36)

where ā0Kj
is the tensor defined in (27). Here rMIC stands for the micro error (error due

to the micro FEM) and rMOD for the modeling or resonance error. The first result gives

4Notice that in the locally periodic case (see assumption (H2) below), the C2 regularity of s 7→ a0(x, s) can
be shown using assumption (33) with the ideas of Lemma 6.1.
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explicit convergence rates in terms of the micro discretization. Some additional regularity and
growth condition of the small scale tensor aε is needed in order to have appropriate regularity
of the cell function ψi,sKj

defined in (25) and involved in the definition of ā0Kj
. We note that if

aεij |K ∈W 1,∞(K) ∀K ∈ TH and |aεij |W 1,∞(K) ≤ Cε−1, for all parameters s with C independent of

ε, s, then classical H2 regularity results ([32, Chap. 2.6]) imply that |ψi,sKj
|H2(Kδj

) ≤ Cε−1
√
|Kδj |

when Dirichlet boundary conditions (12) are used. If aεij is locally periodic, we can also use

periodic boundary conditions (11) and analogous bounds for ψi,sKj
in terms of ε can be obtained,

provided that we collocate the slow variables in each sampling domain. In that case, higher
regularity for ψi,sKj

can be shown, provided aε(·, s) is smooth enough (see e.g., [12, Chap. 3]). As

it is more convenient to state the regularity conditions directly for the function ψi,sKj
, we assume

(H1) Given q ∈ N, the cell functions ψi,sKj
defined in (25) satisfy |ψi,sKj

|Hq+1(Kδj
) ≤ Cε−q

√
|Kδj |,

with C independent of ε, the quadrature point xKj , the domain Kδj , and the parameter s for

all i = 1 . . . d. We make the same assumption with the tensor aε replaced by (aε)T in (25).

Theorem 3.6 Under the assumptions of Theorem 3.1 and (H1), it holds (for µ = 0 or 1)

‖u0 − uH‖H1−µ(Ω) ≤ C(Hℓ+µ +
(h
ε

)2q
+ rMOD),

where for µ = 1 we also assume (18) and we use the notation H0(Ω) = L2(Ω). Here, C is
independent of H,h, ε, δ.

To estimate further the modeling error rMOD defined in (36), we need more structure assump-
tions on aε. Here we assume local periodicity as encoded in the following assumption.

(H2) for all m,n = 1, . . . , d, we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s) is y-
periodic in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and bounded from
Ω× R into W 1,∞

per (Y ).

Theorem 3.7 Under the assumptions of Theorem 3.1, (H1) and (H2), it holds (for µ = 0 or 1)

‖u0 − uH‖H1−µ(Ω) ≤





C(Hℓ+µ + (hε )
2q + δ), if W (Kδj ) =W 1

per(Kδj ) and
δ
ε ∈ N

∗,

C(Hℓ+µ + (hε )
2q),

ifW (Kδj ) =W 1
per(Kδj ) and

δ
ε ∈ N

∗,
with collocated tensor (see (19)),

C(Hℓ+µ + (hε )
2q + δ + ε

δ ), if W (Kδj ) = H1
0 (Kδj ) (δ > ε),

(37)

where for µ = 1 we also assume (18). The constants C are independent of H,h, ε, δ.

For non periodic problems, we note that the modeling error has been studied in for linear elliptic
problems with random coefficients in [24, Appendix A]. Related work can be found in [36, 14, 29].

Remark 3.8 While the convergence uε → u0 (up to a subsequence) is strong in L2(Ω), it is only
weak in H1(Ω) and the quantity ‖uε − u0‖H1(Ω) does not converge to zero in general as ε → 0.
One needs therefore to introduce a corrector [11],[30] to recover the oscillating solution uε. In
[13, Sect. 3.4.2], it is shown that any corrector for the linear problem (1) where the tensor is
evaluated at u0 instead of uε, is also a corrector for the solution uε of the nonlinear problem (1).
In our situation, we have ∇rε → 0 strongly in (L1

loc(Ω))
d where rε(x) := uε(x)−u0(x)−u1,ε(x).
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4 Proof of the main results

We first show the a priori convergence rates at the level of the macro error (Sect. 4.1) before
estimating the micro and modeling errors (Sect. 4.2). These estimates are useful to prove the
uniqueness of the solution (Sect. 4.3).

4.1 Explicit convergence rates for the macro error

In this section, we give the proof of Theorem 3.1. Consider for zH , vH , wH ∈ Sℓ0(Ω, TH),

AH(z
H ; vH , wH) :=

∑

K∈TH

J∑

j=1

ωK,ja
0(xKj , z

H(xKj ))∇vH(xKj ) · ∇wH(xKj ), (38)

where a0(x, s) is the tensor defined in (2) and let ũH0 be a solution of

AH(ũ
H
0 ; ũH0 , w

H) = FH(w
H), ∀wH ∈ Sℓ0(Ω, TH). (39)

The problem (39) is a standard FEM with numerical quadrature for the problem (2). Conver-
gence rates for this nonlinear problem are not trivial to derive and have recently been obtained
in [7]. For the proof of Theorem 3.1, we first need to generalize several results of [7]. For that,
consider

QH(z
H) := sup

wH∈Sℓ
0(Ω,TH)

|AH(zH , zH , wH)− FH(w
H)|

‖wH‖H1(Ω)
, ∀zH ∈ Sℓ0(Ω, TH). (40)

We observe that QH(ũ
H
0 ) = 0. The three lemmas below have been obtained in [7] for the

special case zH = ũH0 . Allowing for an arbitrary function zH ∈ Sℓ0(Ω, TH) leads to introducing
the additional term QH(z

H). The proofs of these more general results remain, however, nearly
identical to [7] (following the lines of Lemma 4, Lemma 6 and Theorem 3 in [7], respectively)
and are therefore omitted.

Lemma 4.1 If the hypotheses of Theorem 3.1 are satisfied, then

‖u0 − zH‖H1(Ω) ≤ C(Hℓ +QH(z
H) + ‖u0 − zH‖L2(Ω)), (41)

for all zH ∈ Sℓ0(Ω, TH), where C is independent of H and zH .

Lemma 4.2 Assume the hypotheses of Theorem 3.1 are satisfied with µ = 0 or 1. Then, for all
zH ∈ Sℓ0(Ω, TH),

‖u0 − zH‖L2(Ω) ≤ C(Hℓ+µ +QH(z
H) + ‖u0 − zH‖2H1(Ω)), (42)

where C is independent of H and zH .

Lemma 4.3 Under the assumptions of Theorem 3.1, consider a sequence {zH} bounded in
H1(Ω) as H → 0 and satisfying QH(z

H) → 0 for H → 0. Then, ‖u0−zH‖L2(Ω) → 0 for H → 0.

We next notice that QH(z
H) can be bounded in terms of rHMM defined in (28).

Lemma 4.4 Assume that the tensors a0, aε satisfy (4),(5). Then

QH(z
H) ≤ CrHMM‖zH‖H1(Ω) + sup

wH∈Sℓ
0(Ω,TH)

|BH(zH , zH , wH)− FH(w
H)|

‖wH‖H1(Ω)
, (43)

for all zH ∈ Sℓ0(Ω, TH), where the constant C is independent of H,h, δ.
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Proof. The proof is a consequence of the inequality

|AH(zH , zH , wH)− FH(w
H)| ≤ |(AH −BH)(z

H ; zH , wH)|+ |BH(zH , zH , wH)− FH(w
H)|.

Using Lemma 2.3 and the Cauchy-Schwarz inequality, the first term is the above right-hand
side can be bounded by

|(AH−BH)(zH ; zH , wH)| ≤ C sup
K∈TH ,xKj

∈Ks∈R
‖a0(xKj , s))−a0Kj

(s))‖F ‖zH‖H1(Ω)‖wH‖H1(Ω) (44)

where we used the estimate
∑

K∈TH

∑J
j=1 ωK,j‖vH(xKj )‖2 ≤ C‖vH‖2L2(Ω), with v

H = zH and

vH = wH , which holds for all piecewise continuous polynomials with respect to the partition
TH , with C independent of H (but depending on the maximum degree of vH). This concludes
the proof. �

Corollary 4.5 Consider uH a solution of (15). Then QH(u
H) ≤ CrHMM , where QH(u

H) is
defined in (40) and the constant C is independent of H,h, δ.

Proof. Follows from Lemma 4.4 and Theorem 2.2. �

Proof of Theorem 3.1. We apply Lemmas 4.1, 4.2, 4.3 with zH = uH , the solution of (15).
Let µ = 0. This yields, for all H small enough

‖uH − u0‖H1(Ω) ≤ C(Hℓ + rHMM + ‖uH − u0‖L2(Ω)), (45)

‖uH − u0‖L2(Ω) ≤ C(Hℓ + rHMM + ‖uH − u0‖2H1(Ω)), (46)

‖uH − u0‖L2(Ω) → 0 for (H, rHMM ) → 0, (47)

where we recall that QH(u
H) ≤ CrHMM . Substituting (46) into (45), we obtain an inequality

of the form ‖uH − u0‖H1(Ω) ≤ C(Hℓ + rHMM + ‖uH − u0‖2H1(Ω)), or equivalently

(1− C‖uH − u0‖H1(Ω))‖uH − u0‖H1(Ω) ≤ C(Hℓ + rHMM ). (48)

Using (45) and (47), we have ‖uH − u0‖H1(Ω) → 0 if (H, rHMM ) → 0. Thus, there exists H0

and r0 such that if H ≤ H0 and rHMM ≤ r0, then 1 − C‖uH − u0‖H1(Ω) ≥ ν > 0 in (48),

independently of the choice of the particular solution uH . This concludes the proof of (30) for
H and rHMM small enough. For µ = 1 inequality (46) can be replaced by

‖uH − u0‖L2(Ω) ≤ C(Hℓ+1 + rHMM + ‖uH − u0‖2H1(Ω)).

This inequality together with the H1 estimate (30) yields (31). �

4.2 Explicit convergence rates for the micro and modeling error

In this section we give the proof of Theorems 3.6 and 3.7. For that, we need to quantify rHMM

defined in (28) and involved in Theorem 3.1. In view of the decomposition (36) we shall further
estimate rMIC and rMOD. We emphasize that the results in this section can be derived mutatis
mutandis from the results for linear elliptic problems (i.e. when the tensor a(x, s) is independent
of s).

The following estimate of the micro error rMIC was first presented in [1] for linear elliptic
problems, generalized to high order in [3, Lemma 10],[2, Corollary 10] (see also [4]), and to
non-symmetric tensors in [22]. We provide here a short proof which will be further useful in the
proof of Lemma 4.12.
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Lemma 4.6 Assume (4) and (H1). Then rMIC ≤ C(h/ε)2q, where C is independent of H, h,
δ, ε.

Proof. From Lemma 2.3 and (23),(25), we deduce

(ā0Kj
(s)− a0Kj

(s))mn =
−1

|Kδj |

∫

Kδj

aε(x, s)
(
∇ψn,sKj

(x)−∇ψn,h,sKj
(x)
)
· ∇ψm,sKj

(x)dx

where ψ
n,i
Kj

, i = 1, . . . , d denote the solutions of (25) with aε(x, s) replaced by aε(x, s)T . Using

(23), (25), the above identity remains valid with ψ
m,s
Kj

(x) replaced by ψ
m,s
Kj

(x) − zh for all zh ∈
Sq(Kδj , Th). We take zh = ψ

m,h,s
Kj

(the solutions of (23) with aε(x, s) replaced by aε(x, s)T ), and
we obtain

(ā0Kj
(s)− a0Kj

(s))mn =
−1

|Kδj |

∫

Kδj

aε(x, s)
(
∇ψn,sKj

−∇ψn,h,sKj

)
· (∇ψm,sKj

−∇ψm,h,sKj
)dx (49)

Using the regularity assumption (H1) and standard FE results [19, Sect. 17], we have

‖∇ψn,sKj
−∇ψn,h,sKj

‖L2(Kδj
) ≤ Chq|∇ψn,sKj

|Hq+1(Kδj
) ≤ C(h/ε)q

√
|Kδj )|,

and analogous estimates for∇ψm,sKj
. This combined with (49) and the Cauchy-Schwarz inequality

concludes the proof. �

We can further estimate the modeling error if we make the assumption of locally periodic tensors.
The following estimates on the modeling error rMOD were first presented in [24, 22] (for the

estimates rMOD ≤ C(δ + ε/δ) and rMOD ≤ Cδ) and in [6] (for the estimates rMOD = 0), in
the context of linear elliptic homogenization problems. Periodic and Dirichlet micro boundary
conditions are discussed.

Lemma 4.7 Assume (3),(4),(5), and (H2). Consider the homogenized tensor a0(x, s) and the
tensor a0Kj

(s) defined in (27) with parameters x = xKj and s = uH(xKj ).

• If W (Kδj ) =W 1
per(Kδj ) and δ/ε ∈ N

∗ then rMOD ≤ Cδ.

If in addition, the tensor aε(x, s) is collocated at x = xKj (i.e. using (16)) then rMOD = 0.

• If W (Kδj ) = H1
0 (Kδj ) (δ > ε), then rMOD ≤ C(δ + ε/δ).

All above constants C are independent of H, h, ε, δ.

Proof. All the estimates of Lemma 4.7 are already known in the context of linear problems [24,
6, 22]. Using the characterization (7), they hold mutatis mutandis for our nonlinear tensor. �

4.3 Uniqueness of the FE-HMM solution

The proof of the uniqueness of the FE-HMM solution of problem (15) relies on the convergence
of the Newton method used for the computation of a numerical solution. In fact, our results not
only show the uniqueness of a solution of (15) (under appropriate assumptions), but also that
the iterative method used in practice to compute an actual solution converges.

For given zH , vH , wH ∈ Sℓ0(Ω, TH) we consider the Fréchet derivative ∂BH obtained by
differentiating the nonlinear quantity BH(z

H , zH , wH) with respect to zH

∂BH(z
H ; vH , wH) := BH(z

H ; vH , wH) +B′
H(z

H ; vH , wH), (50)
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where using Lemma 2.3,

B′
H(z

H ; vH , wH) =
∑

K∈TH

J∑

j=1

ωKj

d

ds
a0Kj

(s)|s=zH(xKj
)v
H(xKj )∇zH(xKj ) · ∇wH(xKj ). (51)

The Newton method for approximating a solution uH of the nonlinear FE-HMM (15) by a
sequence {uHk } reads in weak form

∂BH(u
H
k ;u

H
k+1 − uHk , w

H) = FH(w
H)−BH(u

H
k ;u

H
k , w

H), ∀wH ∈ Sℓ0(Ω, TH). (52)

In order for B′
H to be well defined, we need, in addition to (3),(4),(5), the assumption (33). We

also consider

A′
H(z

H ; vH , wH) =
∑

K∈TH

J∑

j=1

ωKj

d

ds
a0(xKj , s)

∣∣
s=zH(xKj

)
vH(xKj )∇zH(xKj ) · ∇wH(xKj ). (53)

and AH as defined in (38). Then, by replacing in (52) BH by AH and ∂BH by ∂AH we obtain
the Newton method for solving (39) (standard FEM with numerical integration)

∂AH(z
H
k ; zHk+1 − zHk , w

H) = FH(w
H)−AH(z

H
k ; zHk , w

H), ∀wH ∈ Sℓ0(Ω, TH), (54)

where ∂AH(z
H ; vH , wH) := AH(z

H ; vH , wH)+A′
H(z

H ; vH , wH).We prove in Lemma 4.11 below
that the iteration (52) is well defined for all k and that the sequence of solutions of (52) converges
to uH , the solution of (15), provided that the initial guess uH0 ∈ Sℓ0(Ω, TH) is close enough to
uH . This allows to prove Theorem 3.3, i.e., the uniqueness of a solution uH of (15). The
following quantity will be useful σH := supvH∈Sℓ

0(Ω,TH) ‖vH‖L∞(Ω)/‖vH‖H1(Ω). One can show

(provided quasi-uniform meshes) the standard estimates5 σH ≤ C(1 + | logH|)1/2 for d = 2 and
σH ≤ CH−1/2 for d = 3, where C is independent of H. We shall also need the following result.

Lemma 4.8 Assume that the tensors a0, aε satisfy (4),(33). Then

sup
zH ,vH ,wH∈Sℓ

0(Ω,TH)

∣∣AH(zH ; vH , wH)−BH(z
H ; vH , wH)

∣∣
‖vH‖H1(Ω)‖wH‖H1(Ω)

≤ CrHMM , (55)

sup
zH ,vH ,wH∈Sℓ

0(Ω,TH)

∣∣A′
H(z

H ; vH , wH)−B′
H(z

H ; vH , wH)
∣∣

‖zH‖W 1,6(Ω)‖vH‖H1(Ω)‖wH‖H1(Ω)
≤ Cr′HMM , (56)

where rHMM and r′HMM are defined in (28),(32), respectively and where the constant C is
independent of H,h, δ.

Proof. The proof of (55) was given in (44). The proof of (56) is nearly identical. Indeed, using
Lemma 2.3, the quantity A′

H(z
H ; vH , wH)−B′

H(z
H ; vH , wH) is equal to

∑

K∈TH

J∑

j=1

ωKj

(
d

ds

∣∣∣∣
s=zH(xKj

)

(
a0(xKj , s)− a0Kj

(s)
)
)
vH(xKj )∇zH(xKj ) · ∇wH(xKj ).

We deduce the result using the Cauchy-Schwarz inequality (similarly to the proof of Lemma 4.4)
and the estimate ‖vH∇zH‖L2(Ω) ≤ ‖vH‖L3(Ω)‖∇zH‖L6(Ω) ≤ C‖vH‖H1(Ω)‖zH‖W 1,6(Ω). �

5These two estimates follow from the inverse inequality ‖vH‖L∞(Ω) ≤ CH−d/p‖vH‖Lp(Ω) and ‖vH‖Lp(Ω) ≤
Cp1/2‖vH‖H1(Ω) with p = | logH| for d = 2, and ‖vH‖L6(Ω) ≤ C‖vH‖H1(Ω) for d = 3.
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Lemma 4.9 Let τ > 0. Under the assumptions of Theorem 3.3, there exist H0, ν, r0 > 0 such
that if H ≤ H0, and z

H ∈ Sℓ0(Ω, TH) with

‖zH‖W 1,6(Ω) ≤ τ, σH‖zH − u0‖H1(Ω) ≤ ν, and rHMM + r′HMM ≤ r0

where rHMM , r
′
HMM are defined in (28) and (32), respectively, then for all linear forms G on

Sℓ0(Ω, TH), there exists one and only one solution vH ∈ Sℓ0(Ω, TH) of

∂BH(z
H ; vH , wH) = G(wH), ∀wH ∈ Sℓ0(Ω, TH).

Moreover, vH satisfies

‖vH‖H1(Ω) ≤ C sup
wH∈Sℓ

0(Ω,TH)

G(wH)

‖wH‖H1(Ω)

where C is a constant independent of H,h and zH .

Proof. Lemma 4.9 has been proved in [7, Lemma 7] for ∂AH instead of ∂BH and can be
reformulated in terms of the following inf − sup inequality: there exist H0, ν > 0 such that if
H ≤ H0, ‖zH‖W 1,6(Ω) ≤ τ and σH‖zH − u‖H1(Ω) ≤ ν, then

inf
vH∈Sℓ

0(Ω,TH)
sup

wH∈Sℓ
0(Ω,TH)

∂AH(z
H ; vH , wH)

‖vH‖H1(Ω)‖wH‖H1(Ω)
≥ K > 0, (57)

whereK is a constant independent ofH and zH . Using Lemma 4.8 and the inequality ‖zH‖W 1,6(Ω) ≤
τ , it follows from (50) that for all zH , vH , wH ∈ Sℓ0(Ω, TH),

∂BH(z
H ; vH , wH) ≥ ∂AH(z

H ; vH , wH)− (qHMM + τq′HMM )‖vH‖H1(Ω)‖wH‖H1(Ω)

≥ (K − C(rHMM + r′HMM )‖vH‖H1(Ω)‖wH‖H1(Ω),

where qHMM , q′HMM are the left-hand sides of (55),(56), respectively. We deduce the inf-sup
inequality (57) for ∂BH with rHMM + r′HMM ≤ r0 where r0 is chosen small enough so that
K − Cr0 > 0. This concludes the proof. �

In the next lemma we show that {uH} is bounded in W 1,6(Ω).

Lemma 4.10 Under the assumptions of Theorem 3.1 and if rHMM ≤ CH, there exists τ > 0
such that ‖uH‖W 1,6(Ω) ≤ τ, where τ is independent of H,h.

Proof. Using the quasi-uniform mesh assumption, we have the inverse estimate ‖vH‖W 1,6(Ω) ≤
H−1‖vH‖H1(Ω) for all vH ∈ Sℓ0(Ω, TH) (see [19, Thm. 17.2]) which yields

‖uH‖W 1,6(Ω) ≤ ‖uH − IHu0‖W 1,6(Ω) + ‖IHu0‖W 1,6(Ω) ≤ C(H−1(Hℓ + rHMM ) + ‖u0‖H2(Ω)) ≤ τ,

where IH : C0(Ω) → Sℓ0(Ω, TH) denotes the usual nodal interpolant [19, Sect. 12]. �

We can now prove that the Newton method (52) converges at the usual quadratic rate.

Lemma 4.11 Assume that the hypotheses of Theorem 3.3 hold. Let uH be a solution of (15).
There exists H0, r0, ν > 0, such that if (34) holds and uH0 ∈ Sℓ0(Ω, TH) satisfies

σH‖uH0 − uH‖H1(Ω) ≤ ν, (58)

then the sequence {uHk } of the Newton method (52) with initial value uH0 is well defined and
‖uHk+1 − uH‖H1(Ω) ≤ CσH‖uHk − uH‖2H1(Ω), where C is a constant independent of H,h, k.
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Proof. The proof of Lemma 4.11 follows closely the lines of the proof of [21, Theorem 2] (see [7,
Theorem 6] in the context of FEM with numerical quadrature), where we use the C2 regularity
of the tensor a0K(s) with respect to s, and the boundedness of ∂ka0K(s)/∂s

k, k ≤ 2 which can be
shown from (33), using the idea of the proof of Lemma 6.1 (see Appendix). The main ingredient
of the proof is Lemma 4.9 which can be applied in the special case zH = uH thanks to Lemma
4.10 and the estimate (using (30),(34) and σH ≤ CH1/2)

σH‖uH − u0‖H1(Ω) ≤ CσH(H
ℓ + rHMM ) ≤ C(σHH

ℓ + σHr0) ≤ ν

for all H small enough and r0 chosen small enough in (34). We omit the details. �

We can now prove the claimed uniqueness result.
Proof of Theorem 3.3. Let uH , ũH be two solutions of (15). We consider the Newton
method {uHk } defined by (52) with the initial guess uH0 = ũH . Using Theorem 3.1, we have
σH‖ũH−uH‖H1(Ω) ≤ C(σHH

ℓ+σHrHMM ) and thus σH‖ũH−uH‖H1(Ω) satisfies (58) for H0, r0
small enough using (34). By Lemma 4.11, for ν small enough, ek = ‖uHk − uH‖H1(Ω) converges

to 0 for k → ∞. Using (15), we have uHk = uH0 = ũH for all k, which yields uH = ũH . �

If we want further to characterize uniqueness in terms of the macro and micro meshes, we
need to estimate rHMM , r

′
HMM in terms of these quantities. This can be done for locally periodic

tensors. The quantity rHMM has been estimated in terms of h, ε, δ in Section 4.2. Using similar
techniques, the quantity r′HMM defined in (28) can be estimated as described in the following
lemma whose proof is postponed to the Appendix.

Lemma 4.12 Assume that the hypotheses of Corollary 3.4 hold, then r′HMM ≤ C(h/ε)2.
If we use the form (16) instead of (19) for the solution uH of (15), then r′HMM ≤ C((h/ε)2+δ).

Proof of Corollary 3.4. Follows from Theorem 3.3, Lemmas 4.12, 4.6 and 4.7. �

5 Numerical experiments

In this section, we first present an efficient numerical implementation of the Newton method
(52), whose theoretical convergence is shown in Lemma 4.11. We then illustrate numerically
that the theoretical a priori convergence rates derived in this paper are optimal.

Newton method To solve the non-linear problem (15) with the newton method, we consider
a sequence of {zHk } in Sℓ0(Ω, TH) and express each function in the FE basis of Sℓ0(Ω, TH) as

zHk =
∑Mmacro

i=1 U ikφ
H
i . We further denote Uk = (U1

k , . . . , U
Mmacro
k )T . The Newton method (52)

translate in terms of matrices as

(
B(zHk ) +B′(zHk )

)
(Uk+1 − Uk) = −B(zHk )Uk + F, (59)

where B(zHk ), B′(zHk ) are the stiffness matrices associated to the bilinear forms BH(z
H ; ·, ·),

B′
H(z

H ; ·, ·) defined in (16) and (51), respectively. Here, F is a vector associated the source term
(15), which also contains the boundary data.
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(c) Computation with fixed NMicro =
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Figure 1: Convergence rates: eL2 error (dashed lines) and eH1 error (solid lines).

Stiffness matrices Following the implementation in [5] we consider for each element K ∈ TH
the FE basis functions {φHK,i}

nK
i=1 associated with this element and the local contribution BK(zHk )

to the stiffness matrix (BK(zHk ))nK
p,q=1 =

∑J
j=1(BK,j(z

H
k ))nK

p,q=1 with

(BK,j(z
H
k ))nK

p,q=1 =
ωKj

|Kδj |

∫

Kδj

aε(x, zHk (xKj ))∇ϕ
h,zH(xKj

)

Kj ,p
(x) · ∇ϕh,z

H(xKj
)

Kj ,q
(x)dx, (60)

where ϕ
h,zH(xKj

)

Kj ,p
, ϕ

h,zH(xKj
)

Kj ,q
are the solutions of (14) constrained by φHK,p, φ

H
K,q, linearized at

xKj , respectively.
Differentiating (60), we see that the stiffness matrix B′(U) in (59) associated to the non-

symmetric form B′
H(z

H ; ·, ·) defined in (51) is given by the sum of J products of nK × nK

matrices B′
K(z

H
k ) =

∑J
j=1

(
∂
∂s(BK,j(s))

∣∣
s=zH(xKj

)

)(
UK,k(φ

H
K1

(xKj ), . . . , φ
H
KnK

(xKj ))
)

where

the column vector UK,k of size nK gives the components of zH in the basis {φHK,i}
nK
i=1 of the

macro element K ∈ TH . Here, the derivative with respect to s of the nK × nK matrix BK,j(s)
can be simply approximated by the finite difference

∂

∂s
(BK,j(s)) ≈

BK,j(s+
√
eps)−BK,j(s)√
eps

,

where eps is the machine precision. Therefore, the cost of computing the stiffness matrices for
both B(zHk ) and B′(zHk ) is about twice the cost of computing the stiffness matrix B(zHk ) alone.

Numerical illustration of theoretical convergence rates We shall now illustrate the
sharpness of the H1 and L2 error estimates of Sections 3 and 4. Rectangular macro Q1 elements
(Gauss quadrature with J = 4 nodes (1/2±

√
3/6, 1/2±

√
3/6)) will be used and δ/ε ∈ N

∗ (we
emphasize that similar result can be obtained with triangular P1 macro elements).

We recall that for a tensor of the form aε(x, s) = a(x, x/ε, s) where a(x, y, s) is periodic with
respect to the fast variable y and collocated in the slow variable x (see (19)) we have

‖uH − u0‖H1(Ω) ≤ C(H + ĥ2), ‖uH − u0‖L2(Ω) ≤ C(H2 + ĥ2), (61)

where ĥ := h/ε is the scaled micro mesh size.
We consider the non-linear problem (1) on the domain Ω = (0, 1)2 with homogeneous

Dirichlet boundary conditions and the following anisotropic 2 × 2 diagonal oscillatory tensor
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aε(x, s) = 3−1/2diag
(
(2 + sin(2πx1/ε))(1 + x1 sin(πs)), (2 + sin(2πx2/ε))(2 + arctan(s))

)
. The ho-

mogenized tensor can be computed analytically and is given by the diagonal matrix a0(x, s) =
diag

(
1 + x1 sin(πs), 2 + arctan(s)

)
. The source f(x) in (1) is adjusted analytically so that the

homogenized solution is u0(x) = 8 sin(πx1)x2(1−x2), The H1 and L2 relative errors between the
exact homogenized solution u0 and the FE-HMM solution uH , eL2 = ‖u0 − uH‖L2(Ω)/‖u0‖L2(Ω),

eH1 = ‖∇(u0 − uH)‖L2(Ω)/‖∇u0‖L2(Ω) can be estimated by quadrature with ‖u0 − uH‖2L2(Ω) ≈∑
K∈TH

∑J
j=1 ωKj |uH(xKj ) − u0(xKj )|2, and similarly for ‖∇(u0 − uH)‖L2(Ω). We consider

a sequence of uniform macro partitions TH with meshsize H = 1/NMacro and NMacro =
4, 6, 8, . . . , 256.

In Figure 1(a),(b) the H1 an L2 relative errors between the exact homogenized solution and
the FE-HMM solutions are shown for the above sequence of partitions using a simultaneous
refinement of H and ĥ according to ĥ ∼ H (L2 norm) and ĥ ∼

√
H (H1 norm). We observe the

expected (optimal) convergence rates (61) in agreement with Theorem 3.1.
We next show that the ratio between the macro and micro meshes is sharp. For that, we

refine the macromesh H while keeping fixed the micro mesh size (N =Micro = 4, 8, 16, 32, 64).
This is illustrated in Figure 1(c), where we plot the H1 an L2 relative errors as a function of
H = 1/NMacro. It is observed that optimal macro convergence rates are obtained only if macro
and micro meshes are refined simultaneously.

6 Appendix

We provide in this appendix a proof of Lemma 4.12 which is a crucial ingredient for the proof
of Corollary 3.4 on the uniqueness of the numerical solution uH for small enough macro and
micro mesh sizes H,h. For that, we will often use the following inequality (62). Given a closed
subspace H of W (Kδj ), let ψi ∈ H, i = 1, 2 be the solutions of

∫

Kδj

ai(x)∇ψi(x) · ∇z(x)dx = −
∫

Kδj

fi(x) · ∇z(x)dx, ∀z ∈ H,

where a1, a2 ∈ L∞(Kδj )
d×d are elliptic and bounded tensors and f1, f2 ∈ L2(Kδj )

d. A short
computation shows

‖∇ψ1 −∇ψ2‖L2(Kδj
) ≤ λ−1 sup

x∈Kδj

‖a1(x)− a2(x)‖F ‖f2‖L2(Kδj
) + ‖f1 − f2‖L2(Kδj

), (62)

where λ is the minimum of the ellipticity constants of a1, a2. We also need a regularity result
for the solutions of (23).

Lemma 6.1 Assume that aε is uniformly elliptic and satisfies (33) with k = 1. Consider the
solution ψi,sKj

of (23). Then, the map s 7→ ψi,sKj
∈ H1(Kδj ) is of class C1 and satisfies

∂

∂s
ψi,sKj

= φi,sKj
,

∂

∂s
∇ψi,sKj

= ∇φi,sKj
, (63)

where for all z ∈W (Kδj ),
∫

Kδj

aε(x, s)∇φi,sKj
(x) · ∇z(x)dx = −

∫

Kδj

∂ua
ε(x, s)(∇ψi,sKj

(x) + ei) · ∇z(x)dx. (64)

An analogous statement holds also for the FEM discretization ψi,h,sKj
defined in (25), where

∂
∂sψ

i,h,s
Kj

= φi,h,sKj
satisfies (63) and (64) with ψi,sKj

, φi,sKj
and z replaced by ψi,h,sKj

, φi,h,sKj
and zh ∈

Sq(Kδj , Th) respectively.
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Proof. We consider twice the problem (25) with parameters s and s + ∆s, respectively. We
deduce from (62) with H = W (Kδj ), and the smoothness of s 7→ aε(x, s) that ‖ψi,s+∆s

Kj
(x) −

ψi,sKj
(x)‖H1(Kδj

) → 0 for ∆s→ 0. Consider now the identity

∫

Kδj

aε(x, s)∇(ψi,s+∆s
Kj

−ψi,sKj
) · ∇zdx = −

∫

Kδj

(aε(x, s+∆s)− aε(x, s))(∇ψi,s+∆s
Kj

+ ei) · ∇zdx

(65)
Dividing (65) by ∆s, subtracting (64) and taking ∆s→ 0, we deduce from (62) that ∂

∂sψ
i,s
Kj

(x)

exists and that (63),(64) hold. Using again the property (62), we obtain similarly the continuity

of s 7→ φi,sKj
∈ H1(Kδj ). This concludes the proof for ψ

i,s
Kj

. The proof for ψi,h,sKj
is nearly identical,

using the property (62) with H = Sq(Kδj , Th) �

Proof of Lemma 4.12. We start with the first estimate. We set x = xKj in (7). A change of
variable y → xKj + x/ε shows that

(a0(xKj , s))mn =
1

|Kδj |

∫

Kδj

a(xK , x/ε, s)(en +∇χn(xK , x/ε, s)) · em (66)

where χn(xK , x/ε, s) solves for all z ∈W (Kδj ),

∫

Kδj

a(xK , x/ε, s)∇χn(xK , x/ε, s) · ∇z(x)dx = −
∫

Kδj

a(xK , x/ε, s)en · ∇z(x)dx, (67)

As the tensor aε is (locally) periodic and δ/ε ∈ N
∗, if we collocate aε in (27) and in (7) at

x = xKj , we obtain a0(xKj , s) = a0Kj
(s) and ψn,sKj

(x) = εχn(xKj , x/ε, s).

We consider the elliptic system −∇ · (A∇Ξ) = ∇ · Fn formed by the augmented problem
(25)-(64), where

A =

(
a(xKj , x/ε, s) 0
∂ua(xKj , x/ε, s) a(xKj , x/ε, s)

)
, Fn =

(
a(xKj , x/ε, s)en
∂ua(xKj , x/ε, s)en

)

and Ξ = (ψn,sKj
, φn,sKj

)T . It follows form well known H2 regularity results [12, Sect. 3.4-3.6] and

[32, Chap. 2.6] that φn,sKj
, ψn,sKj

∈ H2(Kδj ) and ‖φn,sKj
‖H2(Kδj

) + ‖ψn,sKj
‖H2(Kδj

) ≤ Cε−1
√
|Kδj |.

From standard FEM results [19, Sect. 17], we deduce that the corresponding FEM discretization

(ψm,h,sKj
, φm,h,sKj

) satisfies

‖∇φn,sKj
−∇φn,h,sKj

‖L2(Kδj
) ≤ Ch‖φn,sKj

‖H2(Kδj
) ≤ C(h/ε)

√
|Kδj |,

and similarly for ψn,h,sKj
in place of φn,h,sKj

. Now, using Lemma 6.1 and differentiating the identity

(49) with respect to s, we deduce from the Cauchy-Schwarz inequality | dds(ā0Kj
(s)−a0Kj

(s))mn| ≤
C(h/ε)2, where we used similar FEM estimates (as obtained for ψn,h,sKj

, φn,h,sKj
) for ψ

m,h,s
Kj

, φ
m,h,s
Kj

.

This concludes the proof of r′HMM ≤ C(h/ε)2. Consider now the case where the formulation
(16) is used. We notice that the Lipchitzness of the tensors a(x, y, s), ∂ua(x, y, s) with respect
to x ∈ Kδj yields for k = 0, 1, supx∈Kδj

,s∈R ‖∂kua(x, x/ε, s) − ∂kua(xKj , x/ε, s)‖F ≤ Cδ. Using

the inequality (62) with H = Sq(Kδj , Th), this perturbation of the tensors a, ∂ua induces a

perturbation of ψn,h,sKj
and φn,h,sKj

of size ≤ Cδ
√
|Kδj |, which concludes the proof. �
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