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POINT SEARCHING IN REAL SINGULAR
COMPLETE INTERSECTION VARIETIES:

ALGORITHMS OF INTRINSIC COMPLEXITY

BERND BANK, MARC GIUSTI, AND JOOS HEINTZ

Abstract. Let X1, . . . , Xn be indeterminates over Q and let X := (X1, . . . ,
Xn). Let F1, . . . , Fp be a regular sequence of polynomials in Q[X] of degree
at most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.
Suppose that the variables X1, . . . , Xn are in generic position with respect to
F1, . . . , Fp. Further, suppose that the polynomials are given by an essentially
division-free circuit β in Q[X] of size L and non-scalar depth �.

We present a family of algorithms Πi and invariants δi of F1, . . . , Fp, 1 ≤
i ≤ n− p, such that Πi produces on input β a smooth algebraic sample point
for each connected component of {x ∈ Rn | F1(x) = · · · = Fp(x) = 0} where
the Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.

The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)c n, δi})2
and its non-scalar parallel complexity is of order O(n(�+ lognd) log δi). Here
c > 0 is a suitable universal constant. Thus, the complexity of Πi meets
the already known worst case bounds. The particular feature of Πi is its
pseudo-polynomial and intrinsic complexity character and this entails the best
runtime behavior one can hope for. The algorithm Πi works in the non-uniform
deterministic as well as in the uniform probabilistic complexity model. We
also exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. The
reader may notice that this bound overestimates the extrinsic complexity of
Πi, which is bounded by (nd)O(n).

1. Introduction

Before we begin to explain the main results of this article and their motivations,
we introduce some basic notions and notation.

Let Q, R and C be the fields of rational, real and complex numbers, respectively,
let X := (X1, . . . , Xn) be a vector of indeterminates over C and let F1, . . . , Fp be a
regular sequence of polynomials in Q[X] defining a closed, Q–definable subvariety
S of the n–dimensional complex affine space An := Cn. Thus S is a non-empty
equidimensional affine variety of dimension n− p, i.e., each irreducible component
of S is of dimension n − p. Said otherwise, S is a closed subvariety of An of pure
codimension p (in An).

Let An
R

:= Rn be the n–dimensional real affine space. We denote by SR :=
S ∩ An

R
the real trace of the complex variety S. Moreover, we denote by Pn the
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n–dimensional complex projective space and by Pn
R

its real counterpart. We shall
also use the following notations:

{F1 = 0, . . . , Fp = 0} := S and {F1 = 0, . . . , Fp = 0}R := SR.

We call the regular sequence F1, . . . , Fp reduced if the ideal (F1, . . . , Fp) generated in
Q[X] is the ideal definition of the affine variety S, i.e., if (F1, . . . , Fp) is radical. We
call (F1, . . . , Fp) strongly reduced if for any index 1 ≤ k ≤ p the ideal (F1, . . . , Fk)
is radical. Thus, a strongly reduced regular sequence is always reduced.

A point x of An is called (F1, . . . , Fp)–regular if the Jacobian J(F1, . . . , Fp) :=[
∂Fj

∂Xk

]
1≤j≤p
1≤k≤n

has maximal rank p at x. Observe, that for each reduced regular

sequence F1, . . . , Fp defining the variety S, the locus of (F1, . . . , Fp)–regular points
of S is the same. In this case we call an (F1, . . . , Fp)–regular point of S simply
regular (or smooth) or we say that S is regular (or smooth) at x. The set Sreg of
regular points of S is called the regular locus, whereas Ssing := S \Sreg is called the
singular locus of S. Remark that Sreg is a non-empty open subvariety and Ssing
a proper closed subvariety of S. We say that a connected component C of SR is
generically smooth if C contains a smooth point.

We suppose now that there are natural numbers d, L and � and an essentially
division-free arithmetic circuit β in Q[X] with p output nodes such that the follow-
ing conditions are satisfied.

- The degrees degF1, . . . ,degFp of the polynomials F1, . . . , Fp are bounded
by d.

- The p output nodes of the arithmetic circuit β represent the polynomials
F1, . . . , Fp by evaluation.

- The size and the non-scalar depth of the arithmetic circuit β are bounded
by L and �, respectively.

For the terminology and basic facts concerning arithmetic circuits we refer to [11,
13, 22].

Suppose that the variables X1, . . . , Xn are in generic position with respect to the
variety S. Observe that we allow SR to have singular points.

In this paper we design for each 1 ≤ i ≤ n − p a non-uniform deterministic
or uniform probabilistic procedure Πi and an invariant δi satisfying the following
specification.

(i) The invariant δi is a positive integer depending on F1, . . . , Fp and having
asymptotic order not exceeding (nn d)O(n). We call δi the degree of the real
interpretation of the equation system F1 = 0, . . . , Fp = 0.

(ii) The algorithm Πi decides on input β whether the variety S contains a
smooth real point and, if it is the case, produces for each generically smooth
connected component of S a suitably encoded real algebraic sample point.

(iii) In order to achieve this goal, the algorithm Πi performs on input β a compu-
tation in Q with L(n d)O(1)(min{(n d)c n, δi})2 arithmetic operations (addi-
tions, subtractions, multiplications and divisions) which become organized
in non-scalar depth O(n(� + logn d) log δi) with respect to the parameters
of the arithmetic circuit β (here c > 0 is a suitable universal constant).

This is the outcome of our main result, namely Theorem 14 below and the three
remarks following the theorem.
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Although we were not able to derive a better worst case bound as (nn d)O(n) for
the invariant δi (see Propositions 8 and 12 and Observation 11 below) the worst
case complexity of the procedure Πi meets the already known extrinsic bound of
(n d)O(n) for the elimination problem under consideration (compare the original
papers [9, 12, 24, 30–32,35, 36] and the comprehensive book [10]).

The complexity of the procedure Πi depends polynomially on the extrinsic pa-
rameters L, �, n and d and on the degree δi of the real interpretation of the equation
system F1 = 0, . . . , Fp = 0 which represents an intrinsic parameter measuring the
input size of our computational task. In this sense we say that the procedure Πi is
of intrinsic complexity.

Since the complexity L(n d)O(1)(min{(n d)c n, δi})2 is polynomial in all its pa-
rameters, including the intrinsic parameter δi, we say that the procedure Πi is
pseudo-polynomial. In view of the main outcome of [27, 28], intrinsic complexity
and pseudo-polynomiality constitute the best runtime behavior of Πi that can be
expected for elimination algorithms implemented by rules of software engineering.

In the case that SR is smooth and F1, . . . , Fp is a strongly reduced regular se-
quence in Q[X] there already exist pseudo-polynomial algorithms of intrinsic com-
plexity which solve the computational task of item (ii) above (see [1, 3, 4]). The
same is true for the singular hypersurface case, namely p := 1, where {F1 = 0}R
contains possibly singular points (see [6–8]). The methods developed in [1, 2, 4]
cannot be applied directly when SR is singular. To overcome this difficulty we con-
sider in Section 3.1 two families of smooth incidence varieties which parametrize
the so-called copolar varieties of S introduced in Section 3.2.

For a given full rank matrix b ∈ A(n−i)×n, the corresponding copolar variety of
S is the Zariski closure of the set of all points x of S such that there exist p rows of
b which generate the same linear space as the rows of the Jacobian of the equation
system F1 = 0, . . . , Fp = 0 at x.

The procedure Πi is based on a geometrical and computational analysis of the
dual polar varieties of the two families of incidence varieties (see [3–5] for the notion
of a dual polar variety). These geometric objects are called bipolar varieties of S.
They become introduced in Section 4.1. Important for the worst case complexity of
the procedure are the degree estimates for the bipolar varieties developed in Section
4.2.

2. Preliminaries about polar varieties

Let notations be as in the Introduction. Let F1, . . . , Fp ∈ Q[X] be a reduced
regular sequence defining a (non-empty) subvariety S of An of pure codimension p.

Let 1 ≤ i ≤ n− p and let a := [ak,l] 1≤k≤n−p−i+1
0≤l≤n

be a complex ((n− p− i + 1) ×
(n + 1))–matrix and suppose that a∗ := [ak,l] 1≤k≤n−p−i+1

1≤l≤n
has maximal rank n −

p− i + 1. In the case (a1,0, . . . , an−p−i+1,0) = 0 we denote by K(a) := Kn−p−i(a)
and in the case (a1,0, . . . , an−p−i+1,0) �= 0 by K(a) := K

n−p−i(a) the (n − p − i)–
dimensional linear subvarieties of the projective space Pn which for 1 ≤ k ≤ n −
p− i+1 are spanned by the points (ak,0 : ak,1 : · · · : ak,n). In the first case we shall
also use the notations K(a∗) and Kn−p−i(a∗) instead of K(a) and Kn−p−i(a).

The classic and the dual ith polar varieties of S associated with the linear vari-
eties K(a) and K(a) are defined as the closures of the loci of the (F1, . . . , Fp)–regular
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points of S where all (n−i+1)–minors of the respective polynomial ((n−i+1)×n)–
matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂X1
· · ·

∂F1

∂Xn

...
...

...
∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 · · · a1,n

...
...

...
an−p−i+1,1 · · · an−p−i+1,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂X1
· · ·

∂F1

∂Xn

...
...

...
∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 − a1,0X1 · · · a1,n − a1,0Xn

...
...

...
an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

vanish. If a is a real ((n− p− i + 1) × (n + 1))–matrix, we denote the real traces
of the polar varieties WK(a)(S) and WK(a)(S) by

WK(a)(SR) := WKn−p−i(a)(SR) := WK(a)(S) ∩ An
R

and
WK(a)(SR) := W

K
n−p−i(a)(SR) := WK(a)(S) ∩ An

R

and call them the real polar varieties.
Observe that this definition of classic and dual polar varieties may be extended

to the case that there is given a Zariski open subset O of An such that the equations
F1 = 0, . . . , Fp = 0 intersect transversally at any of their common solutions in O
and that S is now the locally closed subvariety of An given by

S := {F1 = 0, . . . , Fp = 0} ∩O,

which is supposed to be non-empty.
In Section 4 we shall need this extended definition of polar varieties in order to

establish the notion of a bipolar variety of a given complete intersection. For the
moment let us suppose again that S is the closed subvariety of An defined by the
reduced regular sequence F1, . . . , Fp.

In [3] and [4] we have introduced the notion of dual polar varieties of S (and SR)
and motivated by geometric arguments the calculatory definition of these objects.
Moreover, we have shown that, for a complex ((n − p − i + 1) × (n + 1))–matrix
a = [ak,l] 1≤k≤n−p−i+1

0≤l≤n
with [ak,l] 1≤k≤n−p−i+1

1≤l≤n
generic, the polar varieties WK(a)(S)

and WK(a)(S) are either empty or of pure codimension i in S. Further, we have
shown that WK(a)(S) and WK(a)(S) are normal and Cohen–Macaulay (but not
necessarily smooth) at any of their (F1, . . . , Fp)–regular points (see [5, Corollary 2]
and Section 3.1). This motivates the consideration of the so-called generic polar
varieties WK(a)(S) and WK(a)(S), associated with complex ((n−p−i+1)×(n+1))–
matrices a which are generic in the above sense, as invariants of the complex variety
S (independently of the given equation system F1 = 0, . . . , Fp = 0). However, when
a generic ((n− p− i+1)× (n+1))–matrix a is real, we cannot consider WK(a)(SR)
and WK(a)(SR) as invariants of the real variety SR, since for suitable real generic
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((n− p− i+ 1)× (n+ 1))–matrices these polar varieties may turn out to be empty,
whereas for other real generic matrices they may contain points (see [5, Theorem 1
and Corollary 2] and [8, Theorem 8 and Corollary 9]).

For our use of the word “generic” we refer to [5, Definition 1].
In case that SR is smooth and a is a real ((n − p − i + 1) × (n + 1))–matrix,

the real dual polar variety WK(a)(SR) contains at least one point of each connected
component of SR, whereas the classic (complex or real) polar varieties WK(a)(S)
and WK(a)(SR) may be empty (see [3] and [4, Proposition 2]).

Polar varieties have a long history in algebraic geometry which goes back to Severi
[39] and Todd [43,44] in the 1930s. Originally they were used to establish numerical
formulas in order to classify singular algebraic varieties by their intrinsic geometric
character or to formulate a manageable local equisingularity criterion which implies
the Whitney conditions for analytic varieties. About 10 years ago they also became
a fundamental tool for the design of pseudo-polynomial computer procedures with
intrinsic complexity bounds which find for a given complete intersection variety S
with a smooth real trace SR algebraic sample points for each connected component
of SR. For details we refer to [42] and [5].

3. Copolar incidence varieties

3.1. Two families of copolar incidence varieties. Let d, n, p and i be nat-
ural numbers with 1 ≤ p ≤ n and 1 ≤ i ≤ n − p and let X := (X1, . . . , Xn),
B := [Bk,l] 1≤k≤n−i

1≤l≤n
, Λ := [Λr,s]1≤r,s≤p and Θ := [Θk,r] 1≤k≤n−i

1≤r≤p
be matrices of inde-

terminates over C.
For the rest of this paper we fix a strongly reduced regular sequence F1, . . . , Fp ∈

Q[X]. Let d := max{degFs | 1 ≤ s ≤ p}, where degFs denotes the degree of the
polynomial Fs. We denote by F := (F1, . . . , Fp) the sequence of these polynomials
and by J(F ) :=

[
∂Fs

∂Xl

]
1≤s≤p
1≤l≤n

the Jacobian of F . Observe that the rank of J(F )

is generically p on any irreducible component of the complex variety S := {F1 =
· · · = Fp = 0}. We write J(F )T for the transposed matrix of J(F ) and for any
point x ∈ An we denote by rk J(F )(x) the rank of the complex matrix J(F )(x).

We are now going to introduce two families of varieties which we shall call copolar
incidence varieties. In order to define the first one we consider in the ambient space,

Ti := An × A(n−i)×n × Ap×p × A(n−i)×p,

the Q–definable locally closed incidence variety
Hi := {(x, b, λ, ϑ) ∈ Ti| x ∈ S, rk b = n− i, rk ϑ = p, J(F )(x)Tλ + bTϑ = 0}.

Observe that the isomorphy class of Hi does not depend on the choice of the
generators F1, . . . , Fp of the vanishing ideal of S. The canonical projection of Ti

onto An maps Hi into S.
We are now going to state and prove three facts, namely Lemma 1 and Propo-

sitions 2 and 3 below, which will be fundamental in the sequel.

Lemma 1. Let (x, b, λ, ϑ) be a point of Hi. Then x belongs to Sreg and λ is a
regular complex (p× p)–matrix. Moreover, the canonical projection of Ti onto An

maps Hi onto Sreg and (Hi)R onto (SR)reg.

Proof. Let (x, b, λ, ϑ) be a point of Hi. Then b and ϑ are complex full rank matrices
of size (n − i) × n and (n − i) × p, respectively. Therefore bTϑ is a complex full



878 B. BANK, M. GIUSTI, AND J. HEINTZ

rank matrix of size n× p. From J(F )(x)Tλ+ bTϑ = 0 we deduce that the complex
(n × p)–matrix J(F )(x)Tλ and the matrix λ have rank p. This implies that the
rank of J(F )(x) is p. Since x belongs to S we conclude that S is smooth at x. Thus
we have x ∈ Sreg and λ is a regular complex (p× p)–matrix. By the way, we have
shown that the canonical projection of Ti onto An maps Hi into Sreg .

Consider now an arbitrary point x ∈ Sreg . Without loss of generality we may
assume that the first p columns of J(F )(x) are C–linearly independent. Let λ be
the (p× p)–identity matrix Ip. Furthermore, let

b :=
[

−J(F )(x)
O(n−p−i)×p I(n−i−p)×n

]
and ϑ :=

[
Ip

O(n−p−i)×p

]
,

where O(n−p−i)×p denotes the ((n− p− i) × p)–zero matrix.
Then b and ϑ are full rank matrices which satisfy the condition J(F )(x)Tλ +

bTϑ = 0. Since x belongs to S, we conclude that (x, b, λ, ϑ) is an element of Hi

which becomes mapped onto x under the canonical projection of Ti onto An. In
particular, if x ∈ (SR)reg , then λ, b and ϑ are real matrices and (x, b, λ, ϑ) belongs
to (Hi)R. This implies that the canonical projection of Ti onto An maps Hi onto
Sreg and (Hi)R onto (SR)reg . �
Proposition 2. Let Di be the closed subvariety of Ti defined by the conditions
rk B < n− i or rk Θ < p. Then the polynomial equations

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr,s
∂Fs

∂Xl
(X) +

∑
1≤k≤n−i

Bk,l Θk,r = 0,

1 ≤ r ≤ p, 1 ≤ l ≤ n,

(1)

intersect transversally at any of their common solutions in Ti \Di. Moreover, Hi

is exactly the set of solutions of the polynomial equation system (1) outside of the
locus Di.

In particular, Hi is an equidimensional algebraic variety which is smooth and of
dimension n(n− i + 1) + p(p− i− 1) ≥ 0.

Proof. One sees immediately that a point (x, b, λ, ϑ) ∈ Ti belongs to Hi if and only
if it is a solution of the polynomial equation system (1) outside of the locus Di.
The Jacobian of system (1) at such a point (x, b, λ, ϑ) has the following form:

Lx :=

⎡
⎢⎢⎢⎢⎢⎣

J(F )(x) Op×p · · · Op×p Op×(n−i) · · · Op×(n−i) Op×n(n−i)

∗

J(F )(x)T · · · On×p

...
. . .

...

On×p · · · J(F )(x)T

bT · · · On×(n−i)

...
. . .

...

On×(n−i) · · · bT

D(1)

...

D(p)

⎤
⎥⎥⎥⎥⎥⎦
,

where D(r), 1 ≤ r ≤ p, is the complex (n× n(n− i))–matrix

D(r) :=

⎡
⎢⎢⎣

ϑ1,r · · · ϑn−i,r · · · O1×(n−i)

...
. . .

...

O1×(n−i) · · · ϑ1,r · · · ϑn−i,r

⎤
⎥⎥⎦ .

From Lemma 1 we conclude that the (p × n)–matrix J(F )(x) has maximal rank
p. Since the matrix ϑ has full rank we infer that the (np× n(n− i))–submatrix of
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Lx built up by D(1), . . . , D(r) has rank np. This implies that the Jacobian Lx has
full rank. Therefore, the (n+ 1)p equations of system (1) intersect transversally at
(x, b, λ, ϑ) and the algebraic variety Hi is smooth and of dimension

n + (n− i)n + p2 + (n− i)p− (n + 1)p = n(n− i + 1) + p(p− i− 1)

at this point. Thus Hi is an equidimensional variety which is empty or smooth
and of dimension n(n − i + 1) + p(p − i − 1) (observe that 1 ≤ i ≤ n − p implies
n(n− i+1)+p(p− i−1) ≥ 0). From Lemma 1 we deduce that Hi is not empty. �

For algorithmic applications Proposition 2 contains too many open conditions,
namely the conditions rk B = n− i and rk Θ = p. By means of a suitable special-
ization of the matrices B and Θ we are going to eliminate these open conditions.
However, we have to take care that this specialization process does not exclude
many smooth points of the variety S. The following result, namely Proposition 3
below seems to represent a fair compromise. We shall need it later for the task of
finding smooth points of S. For the formulation of this proposition we need some
notation.

Let B and Θ be the following matrices:

B :=

⎡
⎢⎣
B1,n−i+1 · · · B1,n

... · · ·
...

Bp,n−i+1 · · · Bp,n

⎤
⎥⎦ and Θ :=

⎡
⎢⎣

Θp+1,1 · · · Θp+1,p
... · · ·

...
Θn−i,1 · · · Θn−i,p,

⎤
⎥⎦ .

Let σ be a permutation of the set {1, . . . , n} (in symbols, σ ∈ Sym (n)) and apply
σ to the columns of the ((n− i) × n)–matrix

[
Ip Op×(n−p−i) B

O(n−p−i)×p In−p−i O(n−p−i)×i

]
.

In this way we obtain a ((n−i)×n)–matrix which we denote by Bi,σ. Furthermore,
let

Θi :=
[
Ip
Θ

]
and Δσ := det

[
∂Fs

∂Xσ(r)

]
1≤s,r≤p

.

If we specialize in Bi,σ the submatrix B to b ∈ Ap×iand in Θi the submatix Θ to
ϑ ∈ A(n−p−i)×p, then the resulting complex matrices become denoted by bi,σ and
ϑi, respectively.

We consider now in the ambient space

Fi := An × Ap×i × Ap×p × A(n−p−i)×p

a copolar incidence variety of a more restricted type, namely

Hi,σ := {(x, b, λ, ϑ) ∈ Fi | x ∈ S, J(F )(x)Tλ + bTi,σϑi = 0}.

Observe that Hi,σ is a Q–definable closed subvariety of Fi whose isomorphy class
does not depend on the choice of the polynomials F1, . . . , Fp of the vanishing ideal
of S.

In the statement of the next result we make use of the Kronecker symbol δr,l, 1 ≤
r, l ≤ p which is defined by δr,l := 0 for r �= l and δr,r := 1.

Proposition 3. Let notations and definitions be as before. For the sake of sim-
plicity assume that σ is the identity permutation of Sym (n). Then the polynomial
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equations
F1 = 0, . . . , Fs = 0,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + δr,l = 0, 1 ≤ r ≤ p, 1 ≤ l ≤ p,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + Θl,r = 0, 1 ≤ r ≤ p, p < l ≤ n− i,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + Br,l = 0, 1 ≤ r ≤ p, n− i < l ≤ n,

(2)

intersect transversally at any of their common solutions in Fi. Moreover, Hi,σ is
exactly the set of solutions of system (2). In particular, Hi,σ is a closed equidimen-
sional algebraic variety which is empty or smooth and of dimension n− p.

The image of Hi,σ under the canonical projection of Fi onto An is the set of
(smooth) points of S where Δσ does not vanish. For each real point x ∈ S with
Δσ(x) �= 0 there exists a real point (x, b, λ, ϑ) of Hi,σ.

Proof. From the matrix identities

Bi,σ
TΘi =

⎡
⎢⎢⎢⎣

Ip Op×(n−p−i)

O(n−p−i)×p In−p−i

BT Oi×(n−p−i)

⎤
⎥⎥⎥⎦

[
Ip

Θ

]
=

⎡
⎢⎢⎢⎣

Ip

Θ

BT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
... · · ·

...
0 · · · 1

Θp+1,1 · · · Θp+1,p
... · · ·

...
Θn−i,1 · · · Θn−i,p

B1,n−i+1 · · · Bp,n−i+1
... · · ·

...
B1,n · · · Bp,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

one deduces easily that a point (x, b, λ, ϑ) of Fi belongs to Hi,σ if and only if it is
a solution of the polynomial equation system (2).

Let (x, b, λ, ϑ) be such a point of Hi,σ. Then system (2) implies Δσ(x) �= 0 and
its Jacobian may be organized as the matrix

L(i,σ)
x :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J(F )(x) Op×p · · · Op×p Op×(n−p) · · · Op×(n−p)

∗

J(F )(x)T · · · On×p

...
. . .

...

On×p · · · J(F )(x)T

Z · · · On×(n−p)

...
. . .

...

On×(n−p) · · · Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with

Z :=

⎡
⎣
Op×(n−p−i) Op×i

In−p−i O(n−p−i)×i

Oi×(n−p−i) Ii

⎤
⎦ .

From Δσ(x) �= 0 we deduce that J(F )(x) has rank p. Thus L(i,σ)
x has full rank.

Therefore, the (n + 1)p equations of system (2) intersect transversally at
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(x, b, λ, ϑ) and the algebraic variety Hi,σ is smooth and of dimension n+ pi+ p2 +
(n−p− i)p−(n+1)p = n−p at this point. Thus Hi,σ is an equidimensional variety
which is empty or smooth of dimension n− p. For any point (x, b, λ, ϑ) of Hi,σ we
have Δσ(x) �= 0 and, in particular, S is smooth at x.

On the other hand, for x ∈ S with Δσ(x) �= 0 we may consider

λ := −
[
∂Fs(x)
∂Xl

]−1

1≤s,l≤p
, ϑ := −

[
∂Fs(x)
∂Xl

]T
1≤s≤p

p<l≤n−i

· λ and b := −
[
∂Fs(x)
∂Xl

]T
1≤s≤p

n−i≤l≤n

· λ.

Then the corresponding point (x, b, λ, ϑ) belongs to Hi,σ. Moreover, for x real we
have that b, λ, ϑ are also real and therefore (x, b, λ, ϑ) is a real point of Hi,σ. �

In the sequel we shall refer to Hi and Hi,σ as the copolar incidence varieties
of S := {F1 = · · · = Fp = 0} associated with the indices 1 ≤ i ≤ n − p and
σ ∈ Sym (n).

The notion of a copolar incidence variety is inspired by the Room–Kempf desin-
gularization of determinantal varieties [33, 37].

3.2. Copolar varieties. Let notations and assumptions be as in previous section
and let b ∈ A(n−i)×n be a full rank matrix. We observe that the set

Ṽb(S) := {x ∈ S | ∃ (λ, ϑ) ∈ Ap×p × A(n−p)×p : rk ϑ = p and (x, b, λ, ϑ) ∈ Hi}
does not depend on the choice of the generators F1, . . . , Fp of the vanishing ideal
of S. We call the Zariski closure in An of Ṽb(S) the copolar variety of S associated
with the matrix b and we denote it by Vb(S). From the argumentation at the end
of the proof of Lemma 1 we deduce Ṽb(S) = Vb(S) ∩ Sreg .

Observe that a point x of S belongs to Ṽb(S) if and only if there exist p rows
of the ((n − i) × n)–matrix b which generate the same affine linear space as the
rows of the Jacobian J(F ) at x. In case p := 1 and F := F1 the copolar variety
Vb({F = 0}) coincides with the ith classic polar variety WKn−1−i(b)({F = 0}) of
the complex hypersurface {F = 0} (here b denotes the ((n − i) × (n + 1))–matrix
whose column number zero is a null-vector, whereas the columns numbered 1, . . . , n
are the corresponding columns of b).

Proposition 4. If b ∈ A(n−i)×n is a generic matrix, then the copolar variety Vb(S)
is empty or an equidimensional closed subvariety which is smooth at any point of
Vb(S) ∩ Sreg and has (non-negative) dimension n− (i + 1)p.

Proof (Sketch). We consider in the ambient space F̃i := An ×A(n−i)×n ×A(n−i)×p

the Q–definable locally closed incidence variety

H̃i := {(x, b, ϑ) ∈ F̃i | x ∈ S, rk b = n− i, rk ϑ = p, J(F )(x)T + bTϑ = 0}.

Using the same argument as in Proposition 2 we see that H̃i is non-empty, equidi-
mensional of dimension n(n−i+1)−(i+1)p ≥ 0 and smooth. Let π : H̃i �→ A(n−i)×n

be the morphism induced by the canonical projection of F̃i onto A(n−i)×n. No-
tice that for any full rank matrix b ∈ A(n−i)×n the π–fiber of b is isomorphic to
Vb(S) ∩ Sreg as algebraic variety. Suppose now that π is dominating. From Sard’s
Theorem (see [16,40]) we deduce that for a generic b ∈ A(n−i)×n the π–fiber of b and
hence Vb(S) ∩ Sreg , are non-empty, equidimensional of dimension n− (i + 1)p ≥ 0
and smooth. If π is not dominating, then we see by the same argument that Vb(S)
is empty. �
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Observe that for a generic b ∈ A(n−i)×n the emptiness or non-emptiness and in
the latter case also the geometric degree of the copolar variety Vb(S) is an invariant
of the variety S.

The incidence varieties Hi and Hi,σ may be interpreted as suitable algebraic
families of copolar varieties. In [8] we considered in the case p := 1 three analogous
incidence varieties which turned out to be algebraic families of dual polar varieties.
Here we have a similar situation since in the hypersurface case, namely in the case
p := 1, the copolar varieties are classic polar varieties.

4. Bipolar varieties

4.1. Definition and basic properties of bipolar varieties. In order to mea-
sure the complexity of the real point finding procedures of this paper for complete
intersection varieties, we consider for 1 ≤ p ≤ n, 1 ≤ i ≤ n − p and σ ∈ Sym (n)
the generic dual polar varieties of the copolar incidence varieties Hi and Hi,σ. In
analogy to the hypersurface case tackled in [8], we call them the large and the small
bipolar varieties of S.

Definition 5. The bipolar varieties B(i,j) and B(i,σ,j) are defined as follows:
• for 1 ≤ j ≤ n(n − i + 1) + p(p − i − 1) let B(i,j) be a (n(n − i + 1) +
p(p− i− 1) − j + 1)th generic dual polar variety of Hi and,

• for 1 ≤ j ≤ n− p and σ ∈ Sym (n) let B(i,σ,j) be a (n− p− j + 1)th generic
dual polar variety of Hi,σ.

We call B(i,j) the large and B(i,σ,j) the small bipolar variety of S, respectively.

The bipolar varieties B(i,j) and B(i,σ,j) are well-defined geometric objects which
depend on the system F1(X) = · · · = Fp(X) = 0, although the copolar incidence
varieties Hi is not closed (compare the definition of the notion of polar variety in
Section 2, where we have taken care of this situation). Moreover, our notation is
justified because we are only interested in invariants like the dimension and the
degree of our bipolar varieties and these are independent of the particular (generic)
choice of the linear projective varieties used to define the bipolar varieties.

From Propositions 2 and 3 and [5, Corollary 2], we deduce that B(i,j) and B(i,σ,j)
are empty or equidimensional of dimension j− 1 and Cohen–Macaulay and normal
at any point of B(i,j) ∩Hi and B(i,σ,j) ∩Hi,σ.

Now let 1 ≤ j ≤ n(n − i + 1) + p(p − i − 1), a0 ∈ Aj with a0 �= 0, a∗ ∈
Aj×(n(n−i+1)+p(n+p−1)) generic and a := [aT0 , a∗]. Furthermore, let T

(i,j)
a be the

polynomial (((n+1)p+j)× (n(n− i+1)+p(n+p− i)))–matrix whose first (n+1)p
rows constitute the Jacobian of the system (1) of Section 3 and whose remaining j
rows are built as in Section 2 in order to define the (n(n−i+1)+p(p−i−1)−j+1)th
dual polar variety of Hi associated with the linear variety K(a). Then B(i,j) is the
Zariski closure in Ti of the set of all points (x, b, λ, ϑ) ∈ Hi where T

(i,j)
a (x, b, λ, ϑ)

does not have full rank.
By T̃

(i,j)
a we denote the polynomial (((n+1)p+j−1)×(n(n−i+1)+p(n+p−i)))–

matrix consisting of all rows of T (i,j)
a except the last one.

Observe that the large bipolar varieties of S form a chain of equidimensional
varieties

Hi � B(i,n(n−i+1)+p(p−i−1)) ⊃ · · · ⊃ B(i,1).
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The variety B(i,1) is empty or zero-dimensional. If B(i,1) is non-empty, then the
chain is strictly decreasing. We define B(i,0) := ∅.

For t ∈ Nj−1 with t := (t1, . . . , tj−1) and
(n + 1)p < t1 < · · · < tj−1 ≤ n(n− i + 1) + p(n + p− i)

we denote by m(i,j;t) the ((n+1)p+ j−1)–minor of T̃ (i,j)
a which corresponds to the

first (n + 1)p columns and the columns numbered t1, . . . , tj−1 of T̃ (i,j)
a . Moreover,

for
(n + 1)p < k1 < · · · < kn(n−i+1)+p(p−i−1)−j+1 ≤ n(n− i + 1) + p(n + p− i)

different from t1, . . . , tj−1 and 1 ≤ h ≤ n(n − i + 1) + p(p − i − 1) − j + 1 we
denote by M

(i,j;t)
h the ((n+ 1)p+ j)–minor of T (i,j)

a which corresponds to the first
(n+ 1)p columns of T (i,j)

a and the columns numbered t1, . . . , tj−1 and kh. Observe
degM (i,j;t)

h ≤ (n + 1)pd + j.
Finally, for t′ ∈ Nn−i and t′′ ∈ Np with t′ := (t′1, . . . , t′n−i), t′′ := (t′′1 , . . . , t′′p) and

1 ≤ t′1 < · · · < t′n−i ≤ n and 1 ≤ t′′1 < · · · < t′′p ≤ n− i,

let B(i,t′) and Θ(i,t′′) be the (n− i)– and p–minors of the matrices B and Θ which
correspond to the columns t′1, . . . , t′n−i and rows t′′1 , . . . , t′′p of B and Θ, respectively.
By induction on n(n− i+ 1) + p(p− i− 1, . . . , 1) one sees easily that for any point
(x, b, λ, ϑ) of B(i,j) ∩Hi \B(i,j−1) there exist suitable vectors t ∈ Nj−1, t′ ∈ Nn−i

and t′′ ∈ Np with m(i,j;t) B(i,t′) Θ(i,t′′)(x, b, λ, ϑ) �= 0.
Now Proposition 2 and Propositions 6 and 8 of [3,4] imply that the equations of

system (1) and the equations

M
(i,j;t)
1 = 0, . . . ,M (i,j;t)

n(n−i+1)+p(p−i−1)−j+1) = 0

intersect transversally at (x, b, λ, ϑ). In particular, the corresponding polynomials
form a regular sequence in

Q[X,B,Λ,Θ]m(i,j;t) B(i,t′) Θ(i,t′′)

and they define the large bipolar variety B(i,j) outside of the locus given by
m(i,j;t) B(i,t′) Θ(i,t′′) = 0.

Finally, observe that there exist
(
n(n−i+1)+p(p−i−1)

j−1
)
,
(

n
n−i

)
and

(
n−i
p

)
possible choices

of the vectors t ∈ Nj−1, t′ ∈ Nn−i and t′′ ∈ Np, respectively. This yields(
n(n−i+1)+p(p−i−1)

j−1
)(

n
n−i

)(
n−i
p

)
possible choices of vectors (t, t′, t′′) ∈ Nj−1 ×Nn−i×

Np.
These considerations entail the following statement.

Proposition 6. Let notation be as above and let t ∈ Nj−i, t′ ∈ Nn−i and t′′ ∈ Np

be suitable vectors. Further, let D(i,j;t,t′,t′′) be the closed variety of Ti defined by
the condition m(i,j;t) B(i,t′) Θ(i,t′′) = 0. Then the equations of system (1) and the
degree (n + 1)pd + j equations

M
(i,j;t)
1 = 0, . . . ,M (i,j;t)

n(n−i+1)+p(p−i−1)−j+1) = 0

intersect transversally at any of their common solutions in Ti \D(i,j;t,t′,t′′). They
define B(i,j) \D(i,j;t,t′,t′′) in Ti \D(i,j;t,t′,t′′). Moreover, for suitably chosen vectors
(t, t′, t′′) ∈ Nj−1 × Nn−i × Np the union of the sets Ti \D(i,j;t,t′,t′′) covers B(i,j) ∩
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Hi \B(i,j−1). There exist
(
n(n−i+1)+p(p−i−1)

j−1
)(

n
n−i

)(
n−i
p

)
such choices for the vector

(t, t′, t′′) ∈ Nj−1 × Nn−i × Np.

Now let 1 ≤ j ≤ n − p, a0 ∈ Aj with a0 �= 0, a∗ ∈ Aj×(n(p+1)) generic and
a := [aT0 , a∗]. Let σ ∈ Sym (n). For the sake of simplicity of exposition we suppose
that σ is the identity permutation. Furthermore, let T

(i,σ,j)
a be the polynomial

(((n+1)p+ j)×n(p+1))–matrix whose first (n+1)p rows constitute the Jacobian
of the system (2) of Section 3 and whose remaining j rows are built as in Section 2
in order to define the (n−p−j+1)th dual polar variety of Hi,σ associated with the
linear space K(a). Then B(i,σ,j) is the Zariski closure in Fi of the set of all points
(x, b, λ, ϑ) ∈ Hi,σ where T

(i,σ,j)
a (x, b, λ, ϑ) does not have full rank.

By T̃
(i,σ,j)
a we denote the polynomial (((n + 1)p + j − 1) × n(p + 1))–matrix

consisting of all rows of T (i,σ,j)
a except the last one.

Observe again, that the small bipolar varieties B(i,σ,j) of S form a chain of
equidimensional varieties

Hi,σ � B(i,σ,n−p) ⊃ · · · ⊃ B(i,σ,1).

The variety B(i,σ,1) is empty or zero-dimensional. If B(i,σ,1) is nonempty, then the
chain is strictly decreasing. We define B(i,σ,0) := ∅.

For t ∈ Nj−1 with t := (t1, . . . , tj−1) and

(n + 1)p < t1 < · · · < tj−1 ≤ n(p + 1)

we denote by m(i,σ,j;t) the ((n + 1)p + j − 1)–minor of T̃ (i,σ,j)
a which corresponds

to the first (n + 1)p columns and the columns numbered t1, . . . , tj−1 of T̃
(i,σ,j)
a .

Moreover, for

(n + 1)p < k1 < · · · < kn−p−j+1 ≤ n(p + 1)

different from t1, . . . , tj−1 and 1 ≤ h ≤ n − p − j + 1 we denote by M
(i,σ,j;t)
h the

((n + 1)p + j)–minor of T (i,σ,j)
a which corresponds to the first (n + 1)p columns of

T
(i,σ,j)
a and the columns numbered t1, . . . , tj−1 and kh. Observe degM (i,σ,j;t)

h ≤
(n + 1)pd.

Observe that there exist
(
n−p
j−1
)

choices of vectors t ∈ Nj−1.
In the same way as in the case of Proposition 6, now one proves the following

statement.

Proposition 7. Let notation be as before and let t ∈ Nj−1 be a suitable vector.
Denote by D(i,σ,j;t) the closed subvariety of Fi defined by the equation m(i,σ,j;t) = 0.
Then the equations of system (2) and the degree (n + 1)pd equations

M
(i,σ,j;t)
1 = 0, . . . ,M (i,σ,j;t)

n−p−j+1 = 0

intersect transversally at any of their common solutions in Fi \ D(i,σ,j;t). They
define B(i,σ,j) \ D(i,σ,j;t) in Fi \ D(i,σ,j;t). Moreover, for suitably chosen vectors
t ∈ Nj−1 the union of the sets Fi \D(i,σ,j;t) covers B(i,σ,j) ∩Hi,σ \ B(i,σ,j−1). There
exist

(
n−p
j−1
)

possible choices of vectors t ∈ Nj−1.
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4.2. Degrees of bipolar varieties. We denote by degB(i,j) and degB(i,σ,j) the
geometric degrees of the respective bipolar varieties in their ambient spaces Ti and
Fi (see [26] for a definition and properties of the geometric degree of a subvariety
of an affine space).

Observe that degB(i,j) remains invariant under linear transformations of the
coordinates X1, . . . , Xn by unitary complex matrices.

From [8, Lemma 1] and [5, Theorem 3] we deduce that for 1 ≤ j ≤ n− p,

(3) degB(i,σ,j) ≤ degB(i,n(n−i))+p(p−i)+j)

holds.
Suppose that S contains a regular real point x. Then there exists a permutation

σ ∈ Sym (n) with Δσ(x) �= 0. From Proposition 3 we deduce that (Hi,σ)R is non-
empty. This implies that Hi,σ is given by a reduced regular sequence of polynomials,
namely the polynomials in system (2). Moreover, the real variety (Hi,σ)R is smooth.
Therefore we may apply [3], [4, Proposition 2] to conclude that B(i,σ,j)R contains
for each connected component of (Hi,σ)R at least one point. This implies

1 ≤ degB(i,σ,1) ≤ degB(i,n(n−i))+p(p−i)+1).

For 1 ≤ r ≤ p, 1 ≤ l ≤ n and σ ∈ Sym (n) we are going to analyze in the following
closed subvarieties S

(i)
(r,l) and S

(i,σ)
(r,l) of the affine subspaces Ti and Fi, respectively.

For this purpose we consider the lexicographical order < of the set of all pairs (r, l)
with 1 ≤ r ≤ p, 1 ≤ l ≤ n.

Let S
(i)
(r,l) be the Zariski closure of the locally closed subset of Ti defined by the

conditions
F1(X) = · · · = Fp(X) = 0

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+

∑
1≤k≤n−i

Bk,l′Θk,r = 0,

1 ≤ r′ ≤ p, 1 ≤ l′ ≤ n, (r′, l′) ≤ (r, l), and
rk B = n− i, rk Θ = p and rk J(F ) = p.

(4)

Observe that the particular structure of the Jacobian of the equations of system
(4) implies that the corresponding polynomials form a reduced regular sequence at
any of their common zeros outside of the closed locus given by the conditions

rk B < n− i, rk Θ < p or rk J(F ) < p.

Furthermore, let S
(i,σ)
(r,l) be the locally closed subset of Fi defined by the conditions

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ δr′,l′ = 0, 1 ≤ r′ ≤ r, 1 ≤ l′ ≤ p, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Θl′,r′ = 0, 1 ≤ r′ ≤ r, p < l′ ≤ n− i, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Br′,l′ = 0, 1 ≤ r′ ≤ r, n− i < l ≤ n, (r′, l′) ≤ (r, l),

and Δσ(X) �= 0.

(5)
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Again the particular structure of the Jacobian of the equations of system (5) implies
that the corresponding polynomials form a reduced regular sequence at any of their
common zeros outside of the closed locus given by the condition Δσ(X) = 0.

In conclusion, the polynomials of systems (1) and (2) form strongly reduced
regular sequences at any of their common zeros outside of the corresponding closed
loci.

For the next statement recall that the degree of the polynomials F1, . . . , Fp is
bounded by d (see Section 2).

Proposition 8. Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the extrinsic estimate

degS(i)
(r,l) ≤ dp(n+1) = dO(n2).

Proof. Without loss of generality we may suppose d ≥ 2. Then we deduce from
the Bézout Inequality ([18, 26, 45]) that the closed subvariety of Ti defined by the
equations of system (4) is of degree at most dp(n+1) = dO(n2). �

In fact, this bound is too coarse, because refined methods, based on the multi-
homogeneous Bézout Inequality of [34], yield an estimate degS(i)

(r,l) = (nnd)O(n)

which is sharper for d ≥ n. This improvement will not be very relevant in Section 5
where the degree of S(i)

(r,l) plays a key role in complexity estimates. More important
will be the estimate degS(i,σ)

(r,l) = (nd)O(n), σ ∈ Sym (n), we are going to derive
now.

Lemma 9. Let 1 ≤ r ≤ p, Λ(r) := [Λr′,s] 1≤r′≤r
1≤s≤p

and Δ := det[ ∂Fs

∂Xl′
]1≤s,l′≤p. Then

the Zariski closure of the locally closed subvariety Sr of An × Ar×p defined by the
conditions

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ δr′,l′ = 0, 1 ≤ r′ ≤ r, 1 ≤ l′ ≤ p,

Δ �= 0

(6)

is empty or equidimensional of dimension n − p. Its geometric degree is bounded
by (2nd)n. The polynomials of system (6) form a reduced regular sequence in
Q[X,Λ(r)]Δ.

Proof. From (6) one deduces easily that for a point (x, λ) ∈ Sr with Δ(x) �= 0
the matrix [ ∂Fs

∂Xl′
] 1≤s≤r

1≤l′≤p

has maximal rank. This implies that the Jacobian of (6)
has full rank at (x, λ). Hence the variety Sr is smooth and of dimension n − p at
(x, λ). Thus Sr is empty or equidimensional of dimension n − p. Moreover, the
polynomials of system (6) form a reduced regular sequence in Q[X,Λ(r)]Δ.

Observe that for x ∈ S with Δ(x) �= 0 there exists exactly one point λ ∈ Ar×p

such that (x, λ) belongs to Sr. Thus Sr ∩ (SΔ × Ar×p) is the graph of a rational
map ϕ : S → Ar×p which is everywhere defined on SΔ. By Cramer’s rule each
component of this rational map may be described by a rational expression whose
numerator is a polynomial of Q[X] of degree at most pd and whose denominator is
Δ.

Let K1, . . . ,Kn−p be generic affine linear polynomials of Q[X,Λ(r)]. Then we
have
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degSr = #(Sr ∩ {K1 = 0, . . . ,Kn−p = 0}), where # denotes the cardinal-
ity of the corresponding set. Without loss of cardinality we may suppose that
Sr ∩ {K1 = 0, . . . ,Kn−p = 0} is contained in An

Δ ×Ar×n (see [26, Remark 2]). Re-
placing in K1 = 0, . . . ,Kn−p = 0 each indeterminate Λr′,s, 1 ≤ r′ ≤ r, 1 ≤ s ≤ p
by the given rational expression for the corresponding coordinate of ϕ and cleaning
the denominator Δ we obtain together with F1, . . . , Fp a system of n polynomials of
Q[X] having degree at most 2pd which in An

Δ defines a set of the same cardinality
as Sr ∩ {K1 = 0, . . . ,Kn−p = 0}. From the Bézout Inequality we therefore deduce

degSr ≤ (2pd)n ≤ (2nd)n. �

Proposition 10. Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the estimate

degS(i,σ)
(r,l) ≤ (2nd3)n.

Proof. Without loss of generality we may suppose that σ ∈ Sym (n) is the identity
permutation. Then we have, with the notation of the previous lemma, Δ = Δσ.

We consider Sr−1×Ap and Sr as closed subvarieties of An×Ar×p with the con-
vention S0 := SΔ. Let V(r,l) be the Zariski closure of the locally closed subvariety
of An × Ar×p defined by the conditions

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ δr′,l′ = 0, 1 ≤ r′ ≤ r, 1 ≤ l′ ≤ p, (r′, l′) ≤ (r, l),

and Δ �= 0

Observe that V(r,l) is the intersection of Sr−1×Ap with the subvariety of An×Ar×p

defined by the equations
∑

1≤s≤p

Λr,s
∂Fs

∂Xl′
+ δr,l′ = 0, 1 ≤ l′ ≤ min{l, p}.

From the Bézout Inequality and Lemma 9 we infer

deg V(r,l) ≤ dp degSr ≤ (n d2)n.

By Lemma 9 the variety Sr−1 is empty or of dimension n − p. Since Sr−1 × Ap

contains V(r,l) we conclude dim V(r,l) ≤ n. Observe now that system (5) describes
the graph of a rational map with domain (V(r,l))Δ. The polynomials which consti-
tute this map have degree at most d. In the same way as in the proof of Lemma 9,
the Bézout Inequality implies that system (5) describes a locally closed algebraic
subvariety of Fi whose Zariski closure is of degree at most dn deg V(r,l) ≤ (2nd3)n.
Since the irreducible components of S(i,σ)

(r,l) are irreducible components of this variety
we conclude that degS(i,σ)

(r,l) ≤ (2nd3)n holds. �

Observation 11. Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then the estimate of Proposition
8 can be improved to degS(i)

(r,l) = (nn d)O(n).

Proof (Sketch). Let us first suppose p ≤ l ≤ n and let Y := [Yr′′,s]1≤r′′,s≤p be
a matrix of new indeterminates. Consider again Δ := det[ ∂Fs

∂Xl
]1≤s,l≤p. We show
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deg (Si
(r,l))Δ = (n d)O(n). For this purpose we add to the equations of (4) the

equations

(7)
∑

1≤s≤p

Yr′′,s
∂Fs

∂Xl′′
= δr′′,l′′ , 1 ≤ r′′, l′′ ≤ p.

In this way we obtain a closed subvariety W of Ti × Ap×p. Taking into account
the assumption p ≤ l ≤ n, one sees easily that the Jacobian of the system com-
posed by (4) and (7) has at any point of W full rank. Therefore, W is empty or
an equidimensional, smooth variety. The system composed by (4) and (7) contains
five types of variables, namely the ones contained in B, Λ, Θ and Y (which occur
linearly) and the variables X1, . . . , Xn (which occur in degree at most d). Intersect-
ing W with dimW many affine hyperplanes of Ti × Ap×p given by generic affine
linear polynomials of Q[X,B,Λ,Θ, Y ], we deduce from the dehomogenized version
of the multi-homogeneous Bézout Inequality of [34] or from [15, Corollary 1.12] the
estimate degW = (nn d)O(n).

Let π : Ti × Ap×p → Ti be the canonical projection from Ti × Ap×p onto Ti

and observe that π(W ) is birationally equivalent to W and hence empty or an
equidimensional subvariety of Ti. Since the irreducible components of (S(i)

(r,l))Δ are
irreducible components of π(W ) we infer from [26, Lemma 2] and its proof the
estimate

deg (S(i)
(r,l))Δ ≤ degW = (nn d)O(n).

In a similar way one sees deg (S(i)
(r,l))Δσ

= (nn d)O(n) for any permutation σ ∈
Sym (n). Since there exist

(
n
p

)
many p–minors of J(F ) we conclude degS(i)

(r,l) =(
n
p

)
(nn d)O(n) = (nn d)O(n). Finally, we consider S

(i)
(r,l) for 1 ≤ r ≤ p and ar-

bitrary 1 ≤ l ≤ n. From (4) we conclude that the irreducible components of
S

(i)
(r,l) are irreducible components of the intersection of S

(i)
(r−1,n) with l ≤ n hy-

persurfaces of Ti of degree at most max{2, d}. Since we have by our previous
argumentation, degS(i)

(r−1,l) = (nn d)O(n), we deduce from the Bézout Inequality
degS(i)

(r,l) = (nn d)O(n). �

Let 1 ≤ i ≤ n − p. We proceed now to derive two extrinsic estimates for the
degrees of the bipolar varieties B(i,j), 1 ≤ j ≤ n(n − i + 1) + p(p − i + 1), and
B(i,σ,j), σ ∈ Sym (n), 1 ≤ j ≤ n− p.

Proposition 12. For 1 ≤ j ≤ n(n − i + 1) + p(p − i − 1) one has the extrinsic
estimate degB(i,j) = (n d)O(n2). In particular, for n(n − i) + p(p − i) < j ≤
n(n− i + 1) + p(p− i− 1) one has the estimate degB(i,j) = (nn d)O(n).

Proof. From Proposition 8 we deduce that the degree of Hi in Ti is bounded by
d p(n+1) = dO(n2). Observation 11 yields the estimate degHi = (nn d)O(n). On the
other hand, we deduce from Proposition 6 and the Bézout Inequality that degB(i,j)
is bounded by

degHi

(
n(n−i+1)+p(p−i−1)

j−1
)(

n
n−i

)(
n−i
p

)
((n + 1) pd + j)n(n−i+1)+p(p−i−1)−j+1.
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This implies for 1 ≤ j ≤ n(n− i+1)+p(p− i−1) the general estimate degB(i,j) =
(n d)O(n2) and for n(n− i)+ p(p− i) ≤ j ≤ n(n− i+1)+ p(p− i− 1) the particular
estimate degB(i,j) = (nn d)O(n). �

Proposition 13. The extrinsic estimate degB(i,σ,j) = (nd)O(n) is valid for any
σ ∈ Sym (n) and 1 ≤ j ≤ n− p.

Proof. From Proposition 10 we deduce that the degree of Hi,σ is bounded by
(n d3)n. Moreover, Proposition 7 and the Bézout Inequality imply that degB(i,σ,j)
is bounded by degHi,σ

(
n−p
j−1
)
((n + 1)pd + j)n−p−j+1 = (n d)O(n). �

We associate now with 1 ≤ i ≤ n− p, σ ∈ Sym (n) and the polynomial equation
system F1 = · · · = Fp = 0 the following discrete parameters, namely

δi := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},
max{degS(i)

(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},
max{degBi,n(n−i)+p(p−i)+j | 1 ≤ j ≤ n− p}}

and
δi,σ := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},

max{degS(i,σ)
(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},

max{degB(i,σ,j) | 1 ≤ j ≤ n− p}}.
Adapting the terminology of [8, Section 4.2] and taking into account that for
1 ≤ j ≤ n − p the degree of B(i,n(n−i)+p(p−i)+j) remains invariant under linear
transformations of the coordinates X1, . . . , Xn by unitary complex matrices, we
call δi and δi,σ the unitary-independent and the unitary-dependent degree of the
real interpretation of the equation system F1 = · · ·=Fp = 0 associated with i and σ.

Observe that (3) and the Bézout Inequality imply
δi,σ ≤ δi for any σ ∈ Sym (n).

From Propositions 10, 12, 13, Observation 11, and the Bézout Inequality we deduce
the following extrinsic estimates:
(8) δi = (nn d)O(n)

and
(9) δi,σ = (n d)O(n)

(compare for the case p := 1 the estimates (16) and (17) given in [8, Section 4.2]).
For the rest of the paper we fix a family {σ1, . . . , σ(np)} of permutations from

Sym (n) such that for any choice 1 ≤ k1 < · · · < kp ≤ n there exists an index
1 ≤ k ≤

(
n
p

)
with σk(1) = k1, . . . , σk(p) = kp.

Let δ̃i :=
∑

1≤k≤(np) δi,σk
. From (9) we deduce

(10) δ̃i = (n d)O(n).

Observe finally that

(11) δ̃i ≤
(
n

p

)
δi

holds.
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5. Real root finding for F1 = 0, . . . , Fp = 0

We are going to present a discrete family of efficient non-uniform (or alternatively
uniform probabilistic) procedures Πi, 1 ≤ i ≤ n − p, which satisfy the following
specifications. Let Z be a new indeterminate.
Input:
An essentially division-free arithmetic circuit β in Q[X] of size L and non-scalar
depth � having p output nodes.
Input specification:
The circuit β represents by its output nodes p polynomials F1, . . . , Fp ∈ Q[X] of
maximal degree d. These polynomials form a strongly reduced regular sequence in
Q[X].
Output:
The procedure Πi accepts the input β if S := {F1 = 0, . . . , Fp = 0} contains a
smooth real point. If this is the case, the procedure returns a circuit representation
of the coefficients of n + 1 polynomials P, G1, . . . , Gn ∈ Q[Z] satisfying for G :=
(G1, . . . , Gn) the following
Output specification:

- P is monic and separable,
- degG < degP ≤ δ̃i, where degG := max{degG1, . . . ,degGn},
- the zero-dimensional affine variety

{G(z) | z ∈ A1, P (z) = 0}
contains a smooth real point of each generically smooth connected compo-
nent of SR. In order to represent these sample points, an encoding “à la
Thom” of the real zeros of the polynomial P is returned (see e.g. [14] for
this kind of encoding).

We say that Πi solves the real root finding problem for F1 = 0, . . . , Fp = 0.
We now fix 1 ≤ i ≤ n− p and σ ∈ Sym (n). Without loss of generality we may

suppose that σ is the identity permutation. From Proposition 3 we deduce that
the equations of system (2) intersect transversally at any of their real solutions.
Moreover, the polynomials of (2) form in Q[X,B,Λ,Θ] a strongly reduced regular
sequence (see Section 4.2).

Denote by V σ := Hi,σ the closed algebraic subvariety of Fi consisting of the
common complex solutions of the polynomial equation system (2) and let V σ

R
:=

V σ ∩ (Fi)R be the real trace of V σ in Fi. Thus V σ
R

consists of all real solutions of
(2) and is therefore closed in the Euclidean topology. Moreover, from Proposition
3 we conclude that V σ and V σ

R
are empty or smooth of dimension n − p and that

the real variety V σ
R

is non-empty if and only if S contains a real point x with
Δσ(x) �= 0. More precisely, for any connected component C of SR, where Δσ do
not vanish identically, there exists a point (x, b, λ, ϑ) of V σ

R
with x ∈ C, Δσ(x) �= 0

and (b, λ, ϑ) ∈ A
p×i
R

× A
p×p
R

× A
(n−p−i)×p
R

.
Therefore, a set of algebraic sample points for the connected components of V σ

R

gives rise to a set of algebraic sample points for the connected components of SR

where Δσ does not vanish identically.
Suppose now that S contains a real point x with Δσ(x) �= 0. Then the real

variety V σ
R

is smooth and equidimensional of dimension n−p. For 1 ≤ j ≤ n−p we
infer from [4], Proposition 2 that the real bipolar variety (B(i,σ,j))R (and hence the
complex variety B(i,σ,j)) contains at least one point of each connected component
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of V σ
R

. Thus B(i,σ,j) and (B(i,σ,j))R are equidimensional of dimension j − 1. From
Proposition 7 we conclude that for 1 ≤ j ≤ n − p the algebraic variety B(i,σ,j) \
B(i,σ,j−1) is locally definable by reduced regular sequences. In particular, B(i,σ,1)
is zero-dimensional and contains for each connected component of V σ

R
an algebraic

sample point. The algorithm Πi proceeds now by deciding for each 1 ≤ k ≤
(
n
p

)
whether B(i,σk,1) contains real algebraic points, and, if it is the case, by computing
them. The algorithm infers from these data whether S contains smooth real points.
If the answer is positive, the set of data furnish also a finite set of smooth real
algebraic sample points for the generically smooth connected components of SR.

At the beginning, the procedure Πi generates for each 1 ≤ k ≤
(
n
p

)
from the

input circuit β a new division-free circuit βσk
of size O(L + np) and non-scalar

depth �+O(1) that represents by its output nodes the polynomials of Q[X,B,Λ,Θ]
which define as in Section 3 the variety Hi,σk

. For the sake of simplicity we fix
σ := σk and suppose that σ is the identity permutation of Sym (n). Taking the
circuit βσ as input, the procedure Πi follows now the pattern of the (non-uniform
or probabilistic) procedure described in [3, Theorem 11] and [4, Theorem 13] in
order to decide whether V σ

R
is empty.

If V σ
R

is empty then the procedure Πi returns the answer that Δσ vanishes
identically on any connected component of SR.

Suppose that V σ
R

is not empty. Then the procedure Πi returns the coefficients of
n(p + 1) + 1 polynomials P σ, Gσ

1 , . . . , G
σ
n, G

σ
n+1, . . . , G

σ
n(p+1) ∈ Q[Z] satisfying for

Gσ := (Gσ
1 , . . . , G

σ
n(p+1)) the following conditions:

- P σ is monic and separable,
- degGσ < degP σ ≤ degB(i,σ,1),
- B(i,σ,1) = {Gσ(z) | z ∈ A1, P σ(z) = 0}.

From this representation of the variety B(i,σ,1) we deduce that for Gσ := (Gσ
1 , . . . ,

Gσ
n) the zero-dimensional variety {Gσ(z) | z ∈ A1, P σ(z) = 0} contains a real alge-

braic sample point for each connected component of SR where Δσ does not vanish
identically. The procedure Πi now collects this information for any permutation
σk, 1 ≤ k ≤

(
n
p

)
, in order to construct n + 1 polynomials P,G1, . . . , Gn ∈ Q[Z]

which satisfy the output specifications above.
This is done in the following way. The polynomial P is obtained by taking the

product of all polynomials P σk with V σk

R
�= ∅, 1 ≤ k ≤

(
n
p

)
and making the result

squarefree. Then we have degP ≤ δ̃i. From P the polynomials G1, . . . , Gn are
easily obtained applying a standard algorithm which goes back to Kronecker (see
[23] for details). In this way the procedure Πi produces a set of real algebraic
sample points for the generically smooth connected components of SR from G and
the encoding “à la Thom” of the real zeros of P .

The procedure Πi is based on the original paradigm [20,21] of a procedure with
intrinsic complexity that solves polynomial equation systems over the complex num-
bers (see also [17, 19, 23]).

We are now going to describe succinctly the procedure Πi (Propositions 7 and
10 will play here a key role). For this purpose we shall freely refer to terminology,
mathematical results and subroutines of [23], where the first streamlined version
of the polynomial equation solver [20, 21] was presented and implemented as the
“Kronecker-algorithm” (compare also [29]).
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In order to simplify the exposition we shall refrain from the presentation of
details which ensure only appropriate genericity conditions for the procedure. The
following description requires that the reader is acquainted with the details of the
Kronecker-algorithm. Although at first glance this description may look intricate,
no substantially new idea, which has not been explained before, is introduced.

As before, we consider the identity permutation σ ∈ Sym (n). Recall that the
polynomials of (2) generate the trivial ideal or form a strongly reduced regular
sequence in Q[X,B,Λ,Θ]Δσ

. In this situation the procedure Πi applies to system
(2) the algorithm “Geometric Solve” of [23] to decide whether V σ = Hi,σ is empty.
In this case the information that V σ

R
does not contain any smooth point is returned.

Suppose that this is not the case. Then the algorithm “Geometric Solve” returns a
lifting fiber of the variety V σ.

Next, beginning with j := n−p, the procedure Πi decides for any index 1 ≤ j ≤
n − p whether the variety B(i,σ,j) is empty or returns a lifting fiber of it. In case
there exists an index 1 ≤ j ≤ n− p with B(i,σ,j) = ∅, the procedure Πi returns the
information that V σ

R
does not contain any smooth point. Suppose that this is not

the case.
For 1 ≤ j ≤ n − p we fix a vector t(j) ∈ Nj−1 with t(j) := (t(j)1 , . . . , t

(j)
j−1) and

(n + 1)p < t
(j)
1 < · · · < t

(j)
j−1 ≤ n(p + 1). In the same way as in [8, Section 4.3]

one sees that the minor m(i,σ,j;t(j)) does not vanish identically on any irreducible
component of B(i,σ,j).

Following Proposition 7 the equations of system (2) and the equations

M
(i,σ,j,t(j))
1 = 0, . . . ,M (i,σ,j,t(j))

n−p−j+1 = 0

define the variety (B(i,σ,j))m(i,σ,j;t(j))
outside of the locus of Fi given by m(i,σ,j;t(j)) =

0. Our assumptions imply that this variety is not empty. Therefore, the polynomials
of the equations above form a reduced regular sequence in Q[X,B,Λ,Θ]m(i,σ,j;t(j))

and hence a lifting system in the sense of [23] for the variety B(i,σ,j). Inductively
we suppose that there is given a lifting fiber of B(i,σ,j) on which m(i,σ,j;t(j)) vanishes
nowhere.

In this situation Πi combines the algorithms “Lifting Curve”, “Change Free Vari-
ables”, “Change Lifting Point” and “Change Primitive Element” of [23] in order to
produce a Kronecker-parameterization of a suitable curve C(i,σ,j) in (B(i,σ,j))m(i,σ,j,t(j))

which lifts the fiber of a sufficiently generic lifting point with respect to the lifting
system and a sufficiently generic Noether position of B(i,σ,j).

Next the procedure Πi applies for 1 ≤ k ≤ n − p − j + 1 the algorithm “One
Dimensional Intersect” of [23] to the given Kronecker-parameterization of C(i,σ,j)

and the polynomials M (i,σ,j−1,t(j−1))
k and m(i,σ,j−1,t(j−1)), and computes the greatest

common divisor of the resulting univariate elimination polynomials. This greatest
common divisor is not one since by assumption the variety B(i,σ,j−1) is not empty.
In this way Πi produces a lifting fiber of B(i,σ,j−1) on which m(i,σ,j−1,t(j−1)) vanishes
nowhere.

Finally, Πi produces a geometric solution of the zero-dimensional algebraic va-
riety B(i,σ,1). More precisely, the procedure Πi produces a circuit representation of
the coefficients of n(p + 1) + 1 polynomials P σ, Gσ

1 , . . . , G
σ
n(p+1) ∈ Q[Z] as above.
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Running the previous routine for each σk, 1 ≤ k ≤
(
n
p

)
, we deduce from the

complexity estimates of [23] that Πi uses

∑

1≤k≤(np)
L(n d)O(1)

⎛
⎜⎜⎝max

⎧
⎪⎪⎨
⎪⎪⎩

max{deg{F1 = 0, . . . , Fi = 0} | 1 ≤ i ≤ p},

max{degS(i,σk)
(r,l) |1 ≤ r ≤ p, 1 ≤ l ≤n},

max{degB(i,σk,j)|1 ≤ j ≤n− p}

⎫
⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

= L (n d)O(1) (δ̃i)2

arithmetical operations organized, with respect to the parameters of the arithmetic
circuit β, in non-scalar depth

O(n (� + log(dn)) log δ̃i).
The procedure can easily be translated to the bit model. Let η be the logarithmic
height of the polynomials F1, . . . , Fp. In order to estimate the bit complexity of
the procedure we consider the maximal logarithmic height, say κi = O((nd)nη), of
the bipolar varieties B(i,σk,1), 1 ≤ k ≤

(
n
p

)
. It is now straightforward to see that a

representation of P as primitive polynomial of Z[Z] and hence a minimal arithmetic
expression of the real zeros of P can be found using O(L2(ndη)O(1)(δ̃i κi)2) bit
operations (see [25] for the relationship between arithmetic and bit representation
of integers).

Let us finally observe that an alternative procedure to Πi may be obtained
applying for j := 1 the algorithm “Geometric Solve ” of [23] to the equation system
of Proposition 7. The complexity estimates for this procedure, which are the same
as for Πi, follow from arguments in [5, Section 4] and especially from Theorem 3
and Example 2.

We have therefore proven the following complexity statement (compare [3, The-
orem 11], [4, Theorem 13] and [8, Theorem 14].

Theorem 14. Let n, p, d, i, δ, L, � be natural numbers with d ≥ 1, 1 ≤ i ≤ n− p.
Let X1, . . . , Xn and Z be indeterminates over Q and let X := (X1, . . . , Xn).

There exists an arithmetic network N (or arithmetic-Boolean circuit) over Q,
depending on certain parameters and having size

O(L (n d)O(1) δ2) = (n d)O(n)

and non-scalar depth
O(n (� + log(n d)) log δ) = O(n2 log(dn) log d),

such that N satisfies for suitable random specializations of its parameters the fol-
lowing condition:

Let F1, . . . , Fp ∈ Q[X] be polynomials of degree at most d and assume that
F1, . . . , Fp are given by an essentially division-free arithmetic circuit β in Q[X]
of size L and non-scalar depth �. Suppose that F1, . . . , Fp form a strongly reduced
regular sequence in Q[X] and that δ̃i ≤ δ holds.

Then the algorithm represented by the arithmetic network N starts from the
circuit β as input and decides whether the variety {F1 = 0, . . . , Fp = 0} contains a
smooth real point. If this is the case, the algorithm produces a circuit representation
of the coefficients of n + 1 polynomials P,G1, . . . , Gn ∈ Q[Z] satisfying for G :=
(G1, . . . , Gn) the following conditions:
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- P is monic and separable,
- degG < degP ≤ δ,
- the complex affine variety {G(z) | z ∈ A1, P (z) = 0} is zero-dimensional

and contains a smooth real algebraic sample point for each generically smooth
connected component of {F1 = 0, . . . , Fp = 0}R.

In order to represent these sample points the algorithm returns an encoding “à la
Thom” of the real zeros of the polynomial P .

For the terminology of arithmetic network and arithmetic Boolean circuit we
refer to [46, 47].

Three remarks on the formulation of Theorem 14 are in order.
The statement of Theorem 14 remains true if we replace δ̃i by

(
n
p

)
δi. This is a

direct consequence of the estimate (11). Hence the combinatorial factor
(
n
p

)
occurs

hidden in the invariant δ̃i. In terms of extrinsic complexity, our bounds therefore
are comparable with those of [9]. An improvement can be obtained in the case
that the variables X1, . . . , Xn are in generic position with respect to the variety
{F1 = · · · = Fp = 0}. In this case the factor

(
n
p

)
in this complexity estimate may be

dropped. In order to see this, observe that for the identity permutation σ ∈ Sym (n)
the variety Hi,σ contains for each generically smooth connected component C of
{F1 = · · · = Fp = 0}R a point (x, b, λ, ϑ) such that x belongs to C. Hence the
same is true for B(i,σ,1). It suffices therefore to apply the subroutine of Πi which
corresponds to σ in order to find real algebraic sample points for the generically
smooth connected components of {F1 = · · · = Fp = 0}R.

Next we remark that by (9) the condition δ̃i ≤ δ is always satisfied for δ :=
min{(n d)cn, δi}, where c > 0 is a suitable universal constant (independent of n and
d). This illustrates that the estimates of Proposition 8 and Observation 11 implying
the estimate (8) (i.e., δi = (nn d)O(n)) are not very relevant in this context. The
worst case bound of Theorem 14 is only (n d)O(n).

Our third remark is the following statement.

Observation 15. Theorem 14 asserts only the existence of a computation that,
for given n–variate input polynomials F1, . . . , Fp of degree at most d and circuit
size and non-scalar depth L and �, solves the real root finding problem for F1 =
0, . . . , Fp = 0 in sequential and non–scalar parallel time O(L (n d)O(1) (δ̃i)2) and
O(n(� + log(n d)) log δ̃i), respectively.

Theorem 14 refers therefore to the non-uniform complexity model. In order to
realize such a computation in terms of the uniform complexity model within the
same order of sequential and parallel time, probabilistic methods have to be used
(see [29] and [23]). This is achieved by choosing randomly the parameters of the
arithmetic network N of Theorem 14.

In [8, Section 5] we developed a common view for the procedures Πi, 1 ≤ i ≤
n− p, solving the task of finding smooth points in possibly singular, real compact
hypersurfaces, and for the algorithm of [1] which solves the same task in the smooth
case.

When we have to solve a concrete polynomial equation system F1 = 0, . . . , Fp =
0, sometimes the procedures Πi, 1 ≤ i ≤ n − p and algorithms of [2–4] may
be combined in order to improve the complexity. However, such improvements
depend on ad hoc methods and do not lead to a general algorithm. Moreover,
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the hypersurface case treated in [8] does not differ substantially from that of an
arbitrary complete intersection. Therefore, we do not go into detail here and refer
the reader to the above-mentioned paper.
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Séminaire d’Analyse, 1987–1988 (Clermont-Ferrand, 1987), Univ. Clermont-Ferrand II, Cler-
mont, 1990, pp. Exp. No. 4, 12 (French). MR1088966 (91m:14001)

[43] J. A. Todd, The Geometrical Invariants of Algebraic Loci, Proc. London Math. Soc. S2-43,
no. 2, 127, DOI 10.1112/plms/s2-43.2.127. MR1575589

[44] J. A. Todd, The Arithmetical Invariants of Algebraic Loci, Proc. London Math. Soc. S2-43,
no. 3, 190, DOI 10.1112/plms/s2-43.3.190. MR1575915

[45] W. Vogel, Lectures on results on Bezout’s theorem, Tata Institute of Fundamental Research
Lectures on Mathematics and Physics, vol. 74, Published for the Tata Institute of Funda-
mental Research, Bombay, 1984. Notes by D. P. Patil. MR743265 (86f:14003)

[46] Joachim von zur Gathen, Parallel arithmetic computations: a survey, Mathematical founda-
tions of computer science, 1986 (Bratislava, 1986), Lecture Notes in Comput. Sci., vol. 233,
Springer, Berlin, 1986, pp. 93–112, DOI 10.1007/BFb0016236. MR874591

[47] J. von zur Gathen, Parallel linear algebra, in Synthesis of parallel algorithms (J. H. Reif,
ed.), Kaufmann, San Mateo, CA., 1993, pp. 573–617.

Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-

10099 Berlin, Germany

E-mail address: bank@mathematik.hu-berlin.de

CNRS,
´
Ecole Polytechnique, Lab. LIX, F-91228 Palaiseau, Cedex, France

E-mail address: marc.giusti@polytechnique.fr

Departamento de Computación, Universidad de Buenos Aires, CONICET, Ciudad Uni-

versitaria, Pabellon I, 1428 Buenos Aires, Argentina — Departamento de Matemáticas,
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