ON THE NUMBER OF PRIME FACTORS OF AN ODD PERFECT NUMBER

PASCAL OCHEM AND MICHAËL RAO

Abstract

Let $\Omega(n)$ and $\omega(n)$ denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that an odd perfect number N is of the form $N=p^{e} m^{2}$ where $p \equiv e \equiv 1$ $(\bmod 4), p$ is prime, and $p \nmid m$. This implies that $\Omega(N) \geq 2 \omega(N)-1$. We prove that $\Omega(N) \geq(18 \omega(N)-31) / 7$ and $\Omega(N) \geq 2 \omega(N)+51$.

1. Introduction

A natural number N is said to be perfect if it is equal to the sum of its positive divisors (excluding N). It is well known that an even natural number N is perfect if and only if $N=2^{k-1}\left(2^{k}-1\right)$ for an integer k such that $2^{k}-1$ is a Mersenne prime. On the other hand, it is a long-standing open question whether an odd perfect number exists.

In order to investigate this question, several authors gave necessary conditions for the existence of an odd perfect number N. Let $\Omega(n)$ and $\omega(n)$ denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that $N=p^{e} m^{2}$ for a prime p, with $p \equiv e \equiv 1(\bmod 4)$, p is prime, and $p \nmid m$. Moreover, recent results showed that $N>10^{1500}$ [4], $\omega(N) \geq 9$ [3, and $\Omega(N) \geq 101$ 4].

In this paper, we study the relationship between $\Omega(N)$ and $\omega(N)$. By Euler's result, we have $\Omega(N) \geq 2 \omega(N)-1$. Steuerwald [6] proved that m is not squarefree, that is, the exponents of the non-special primes cannot be all equal to 2 . This implies that $\Omega(N) \geq 2 \omega(N)+1$. We improve this inequality in two ways:

Theorem 1. If N is an odd perfect number, then $\Omega(N) \geq(18 \omega(N)-31) / 7$.
Theorem 2. If N is an odd perfect number, then $\Omega(N) \geq 2 \omega(N)+51$.
We prove Theorem 1 in Section 3 using standard arguments. We prove Theorem (2) in Section [4 via computations using the general method in 4.

To summarize the known results for $\Omega(N)$, we have

$$
\Omega(N) \geq \max \{101,2 \omega(N)+51,(18 \omega(N)-31) / 7\}
$$

2. Preliminaries

Let n be a natural number. Let $\sigma(n)$ denote the sum of the positive divisors of n, and let $\sigma_{-1}(n)=\frac{\sigma(n)}{n}$ be the abundancy of n. Clearly, n is perfect if and only if $\sigma_{-1}(n)=2$. We first recall some easy results on the functions σ and σ_{-1}. If p is

Received by the editor September 15, 2012 and, in revised form, December 18, 2012.
2010 Mathematics Subject Classification. Primary 11A25, 11A51.
prime, $\sigma\left(p^{q}\right)=\frac{p^{q+1}-1}{p-1}$, and $\sigma_{-1}\left(p^{\infty}\right)=\lim _{q \rightarrow+\infty} \sigma_{-1}\left(p^{q}\right)=\frac{p}{p-1}$. If $\operatorname{gcd}(a, b)=1$, then $\sigma(a b)=\sigma(a) \sigma(b)$ and $\sigma_{-1}(a b)=\sigma_{-1}(a) \sigma_{-1}(b)$.

Euler proved that if an odd perfect number N exists, then it is of the form $N=p^{e} m^{2}$ where $p \equiv e \equiv 1(\bmod 4), p$ is prime, and $p \nmid m$. The prime p is said to be the special prime.

3. Proof of $\Omega(N) \geq(18 \omega(N)-31) / 7$

We want to obtain a result of the form $\Omega(N) \geq a \omega(N)-c$ for some $a>2$ using the following idea. If a is close to 2 , then N has a large number of prime factors p such that both $p^{2} \| N$ and $p \| \sigma\left(q^{2}\right)$ where $q^{2} \| N$. It is well known (see [5) that for primes t, r, and s such that $t \mid \sigma\left(r^{s-1}\right)$, either $t=s$ or $t \equiv 1 \bmod s$. In particular, this gives $p \equiv 1 \bmod 3$ and thus $3 \mid \sigma\left(p^{2}\right)$. The exponent of the prime 3 is then large, so that $\Omega(N)$ is significantly greater than $2 \omega(N)$.

Now we detail the number of certain types of factors of N and obtain the results by contradiction with the involved quantities.

- $p=\omega(N)$: number of distinct prime factors,
- $f=\Omega(N)$: total number of prime factors,
- p_{2} : number of distinct prime factors with exponent 2 , distinct from 3 ,
- $p_{2,1}$: number of distinct prime factors with exponent 2 congruent to 1 mod 3,
- p_{4} : number of distinct prime factors with exponent at least 4 , distinct from 3 and the special prime,
- f_{4} : total number of prime factors with exponent at least 4 , distinct from 3 and the special prime,
- e : exponent of the special prime,
- f_{3} : exponent of the prime 3 .

Now we obtain useful inequalities among these quantities. The special exponent is at least 1 :

$$
\begin{equation*}
1 \leq e \tag{1}
\end{equation*}
$$

By detailing the total number of prime factors, we have

$$
\begin{equation*}
e+f_{3}+2 p_{2}+f_{4}=f \tag{2}
\end{equation*}
$$

By considering the prime factors (distinct from 3 and the special prime) with exponent at least 4, we have

$$
\begin{equation*}
4 p_{4} \leq f_{4} \tag{3}
\end{equation*}
$$

As already mentioned, if $p \equiv 1 \bmod 3$ and $p^{2} \| N$, then $3 \mid \sigma\left(p^{2}\right)$, so that

$$
\begin{equation*}
p_{2,1} \leq f_{3} \tag{4}
\end{equation*}
$$

Let us consider the number of distinct prime factors. We have the special prime, the primes from p_{2} and p_{4}, and maybe the prime 3 . So it is $1+p_{2}+p_{4}$ if $f_{3}=0$ and $2+p_{2}+p_{4}$ if $f_{3} \geq 2$. Thus, we have

$$
\begin{equation*}
p \leq f_{3} / 2+1+p_{2}+p_{4} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p \leq 2+p_{2}+p_{4} . \tag{6}
\end{equation*}
$$

For the sake of contradiction, we suppose that

$$
\begin{equation*}
7 f \leq 18 p-32 \tag{7}
\end{equation*}
$$

The following lemma is useful to obtain one last inequality:
Lemma 3. Let p, q, and r be positive integers. If $p^{2}+p+1=r$ and $q^{2}+q+1=3 r$, then p is not an odd prime.

Proof. Since $q^{2}+q+1 \equiv 0 \bmod 3$, then $q \equiv 1 \bmod 3$ and we set $q=3 s+1$. The equality $q^{2}+q+1=3\left(p^{2}+p+1\right)$ reduces to $3 s(s+1)=p(p+1)$. Notice that p divides $3 s(s+1)$, so that if p is an odd prime, then either $p|3, p| s$, or $p \mid(s+1)$. We have $p=3$ in the first case, which gives no solution. We have $s \geq p-1$ in the other two cases, so that $p(p+1)=3 s(s+1) \geq 3(p-1) p$. This gives $p+1 \geq 3(p-1)$, so that $p \leq 2$, which is a contradiction.

Let K be the multiset of all the primes distinct from 3 produced by all the components $\sigma\left(p^{2}\right)$ of N. The primes in K are $1 \bmod 3$, so $|K| \leq e+2 p_{2,1}+f_{4}$. For a prime $u>3$, let $\alpha(u)$ be such that $\alpha(u)=\sigma\left(u^{2}\right)$ if $u \equiv 2 \bmod 3$ and $\alpha(u)=\sigma\left(u^{2}\right) / 3$ if $u \equiv 1 \bmod 3$. By Lemma 3 $\alpha(u)=\alpha(v)$ implies $u=v$. So all primes from p_{2} produce at least two prime factors, except for at most one per distinct prime from K. That is, $2 p_{2}-1-p_{2,1}-p_{4} \leq|K|$. Thus, we have $2 p_{2}-1-p_{2,1}-p_{4} \leq e+2 p_{2,1}+f_{4}$, which gives

$$
\begin{equation*}
2 p_{2} \leq 1+e+3 p_{2,1}+p_{4}+f_{4} \tag{8}
\end{equation*}
$$

The combination $5 \times(\mathbf{1})+7 \times(\mathbf{2})+5 \times(\mathbf{3})+6 \times(\mathbf{4})+2 \times(\mathbf{5})+16 \times(\mathbf{6})+(\mathbf{7})+2 \times(\mathbf{8})$ gives $1 \leq 0$, a contradiction. This means that for assumption (7) that $7 f \leq 18 p-32$ is false, and thus $\Omega(N) \geq(18 \omega(N)-31) / 7$.

4. Proof of $\Omega(N) \geq 2 \omega(N)+51$

We use the general method and the computer program discussed in [4].
We use the following contradictions:

- The abundancy of the current number is strictly greater than 2 .
- The current number n satisfies $\Omega(n) \geq 2 \omega(n)+51$.

We forbid the factors in $S=\{3,5,7,11,13,17,19\}$, in this order. We branch on the smallest available prime congruent to $1 \bmod 3$. If there is no such prime, we branch on the smallest available prime congruent to $2 \bmod 3$. We still use a combination of exact branchings and standard branchings, as in [4]. We use exact branchings only for the special components p^{1} and for all the even powers $3^{2 e}$ of 3 .

By-passing roadblocks. A roadblock is a situation such that there is no contradiction and no possibility to branch on a prime. This happens when we have already made suppositions for the multiplicity of all the known primes and the other numbers are composites.

Given a roadblock M, we check that the composites involved are not divisible by an already considered prime, are not perfect powers, have no factor less than 10^{10}, and are pairwise coprime. Then we compute the following quantities:

- F : It is a lower bound on the number of distinct prime factors of M. We count the number of known prime factors of M plus two primes per composite number.
- A: It is an upper bound on the abundancy of M. For the abundancy of a component p^{e}, we use $\sigma_{-1}\left(p^{e}\right)$ for an exact branching and $\sigma_{-1}\left(p^{\infty}\right)=$ $p /(p-1)$ for a standard branching.

For a composite C, we know that C has at most $\left\lfloor\frac{\ln C}{10 \ln 10}\right\rfloor$ prime factors since C has no factor less than 10^{10}. So, the abundancy due to C is at most $\left(1+10^{-10}\right)^{\left\lfloor\frac{\ln C}{10 \ln 10}\right\rfloor}$.

- T : It is the target lower bound on $\Omega(N)-2 \omega(N)$, thus an odd integer. We use $T=51$ in the proof of Theorem 2.
For the sake of contradiction, we suppose that $\Omega(N)-2 \omega(N) \leq T-2$. By Theorem [1, we have $\Omega(N) \geq(18 \omega(N)-31) / 7$. So $(18 \omega(N)-31) / 7-2 \omega(N) \leq$ $\Omega(N)-2 \omega(N) \leq T-2$, which gives $\omega(N) \leq(7 T+17) / 4$. Thus, N has at most $\omega(N) \leq(7 T+17) / 4-F$ prime factors that do not divide M. Let p be the smallest of these extra factors. We see that if

$$
\begin{equation*}
A(p /(p-1))^{(7 T+17) / 4-F}<2 \tag{9}
\end{equation*}
$$

then N cannot reach abundancy 2 . This gives an upper bound on p. To get around the roadblock, we branch on every prime number p (except those that divide M or are already forbidden) in increasing order until (9) is satisfied.

Example.

$3^{4} \Longrightarrow 11^{2}$
$11^{18} \Longrightarrow 6115909044841454629$
$6115909044841454629^{16} \Longrightarrow \sigma\left(6115909044841454629^{16}\right) \quad$ Roadblock 1 $5^{1} \Longrightarrow 2 \times 3 \quad$ Roadblock 2
We first branch on the components $3^{4}, 11^{18}$, and $\sigma\left(11^{18}\right)^{16}$ and hit a first roadblock, as no factors of $C_{1}=\sigma\left(\sigma\left(11^{18}\right)^{16}\right)$ are known. When trying to get around this roadblock, we first branch on 5^{1} and hit a second roadblock. Consider this second roadblock:

- $F=6$: We have the four primes $3,5,11, \sigma\left(11^{18}\right)$, and at least two primes from C_{1}.
- $A=\sigma_{-1}\left(3^{4} \times 5 \times 11^{\infty} \times \sigma\left(11^{18}\right)^{\infty}\right) \times\left(1+10^{-10}\right)^{\left\lfloor\frac{\ln C_{1}}{10 \ln 10}\right\rfloor}=1.9718518 \cdots$.
- $T=51$.

Equation (9) is satisfied for $p \geq 6174$, so to circumvent M, we branch on every prime p between 7 and 6173, except 11 .

When N has no factors in S. If N has no factor in S, then it must have at least 115 distinct prime factors. We obtain this by considering the product $\Pi_{23 \leq p \leq 673} \frac{p}{p-1}=1.99807632 \ldots$ over the first 114 primes p greater than 19 , which is an upper bound on the abundancy and is smaller than 2 .

Using Theorem [1, we obtain

$$
\begin{aligned}
\Omega(N)-2 \omega(N) & \geq(18 \omega(N)-31) / 7-2 \omega(N) \\
& =(4 \omega(N)-31) / 7 \\
& \geq(4 \times 115-31) / 7 \\
& =61+2 / 7 .
\end{aligned}
$$

So, we have $\Omega(N) \geq 2 \omega(N)+62$, which concludes the proof of Theorem 2,

Acknowledgment

We thank Robert Gerbicz for a much simpler proof of Lemma 3 .

References

[1] Graeme L. Cohen, On the largest component of an odd perfect number, J. Austral. Math. Soc. Ser. A 42 (1987), no. 2, 280-286. MR869751 (87m:11005)
[2] Takeshi Goto and Yasuo Ohno, Odd perfect numbers have a prime factor exceeding 10^{8}, Math. Comp. 77 (2008), no. 263, 1859-1868, DOI 10.1090/S0025-5718-08-02050-9. MR2398799 (2009b:11008)
[3] Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp. 76 (2007), no. 260, 2109-2126, DOI 10.1090/S0025-5718-07-01990-4. MR2336286 (2008g:11153)
[4] Pascal Ochem and Michaël Rao, Odd perfect numbers are greater than 10^{1500}, Math. Comp. 81 (2012), no. 279, 1869-1877, DOI 10.1090/S0025-5718-2012-02563-4. MR2904606
[5] Trygve Nagell, Introduction to Number Theory, John Wiley \& Sons Inc., New York, 1951. MR0043111 (13,207b)
[6] R. Steuerwald, Verschärfung einer notwendigen Bedingung für die Existenz einen ungeraden vollkommenen Zahl, S.-B. Bayer. Akad. Wiss. (1937), pp. 69-72.

CNRS, LirmM, Université Montpellier 2, 161 rue Ada, 34095 Montpellier Cedex 5, France

E-mail address: ochem@lirmm.fr
CNRS, LIP, EnS Lyon, 15 Parvis R. Descartes BP 7000, 69342 Lyon Cedex 07, France E-mail address: michael.rao@ens-lyon.fr

