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ON THE MULTIDIMENSIONAL DISTRIBUTION OF THE

NAOR–REINGOLD PSEUDO-RANDOM FUNCTION

SAN LING, IGOR SHPARLINSKI, AND HUAXIONG WANG

Abstract. We show that the pseudo-random number function, introduced by
M. Naor and O. Reingold (FOCS, 1997), possesses one more attractive and
useful property. Namely, it is proved that for almost all values of parameters it
produces a uniformly distributed sequence. The proof is based on some recent
bounds of character sums with exponential functions.

1. Introduction

Let p be an n-bit prime, so 2n−1 ≤ p ≤ 2n − 1, and let l be a prime divisor of
p− 1.

Denote by Fp the finite field of p elements and select an element g ∈ F
∗
p of

multiplicative order l. We recall that ϑ ∈ F
∗
p is of multiplicative order t if and only

if
ϑi �= 1, 1 ≤ i ≤ t− 1, ϑt = 1.

Then for each n-dimensional vector a = (a1, . . . , an) ∈ (Z/l)n one can define the
function

fa(x) = ga
x1
1 ...axn

n ∈ Fp,

where x = x1 . . . xn is the bit representation of an integer x, 0 ≤ x ≤ 2n − 1, with
xn being the least significant bit and some extra leading zeros if necessary, namely,

x =
n∑

i=1

xi2
n−i.

In [7] M. Naor and O. Reingold have proposed the function fa(x) as an efficient
pseudo-random function (for a randomly chosen vector a ∈ (Z/l)n). It is shown
in [7] that this function can be computed in parallel by threshold circuits of bounded
depth and polynomial size and also has some very desirable security properties,
provided certain standard cryptographic assumptions (for example, the decisional
Diffie-Hellman assumption) hold.

It has been shown in [11] that for almost all vectors a ∈ (Z/l)n, the sequence
fa(x), x = 0, 1, . . . , 2n − 1, is asymptotically uniformly distributed modulo p. An
exponential lower bound on the linear complexity of this generator has been ob-
tained in [6, 10]. In [1] this bound has been extended to nonlinear complexity .

Received by the editor July 28, 2012 and, in revised form, December 17, 2012.
2010 Mathematics Subject Classification. Primary 11K45, 11T23, 65C10, 94A60.
Key words and phrases. Naor-Reingold pseudo-random function, discrepancy, exponential

sums.
During the preparation of this paper, the authors were supported by NRF Grant CRP2-2007-03

(Singapore).
The second author was supported in part by ARC Grant DP1092835 (Australia).

c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

2429

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02794-4


2430 SAN LING, IGOR SHPARLINSKI, AND HUAXIONG WANG

For the elliptic curve version of this generator similar results have been obtained
in [3, 9, 12].

Here we show that given an integer s ≥ 1, for almost all vectors a ∈ (Z/l)n, the
sequence of vectors (fa(x), . . . , fa(x+s−1)), x = 0, 1, . . . , 2n−1, is asymptotically
uniformly distributed modulo p, generalizing the result in [11] to the multidimen-
sional case. Our main tool is the bound of character sums with linear combinations
of exponential functions, which is due to Bourgain [2]. As far as we know, this
result has never been used in the theory of pseudo-random functions and number
generators. So we believe that the introduction of this new technique in the area
is of independent interest and may have further applications.

2. Preparations

We identify Fp with the set {0, . . . , p− 1}.
For an integer s ≥ 1 and an N -term sequence M of s-dimensional vectors over

Fp,

(1) M = {mn = (m0,j , . . . ,ms−1,j) ∈ F
s
p : j = 1, . . . , N},

we define the discrepancy D(M) modulo p as

D(M) = sup
B⊆[0,1]s

∣∣∣∣N(B)
N

− |B|
∣∣∣∣ ,

where N(B) is the number of vectors of fractional parts,

({m0,j/p}, . . . , {ms−1,j/p}) , j = 1, . . . , N,

inside of the box B = [α0, β0] × · · · × [αs−1, βs−1] ⊆ [0, 1]s of volume |B| = (β0 −
α0) . . . (βs−1 − αs−1).

We denote by Dl,p,s(a) the discrepancy modulo p of the set

{(fa(x), . . . , fa(x+ s− 1)) : x = 0, 1, . . . , 2n − s}.
We show thatDl,p,s(a) = o(1) for all but possibly o(ln) vectors a ∈ (Z/l)n, provided
that l ≥ pε with any fixed ε > 0.

Throughout the paper the implied constants in the symbols “O” and “�” are
absolute (we recall that A � B is equivalent to A = O(B)).

We also denote by log u the binary logarithm of a real u and write

ep(a) = exp(2πia/p), a ∈ Fp.

Thus ep(a) is a nontrivial additive character of Fp.
We need the following version of the celebrated Koksma–Szüsz inequality ; see [4,

Theorem 1.21]:

Lemma 1. For any sequence M of the form (1), the following bound holds:

D(M) � 1

p
+

1

N

∑
(h0,...,hs−1)∈Fs

p

s−1∏
i=0

1

|hi|+ 1∣∣∣∣∣∣
N∑
j=1

ep (h0m0,j + · · ·+ hs−1ms−1,j)

∣∣∣∣∣∣ .
We also need the following upper bound on character sums with exponential

functions which is due to Bourgain [2, Theorem 2].
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Lemma 2. Let ε > 0 be a fixed real number and let ϑ0, . . . , ϑs−1 ∈ F
∗
p be pairwise

distinct elements of prime multiplicative order l > pε modulo p. Then

max
gcd(h0,...,hs−1,p)=1

∣∣∣∣∣∣
∑
a∈Z/l

ep
(
h0ϑ

a
0 + · · ·+ hs−1ϑ

a
s−1

)∣∣∣∣∣∣ � l1−δ,

where δ > 0 depends only on s and ε > 0.

3. Main Result

Now we are prepared to prove our main result.

Theorem 3. For any ε > 0 there is some η > 0 such that for l > pε we have

1

ln

∑
a∈(Z/l)n

Dl,p,s(a) � l−η.

Proof. We may assume that p is large enough. From Lemma 1 and the triangle
inequality we conclude that

(2)
∑

a∈(Z/l)n

Dl,p,s(a)
2 �

∑
a∈(Z/l)n

1

p2
+

∑
a∈(Z/l)n

σ(a)2,

where

σ(a) =
1

2n

∑
(h0,...,hs−1)∈Fs

p

s−1∏
i=0

1

|hi|+ 1

∣∣∣∣∣
2n−s∑
x=0

ep

(
s−1∑
i=0

hifa(x+ i)

)∣∣∣∣∣ .
Writing |hi|+ 1 = (|hi|+ 1)1/2(|hi|+ 1)1/2, i = 0, . . . , s− 1, and using the Cauchy
inequality again we derive

σ(a)2 ≤ 1

22n

∑
(j0,...,js−1)∈Fs

p

s−1∏
i=0

1

|ji|+ 1

∑
(h0,...,hs−1)∈Fs

p

s−1∏
i=0

1

|hi|+ 1

∣∣∣∣∣
2n−s∑
x=0

ep

(
s−1∑
i=0

hifa(x+ i)

)∣∣∣∣∣
2

≤ (log p)s

22n

∑
(h0,...,hs−1)∈Fs

p

s−1∏
i=0

1

|hi|+ 1

∣∣∣∣∣
2n−s∑
x=0

ep

(
s−1∑
i=0

hifa(x+ i)

)∣∣∣∣∣
2

.

Recalling (2), we obtain

1

ln

∑
a∈(Z/l)n

Dl,p,s(a)
2

� 1

p2
+

(log p)s

ln22n

∑
(h0,...,hs−1)∈Fs

p

s−1∏
i=0

1

|hi|+ 1
W (h0, . . . , hs−1),

(3)

where

W (h0, . . . , hs−1) =
∑

a∈(Z/l)n

∣∣∣∣∣
2n−s∑
x=0

ep

(
s−1∑
i=0

hifa(x+ i)

)∣∣∣∣∣
2

.
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We now fix some real parameter γ > 0 and set r = �γn	. For an n-bit integer
x = x1 . . . xn we now define the vectors

u(x) = x1 . . . xn−r and v(x) = xn−r+1 . . . xn.

Let Zr be the set of x ∈ [0, 2n − s] for which u(x) �= u(x + i) for at least one
i = 1, . . . , s − 1 and let Xr be the set of the remaining integers from the same
interval [0, 2n − s]. Thus, by the Cauchy inequality

(4) W (h0, . . . , hs−1) � W̃ (h0, . . . , hs−1) + ln(#Zr)
2,

where

W̃ (h0, . . . , hs−1) =
∑

a∈(Z/l)n

∣∣∣∣∣ ∑
x∈Xr

ep

(
s−1∑
i=0

hifa(x+ i)

)∣∣∣∣∣
2

.

Assume that

(5) r > 
log s�+ 1.

Then we have

(6) #Zr ≤ s2n−r+1.

To see this, consider w = xn−r+1 . . . xn−�log s�+1, then u(x) �= u(x + i) possibly
occurs only when all the components of w are 1, that is, xn−r+1 = · · · = x�log s�+1 =

1. Therefore, #Zr ≤ 2n−r+�log s�, which implies (6).

We recall that |z|2 = zz for any complex z and that ep(a) = ep(−a) for any real
a. Then, it is easy to see that replacing the square of the inner sum by a double
sum and changing the order of summation we obtain

W̃ (h0, . . . , hs−1) =
∑

x,y∈Xr

∑
a∈(Z/l)n

ep

(
s−1∑
i=0

hi(fa(x+ i)− fa(y + i))

)
.

Note that for x ∈ Xr we have

(7)
s−1∑
i=0

hifa(x+ i) =
s−1∑
i=0

hig
a
u1
1 ...a

un−r
n−r a

vi,1
n−r+1...a

vi,r
n ,

where

u(x) = · · · = u(x+ s− 1) = u1 . . . un−r,

and

v(x+ i) = vi,1 . . . vi,r, i = 0, . . . , s− 1.

If u(x) = u(y) we estimate the inner sum trivially as ln. There are O(2n+r) such
pairs of x and y.

If u(x) �= u(y), we fix any index ν, 1 ≤ ν ≤ n − r, with xν = 1, yν = 0 or
with xν = 0, yν = 1. Furthermore, changing the names of variables permuting the
indices, and changing the roles of x and y we may assume that ν = 1, x1 = 1,
y1 = 0.
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We see that the term fa(y) does not depend on a1. Therefore, we see from (7)
that in this case∣∣∣∣∣∣

∑
a∈(Z/l)n

ep

(
s−1∑
i=0

hi(fa(x+ i)− fa(y + i))

)∣∣∣∣∣∣
≤

∑
a2,...,an∈(Z/l)n−1

∣∣∣∣∣∣
∑
a∈Z/l

ep

(
s−1∑
i=0

hiϑi(a2, . . . , an)
a

)∣∣∣∣∣∣ ,
(8)

where

ϑi(a2, . . . , an) = ga
u2
2 ...a

un−r
n−r a

vi,1
n−r+1...a

vi,r
n , i = 0, . . . , s− 1.

Clearly, for x ∈ Xr, the binary vectors v(x+i), i = 0, . . . , s−1, are pairwise distinct
(as u(x) = · · · = u(x+ s− 1)). Hence the products

(9) a
vi,1
n−r+1 . . . a

vi,r
n , i = 0, . . . , s− 1,

are pairwise distinct nonzero elements of Z/l for all but O(qr−1) values of (an−r+1,
. . . , an). If the products (9) are pairwise distinct, then we apply Lemma 2. Other-
wise we estimate the sum over a on the right-hand side of (8) trivially as l. Hence,
if u(x) �= u(y), then∣∣∣∣∣∣

∑
a∈(Z/l)n

ep

(
s−1∑
i=0

hi(fa(x+ i)− fa(y + i))

)∣∣∣∣∣∣ � ln−1 · l1−δ + ln−2 · l � ln−δ

(we can certainly assume that δ < 1). Therefore,

W̃ (h0, . . . , hs−1) ≤ 2n+rln + 22nln−δ,

which together with (6), after substitution in (4), implies the bound:

W (h0, . . . , hs−1) � 2n+rln + 22nln−δ + 22n−2rln.

Taking r to satisfy the inequality,

22r ≤ lδ < 22(r+1),

thus for a sufficiently large p the inequality (5) holds, we derive

W (h0, . . . , hs−1) � 2nln+δ/2 + 22nln−δ.

Without loss of generality, we can assume that δ < 2/3. Then, since l < p ≤ 2n,
we have

2nln+δ/2 � 22nln−δ.

Hence

W (h0, . . . , hs−1) � 22nln−δ,

which after inserting in (3), yields

1

ln

∑
a∈(Z/l)n

Dl,p,s(a)
2 � p−2 + ln−δ(log p)2s,

which together with the Cauchy inequality concludes the proof. �
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4. Remarks

It is certainly interesting to get an explicit form of the bound of Theorem 3,
even only for reasonably large values of ε (say, for ε ≥ 2/3). In turn this leads to
the question of obtaining an explicit form of Lemma 2, which is an important (and
quite feasible) question of independent interest.
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