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ON THE NUMBER OF PRIME FACTORS OF AN ODD

PERFECT NUMBER

PASCAL OCHEM AND MICHAËL RAO

Abstract. Let Ω(n) and ω(n) denote, respectively, the total number of prime
factors and the number of distinct prime factors of the integer n. Euler proved
that an odd perfect number N is of the form N = pem2 where p ≡ e ≡ 1
(mod 4), p is prime, and p � m. This implies that Ω(N) ≥ 2ω(N) − 1. We
prove that Ω(N) ≥ (18ω(N)− 31)/7 and Ω(N) ≥ 2ω(N) + 51.

1. Introduction

A natural number N is said to be perfect if it is equal to the sum of its positive
divisors (excluding N). It is well known that an even natural number N is perfect
if and only if N = 2k−1(2k − 1) for an integer k such that 2k − 1 is a Mersenne
prime. On the other hand, it is a long-standing open question whether an odd
perfect number exists.

In order to investigate this question, several authors gave necessary conditions for
the existence of an odd perfect number N . Let Ω(n) and ω(n) denote, respectively,
the total number of prime factors and the number of distinct prime factors of the
integer n. Euler proved that N = pem2 for a prime p, with p ≡ e ≡ 1 (mod 4),
p is prime, and p � m. Moreover, recent results showed that N > 101500 [4],
ω(N) ≥ 9 [3], and Ω(N) ≥ 101 [4].

In this paper, we study the relationship between Ω(N) and ω(N). By Euler’s
result, we have Ω(N) ≥ 2ω(N) − 1. Steuerwald [6] proved that m is not square-
free, that is, the exponents of the non-special primes cannot be all equal to 2. This
implies that Ω(N) ≥ 2ω(N) + 1. We improve this inequality in two ways:

Theorem 1. If N is an odd perfect number, then Ω(N) ≥ (18ω(N)− 31)/7.

Theorem 2. If N is an odd perfect number, then Ω(N) ≥ 2ω(N) + 51.

We prove Theorem 1 in Section 3 using standard arguments. We prove Theo-
rem 2 in Section 4 via computations using the general method in [4].

To summarize the known results for Ω(N), we have

Ω(N) ≥ max {101, 2ω(N) + 51, (18ω(N)− 31)/7} .

2. Preliminaries

Let n be a natural number. Let σ(n) denote the sum of the positive divisors of

n, and let σ−1(n) =
σ(n)
n be the abundancy of n. Clearly, n is perfect if and only

if σ−1(n) = 2. We first recall some easy results on the functions σ and σ−1. If p is
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prime, σ(pq) = pq+1−1
p−1 , and σ−1(p

∞) = limq→+∞ σ−1(p
q) = p

p−1 . If gcd(a, b) = 1,

then σ(ab) = σ(a)σ(b) and σ−1(ab) = σ−1(a)σ−1(b).
Euler proved that if an odd perfect number N exists, then it is of the form

N = pem2 where p ≡ e ≡ 1 (mod 4), p is prime, and p � m. The prime p is said to
be the special prime.

3. Proof of Ω(N) ≥ (18ω(N)− 31)/7

We want to obtain a result of the form Ω(N) ≥ aω(N)− c for some a > 2 using
the following idea. If a is close to 2, then N has a large number of prime factors
p such that both p2 ‖ N and p ‖ σ(q2) where q2 ‖ N . It is well known (see [5])
that for primes t, r, and s such that t | σ(rs−1), either t = s or t ≡ 1 mod s. In
particular, this gives p ≡ 1 mod 3 and thus 3 | σ(p2). The exponent of the prime 3
is then large, so that Ω(N) is significantly greater than 2ω(N).

Now we detail the number of certain types of factors of N and obtain the results
by contradiction with the involved quantities.

• p = ω(N): number of distinct prime factors,
• f = Ω(N): total number of prime factors,
• p2: number of distinct prime factors with exponent 2, distinct from 3,
• p2,1: number of distinct prime factors with exponent 2 congruent to 1 mod
3,

• p4: number of distinct prime factors with exponent at least 4, distinct from
3 and the special prime,

• f4: total number of prime factors with exponent at least 4, distinct from 3
and the special prime,

• e: exponent of the special prime,
• f3: exponent of the prime 3.

Now we obtain useful inequalities among these quantities. The special exponent
is at least 1:

(1) 1 ≤ e.

By detailing the total number of prime factors, we have

(2) e+ f3 + 2p2 + f4 = f.

By considering the prime factors (distinct from 3 and the special prime) with
exponent at least 4, we have

(3) 4p4 ≤ f4.

As already mentioned, if p ≡ 1 mod 3 and p2 ‖ N , then 3 | σ(p2), so that

(4) p2,1 ≤ f3.

Let us consider the number of distinct prime factors. We have the special prime,
the primes from p2 and p4, and maybe the prime 3. So it is 1 + p2 + p4 if f3 = 0
and 2 + p2 + p4 if f3 ≥ 2. Thus, we have

(5) p ≤ f3/2 + 1 + p2 + p4

and

(6) p ≤ 2 + p2 + p4.
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For the sake of contradiction, we suppose that

(7) 7f ≤ 18p− 32.

The following lemma is useful to obtain one last inequality:

Lemma 3. Let p, q, and r be positive integers. If p2+p+1 = r and q2+q+1 = 3r,
then p is not an odd prime.

Proof. Since q2 + q + 1 ≡ 0 mod 3, then q ≡ 1 mod 3 and we set q = 3s + 1. The
equality q2 + q + 1 = 3(p2 + p + 1) reduces to 3s(s+ 1) = p(p+ 1). Notice that p
divides 3s(s+ 1), so that if p is an odd prime, then either p | 3, p | s, or p | (s+ 1).
We have p = 3 in the first case, which gives no solution. We have s ≥ p− 1 in the
other two cases, so that p(p+1) = 3s(s+1) ≥ 3(p−1)p. This gives p+1 ≥ 3(p−1),
so that p ≤ 2, which is a contradiction. �

Let K be the multiset of all the primes distinct from 3 produced by all the
components σ(p2) of N . The primes in K are 1 mod 3, so |K| ≤ e+2p2,1+f4. For a
prime u > 3, let α(u) be such that α(u) = σ(u2) if u ≡ 2 mod 3 and α(u) = σ(u2)/3
if u ≡ 1 mod 3. By Lemma 3, α(u) = α(v) implies u = v. So all primes from p2
produce at least two prime factors, except for at most one per distinct prime from
K. That is, 2p2−1−p2,1−p4 ≤ |K|. Thus, we have 2p2−1−p2,1−p4 ≤ e+2p2,1+f4,
which gives

(8) 2p2 ≤ 1 + e+ 3p2,1 + p4 + f4.

The combination 5×(1)+7×(2)+5×(3)+6×(4)+2×(5)+16×(6)+(7)+2×(8)
gives 1 ≤ 0, a contradiction. This means that for assumption (7) that 7f ≤ 18p−32
is false, and thus Ω(N) ≥ (18ω(N)− 31)/7.

4. Proof of Ω(N) ≥ 2ω(N) + 51

We use the general method and the computer program discussed in [4].
We use the following contradictions:

- The abundancy of the current number is strictly greater than 2.
- The current number n satisfies Ω(n) ≥ 2ω(n) + 51.

We forbid the factors in S = {3, 5, 7, 11, 13, 17, 19}, in this order. We branch
on the smallest available prime congruent to 1 mod 3. If there is no such prime,
we branch on the smallest available prime congruent to 2 mod 3. We still use a
combination of exact branchings and standard branchings, as in [4]. We use exact
branchings only for the special components p1 and for all the even powers 32e of 3.

By-passing roadblocks. A roadblock is a situation such that there is no con-
tradiction and no possibility to branch on a prime. This happens when we have
already made suppositions for the multiplicity of all the known primes and the
other numbers are composites.

Given a roadblock M , we check that the composites involved are not divisible
by an already considered prime, are not perfect powers, have no factor less than
1010, and are pairwise coprime. Then we compute the following quantities:

• F : It is a lower bound on the number of distinct prime factors of M .
We count the number of known prime factors of M plus two primes per
composite number.
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• A: It is an upper bound on the abundancy of M . For the abundancy of
a component pe, we use σ−1(p

e) for an exact branching and σ−1(p
∞) =

p/(p− 1) for a standard branching.
For a composite C, we know that C has at most

⌊
lnC

10 ln 10

⌋
prime factors

since C has no factor less than 1010. So, the abundancy due to C is at most(
1 + 10−10

)� ln C
10 ln 10�.

• T : It is the target lower bound on Ω(N)− 2ω(N), thus an odd integer. We
use T = 51 in the proof of Theorem 2.

For the sake of contradiction, we suppose that Ω(N) − 2ω(N) ≤ T − 2. By
Theorem 1, we have Ω(N) ≥ (18ω(N) − 31)/7. So (18ω(N) − 31)/7 − 2ω(N) ≤
Ω(N) − 2ω(N) ≤ T − 2, which gives ω(N) ≤ (7T + 17)/4. Thus, N has at most
ω(N) ≤ (7T +17)/4−F prime factors that do not divide M . Let p be the smallest
of these extra factors. We see that if

(9) A(p/(p− 1))(7T+17)/4−F < 2,

then N cannot reach abundancy 2. This gives an upper bound on p. To get around
the roadblock, we branch on every prime number p (except those that divide M or
are already forbidden) in increasing order until (9) is satisfied.

Example.
34 =⇒ 112

1118 =⇒ 6115909044841454629
611590904484145462916 =⇒ σ

(
611590904484145462916

)
Roadblock 1

51 =⇒ 2× 3 Roadblock 2

We first branch on the components 34, 1118, and σ
(
1118

)16
and hit a first road-

block, as no factors of C1 = σ
(
σ

(
1118

)16)
are known. When trying to get around

this roadblock, we first branch on 51 and hit a second roadblock. Consider this
second roadblock:

• F = 6: We have the four primes 3, 5, 11, σ
(
1118

)
, and at least two primes

from C1.

• A = σ−1

(
34 × 5× 11∞ × σ

(
1118

)∞)
×

(
1 + 10−10

)� lnC1
10 ln 10� = 1.9718518 · · · .

• T = 51.

Equation (9) is satisfied for p ≥ 6174, so to circumvent M , we branch on every
prime p between 7 and 6173, except 11.

When N has no factors in S. If N has no factor in S, then it must have
at least 115 distinct prime factors. We obtain this by considering the product
Π23≤p≤673

p
p−1 = 1.99807632 . . . over the first 114 primes p greater than 19, which

is an upper bound on the abundancy and is smaller than 2.
Using Theorem 1, we obtain

Ω(N)− 2ω(N) ≥ (18ω(N)− 31)/7− 2ω(N)

= (4ω(N)− 31)/7

≥ (4× 115− 31)/7

= 61 + 2/7.

So, we have Ω(N) ≥ 2ω(N) + 62, which concludes the proof of Theorem 2.
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