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SMOOTH FUNCTION EXTENSION BASED

ON HIGH DIMENSIONAL UNSTRUCTURED DATA

CHARLES K. CHUI AND H. N. MHASKAR

Abstract. Many applications, including the image search engine, image in-
painting, hyperspectral image dimensionality reduction, pattern recognition,
and time series prediction, can be facilitated by considering the given discrete
data–set as a point-cloud P in some high dimensional Euclidean space Rs.

Then the problem is to extend a desirable objective function f from a certain
relatively smaller training subset C ⊂ P to some continuous manifold X ⊂ Rs

that contains P, at least approximately. More precisely, when the point cloud
P of the given data–set is modeled in the abstract by some unknown compact
manifold embedded in the ambient Euclidean space Rs, the extension prob-
lem can be considered as the interpolation problem of seeking the objective
function on the manifold X that agrees with f on C under certain desirable
specifications. For instance, by considering groups of cardinality s of data
values as points in a point-cloud in Rs, such groups that are far apart in the
original spatial data domain in R1 or R2, but have similar geometric properties,
can be arranged to be close neighbors on the manifold. The objective of this
paper is to incorporate the consideration of data geometry and spatial approx-
imation, with immediate implications to the various directions of application
areas. Our main result is a point-cloud interpolation formula that provides a
near-optimal degree of approximation to the target objective function on the
unknown manifold.

1. Introduction

With the recent rapid technological advance, significantly lower manufactur-
ing cost, and high demand in such areas as: image sensor and capture, satellite
and medical imaging, powerful search engines, convenient internet access, as well
as low-cost wireless communication, memory devices, and computing power, the
tremendously huge amount of data information to be processed and understood is
overwhelming. One of the most popular current approaches is to consider a col-
lection of all pieces of information as a point-cloud in some (unknown) manifold,
of relatively low dimension, embedded in a high dimensional Euclidean space, with
each point in the point-cloud representing a piece of the information data–set. For
example, each point in the point-cloud could be an image thumbnail in application
to an image search, where the dimension of the Euclidean space under consideration
is the maximum resolution of the image thumbnail collection. Other important
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applications include document library sorting, hyperspectral image analysis, and
feature pattern recognition.

In order to encode the similarities as well as dissimilarities among the data
points, and more generally, local geometry of the data–set, it is convenient to
assume that the point-cloud P (at least approximately) lies on some continuous
manifold X ⊂ Rs. This encoding is accomplished by inheriting some q-dimensional
parametric representation of the manifold X, where q denotes the (unknown) man-
ifold dimension. Here, the manifold parametric representation could be determined
by minimizing certain deviation from the data–set and the parameterization can be
derived from some coordinate functions that are eigenvectors of the corresponding
heat diffusion operator on the manifold X (see [9]). Or equivalently, the manifold
parametric representation could be determined by maximizing a certain variance
of the data–set, and the parameterization can be derived from certain coordinate
functions that reside in the nullspace of some Laplace-Beltrami operator on X.
Hence, there are two (dual) approaches to analyze and understand the point-cloud
P; namely, by considering the (integral) kernels K of these two types of operators,
both governed by the given point-cloud P. The interested reader is referred to
our Handbook article [7] for a discussion and comparison of these approaches and
corresponding nonlinear methods.

As a motivation to the following discussion, let us consider the widely popular
ad hoc bilateral filter for image noise reduction with minimal image blurring, intro-
duced by Tomasi and Manduchi [35] and extended by Elad [16], by incorporating
a multiplicative radiometric filter component with the Gaussian convolution filter.
While the Gaussian component of the bilateral filter has the capability of noise
reduction by image smoothing, the radiometric component compares pixel similar-
ities at pixel locations that could be spatially far apart to preserve image features,
and hence avoiding excessive image blur. Observe that by considering the entire
R2 as the image domain, then replacing the variance of the Gaussian function with
a positive constant c multiple of some parameter t, the Gaussian convolution filter
becomes the heat kernel of isotropic diffusion with time variable t and conductiv-
ity constant c. In our work [6], iterative Laplace-Beltrami operators for bilateral
filtering are formulated when the radiometric parameter is replaced by some posi-
tive power of t; and thus showing that bilateral filtering indeed leads to a certain
anisotropic diffusion process.

For instance, to adopt the manifold approach to incorporate the similarities and
dissimilarities of the data geometry, let us consider the example of lifting a data–set
defined in R1 to some point-cloud in a higher dimensional space Rs. A somewhat
naive and yet effective way is to consider blocks of size s of consecutive data points.
These blocks should be overlapping, and all data are supposed to belong to at
least one block. In other words, each block is a point in the point cloud P in Rs,
with coordinates given by the data values of the data points in the block. Hence,
points corresponding to blocks that have similar geometry, except for some scaling
factor (which is taken care of by the manifold parametric representation), are close
neighbors. If ranking of similarities is desired to apply the theory and methods
of approximation and interpolation of functions on manifolds to be introduced in
the present paper, the anisotropic transform (AT) discussed in our recent work
[8] can be applied. The AT is formulated in terms of certain decomposition of
the matrix version of the (integral) kernels K corresponding to the heat diffusion or
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Laplace-Beltrami operators, as discussed in some detail in [8]. For fast computation,
randomized projection is integrated with the AT (called RAT algorithms), and the
trade-off between computational speed and possible inaccuracy (with arbitrarily
small probability) is discussed in [8] and illustrated with experimental results for
the method of Iso-map, introduced in [34].

Many practical applications such as pattern recognition, time series prediction,
and missing data recovery, involve the estimation of an objective function defined
on the point-cloud as discussed above. For example, in application to missing data
recovery and repairing damaged data, the objective function could be defined at
each point x ∈ P by the value of the data point at the center of the corresponding
block x that constitutes the point in the point cloud. However, if some data is
missing or damaged, this objective function is known only on a subset C ⊂ P. The
question of missing/damaged data recovery is then the question of extending the
objective function from C to P. This is parallel to the applications of manifold
learning, where the number of points in the point cloud P is too large to handle,
and the standard approach is to extend the objective function defined only on some
relatively smaller training subset C ⊂ P to all of P .

The important problem of extending a real-valued smooth function from a given
set in a Euclidean space to the whole space so as to minimize a certain Sobolev–
type norm has been investigated extensively by Fefferman and his collaborators
[17–21]. In our study of contextual data completion in [5], we have also explored
the question of extension of functions from the exterior of a sub-domain of a known
manifold to the interior of this sub-domain. Let us classify such problem areas
as smooth function extension from structured subsets to the entire domains, in-
cluding manifolds, in order to distinguish our study in the present paper from the
results in this vast literature. To the best of our knowledge, we do not know of
any existing literature on the extension of functions from an unstructured finite
set in a high dimensional Euclidean space to an (unknown) manifold of relatively
lower dimension. Our point of view is that the study of smooth function extension
based on unstructured data would require some interpolation scheme governed by
certain approximation specifications. The main objective of this paper is to initiate
a study of this problem by deriving an interpolation formula that possesses the
approximation order determined by the desired smoothness function class in which
the objective function lives.

As to the relevant existing literature, let us first mention that the well devel-
oped classical theory of approximation of functions is inadequate to capture the
similarity and dissimilarities of data behavior that could be spatially far apart. For
example, in application to time series prediction, similarity of data information of
recurrent events taken in the past cannot be directly used effectively for current
prediction. Similarly, in order to repair damaged music recording, it is definitely
more effective if the recurring themes of the music are taken into consideration, as
opposed to solely applying local approximation methods. Secondly, we would also
like to mention that the existing literature of approximation theory on manifolds is
not directly applicable to the study of point-clouds, since our consideration requires
approximation on unknown manifolds. In particular, techniques based on special
functions of some parametric representation of a known manifold are not applicable
to point-cloud considerations. The referee of our paper has kindly pointed out the
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papers [11,14,15] among many applications of diffusion geometry techniques, which
do not require that the manifold in question be known beforehand.

The foundation of approximation theory on finite sets C with the approximants
defined on some unknown manifold X that contains C was only studied recently
by the second author and his collaborators in [29, 31, 32], where the objective was
to preserve the smoothness class to which the target functions are assumed to
belong. However, since X is not known, the classical definition of smoothness classes
cannot be adopted directly. Nevertheless, the eigenfunctions (and eigenvalues) of
the diffusion operator can be computed approximately. Therefore, along the line
of classical approximation theory, the smoothness of a function f on X at a point
x0 ∈ X was defined in [29, 32] in terms of the degree of approximation of f from
spaces of “diffusion polynomials” (see Section 2.3 for precise definitions), so that
the behavior of the terms of some wavelet–like expansion of f in the neighborhood
of a given point x0 completely determines the smoothness of f at x0.

If the manifold is known and the smooth function class has been determined, a
typical approach for solving this type of extension problems is to define the desired
smooth function extension as the solution of some optimization problem, such as
the minimization of some penalty functional or regularization pre-conditioning. For
unknown manifolds, we choose the route of constructing certain linear operators
which can be implemented as matrix vector multiplications by using pre-computed
matrices to solve this ill-posed function extension problem. Our constructions are
based either on the spectral information on the target function f or on the values
of f on a subset C ⊂ P. We have proved the so–called “converse theorems” of
approximation to show that our constructions are asymptotically optimal for every
individual function in terms of the amount of information used to achieve a given
degree of approximation. Of course, we may treat the unknown solution of the
optimization problem as the target function f . In the context of approximation by
diffusion polynomials, our constructions then provide a near-optimal solution to a
suitably defined optimization problem, and we will illustrate the optimality nature
of our extension with an example to be discussed in Section 4.

To apply the methods of diffusion maps, it is well known that the bottleneck is
in the computation of eigenvalues and eigenfunctions of the diffusion operator. In
[10], Coifman and Maggioni avoid this problem by pointing out that iterates of the
diffusion operator can be used effectively to generate an approximate span of the
eigenfunctions. This idea is explored by the second author in [32], by construct-
ing a wavelet–like decomposition based solely on linear combinations of iterates of
the diffusion operator, thereby obviating the need to compute eigenfunctions and
eigenvalues. In the present paper, we will further develop the approach in [32] and
introduce approximation methods to extend a f : C → R as a smooth function on
X. By assuming that the functions on the training set C are values of some unknown
smooth function f on X, then our interpolant I(f) defined in (4.14) provides an
optimal degree of approximation to this unknown function. The first stage of our
construction of I(f) will be a discretized version of a linear combination of iterates
of a suitable operator T as in [32]. While the constructions in [32] require integra-
tion with respect to the volume measure of the unknown manifold X, the method
of construction in this present paper is based solely on the training data.

The idea behind our construction in this paper can be outlined as follows. Mo-
tivated by potential extensions of our theory to harmonic analysis on graphs, we



SMOOTH FUNCTION EXTENSION 2869

follow [10,29,32] and develop our theory in the more general set up of quasi–metric
measure spaces. We first discretize the operators defined in [32] by applying the
quadrature formulas developed in [22, 23]. This yields an approximation Q to the
unknown function f . We will then use the operators from [32] again to interpolate
the data {(xk, yk−Q(xk))}Mk=1 and add the resulting interpolant as a correction term
to Q. The localization properties of the operators given in [32] ensure not only that
such an interpolatory construction is possible, but also that the matrices involved
are well conditioned, and the interpolation operator is bounded. Together with the
approximation results in [31,32], this leads to desired approximation bounds to be
described in Theorem 3.1.

To summarize the main results in this paper, we will describe in Theorem 3.1,
a recipe for converting bounds on the degrees of approximation from subsets of
a normed linear space into a wavelet–like decomposition. This implies that for
developing such a decomposition in various settings, we need only establish the
bounds as required in Theorem 3.1. We will then obtain such bounds in four dif-
ferent settings. Theorem 4.1 is devoted to the case of quasi–interpolatory diffusion
polynomial approximation operators based on information in the form of integrals
with respect to a very general measure satisfying certain technical conditions de-
scribed there. We would like to mention that, in particular, this is the analogue
of the corresponding statement in [29, Eqn. (2.15)], where the information was in
the form of a distinguished measure on the quasi–metric space. The other main
results in Section 4 are Theorems 4.2, 4.3 and 4.4. Theorem 4.3 is the analogue of
Theorem 4.1 where the operators involved are based on iterates of one member of a
fixed family of operators. Theorems 4.2 and 4.4 are analogues of Theorems 4.1 and
4.3, respectively, where the approximation operators are also required to interpolate
at the training data set. These theorems also assure that the collocation matrices
involved in the interpolation are well conditioned.

2. Preliminaries

To facilitate our presentation, we describe in this section the notations and ba-
sic concepts required throughout our paper. In Section 2.1, we summarize some
well–known definitions about quasi–metric measure spaces, and review the Stieltjes
integral notation for representing weighted sums. The basic assumptions on the
quasi–metric spaces and measures that are commonly referred to throughout the
paper are listed in Section 2.2. One of the main objectives of the paper is to develop
wavelet–like decompositions of functions and to characterize smoothness (function)
classes by the wavelet components. These smoothness classes will be introduced in
Section 2.3. The wavelet–like decompositions are to be defined in terms of iterates
of operators by using certain kernels. In this regard, we will need a variety of other
kernels in the proofs of our main results. All of these will be defined in Section 2.4.
In Section 2.5, we formulate some further terminology on the data–sets and as-
sociated measures to be used in the rest of this paper. A summary of the basic
properties of the measures associated with the data–sets will also be discussed in
Section 2.5.

2.1. Quasi–metric and measures. Let X be a nonempty set. A quasi–metric
on X is a function ρ : X × X → R that satisfies the following properties: For all
x, y, z ∈ X,
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(1) ρ(x, y) ≥ 0,
(2) ρ(x, y) = 0 if and only if x = y,
(3) ρ(x, y) = ρ(y, x),
(4) there exists a constant κ > 0 such that

(2.1) ρ(x, y) ≤ κ{ρ(x, z) + ρ(z, y)}, x, y, z ∈ X.

For example, the geodesic distance on a Riemannian manifold X is a quasi–metric.
The quasi–metric ρ gives rise to a topology on X, with

{y ∈ X : ρ(x, y) < r}, x ∈ X, r > 0.

being a basis for the topology. In the sequel, we will write

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}, Δ(x, r) = X \ B(x, r), x ∈ X, r > 0.

With the topology in place, the notion of Borel measures is well defined. If ν is
a (signed) Borel measure on X, its total variation measure |ν| is defined by

|ν|(B) = sup
U

∑
U∈U

|ν(U)|,

where the supremum is taken over all partitions U of B that consist of Borel sets.
Here, the quantity |ν|(X) is called the total variation of ν. If ν is a signed measure,
then its total variation is always finite. If ν is a positive measure, it is said to be
of bounded variation if its total variation is finite. The measure ν is said to be
complete if for any Borel set B with ν(B) = 0 and any subset A ⊆ B, the so–
called outer ν–measure of A is 0. Since any measure can be extended to a complete
measure by suitably enlarging the underlying sigma–algebra, we will assume in the
sequel that all the measures to be introduced in this paper are complete.

From the point of view of applications, we will be interested in a fixed probability
measure μ on X, such that the point-cloud may be thought of as a sample of X
with respect to μ. We will also be interested in measures of the following form. If
C ⊆ X is a finite set, the measure τ that associates with each x ∈ C the mass wx,
is defined by

τ (B) =
∑
x∈B

wx

for the Borel subsets of X. Obviously, the total variation of the measure τ is given
by

|τ |(B) =
∑
x∈B

|wx|.

If f : C → C, then ∫
B

fdτ =
∑

x∈C∩B

wxf(x).

In theoretical analysis, it is necessary to consider a sequence of sets

Cn = {xn,1, · · · , xn,Mn
},

and measures τn associating a mass wn,k with each xn,k ∈ Cn. In this case, we have∫
B

fdτn =
∑

1≤k≤Mn
xn,k∈B

wn,kf(xn,k).

The precise locations of the points of Cn, or the number wn,k, or even the num-
bers Mn will play no role in our theoretical development. The notation

∫
B
fdτn
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(or
∫
B
f(x)dτn(x)) is a convenient way to denote the far more cumbersome sum

expression on the right-hand side of the above formula. The measure notation will
also help us to keep track of the various constants, as well as isolate the conditions
on the point-set system {Cn} which are significantly germane to our analysis.

2.2. Assumptions. In the sequel, let μ be a fixed probability measure on X. We
fix a nondecreasing sequence {�k}∞k=0 of nonnegative numbers such that �0 = 0,
and �k ↑ ∞ as k → ∞. Also, we fix a system of continuous and bounded functions
{φk}∞k=0, orthonormal with respect to μ; namely, for all nonnegative integers j, k,

(2.2)

∫
X

φk(x)φj(x)dμ(x) =

{
1, if j = k,
0, otherwise.

We will assume in the sequel that φ0(x) = 1 for all x ∈ X. For example, in the
case of a point-cloud on a compact Riemannian manifold X, we may consider the
point-cloud to be a sample from X taken according to a probability measure μ.
In the case when this measure is the volume measure on X, we may take φk’s to
be the eigenfunctions of the Laplace–Beltrami operator on X, corresponding to the
eigenvalues −�2k. If the point-cloud is not sampled according to the volume measure,
then we may need to consider differential operators other than the Laplace–Beltrami
operator. Also, it is sometimes not necessary to use the exact eigenvalues of such
operators. For example, in the case when X is the unit sphere embedded in R3,
the eigenvalues of the Laplace–Beltrami operator are given by −

√
k(k + 1). The

analysis is easier if we use −k instead. In general, while the exact eigenvalues
might be hard to compute, an asymptotic expression is often available. While these
considerations motivate our definitions, we observe that we are considering a very
general scenario with quasi–metric measure spaces, where differential operators are
not defined.

In the theory of diffusion maps, the heat kernel plays a central role (cf. [1–3, 9,
10]). In particular, while the metric space X, the measure μ, etc., are only models
for the point-cloud, the heat kernel can be approximated well in terms of the data–
set itself [9]. Accordingly, we will formulate our assumptions in terms of a formal
heat kernel. The heat kernel on X is defined formally by

(2.3) Kt(x, y) =

∞∑
k=0

exp(−�2kt)φk(x)φk(y), x, y ∈ X, t > 0.

Although Kt satisfies the semigroup property, and in light of the fact that �0 = 0,
φ0(x) ≡ 1, we have

(2.4)

∫
X

Kt(x, y)dμ(y) = 1, x ∈ X,

yet Kt may not be the heat kernel in the classical sense. In particular, we need not
assume Kt to be nonnegative.

Definition 2.1. The set X (more precisely, the quintuplet (X, ρ, μ, {�k}∞k=0,
{φk}∞k=0)) is called a diffusion measure space with a quasi–metric (DIMSWM) if
the following conditions are satisfied.

(1) For each x ∈ X and r > 0, the ball B(x, r) is compact.
(2) There exists α > 0 and κ2 > 0 such that the following power growth bound

condition holds:

(2.5) μ(B(x, r)) = μ ({y ∈ X : ρ(x, y) < r}) ≤ κ2r
α, x ∈ X, r > 0.
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(3) With α as above, there exist κ3, κ4 > 0 such that the following Gaussian
upper bound holds:

(2.6) |Kt(x, y)| ≤ κ3t
−α/2 exp

(
−κ4

ρ(x, y)2

t

)
, x, y ∈ X, 0 < t ≤ 1.

(4) With α as above, there exists κ5 > 0 such that the following on–diagonal
lower bound holds:

(2.7) Kt(x, x) ≥ κ5t
−α, x ∈ X, 0 < t < 1.

There is a great deal of discussion in the literature on the validity of the condi-
tions in the above definition and their relationship with many other objects related
to the quasi–metric space in question, (cf., for example, [12, 25–27]). In partic-
ular, it is shown in [12, Section 5.5] that any complete, connected Riemannian
manifold with nonnegative Ricci curvature is a DIMSWM. It is shown in [28] that
both of our assumptions on the heat kernel are valid in the case when X is a com-
plete Riemannian manifold with bounded geometry, and {�2j}, respectively {φj},
are eigenvalues, respectively eigenfunctions, for a uniformly elliptic second order
differential operator satisfying certain technical conditions.

We have shown in [22, Proposition 4.1] and [31, Lemma 5.2] that (2.6) with
y = x and (2.7) are equivalent to the following spectral bounds on the so–called
Christoffel (or spectral) function (defined by the middle expression of (2.8) below):

(2.8) c1N
α ≤

∑
�j≤N

|φj(x)|2 ≤ c2N
α, x ∈ X, N > 0,

where c1, c2 are positive constants depending only on κ2. We have also proved in
[22, Theorem 4.1] that (2.6) with y �= x is equivalent to the so–called finite speed
of wave propagation. We refer to [22, 29] for a more detailed explanation of this
property. Here, we wish only to remark that our assumptions (2.5) and (2.6) above
are equivalent to the three assumptions made in [29].

The bounds on the heat kernel are closely connected with the measures of the
balls B(x, r). For example, it is proved in [27] that the conditions (2.4), (2.5), and
(2.6) imply that there exists a constant c > 0 such that

(2.9) μ(B(x, r)) ≥ crα, 0 < r ≤ 1, x ∈ X.

In view of (2.5), this shows that μ satisfies the homogeneity condition

(2.10) μ(B(x,R)) ≤ c1(R/r)αμ(B(x, r)), x ∈ X, r ∈ (0, 1], R > 0,

where c1 > 0 is a suitable constant. In many of the examples cited above, the
kernel Kt also satisfies a lower bound to match the upper bound in (2.6). In this
case, Grigoryán [27] has also shown that (2.5) is satisfied for 0 < r < 1.

In the sequel, we assume that X is a DIMSWM, and make the following conven-
tion.
Constant convention: In the sequel, the symbols c, c1, · · · will denote positive
constants depending only on X, ρ, μ, κ1, · · · , κ5, and other similar fixed quantities.
They will not depend upon the systems {φk}, {�k} by themselves, except through
the quantities mentioned above. On occasions when we need to have the constants
depend upon additional variables, these will be listed explicitly. Their values may
be different at different occurrences, even within a single formula. The notation
A ∼ B will mean c1A ≤ B ≤ c2A.
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2.3. Function spaces and smoothness classes. For any Borel measure ν on X,
a Borel measurable subset B ⊆ X, and a Borel measurable f : B → C, we define

‖f‖ν;B,p :=

⎧⎪⎨
⎪⎩

{∫
B

|f(x)|pd|ν|(x)
}1/p

, if 0 < p < ∞,

|ν| − ess sup
x∈B

|f(x)|, if p = ∞.

With the convention that two functions are considered to be equal if they are
equal |ν|–almost everywhere, the set of all ν–measurable functions f for which
‖f‖ν;B,p < ∞ is denoted by Lp(ν;B). We will also write Lp(ν) = Lp(ν;B) and
‖f‖ν;p = ‖f‖ν;X,p, etc. If 1 < p < ∞, we define its conjugate by p′ = p/(p − 1)
and the notation is extended, as usual, by defining 1′ = ∞, ∞′ = 1. The space of
all uniformly continuous, bounded functions f : X → C, equipped with the norm
‖ · ‖∞, will be denoted by C(X).

Using the sequences {�k}∞k=0 and {φk}∞k=0 given in Section 2.2, we define as in
[22, 29],

ΠN := span{φj : �j ≤ N}, N ≥ 0,

and refer to an element of ΠN as a diffusion polynomial of degree at most N .
We note that diffusion polynomials are not necessarily algebraic or trigonometric
polynomials, and noninteger values of N are allowed. If 0 < p ≤ ∞ and f ∈ Lp(μ),
we define the degree of approximation of f by

(2.11) EN,p(f) := inf{‖f − P‖μ;p : P ∈ ΠN}.
For any f ∈ L∞(μ), the mapping N �→ EN,p(f) is a nonincreasing function of
N ∈ [0,∞). The class of all functions f for which EN,p(f) → 0 as N → ∞ will be
denoted by Xp. Necessarily, Xp ⊆ Lp(μ). In most cases of interest, Xp = Lp(μ) if
1 ≤ p < ∞ and X∞ = C(X). The notation Xp is used to avoid the need of either
to make this assumption tacitly (which leads to some problems, for example, in
using the Riesz–Thorin interpolation theorem) or to state it over and over again.
Also, since we are not assuming X to be a compact manifold (without boundary),
the spectrum of the Laplace–Beltrami operator may not be discrete. Hence, if we
choose a countable subset of the spectrum as {φk}, it will be not be true that
Xp = Lp(μ), even for p = 2. Our notation avoids all these technical problems.

In the approximation theory literature, there are plenty of examples where the
rate at which EN,p(f) → 0 as N → ∞ characterizes the smoothness of the func-
tion f , measured in terms of specially designed “moduli of smoothness” (see, for
example, [13, Chapters 6, 7, 8, 12]). In order to define the function spaces which
we are interested in, we first define a sequence space. For a sequence s = {sn}∞n=0

of complex numbers, and a, γ > 0, we write

(2.12) ‖s‖γ,a :=

⎧⎪⎪⎨
⎪⎪⎩

{ ∞∑
n=0

(2na|sn|)γ
}1/γ

, if 0 < γ < ∞,

sup
n∈Z+

2na|sn|, if γ = ∞,

where Z+ denotes the set of all nonnegative integers. The sequence s is said to be
in the space bγ,a if ‖s‖γ,a < ∞. It is easy to verify that the quantity ‖ · ‖γ,a is a
quasi–norm on bγ,a if γ > 0 and a norm if γ ≥ 1. We define the Besov space Ba

p,γ

to be the class of all f ∈ Xp such that {E2n,p(f)}∞n=0 ∈ bγ,a. In the general context
of functions on a quasi–metric space, we do not have a notion of differentiable
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functions. For convenience, in light of the vast literature in approximation theory
in various special settings, we think intuitively of a function in Ba

p,γ as being a-times
differentiable.

2.4. Kernels and operators. Our paper will deal with a variety of different op-
erators. All of these will have the form

f �→
∫
X

f(t)Ψ(◦, t)dν(t)

for some suitable kernels Ψ and measures ν. Accordingly, we will often abuse the
terminology, by referring to kernels Ψ and the corresponding operators interchange-
ably.

First, we define kernels which play the same role in our theory as the classical
de la Vallée Poussin operators in the theory of Fourier series. If H : [0,∞) → R

and N > 0, we define formally

(2.13) ΦN (H,x, y) :=
∞∑
k=0

H

(
�k
N

)
φk(x)φk(y).

If f ∈ L1(μ), we define

(2.14) f̂(k) :=

∫
X

f(y)φk(y)dμ(y), k = 0, 1, · · · .

Corresponding to the formal kernel in (2.13), we have the formal operator for any
measure ν on X:

(2.15) σN (ν;H, f, x) :=

∫
X

ΦN (H,x, y)f(y)dν(y), f ∈ L1(ν), N > 0, x ∈ X.

It is convenient to define Φ0(H,x, y) =
∑

j:�j=0 φj(x)φj(y), and

(2.16) σ0(ν;H, f, x) :=

∫
X

Φ0(H,x, y)f(y)dν(y), f ∈ L1(ν), x ∈ X.

Many of our constructions here will be based on iterates of a family of kernels:

(2.17) GN (x, y) =

∞∑
j=0

b

(
�j
N

)
φj(x)φj(y), x, y ∈ X,

where b : [0,∞) → R, and the corresponding operator, defined formally by
(2.18)

TGN
(f, x) =

∞∑
j=0

b

(
�j
N

)
f̂(j)φj(x) =

∫
X

f(y)GN (x, y)dμ(y), f ∈ L1(μ), x ∈ X.

For example, if b(u) = exp(−u2t), the kernel GN is the heat kernel at time t/N2.
Using (2.13) and (2.15) with b in place of H, we note that if N > 0, then for

x, y ∈ X and f ∈ L1(μ),

(2.19) GN (x, y) = ΦN (b, x, y), TGN
(f, x) = σN (μ; b, f, x).

Nevertheless, the notations GN and TGN
are more natural for our context, rather

than using the notations as in (2.19) for this purpose.
The technical conditions on the function b are given below.
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Definition 2.2. Let r ≥ 1 be an integer, and b : R → [0,∞). Then b ∈ Br if the
following conditions are satisfied.

(1) The function b satisfies b(u) = b(−u), u ∈ R, b(0) = 1.
(2) The function b is r-times continuously differentiable on R.
(3) There exists an even function B : R → [0,∞) such that B is nonincreasing

on [0,∞), and each of the following conditions is satisfied (with α as in
Definition 2.1):

(2.20) |(1 + u)jb(j)(u)| ≤ B(u), u ∈ [0,∞), j = 0, · · · , r,

(2.21) lim
u→∞

B(u)uα = 0,

and

(2.22)

∫ ∞

0

B(u)uα−1du < ∞.

The function B will be called a Br majorant of b, with the notation

(2.23) |||B||| :=
(
sup
u∈R

B(u)

)
+

∫ ∞

0

vα−1B(v)dv.

For example, b(u) = (1 + u2)−β/2, β > α, satisfies these conditions for every
r ≥ 1 with B(u) = c(1 + u2)−β/2, where c > 0 is a constant depending only on β
and r. With this choice of b, GN is the Green’s function of a pseudo–differential
operator defined for functions on X. Similarly, if b(u) = exp(−tu2) for some t > 0,
then b(j)(u) has the form P (u) exp(−tu2) for some polynomial P of degree j. Hence,
b satisfies all these conditions for every r ≥ 1 with B(u) = c exp(−tu2/2) for some
constant c > 0 depending on r and t. With this choice of b, GN is the heat kernel
Kt to be defined in Section 2.2. It is obvious that any compactly supported function
satisfying the properties 1, 2 above is in Br. We observe that Br is a vector space
for each r ≥ 1.

We have proved in [32, Proposition 4.1] that if b ∈ B1, then the series in (2.17)
converges absolutely and uniformly for all x, y ∈ X. Hence, for each N , GN is a
uniformly continuous and bounded function in each of its variables.

If g : [0,∞) → R, then the operator g(TGN
) is defined formally by

g(TGN
)(f, x) =

∞∑
j=0

g

(
b

(
�j
N

))
f̂(j)φj(x), f ∈ L1(μ), x ∈ X.

The formal kernel corresponding to g(TGN
) will be denoted by Ψ(g,GN ):

Ψ(g,GN , x, y) =
∞∑
j=0

g

(
b

(
�j
N

))
φj(x)φj(y), x, y ∈ X.

We will be particularly interested in the case when g is a polynomial.

2.5. Data–sets and associated measures. If C ⊆ X is a finite set, its density
content (i.e., mesh norm or fill distance) δ(C) and minimal separation η(C) are
defined by

(2.24) δ(C) = sup
x∈X

ρ(x, C), η(C) = min
x,y∈C, x�=y

ρ(x, y).
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It is clear that η(C) ≤ 2δ(C). The following proposition [31, Proposition 2.1] reveals
the important connections among sequences of given data–sets and constructions
of their subsequences with δ(C) ∼ η(C).

Proposition 2.1. (a) If C ⊂ X is a finite set and ε > 0, there exists C̃ ⊆ C such
that

δ(C) ≤ δ(C̃) ≤ 2δ(C) ≤ 2η(C̃).
(b) If C0 ⊆ C1 ⊂ X are finite subsets with δ(C1) ≤ (1/2)δ(C0) ≤ η(C0), then there

exists C∗
1 , with C0 ⊆ C∗

1 ⊆ C1, such that δ(C1) ≤ δ(C∗
1 ) ≤ 2δ(C1) ≤ 2η(C∗

1 ).
(c) Let {Cm} be a sequence of finite subsets of X, with δ(Cm) ∼ 1/m, and Cm ⊆

Cm+1, m = 1, 2, · · · . Then there exists a sequence of subsets {C̃m ⊆ Cm}, where,
for m = 1, 2, · · · , δ(C̃m) ∼ 1/m, C̃m ⊆ C̃m+1, δ(C̃m) ≤ 2η(C̃m).

Next, we discuss measures associated with the data–sets.

Definition 2.3. (a) Let d > 0. A (signed or positive) Borel measure ν on X is said
to be d-regular if

(2.25) ν(B(x, d)) ≤ cdα, x ∈ X.

The infimum of all constants c in (2.25) will be denoted by |||ν|||R,d.
(b) Let n > 0. A (signed or positive) Borel measure ν on X is called an approx-

imate quadrature measure of order n, if for every R > 0, and P1, P2 ∈ Πn,

(2.26)

∣∣∣∣
∫
X

P1P2dμ−
∫
X

P1P2dν

∣∣∣∣ ≤ c(R)

nR
‖P1‖μ;1‖P2‖μ;1.

The properties of d–regular measures have been studied extensively in [23]. In
particular, we have reconciled the various definitions of the term “d–regular” in
our different papers. For the convenience of the reader, we state various equivalent
formulations, and a couple of other interesting facts about regular measures in the
following proposition.

Proposition 2.2. (a) If ν is d–regular, then for each r > 0 and x ∈ X,

(2.27) |ν|(B(x, r)) ≤ c|||ν|||R,d μ(B(x, r + d)) ≤ c1|||ν|||R,d(r + d)α.

Conversely, if for some A > 0, |ν|(B(x, r)) ≤ A(r + d)α or each r > 0 and x ∈ X,
then ν is d–regular, and |||ν|||R,d ≤ 2αA.

(b) For each γ > 1,

(2.28) |||ν|||R,γd ≤ c1(γ + 1)α|||ν|||R,d ≤ c1(γ + 1)αγα|||ν|||R,γd,

where c1 is the constant appearing in (2.27).
(c) Let C ⊂ X be a finite set, η = η(C) ≤ 1, and τ be a measure that associates

the mass 1 with each x ∈ C. Then τ is a η–regular measure, and |||ν|||R,η ≤ cη−α,
the constant being independent of η.

The results in [23] are stated and proved for compact Riemannian manifolds
where an additional condition on the gradient of the heat kernel is assumed. How-
ever, the statements listed above are valid in the generality in which we have stated
them. For the convenience of the reader, we include a proof just before the end of
Section 5. Finally, we observe that under additional conditions, we have established
in [22, 31] the existence of 1/N–regular approximate quadrature measures of order
N ; indeed, even the existence of positive measures satisfying these conditions.
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3. Background

In this paper, we are interested in developing a wavelet–like decomposition (also
known as atomic decomposition or Littlewood–Paley expansion) of functions in Xp,
especially in X∞, using diffusion polynomials, iterates of the operators TGN

, and
their interpolatary analogues, so that the behavior of the terms in this expansion
characterizes the smoothness class to which the function belongs. In Section 3.1,
we develop a general theorem that reduces this development to estimates on the
degrees of approximation. In the case of diffusion polynomials, the basis of these
constructions is a family of localized kernels of the form Φn(h, x, y). The required
localization estimates are given in Theorem 3.2 in Section 3.2. In contrast to the
constructions of Coifman and Maggioni in [10], the results about degree of ap-
proximation are obtained using judicious linear combinations of the iterates of the
operators TGN

; i.e., operators of the form Qn,r(TGN
) for properly selected (alge-

braic) polynomials Qn,r with appropriate parameters n and r (cf. (3.12) and (3.13)
below). The choice of these parameters and construction of the polynomials is
designed so that the kernels of the operators Qn,r(TGN

) approximate the kernels
Φn(h, x, y) sufficiently well, preserving the localization properties. The general
definition of the polynomials Qn,r and the corresponding kernels is also given in
Section 3.2.

3.1. Wavelet–like decomposition. Since our smoothness classes are defined in
terms of degrees of approximation, the characterization of smoothness classes by a
wavelet–like expansion can be done in great generality. We review the ideas in this
subsection in this generality (cf. [30]).

Let X be a normed linear space, Vn ⊆ Vn+1, n = 0, 1, · · · be an increasing
sequence of closed subsets of X , such that

⋃∞
n=0 Vn is dense in X . For f ∈ X , we

define

dist (f,Vn) = inf{‖f − P‖X : P ∈ Vn}.

Theorem 3.1. Let m∗ ≥ 0 be an integer, 0 < γ ≤ ∞, 0 < a < S. Let {Un}∞n=m∗

be a sequence of linear operators on X such that for each f ∈ X , and for n =
m∗,m∗ + 1, · · · ,

dist (f,Vn) ≤ c
{
‖f − Un(f)‖X + 2−nS‖f‖X

}
≤ c1{dist (f,Vn−m∗) + 2−nS‖f‖X },

(3.1)

for some constants c, c1 > 0 independent of f or n. Then it follows that

(3.2) f = Um∗(f) +

∞∑
n=m∗

(Un+1(f)− Un(f)) ,

with convergence in the sense of X . Moreover,

(3.3) {dist (f,Vn)}∞n=0 ∈ bγ,a

if and only if

(3.4) {‖Un+1(f)− Un(f)‖X }∞n=m∗ ∈ bγ,a.

Proof. In view of our assumption that
⋃∞

n=0 Vn is dense in X , the second estimate
in (3.1) implies that

lim sup
n→∞

‖f − Un(f)‖X ≤ c lim
n→∞

{
dist (f,Vn−m∗) + 2−nS‖f‖X

}
= 0.
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The expansion (3.2) is a restatement of this fact.
In view of the second estimate in (3.1), we have for integer n ≥ m∗,

‖Un+1(f)− Un(f)‖X ≤ ‖f − Un+1(f)‖X + ‖f − Un(f)‖X
≤ 2c

{
dist (f,Vn−m∗) + 2−nS‖f‖X

}
.

Hence, (3.3) implies (3.4).
Finally, let (3.4) hold. Using the first estimate in (3.1), we deduce that for integer

N ≥ m∗ + 1,

dist (f,VN ) ≤ c
{
‖f − UN (f)‖X + 2−NS‖f‖X

}
= c

{∥∥∥∥∥
∞∑

n=N

(Un+1(f)− Un(f))

∥∥∥∥∥
X

+ 2−NS‖f‖X

}

≤ c

{ ∞∑
n=N

‖Un+1(f)− Un(f)‖X + 2−NS‖f‖X

}
.(3.5)

We now recall that the discrete Hardy inequality [13, Lemma 3.4, p. 27] implies
that if {aj}∞j=0 ∈ bγ,a, then {

∑∞
j=k aj}∞k=0 ∈ bγ,a as well. Since

{‖Un+1(f)− Un(f)‖X }∞n=m∗ ∈ bγ,a,

the estimate (3.5) leads to (3.3). �

Thus, in the sequel, in order to obtain a wavelet–like decomposition together
with the characterization of smoothness classes for various operators, we need only
to establish an estimate of the form (3.1) as in Theorem 3.1.

3.2. Approximation by certain operators. In the remainder of this paper, we
assume that X is a DIMSWM. The starting point in our analysis is the following
theorem [32, Theorem 5.1]:

Theorem 3.2. Let r > α+3 be an integer, H ∈ Br and let H be a Br majorant of
H. Then for N > 0,

(3.6) |ΦN (H,x, y)| ≤ c(r)|||H||| Nα

max(1, (Nρ(x, y))r−3)
, x, y ∈ X,

where |||H||| is defined as in (2.23).

Throughout the rest of the paper, we will use the even function h in C∞(R) as
our low-pass window function, defined by

(3.7) h(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if 0 ≤ t ≤ 1/2,

exp

(
−exp(2/(1− 2t))

1− t

)
, if 1/2 < t < 1,

0, if t ≥ 1.

We note that h is nonincreasing on (0,∞) (cf. Figure 1).
Consequently, h ∈ BS+3 for all S > 0. Therefore, it follows from the above

theorem that

(3.8) |ΦN (h, x, y)| ≤ c(S)
Nα

max(1, (Nρ(x, y))S)
, x, y ∈ X, N > 0.
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Figure 1. The function h in (3.7) on [0, 1].

Using this localization, we proved in [29, Theorem 4.2] that for every p with 1 ≤
p ≤ ∞ and f ∈ Lp(μ),

(3.9) ‖σn(μ;h, f)‖μ;p ≤ c‖f‖μ;p, n > 0.

The fact that h(t) = 1 if |t| ≤ 1/2 can be used to deduce that σn(μ;h, P ) = P for
all P ∈ Πn/2. Also, since h(t) = 0 if |t| ≥ 1, σn(μ;h, f) ∈ Πn for all f ∈ L1(μ).
Together with (3.9), these two facts lead to

En,p(f) ≤ ‖f − σn(μ;h, f)‖p ≤ cEn/2,p(f),(3.10)

f ∈ Lp(μ), 1 ≤ p ≤ ∞, n > 0.

In particular, a wavelet–like decomposition can be constructed by using σ2n in place
of Un in Theorem 3.1.

While the construction of the operator σn requires the knowledge of �k and φk,
we obtained in [32] an approximation to this operator using iterates of the operator
TGN

. To describe this approximation, we introduce some further notation.
For r > −1, and n = 0, 1, · · · , let pn

(r,r) denote the orthonormalized Jacobi
(ultraspherical) polynomial of degree n such that for integers n,m ≥ 0,

∫ 1

−1

pn
(r,r)(t)pm

(r,r)(t)(1− t2)rdt =

{
0, if n �= m,
1, if n = m.

For n = 1, 2, · · · , let xn,n < xn−1,n < · · · < x1,n be the zeros of pn
(r,r), and let the

corresponding Cotes’ numbers be defined by

wk,n =

⎧⎨
⎩

n∑
j=0

pj
(r,r)(xk,n)

2

⎫⎬
⎭

−1

.

For f ∈ C[−1, 1], n = 1, 2, · · · , and 0 ≤ j ≤ n, let

(3.11) aj,n;r(f) =
n∑

k=1

wk,nf(xk,n)pj
(r,r)(xk,n),
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and define the function h̃ by h̃(2b(u)− 1) = h(u). For r > 0, we define a sequence
of polynomials Q∗

n,r by

Q∗
n,r(t) = tr+1

⎧⎨
⎩ (2r + 1)!

r!
h̃(1)

r∑
j=0

(−1)j

j!(r − j)!(j + r + 1)
tj

+

n−1∑
k=1

(−1)kh

(
k

n

)
ak,n;r(h̃

′/(1− (◦)2)r)(3.12)

×
{
22r+1(2k + 2r + 1)(k + 2r)!

k!

}1/2 k+r∑
j=0

(−1)j(k + r + j)!

j!(k + r − j)!(r + j + 1)!
tj

⎫⎬
⎭ .

Finally, we set

(3.13) Qn,r(u) := Q∗
n,r(b(u)), u ∈ R,

and observe that for f ∈ L1(μ),

Q∗
n,r(TGN

)(f) = σN (μ;Qn,r, f).

The following theorem (cf. [32, Theorem 6.1]) describes the approximation of the
kernels ΦN (h) and the corresponding operators by ΦN (Qn,r) and the corresponding
operators Qn,r(TGN

).

Theorem 3.3. Let S > α, R > r ≥ S + 3, let n ≥ 1 be integers, b ∈ BR+1, let B
be its BR+1 majorant, and let b be strictly decreasing on [0,∞), and x, y ∈ X. Then
the quantity ΦN (Qn,r, x, y) is well defined. Moreover,

|ΦN (h, x, y)− ΦN (Qn,r, x, y)|

≤ c(R)|||Br+1|||
nR−r

Nα

max(1, (Nρ(x, y))S)
, N ≥ 1

(3.14)

and

(3.15) sup
x∈X, N≥1

∫
X

|ΦN (h, x, y)− ΦN (Qn,r, x, y)| dμ(y) ≤
c|||Br+1|||
nR−r

.

Consequently, for 1 ≤ p ≤ ∞,

(3.16) ‖σN (μ;h, f)−Q∗
n,r(TGN

)(f)‖μ;p ≤ c1|||Br+1|||
nR−r

‖f‖p, f ∈ Lp(μ), N ≥ 1.

We observe the following corollary, which is immediate from (3.16) and (3.10).
For notational simplicity, we will write

σ∗
2n(μ; f) = Q∗

2n,S+3(TG2n
)(f)

=

∫
X

f(y)Φ2n(Q2n,S+3, ◦, y)dμ(y), f ∈ L1(μ), n ≥ 0.
(3.17)

More generally, if ν is any measure, we define

(3.18) σ∗
2n(ν; f) =

∫
X

f(y)Φ2n(Q2n,S+3, ◦, y)dν(y), f ∈ L1(ν), n ≥ 0.

Corollary 3.1. Let 1 ≤ p ≤ ∞, f ∈ Lp(μ), n ≥ 0 be an integer. Then

(3.19) E2n,p(f) ≤ c
{
‖f − σ∗

2n(μ; f)‖μ;p + 2−nS‖f‖μ;p
}
≤ cE2n−1,p(f).
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In particular, a wavelet–like decomposition can be constructed by using σ∗
2n in

place of Un in Theorem 3.1. By considering the operators Q∗
M2n,S+3(TG2n

) for a
sufficiently large M , we may obtain frame properties as well, but this is not the
focus for the present paper.

4. Main results

In this section, we state our main results, first for approximation and interpo-
lation by diffusion polynomials, and then in the case when the various operators
involved are replaced by their analogues based on the iterates of operators.

We remind the reader that X is assumed to be a DIMSWM throughout the paper.
Our main objective in this paper is to obtain analogues of Corollary 3.1 in the case
when we have values of the target function rather than its Fourier–{φk} coefficients

{f̂(k)}. In this case, we would also like to achieve an interpolatory approximation;
i.e., an approximation where the approximating operator reproduces the training
data. As explained earlier, it is convenient to express these results in terms of
integrals with respect to measures rather than weighted sums of the training data.

Theorem 4.1. Let X be a DIMSWM, 1 ≤ p ≤ ∞, and {νn} be a sequence of Borel
measures on X such that each νn is a 2−n–regular, approximate quadrature measure
of order 2n in the sense of Definition 2.3. Furthermore, assume that |||νn|||R,2−n ≤ c,
and ‖f‖ν;p ≤ c‖f‖μ;p for all f ∈ Xp(μ). Then for f ∈ Xp(μ),

(4.1) E2n,p(f) ≤ ‖f − σ2n(νn; f)‖μ;p ≤ c{E2n−1,p(f) + 2−nS‖f‖μ;p}.

Observe that we do not require the measures νn in the above theorem to be
supported on a finite set. Nevertheless, the most interesting case for the purpose
of this paper is when these sets are finite. In this case, we remind the reader that
the operators σ2n(νn; f) take on the form

(4.2) σ2n(νn; f, x) =

Mn∑
m=1

wm,nf(ym,n)Φn(h, x, ym,n),

where Cn = {y1,n, · · · , yMn,n} ⊂ X and wm,n’s are weights so that for the measure
νn that associates the mass wm,n with each ym,n satisfies the properties listed in the
above theorem. In particular, these operators can be evaluated as a matrix vector
multiplication with pre-computed matrices. Of course, since function evaluations
are not defined for the spaces Lp(μ), 1 ≤ p < ∞, Theorem 4.1 in this case is valid
only for f ∈ X∞ ⊆ C(X).

In the case when the νn’s are supported on finite sets, we are able to achieve
interpolatory approximation. Towards this end, let Cn be the finite support of νn.
Continuing the notation of the above paragraph, we may then construct the oper-
ator σ2n(νn; f) as in (4.2). These do not interpolate the data (ym,n, f(ym,n)); i.e.,
they do not have the property that σ2n(νn; f, ym,n) = f(ym,n), m = 1, · · · ,Mn, n =
1, 2, · · · . So, we add a correction term which interpolates the data (ym,n, f(ym,n)−
σ2n(νn; f, ym,n)), and add this correction to σ2n(νn; f). The resulting operator,
called blending operator, will interpolate as well as provide a near best approxima-
tion as required by Theorem 3.1, provided the interpolatory correction is obtained
carefully. In particular, we need the collocation matrix to be not just invertible, but
well conditioned. We remark that the interpolation and quasi-approximation oper-
ators are not commutative in the formulation of the blending operators, as shown
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in [4] for the construction of local multivariate spline interpolants. The content of
the following Theorem 4.2 is that our blending operators can be constructed by
using diffusion polynomials in Π2n+m∗ for a constant m∗ independent of f and n.
We define a family of matrices Am,n by

(4.3) Am,n(x, y) = Φ2m(h, x, y), x, y ∈ Cn,

and a sequence of column vectors

(4.4) edn(f, x) = f(x)− σ2n(νn; f, x), x ∈ Cn.

Theorem 4.2. Let X and {νn} be as in Theorem 4.1 (with p = ∞). In addition,
let Cn = supp(νn) be a finite set, satisfying

(4.5) B12
−n ≤ η(Cn) ≤ 2δ(Cn) ≤ 4η(Cn) ≤ B22

−n, n ≥ 1,

where B1, B2 are positive constants independent of n. There exists c∗ > 0 such
that each of the following statements hold.

(a) Each of the matrices An+c∗,n is invertible, and its condition number (with
respect to �∞ norms) satisfies

(4.6) cond (An+c∗,n) ≤ c.

(b) Let f ∈ X∞(μ), and for x ∈ X,

(4.7) Id
n(f, x) = σ2n(νn; f, x) +

∑
y∈Cn

(A−1
n+c∗,ne

d
n(f, y))An+c∗,n(x, y).

Then

(4.8) Id
n(f, x) = f(x), x ∈ Cn

and

(4.9) E2n+c∗ ,∞ ≤ ‖f − Id
n(f)‖∞ ≤ c{E2n−1,∞(f) + 2−nS‖f‖μ;∞}.

In particular, we may obtain a wavelet–like decomposition based on the interpo-
latory operators {Id

n} by applying Theorem 3.1. We note that the operators Id
n(f)

can also be evaluated as a linear combination of the values of f , by matrix-vector
multiplication with pre-computed matrices.

We would like to make a remark here regarding an optimality property of the
operators {Id

n}. In this paragraph only, let a pseudo–differential operator Δr(f) be
defined formally by

Δ̂r(f)(k) = (1 + �2k)
r/2f̂(k), f ∈ L1(μ), k = 0, 1, · · · , r ∈ R.

Following the proof of [31, Proposition 5.3(b)], it is easy to show that (4.9) implies
that

‖Δr(f)−Δr(Id
n(f))‖∞ ≤ c{E2n−1,∞(Δr(f)) + 2−nS‖Δr(f)‖μ;∞}.

In particular,

(4.10) ‖Δr(Id
n(f))‖∞ ≤ c‖Δr(f)‖μ;∞.

Thus, writing z = f(x), if one considers as usual the minimization problem

g = argmin{‖Δr(g)‖μ;∞ : g(x) = z, x ∈ Cn},
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then Id
n(f)=Id

n(g) (since both these expressions depend only the data {(x, z)}x∈Cn
),

and (4.10) shows that the extension Id
n(f), obtained without having to solve

any optimization problem, still satisfies

‖Δr(Id
n(f))‖∞ ≤ cmin{‖Δr(g)‖μ;∞ : g(x) = z, x ∈ Cn}.

The analogues of the above two theorems in the case when the approximation
is based on iterates of operators rather than diffusion polynomials can be obtained
by applying Theorem 3.3. To state these results, we define the quantities en, and
Bm,n as follows:

en(f, x) = f(x)− σ∗
2n(νn; f, x), x ∈ Cn,

Bm,n = Φ2m(Q2n,S+3, x, y), x, y ∈ Cn.(4.11)

As before, in the definition (3.18) of σ∗
2n(νn; f), we need not assume that νn is

finitely supported. However, in (4.11), νn is assumed to be finitely supported, and
Cn is assumed to be the finite support of νn.

Theorem 4.3. Let b ∈ B2S+3, B be its B2S+3 majorant, and let b be strictly
decreasing on [0,∞). Under the same assumptions as stated in Theorem 4.1, for
f ∈ Xp(μ),

E2n,p(f) ≤ c
{
‖f − σ∗

2n(νn; f)‖μ;p + 2−nS‖f‖μ;p
}

≤ c
{
E2n−1,p(f) + 2−nS‖f‖μ;p

}
.

(4.12)

Theorem 4.4. Let b ∈ B2S+3, B be its B2S+3 majorant, and b be strictly decreas-
ing on [0,∞). Under the same assumptions as stated in Theorem 4.2, there exist
constants c∗, c∗1 > 0 such that the following statements hold for n ≥ c∗1.

(a) Each of the matrices Bn+c∗,n is invertible, and its condition number (with
respect to �∞ norms) satisfies

(4.13) cond (Bn+c∗,n) ≤ c.

(b) Let f ∈ X∞(μ), and for x ∈ X,

(4.14) In(f, x) = σ∗
2n(νn; f, x) +

∑
y∈Cn

(B−1
n+c∗,nen(f, y))Bn+c∗,n(x, y).

Then

(4.15) In(f, x) = f(x), x ∈ Cn,
and

(4.16)
E2n+c∗ ,∞ ≤ c

{
‖f − In(f)‖∞ + 2−nS‖f‖μ;∞

}
≤ c

{
E2n−1,∞(f) + 2−nS‖f‖μ;∞

}
.

5. Proofs of the main results

The starting point of our proofs is the following proposition (cf. [31, Proposi-
tion 5.1(a)]).

Proposition 5.1. Let d > 0 and ν be a d–regular measure. If g1 : [0,∞) → [0,∞)
is a nonincreasing function, then for any N > 0, r > 0, x ∈ X,
(5.1)

Nα

∫
Δ(x,r)

g1(Nρ(x, y))d|ν|(y) ≤ 2α(c+ (d/r)α)α

1− 2−α
|||ν|||R,d

∫ ∞

rN/2

g1(u)u
α−1du.
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In particular,

(5.2) Nα

∫
Δ(x,r)

d|ν|(y)
max(1, (Nρ(x, y))S)

≤ c1(c+ (d/r)α)α

max(1, (rN/2)S−α)
|||ν|||R,d

and

(5.3) Nα

∫
X

d|ν|(y)
max(1, (Nρ(x, y))S)

≤ c1(c+ (Nd)α)|||ν|||R,d.

We recall that if P ∈ Π2n−1 , then σ2n(μ;h, P ) = P . If ν is only an approximate
quadrature measure, this may not be true if we replace μ by ν. Our next objective
is to approximate P ∈ Π2n−1 by σ2n(ν;h, P ) and σ2n(ν;Q2n,S+3, P ).

Lemma 5.1. Let b ∈ B2S+3, B be its B2S+3 majorant, and let b be strictly decreas-
ing on [0,∞). Under the same assumptions as stated in Theorem 4.1, the following
statements hold.

(a) For f ∈ Xp(μ) and n ≥ 0,

(5.4) ‖σ2n(νn;h, f)‖μ;p ≤ c‖f‖νn;p ≤ c‖f‖μ;p
and

(5.5) ‖σ2n(νn;h, f)− σ∗
2n(νn; f)‖μ;p ≤ c|||BS+4|||

2nS
‖f‖νn;p ≤ c|||BS+4|||

2nS
‖f‖μ;p.

(b) For n ≥ 1 and P ∈ Π2n−1 ,

(5.6) ‖P − σ2n(νn;h, P )‖μ;∞ ≤ c2−nS‖P‖μ;1
and

(5.7) ‖P − σ∗
2n(νn;P )‖μ;p ≤ c2−nS(1 + |||BS+4|||)‖P‖μ;p.

Proof. We use the localization estimate (3.8) to obtain

(5.8) |Φ2n(h, x, y)| ≤
c2nα

max(1, (2nρ(x, y))S)
, x, y ∈ X.

Since νn is 2−n–regular, and |||νn|||R,2−n ≤ c, we may use (5.3) with N = 2n, d = 2−n

to conclude from (5.8) that

(5.9)

∫
X

|Φ2n(h, x, y)|d|νn|(y) ≤ c.

Similarly, since μ is 2−n–regular, and |||μ|||R,2−n ≤ c for every n, we have

(5.10)

∫
X

|Φ2n(h, x, y)|dμ(y) ≤ c.

The estimate (5.4) follows from (5.9), (5.10), and Young’s inequality (cf. [32,
Lemma 5.3]).

Next, we use (3.14) with r = S + 3, R = 2S + 3, N = 2n, and 2n in place of n
to conclude that

|Φ2n(h, x, y)− Φ2n(Q2n,S+3, x, y)|

≤ c|||BS+4|||
2nS

2nα

max(1, (2nρ(x, y))S)
, x, y ∈ X.

(5.11)

This leads to (5.5) in exactly the same way as (5.8) leads to (5.4). This completes
the proof of part (a).
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To prove part (b), let P ∈ Π2n−1 , and x ∈ X. Then σ2n(μ;h, P ) = P . Since νn is
an approximate quadrature measure of order 2n, we may use the definition (2.26)
with P in place of P1, Φn(h, x, ◦) ∈ Π2n , and S in place of R to obtain

|P (x)− σ2n(νn;h, P, x)|

=

∣∣∣∣
∫
X

P (y)Φ2n(h, x, y)dμ(y)−
∫
X

P (y)Φ2n(h, x, y)dνn(y)

∣∣∣∣
≤ c

2nS
‖P‖μ;1‖Φ2n(h, x, ◦)‖μ;1.

(5.12)

Together with (5.10), this implies (5.6). Since μ is a probability measure, (5.6) and
(5.5) together lead to (5.7). �

In the sequel, we consider b ∈ B2S+3 and B to be fixed, and the constants may
depend upon these.

Proof of Theorem 4.1. Since σ2n(νn;h, f) ∈ Π2n , the first inequality in (4.1) is
clear. To prove the second inequality, let P ∈ Π2n−1 satisfy

‖f − P‖μ;p ≤ 2E2n−1,p(f).

Then using (5.4) and (5.6), we deduce that

‖f − σ2n(νn;h, f)‖μ;p = ‖f − P − σ2n(νn;h, f − P ) + P − σ2n(νn;h, P )‖μ;p
≤ ‖f − P‖μ;p + ‖σ2n(νn;h, f − P )‖μ;p + ‖P − σ2n(νn;h, P )‖μ;p
≤ c‖f − P‖μ;p +

c1
2nS

‖P‖μ;p

≤ c

{
E2n−1,p(f) +

1

2nS
‖f‖μ;p

}
.

(5.13)

This completes the proof of the second inequality in (4.1). �

Since this preparation is sufficient to prove Theorem 4.3, we prove it now, post-
poning the proof of Theorem 4.2, which requires some further preparation.

Proof of Theorem 4.3. Using (4.1) and (5.5), we obtain that

E2n;p(f) ≤ ‖f − σ2n(νn;h, f)‖μ;p
≤ ‖f − σ∗

2n(νn; f)‖μ;p + ‖σ∗
2n(νn; f)− σ2n(νn;h, f)‖μ;p

≤ ‖f − σ∗
2n(νn; f)‖μ;p +

c

2nS
‖f‖μ;p.

This proves the first inequality in (4.12). The second inequality is proved easily by
applying (4.1) and (5.5) :

‖f − σ∗
2n(νn; f)‖μ;p

≤ ‖f − σ2n(νn;h, f)‖μ;p + ‖σ2n(νn;h, f)− σ∗
2n(νn; f)‖μ;p

≤ c

{
E2n−1,p(f) +

1

2nS
‖f‖μ;p

}
.

(5.14)

�

In order to prove the theorems concerning interpolatory approximation, we recall
a couple of well–known results from linear algebra. The first of these is an analogue
of the Gershgorin theorem (cf. [31, Proposition 6.1]). We will show that the
matrices Am,n satisfy the conditions of Proposition 5.2 if m ≥ n+ c∗.
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Proposition 5.2. Let M ≥ 1 be an integer and A an M×M matrix whose (i, j)–th
entry is Ai,j. 1 ≤ p ≤ ∞, and γ ∈ [0, 1). If

(5.15)
M∑
i=1
i�=j

|Aj,i| ≤ γ|Aj,j |,
M∑
i=1
i�=j

|Ai,j | ≤ γ|Aj,j |, j = 1, · · · ,M,

and λ = max1≤i≤M |Ai,i| > 0, then A is invertible, and

(5.16) ‖A−1z‖�p ≤ ((1− γ)λ)−1‖z‖�p , z ∈ CM .

The second fact is a restatement of [24, Theorem 2.3.4], which will help us to
carry out a perturbation argument to derive results about Bm,n from those about
Am,n.

Proposition 5.3. Let A and B be matrices such that A is invertible, and for some
r ∈ (0, 1),

(5.17) ‖A−B‖ ≤ r

‖A−1‖ .

Then B is invertible, and

(5.18) ‖A−1 −B−1‖ ≤ r

1− r
‖A−1‖.

Proof. This is a simple consequence of [24, Theorem 2.3.4]. To apply this theorem,
we note that (5.17) leads to

‖A−1(B−A)‖ ≤ r < 1. �

It is convenient to formulate certain calculations needed in deriving estimates on
the matrices in a separate lemma, as follows.

Lemma 5.2. Let C ⊂ X be a finite set, and η = η(C). Then for N ≥ (η/4)−1 and
x ∈ X,

(5.19)
∑
y∈C

ρ(x,y)≥η/2

Nα

max(1, (Nρ(x, y))S)
≤ c(ηN)α−Sη−α.

In particular, for x ∈ C,

(5.20)
∑
y∈C
x �=y

Nα

max(1, (Nρ(x, y))S)
≤ c(ηN)α−Sη−α.

Furthermore, for x ∈ X,

(5.21)
∑
y∈C

Nα

max(1, (Nρ(x, y))S)
≤ c(c1 + (Nη)α)η−α.

Proof. Let τ be the measure that associates the mass 1 with each element of C.
In view of Proposition 2.2(c), |||τ |||R,η ≤ cη−α. Since Nη/2 ≥ 2, we may apply the
estimate (5.2) in Proposition 5.1 with r = η/2 and d = η to obtain for x ∈ X,∑

y∈C
ρ(x,y)≥η/2

Nα

max(1, (Nρ(x, y))S)
=

∫
Δ(x,η/2)

Nα

max(1, (Nρ(x, y))S)
dτ (y)

≤ c(ηN)α−Sη−α.

(5.22)
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This proves (5.19). If x ∈ C, the definition of η(C) implies that {y ∈ C : y �= x} ⊆
{y ∈ C : ρ(x, y) ≥ η/2}. Hence, (5.19) implies (5.20). The estimate (5.21) follows
directly from (5.3) used with τ in place of ν. �

Lemma 5.3. We assume the set up as in Theorem 4.2. Then, for 2m ≥ (η/4)−1,

(5.23)
∑
y∈C

ρ(x,y)≥η(Cn)/2

|Am,n(x, y)| ≤ c
2mα

2(m−n)S
, x ∈ X,

(5.24) |Am,n(x, x)| ∼ 2mα, x ∈ X.

Moreover, for m ≥ n, and 2m ≥ (η/4)−1,

(5.25)
∑
y∈Cn

|Am,n(x, y)−Bm,n(x, y)| ≤ c1
2mα

2nS
, x ∈ X.

In particular, for x ∈ Cn, (5.23) implies that

(5.26)
∑
y∈C
y �=x

|Am,n(x, y)| ≤ c
2mα

2(m−n)S
,

Proof. The localization estimate (5.8), (5.19) in Lemma 5.2 and our assumption
(4.5) regarding the minimal separation of set Cn imply that for all x ∈ Cn,∑

y∈Cn
ρ(x,y)≥η(Cn)/2

|Φ2m(h, x, y)| ≤ c2
∑
y∈Cn

ρ(x,y)≥η(Cn)/2

2mα

max(1, (2mρ(x, y))S)

≤ c3(η(Cn)2m)α−Sη(Cn)−α

≤ c4
2nα

2(m−n)S−α = c42
−(m−n)S2mα.

(5.27)

This proves (5.23). The estimate (5.26) follows from (5.20) in the same way.
Since h(t) ≥ 0 for all t and h(t) = 1 if t ∈ [0, 1/2], (2.8) shows that for all x ∈ X,

(5.28) |Φ2m(h, x, x)| =
∑
j

h

(
�j
2m

)
|φj(x)|2 ≥

∑
�j≤2m−1

|φj(x)|2 ≥ c52
mα.

Using (2.8) and the facts that 0 ≤ h(t) ≤ 1 for all t ∈ R, and h(t) = 0 if |t| ≥ 1, we
deduce that

|Φ2m(h, x, x)| ≤ c62
mα, x ∈ X.

This proves (5.24).
Next, we use (3.14) with N = 2m, R = 2S + 3, and 2n in place of n to obtain

(5.29)

|Φ2m(h, x, y)− Φ2m(Q2n,S+3, x, y)| ≤
c5
2nS

2mα

max(1, (2mρ(x, y))S)
, x, y ∈ X.

We deduce (5.25) using (5.21), our assumption (4.5) regarding the minimal sepa-
ration of set Cn, and the fact that m ≥ n. �

Proof of Theorem 4.2. We recall that the norms of matrices are taken with respect
to the �∞ norms on the underlying Euclidean spaces. Let m ≥ n and 2m ≥ (η/4)−1.
In view of (5.23) and (5.24), we see that

(5.30)
∑
y∈Cn

|Am,n(x, y)| ≤ c2mα, x ∈ X.
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In particular,

(5.31) ‖Am,n‖ = max
x∈Cn

∑
y∈Cn

|Am,n(x, y)| ≤ c2mα.

Also, it is clear from (5.26) and (5.24) that for sufficiently large c∗, we have

(5.32)
∑
y∈C
y �=x

|Am,n(x, y)| ≤ (1/4) min
z∈Cn

|Am,n(z, z)|, x ∈ Cn, m ≥ n+ c∗.

Therefore, we may apply Proposition 5.2 with γ = 1/4, and in view of (5.24), with
λ ∼ 2mα to conclude that if m ≥ n+ c∗ then Am,n is invertible, and

(5.33) ‖A−1
m,n‖ ≤ c2−mα.

The estimate (4.6) follows from (5.31) and (5.33).
In the remainder of this proof, we take m = n+ c∗. The equation (4.8) is clear

from the definitions. The first estimate in (4.9) follows from the definition (4.7)
and the fact that Φ2n+c∗ (h, x, ◦) ∈ Π2n+c∗ . In view of (4.1),

(5.34) ‖edn(f)‖�∞ ≤ c{E2n−1,∞(f) + 2−nS‖f‖μ;∞} =: εn.

In view of (5.33), this yields

‖A−1
n+c∗,ne

d
n(f)‖�∞ ≤ c2−mαεn.

Therefore, (5.30) implies that∣∣∣∣∣∣
∑
y∈Cn

(A−1
n+c∗,ne

d
n(f, y))Φ2n+c∗ (h, x, y)

∣∣∣∣∣∣ ≤ cεn.

Together with (4.1), this implies the second inequality in (4.9). �
Theorem 4.4 can be obtained from Theorem 4.2 by a perturbation argument.

Proof of Theorem 4.4. In this proof only, let A = An+c∗,n, B = Bn+c∗,n, and D
be the diagonal matrix of A. Then (5.24) shows that

(5.35) ‖D−1‖ ∼ 2−nα,

and (5.32) can be rewritten in the form

‖D−A‖ ≤ (1/4)‖D−1‖−1.

Hence, Proposition 5.3 implies that

‖D−1 −A−1‖ ≤ (1/3)‖D−1‖.
Thus,

‖A−1‖ ∼ ‖D−1‖ ∼ 2−nα.

The estimate (5.25) used with m = n+ c∗ > n can now be rewritten in the form

‖A−B‖ ≤ c

2nS
‖A−1‖−1.

Hence,

(5.36) ‖B‖ ≤ c2nα.

Further, if c∗1 is chosen so that 2nS > c/4 above for n ≥ c∗1, then Proposition 5.3
can be applied again to deduce that

(5.37) ‖A−1 −B−1‖ ≤ c1
2nS

‖A−1‖ ∼ 2n(−α−S), ‖B−1‖ ∼ 2−nα.
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Together with (5.36), this establishes the bound on the condition number of B as
in (4.13).

Next, using (5.5) with p = ∞, we deduce that

(5.38) ‖en(f)− edn(f)‖�∞ ≤ ‖σ2n(νn;h, f)− σ∗
2n(νn; f)‖μ;∞ ≤ c2−nS‖f‖μ;∞.

In view of (5.34) (including the notation there) and (5.37), we may now conclude
that

‖A−1edn(f)−B−1en(f)‖�∞
= ‖(A−1 −B−1)edn(f) +B−1(edn(f)− en(f))‖�∞
≤ {2−n(α+S)εn + 2−n(α+S)‖f‖μ;∞} ≤ c2−n(α+S)‖f‖μ;∞.

(5.39)

Using (5.25) with m = n+ c∗, it is not difficult to deduce that

‖Id
n(f)− In(f)‖μ;∞ ≤ ‖σ2n(νn;h, f)− σ∗

2n(νn; f)‖μ;∞

+

∥∥∥∥∥∥
∑
y∈Cn

(
(A−1edn(f))Φ2m(h, ◦, y)− (B−1en(f))Φ2m(Q2n,S+3, ◦, y)

)∥∥∥∥∥∥
μ;∞

≤ c2−nS‖f‖μ;∞.

Therefore, (4.16) follows from the corresponding estimate (4.9) for Id
n. �

Finally, we prove Proposition 2.2. Towards this goal, we first make the following
observation [23]. If K ⊆ X is a compact subset and ε > 0, we will say that a
subset C ⊆ K is ε–separated if ρ(x, y) ≥ ε for every x, y ∈ C, x �= y. Since K is
compact, there exists a finite, maximal ε–separated subset {x1, · · · , xM} of K. If

x ∈ K \
⋃M

k=1 B(xk, ε), then {x, x1, · · · , xM} is a strictly larger ε–separated subset

of K. So, K ⊆
⋃M

k=1B(xk, ε). Moreover, the balls B(xk, ε/2) are mutually disjoint.

Proof of Proposition 2.2. The proofs of parts (a) and (b) are reproduced verbatim
from [23], except to confirm to the notation of this paper. The proof of part (c) is
as given in [31], except for a change of notation.

In the proof of part (a) only, let λ > |||ν|||R,d, r > 0, x ∈ X, and let {y1, · · · , yN} be
a maximal 2d/3–separated subset of B(x, r+2d/3). Then B(x, r) ⊆ B(x, r+2d/3) ⊆⋃N

j=1 B(yj , 2d/3). So,

|ν|(B(x, r)) ≤ |ν|(B(x, r+2d/3)) ≤
N∑
j=1

|ν|(B(yj , 2d/3)) ≤
N∑
j=1

|ν|(B(yj , d)) ≤ λNdα.

The balls B(yj , d/3) are mutually disjoint, and
⋃N

j=1 B(yj , d/3) ⊆ B(x, r + d). In

view of (2.9), dα ≤ cμ(B(yj , d/3)) for each j. So,

|ν|(B(x, r)) ≤ λNdα ≤ cλ
N∑
j=1

μ(B(yj , d/3))

= cλμ(
N⋃
j=1

B(yj , d/3)) ≤ cλμ(B(x, r + d)).

Since λ > |||ν|||R,d was arbitrary, this leads to the first inequality in (2.27). The
second inequality follows from (2.5). The converse statement is obvious. This
completes the proof of part (a).

The second estimate in (2.28) is clear from the definitions. The first estimate in
(2.28) follows by applying (2.27) with r = γd. This completes the proof of part (b).



2890 CHARLES K. CHUI AND H. N. MHASKAR

In order to prove part (c), we use the characterization given in part (a). Let
x0 ∈ X, r > 0 be arbitrary, and in this proof only, let B(x0, r) ∩ C = {z1, · · · , zJ},
then the balls B(zj , η/2) are disjoint, and

⋃J
j=1 B(zj , η/2) ⊂ B(x0, r + η/2). Using

the fact that τ (B(x0, r)) = J , and recalling (2.9), we obtain

μ(B(x0, r + η/2)) ≥ μ(
J⋃

j=1

B(zj , η/2))

=

J∑
j=1

μ(B(zj , η/2)) ≥ cJηα = cτ (B(x0, r))η
α.

Thus part (a) of this proposition implies that τ is η–regular, and ‖τ‖R,η ≤ cη−α. �
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